patch-2.1.121 linux/drivers/net/z85230.c
Next file: linux/drivers/net/z85230.h
Previous file: linux/drivers/net/syncppp.h
Back to the patch index
Back to the overall index
- Lines: 1205
- Date:
Tue Sep 8 23:20:41 1998
- Orig file:
v2.1.120/linux/drivers/net/z85230.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.1.120/linux/drivers/net/z85230.c linux/drivers/net/z85230.c
@@ -0,0 +1,1204 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ * (c) Copyright 1998 Building Number Three Ltd
+ *
+ * Development of this driver was funded by Equiinet Ltd
+ * http://www.equiinet.com
+ *
+ * ChangeLog:
+ *
+ * Asynchronous mode dropped for 2.2. For 2.3 we will attempt the
+ * unification of all the Z85x30 asynchronous drivers for real.
+ *
+ * To Do:
+ *
+ * Finish DMA mode support.
+ *
+ * Performance
+ *
+ * Z85230:
+ * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
+ * X.25 is not unrealistic on all machines. DMA mode can in theory
+ * handle T1/E1 quite nicely.
+ *
+ * Z85C30:
+ * 64K will take DMA, 9600 baud X.25 should be ok.
+ *
+ * Z8530:
+ * Synchronous mode without DMA is unlikely to pass about 2400 baud.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/net.h>
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/if_arp.h>
+#include <linux/delay.h>
+#include <linux/ioport.h>
+#include <asm/dma.h>
+#include <asm/io.h>
+#define RT_LOCK
+#define RT_UNLOCK
+#include <asm/spinlock.h>
+
+#include "z85230.h"
+
+
+static spinlock_t z8530_buffer_lock = SPIN_LOCK_UNLOCKED;
+
+/*
+ * Provided port access methods. The Comtrol SV11 requires no delays
+ * between accesses and uses PC I/O. Some drivers may need a 5uS delay
+ */
+
+extern __inline__ int z8530_read_port(int p)
+{
+ u8 r=inb(Z8530_PORT_OF(p));
+ if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
+ udelay(5);
+ return r;
+}
+
+extern __inline__ void z8530_write_port(int p, u8 d)
+{
+ outb(d,Z8530_PORT_OF(p));
+ if(p&Z8530_PORT_SLEEP)
+ udelay(5);
+}
+
+
+
+static void z8530_rx_done(struct z8530_channel *c);
+static void z8530_tx_done(struct z8530_channel *c);
+
+
+/*
+ * Port accesses
+ */
+
+extern inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
+{
+ u8 r;
+ unsigned long flags;
+ save_flags(flags);
+ cli();
+ if(reg)
+ z8530_write_port(c->ctrlio, reg);
+ r=z8530_read_port(c->ctrlio);
+ restore_flags(flags);
+ return r;
+}
+
+extern inline u8 read_zsdata(struct z8530_channel *c)
+{
+ u8 r;
+ r=z8530_read_port(c->dataio);
+ return r;
+}
+
+extern inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
+{
+ unsigned long flags;
+ save_flags(flags);
+ cli();
+ if(reg)
+ z8530_write_port(c->ctrlio, reg);
+ z8530_write_port(c->ctrlio, val);
+ restore_flags(flags);
+}
+
+extern inline void write_zsctrl(struct z8530_channel *c, u8 val)
+{
+ z8530_write_port(c->ctrlio, val);
+}
+
+extern inline void write_zsdata(struct z8530_channel *c, u8 val)
+{
+ z8530_write_port(c->dataio, val);
+}
+
+/*
+ * Register loading parameters for a dead port
+ */
+
+u8 z8530_dead_port[]=
+{
+ 255
+};
+
+EXPORT_SYMBOL(z8530_dead_port);
+
+/*
+ * Register loading parameters for currently supported circuit types
+ */
+
+
+/*
+ * Data clocked by telco end. This is the correct data for the UK
+ * "kilostream" service, and most other similar services.
+ */
+
+u8 z8530_hdlc_kilostream[]=
+{
+ 4, SYNC_ENAB|SDLC|X1CLK,
+ 2, 0, /* No vector */
+ 1, 0,
+ 3, ENT_HM|RxCRC_ENAB|Rx8,
+ 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+ 9, 0, /* Disable interrupts */
+ 7, FLAG,
+ 10, ABUNDER|MARKIDLE|NRZ|CRCPS,
+ 11, TCTRxCP,
+ 14, DISDPLL,
+ 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+ 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+ 9, NV|MIE|NORESET,
+ 255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream);
+
+/*
+ * As above but for enhanced chips.
+ */
+
+u8 z8530_hdlc_kilostream_85230[]=
+{
+ 4, SYNC_ENAB|SDLC|X1CLK,
+ 2, 0, /* No vector */
+ 1, 0,
+ 3, ENT_HM|RxCRC_ENAB|Rx8,
+ 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
+ 9, 0, /* Disable interrupts */
+ 7, FLAG,
+ 10, ABUNDER|MARKIDLE|NRZ|CRCPS,
+ 11, TCTRxCP,
+ 14, DISDPLL,
+ 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
+ 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
+ 9, NV|MIE|NORESET,
+ 23, 3, /* Extended mode AUTO TX and EOM*/
+ 31, 3, /* Extended mode AUTO TX and EOM*/
+
+ 255
+};
+
+EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
+
+/*
+ * Flush the FIFO
+ */
+
+static void z8530_flush_fifo(struct z8530_channel *c)
+{
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ if(c->dev->type==Z85230)
+ {
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ read_zsreg(c, R1);
+ }
+}
+
+/* Sets or clears DTR/RTS on the requested line */
+
+static void z8530_rtsdtr(struct z8530_channel *c, int set)
+{
+ if (set)
+ c->regs[5] |= (RTS | DTR);
+ else
+ c->regs[5] &= ~(RTS | DTR);
+ write_zsreg(c, R5, c->regs[5]);
+}
+
+/*
+ * Receive handler. This is much like the async one but not quite the
+ * same or as complex
+ *
+ * Note: Its intended that this handler can easily be seperated from
+ * the main code to run realtime. That'll be needed for some machines
+ * (eg to ever clock 64kbits on a sparc ;)).
+ *
+ * The RT_LOCK macros don't do anything now. Keep the code covered
+ * by them as short as possible in all circumstances - clocks cost
+ * baud. The interrupt handler is assumed to be atomic w.r.t. to
+ * other code - this is true in the RT case too.
+ *
+ * We only cover the sync cases for this. If you want 2Mbit async
+ * do it yourself but consider medical assistance first.
+ *
+ * This non DMA synchronous mode is portable code.
+ */
+
+static void z8530_rx(struct z8530_channel *c)
+{
+ u8 ch,stat;
+
+ while(1)
+ {
+ /* FIFO empty ? */
+ if(!(read_zsreg(c, R0)&1))
+ break;
+ ch=read_zsdata(c);
+ stat=read_zsreg(c, R1);
+
+ /*
+ * Overrun ?
+ */
+ if(c->count < c->max)
+ {
+ *c->dptr++=ch;
+ c->count++;
+ }
+
+ if(stat&END_FR)
+ {
+
+ /*
+ * Error ?
+ */
+ if(stat&(Rx_OVR|CRC_ERR))
+ {
+ /* Rewind the buffer and return */
+ if(c->skb)
+ c->dptr=c->skb->data;
+ c->count=0;
+ if(stat&Rx_OVR)
+ {
+ printk(KERN_WARNING "%s: overrun\n", c->dev->name);
+ c->rx_overrun++;
+ }
+ if(stat&CRC_ERR)
+ {
+ c->rx_crc_err++;
+ /* printk("crc error\n"); */
+ }
+ /* Shove the frame upstream */
+ }
+ else
+ {
+ z8530_rx_done(c);
+ write_zsctrl(c, RES_Rx_CRC);
+ }
+ }
+ }
+ /*
+ * Clear irq
+ */
+ write_zsctrl(c, ERR_RES);
+ write_zsctrl(c, RES_H_IUS);
+}
+
+
+/*
+ * Z8530 transmit interrupt handler
+ */
+
+static void z8530_tx(struct z8530_channel *c)
+{
+ while(c->txcount)
+ {
+ /* FIFO full ? */
+ if(!(read_zsreg(c, R0)&4))
+ break;
+ c->txcount--;
+ /*
+ * Shovel out the byte
+ */
+ write_zsreg(c, R8, *c->tx_ptr++);
+ write_zsctrl(c, RES_H_IUS);
+ /* We are about to underflow */
+ if(c->txcount==0)
+ {
+ write_zsctrl(c, RES_EOM_L);
+ write_zsreg(c, R10, c->regs[10]&~ABUNDER);
+ }
+ return;
+ }
+
+ /*
+ * End of frame TX - fire another one
+ */
+
+ write_zsctrl(c, RES_Tx_P);
+
+ z8530_tx_done(c);
+/* write_zsreg(c, R8, *c->tx_ptr++); */
+ write_zsctrl(c, RES_H_IUS);
+}
+
+static void z8530_status(struct z8530_channel *chan)
+{
+ u8 status=read_zsreg(chan, R0);
+ u8 altered=chan->status^status;
+
+ chan->status=status;
+
+ if(status&TxEOM)
+ {
+/* printk("%s: Tx underrun.\n", chan->dev->name); */
+ write_zsctrl(chan, ERR_RES);
+ z8530_tx_done(chan);
+ }
+
+ if(altered&DCD)
+ {
+ if(status&DCD)
+ {
+ printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
+ }
+ else
+ {
+ printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
+ z8530_flush_fifo(chan);
+ }
+
+ }
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_sync=
+{
+ z8530_rx,
+ z8530_tx,
+ z8530_status
+};
+
+EXPORT_SYMBOL(z8530_sync);
+
+/*
+ * Non bus mastering DMA interfaces for the Z8x30 devices. This
+ * is really pretty PC specific.
+ */
+
+static void z8530_dma_rx(struct z8530_channel *chan)
+{
+ if(chan->rxdma_on)
+ {
+ /* Special condition check only */
+ u8 status=read_zsreg(chan, R1);
+ if(status&END_FR)
+ {
+ z8530_rx_done(chan); /* Fire up the next one */
+ }
+ write_zsctrl(chan, ERR_RES);
+ write_zsctrl(chan, RES_H_IUS);
+ }
+ else
+ {
+ /* DMA is off right now, drain the slow way */
+ z8530_rx(chan);
+ }
+}
+
+static void z8530_dma_tx(struct z8530_channel *chan)
+{
+ if(!chan->txdma_on)
+ {
+ z8530_tx(chan);
+ return;
+ }
+ /* This shouldnt occur in DMA mode */
+ printk(KERN_ERR "DMA tx ??\n");
+ z8530_tx(chan);
+}
+
+static void z8530_dma_status(struct z8530_channel *chan)
+{
+ u8 status=read_zsreg(chan, R0);
+ u8 altered=chan->status^status;
+
+ chan->status=status;
+
+ if(chan->txdma_on)
+ {
+ if(status&TxEOM)
+ {
+ /* Transmit underrun */
+ disable_dma(chan->txdma);
+ clear_dma_ff(chan->txdma);
+ chan->txdma_on=0;
+ z8530_tx_done(chan);
+ }
+ }
+ if(altered&DCD)
+ {
+ if(status&DCD)
+ {
+ printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
+ }
+ else
+ {
+ printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
+ write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
+ z8530_flush_fifo(chan);
+ }
+ }
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_dma_sync=
+{
+ z8530_dma_rx,
+ z8530_dma_tx,
+ z8530_dma_status
+};
+
+EXPORT_SYMBOL(z8530_dma_sync);
+
+/*
+ * Interrupt vectors for a Z8530 that is in 'parked' mode.
+ * For machines with PCI Z85x30 cards, or level triggered interrupts
+ * (eg the MacII) we must clear the interrupt cause or die.
+ */
+
+
+static void z8530_rx_clear(struct z8530_channel *c)
+{
+ /*
+ * Data and status bytes
+ */
+ u8 stat;
+
+ read_zsdata(c);
+ stat=read_zsreg(c, R1);
+
+ if(stat&END_FR)
+ write_zsctrl(c, RES_Rx_CRC);
+ /*
+ * Clear irq
+ */
+ write_zsctrl(c, ERR_RES);
+ write_zsctrl(c, RES_H_IUS);
+}
+
+static void z8530_tx_clear(struct z8530_channel *c)
+{
+ write_zsctrl(c, RES_Tx_P);
+ write_zsctrl(c, RES_H_IUS);
+}
+
+static void z8530_status_clear(struct z8530_channel *chan)
+{
+ u8 status=read_zsreg(chan, R0);
+ if(status&TxEOM)
+ write_zsctrl(chan, ERR_RES);
+ write_zsctrl(chan, RES_EXT_INT);
+ write_zsctrl(chan, RES_H_IUS);
+}
+
+struct z8530_irqhandler z8530_nop=
+{
+ z8530_rx_clear,
+ z8530_tx_clear,
+ z8530_status_clear
+};
+
+
+EXPORT_SYMBOL(z8530_nop);
+
+/*
+ * A Z85[2]30 device has stuck its hand in the air for attention
+ */
+
+void z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct z8530_dev *dev=dev_id;
+ u8 intr;
+ static volatile int locker=0;
+ int work=0;
+
+ if(locker)
+ {
+ printk(KERN_ERR "IRQ re-enter\n");
+ return;
+ }
+ locker=1;
+
+ while(++work<5000)
+ {
+ struct z8530_irqhandler *irqs=dev->chanA.irqs;
+
+ intr = read_zsreg(&dev->chanA, R3);
+ if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
+ break;
+
+ /* This holds the IRQ status. On the 8530 you must read it from chan
+ A even though it applies to the whole chip */
+
+ /* Now walk the chip and see what it is wanting - it may be
+ an IRQ for someone else remember */
+
+ if(intr & (CHARxIP|CHATxIP|CHAEXT))
+ {
+ if(intr&CHARxIP)
+ irqs->rx(&dev->chanA);
+ if(intr&CHATxIP)
+ irqs->tx(&dev->chanA);
+ if(intr&CHAEXT)
+ irqs->status(&dev->chanA);
+ }
+
+ irqs=dev->chanB.irqs;
+
+ if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
+ {
+ if(intr&CHBRxIP)
+ irqs->rx(&dev->chanB);
+ if(intr&CHBTxIP)
+ irqs->tx(&dev->chanB);
+ if(intr&CHBEXT)
+ irqs->status(&dev->chanB);
+ }
+ }
+ if(work==200)
+ printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
+ /* Ok all done */
+ locker=0;
+}
+
+EXPORT_SYMBOL(z8530_interrupt);
+
+static char reg_init[16]=
+{
+ 0,0,0,0,
+ 0,0,0,0,
+ 0,0,0,0,
+ 0x55,0,0,0
+};
+
+
+int z8530_sync_open(struct device *dev, struct z8530_channel *c)
+{
+ c->sync = 1;
+ c->mtu = dev->mtu;
+ c->count = 0;
+ c->skb = NULL;
+ c->skb2 = NULL;
+ c->irqs = &z8530_sync;
+ /* This loads the double buffer up */
+ z8530_rx_done(c); /* Load the frame ring */
+ z8530_rx_done(c); /* Load the backup frame */
+ z8530_rtsdtr(c,1);
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+ return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_sync_open);
+
+int z8530_sync_close(struct device *dev, struct z8530_channel *c)
+{
+ u8 chk;
+ c->irqs = &z8530_nop;
+ c->max = 0;
+ c->sync = 0;
+
+ chk=read_zsreg(c,R0);
+ write_zsreg(c, R3, c->regs[R3]);
+ z8530_rtsdtr(c,0);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_close);
+
+int z8530_sync_dma_open(struct device *dev, struct z8530_channel *c)
+{
+ c->sync = 1;
+ c->mtu = dev->mtu;
+ c->count = 0;
+ c->skb = NULL;
+ c->skb2 = NULL;
+ /*
+ * Load the DMA interfaces up
+ */
+ c->rxdma_on = 0;
+ c->txdma_on = 0;
+
+ /*
+ * Allocate the DMA flip buffers
+ */
+
+ c->rx_buf[0]=kmalloc(c->mtu, GFP_KERNEL|GFP_DMA);
+ if(c->rx_buf[0]==NULL)
+ return -ENOBUFS;
+ c->rx_buf[1]=kmalloc(c->mtu, GFP_KERNEL|GFP_DMA);
+ if(c->rx_buf[1]==NULL)
+ {
+ kfree(c->rx_buf[0]);
+ c->rx_buf[0]=NULL;
+ return -ENOBUFS;
+ }
+
+ c->tx_dma_buf[0]=kmalloc(c->mtu, GFP_KERNEL|GFP_DMA);
+ if(c->tx_dma_buf[0]==NULL)
+ {
+ kfree(c->rx_buf[0]);
+ kfree(c->rx_buf[1]);
+ c->rx_buf[0]=NULL;
+ return -ENOBUFS;
+ }
+ c->tx_dma_buf[1]=kmalloc(c->mtu, GFP_KERNEL|GFP_DMA);
+ if(c->tx_dma_buf[1]==NULL)
+ {
+ kfree(c->tx_dma_buf[0]);
+ kfree(c->rx_buf[0]);
+ kfree(c->rx_buf[1]);
+ c->rx_buf[0]=NULL;
+ c->rx_buf[1]=NULL;
+ c->tx_dma_buf[0]=NULL;
+ return -ENOBUFS;
+ }
+ c->tx_dma_used=0;
+ c->dma_num=0;
+ c->dma_ready=1;
+
+ /*
+ * Enable DMA control mode
+ */
+
+ c->regs[R1]|= WT_RDY_RT|WT_FN_RDYFN;
+ c->regs[R1]|= INT_ERR_Rx;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R1]|= WT_RDY_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R14]|= DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ /*
+ * DMA interrupts
+ */
+
+ /*
+ * Set up the DMA configuration
+ */
+
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+ set_dma_mode(c->rxdma, DMA_MODE_READ);
+ set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
+ set_dma_count(c->rxdma, c->mtu);
+ enable_dma(c->rxdma);
+
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ set_dma_mode(c->txdma, DMA_MODE_WRITE);
+ disable_dma(c->txdma);
+
+ /*
+ * Select the DMA interrupt handlers
+ */
+
+ c->rxdma_on = 1;
+ c->txdma_on = 1;
+ c->tx_dma_used = 1;
+
+ c->irqs = &z8530_dma_sync;
+ z8530_rtsdtr(c,1);
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_open);
+
+int z8530_sync_dma_close(struct device *dev, struct z8530_channel *c)
+{
+ u8 chk;
+ c->irqs = &z8530_nop;
+ c->max = 0;
+ c->sync = 0;
+
+ /*
+ * Disable the PC DMA channels
+ */
+
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+ c->rxdma_on = 0;
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ c->txdma_on = 0;
+ c->tx_dma_used = 0;
+
+ /*
+ * Disable DMA control mode
+ */
+
+ c->regs[R1]&= ~WT_RDY_ENAB;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
+ c->regs[R1]|= INT_ALL_Rx;
+ write_zsreg(c, R1, c->regs[R1]);
+ c->regs[R14]&= ~DTRREQ;
+ write_zsreg(c, R14, c->regs[R14]);
+
+ if(c->rx_buf[0])
+ {
+ kfree(c->rx_buf[0]);
+ c->rx_buf[0]=NULL;
+ }
+ if(c->rx_buf[1])
+ {
+ kfree(c->rx_buf[1]);
+ c->rx_buf[1]=NULL;
+ }
+ if(c->tx_dma_buf[0])
+ {
+ kfree(c->tx_dma_buf[0]);
+ c->tx_dma_buf[0]=NULL;
+ }
+ if(c->tx_dma_buf[1])
+ {
+ kfree(c->tx_dma_buf[1]);
+ c->tx_dma_buf[1]=NULL;
+ }
+ chk=read_zsreg(c,R0);
+ write_zsreg(c, R3, c->regs[R3]);
+ z8530_rtsdtr(c,0);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_sync_dma_close);
+
+/*
+ * Describe a Z8530 in a standard format. We must pass the I/O as
+ * the port offset isnt predictable. The main reason for this function
+ * is to try and get a common format of report.
+ */
+
+static char *z8530_type_name[]={
+ "Z8530",
+ "Z85C30",
+ "Z85230"
+};
+
+void z8530_describe(struct z8530_dev *dev, char *mapping, int io)
+{
+ printk(KERN_INFO "%s: %s found at %s 0x%X, IRQ %d.\n",
+ dev->name,
+ z8530_type_name[dev->type],
+ mapping,
+ io,
+ dev->irq);
+}
+
+EXPORT_SYMBOL(z8530_describe);
+
+/*
+ * Configure up a Z8530
+ */
+
+
+int z8530_init(struct z8530_dev *dev)
+{
+ /* NOP the interrupt handlers first - we might get a
+ floating IRQ transition when we reset the chip */
+ dev->chanA.irqs=&z8530_nop;
+ dev->chanB.irqs=&z8530_nop;
+ /* Reset the chip */
+ write_zsreg(&dev->chanA, R9, 0xC0);
+ udelay(100);
+ /* Now check its valid */
+ write_zsreg(&dev->chanA, R12, 0xAA);
+ if(read_zsreg(&dev->chanA, R12)!=0xAA)
+ return -ENODEV;
+ write_zsreg(&dev->chanA, R12, 0x55);
+ if(read_zsreg(&dev->chanA, R12)!=0x55)
+ return -ENODEV;
+
+ dev->type=Z8530;
+
+ /*
+ * See the application note.
+ */
+
+ write_zsreg(&dev->chanA, R15, 0x01);
+
+ /*
+ * If we can set the low bit of R15 then
+ * the chip is enhanced.
+ */
+
+ if(read_zsreg(&dev->chanA, R15)==0x01)
+ {
+ /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
+ /* Put a char in the fifo */
+ write_zsreg(&dev->chanA, R8, 0);
+ if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
+ dev->type = Z85230; /* Has a FIFO */
+ else
+ dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
+ }
+
+ /*
+ * The code assumes R7' and friends are
+ * off. Use write_zsext() for these and keep
+ * this bit clear.
+ */
+
+ write_zsreg(&dev->chanA, R15, 0);
+
+ /*
+ * At this point it looks like the chip is behaving
+ */
+
+ memcpy(dev->chanA.regs, reg_init, 16);
+ memcpy(dev->chanB.regs, reg_init ,16);
+
+ return 0;
+}
+
+
+EXPORT_SYMBOL(z8530_init);
+
+int z8530_shutdown(struct z8530_dev *dev)
+{
+ /* Reset the chip */
+ dev->chanA.irqs=&z8530_nop;
+ dev->chanB.irqs=&z8530_nop;
+ write_zsreg(&dev->chanA, R9, 0xC0);
+ udelay(100);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_shutdown);
+
+/*
+ * Load a Z8530 channel up from the system data
+ * We use +16 to indicate the 'prime' registers
+ */
+
+int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
+{
+ while(*rtable!=255)
+ {
+ int reg=*rtable++;
+ if(reg>0x0F)
+ write_zsreg(c, R15, c->regs[15]|1);
+ write_zsreg(c, reg&0x0F, *rtable);
+ if(reg>0x0F)
+ write_zsreg(c, R15, c->regs[15]&~1);
+ c->regs[reg]=*rtable++;
+ }
+ c->rx_function=z8530_null_rx;
+ c->skb=NULL;
+ c->tx_skb=NULL;
+ c->tx_next_skb=NULL;
+ c->mtu=1500;
+ c->max=0;
+ c->count=0;
+ c->status=0; /* Fixme - check DCD now */
+ c->sync=1;
+ write_zsreg(c, R3, c->regs[R3]|RxENABLE);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_channel_load);
+
+
+/*
+ * Higher level shovelling - transmit chains
+ */
+
+static void z8530_tx_begin(struct z8530_channel *c)
+{
+ unsigned long flags;
+ if(c->tx_skb)
+ return;
+
+ c->tx_skb=c->tx_next_skb;
+ c->tx_next_skb=NULL;
+ c->tx_ptr=c->tx_next_ptr;
+
+ mark_bh(NET_BH);
+ if(c->tx_skb==NULL)
+ {
+ /* Idle on */
+ disable_dma(c->txdma);
+ c->txcount=0;
+ }
+ else
+ {
+ c->tx_ptr=c->tx_next_ptr;
+ c->txcount=c->tx_skb->len;
+
+
+ if(c->tx_dma_used)
+ {
+ /*
+ * FIXME. DMA is broken for the non 85230,
+ * on the older parts we need to set a flag and
+ * wait for a further TX interrupt to fire this
+ * stage off
+ */
+ disable_dma(c->txdma);
+ clear_dma_ff(c->txdma);
+ set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
+ set_dma_count(c->txdma, c->txcount);
+ enable_dma(c->txdma);
+ write_zsreg(c, R5, c->regs[R5]|TxENAB);
+ }
+ else
+ {
+ save_flags(flags);
+ cli();
+ /* ABUNDER off */
+ write_zsreg(c, R10, c->regs[10]);
+ write_zsctrl(c, RES_Tx_CRC);
+ write_zsctrl(c, RES_EOM_L);
+
+ while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
+ {
+ write_zsreg(c, R8, *c->tx_ptr++);
+ c->txcount--;
+ }
+ restore_flags(flags);
+ }
+ }
+}
+
+
+static void z8530_tx_done(struct z8530_channel *c)
+{
+ unsigned long flags;
+ struct sk_buff *skb;
+
+ spin_lock_irqsave(&z8530_buffer_lock, flags);
+ c->netdevice->tbusy=0;
+ /* Can't happen */
+ if(c->tx_skb==NULL)
+ {
+ spin_unlock_irqrestore(&z8530_buffer_lock, flags);
+ printk(KERN_WARNING "%s: spurious tx done\n", c->dev->name);
+ return;
+ }
+ skb=c->tx_skb;
+ c->tx_skb=NULL;
+ z8530_tx_begin(c);
+ spin_unlock_irqrestore(&z8530_buffer_lock, flags);
+ dev_kfree_skb(skb);
+}
+
+/*
+ * Higher level shovelling - receive chains
+ */
+
+void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
+{
+ kfree_skb(skb);
+}
+
+EXPORT_SYMBOL(z8530_null_rx);
+
+static void z8530_rx_done(struct z8530_channel *c)
+{
+ struct sk_buff *skb;
+ int ct;
+
+ /*
+ * Is our receive engine in DMA mode
+ */
+
+ if(c->rxdma_on)
+ {
+ /*
+ * Save the ready state and the buffer currently
+ * being used as the DMA target
+ */
+ int ready=c->dma_ready;
+ char *rxb=c->rx_buf[c->dma_num];
+
+ /*
+ * Complete this DMA. Neccessary to find the length
+ */
+ disable_dma(c->rxdma);
+ clear_dma_ff(c->rxdma);
+ c->rxdma_on=0;
+ ct=c->mtu-get_dma_residue(c->rxdma)-4;
+ if(ct<0)
+ ct=2; /* Shit happens.. */
+ c->dma_ready=0;
+
+ /*
+ * Normal case: the other slot is free, start the next DMA
+ * into it immediately.
+ */
+
+ if(ready)
+ {
+ c->dma_num^=1;
+ set_dma_mode(c->rxdma, DMA_MODE_READ);
+ set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
+ set_dma_count(c->rxdma, c->mtu);
+ c->rxdma_on = 1;
+ enable_dma(c->rxdma);
+ }
+ else
+ /* Can't occur as we dont reenable the DMA irq until
+ after the flip is done */
+ printk("DMA flip overrun!\n");
+
+ /*
+ * Shove the old buffer into an sk_buff. We can't DMA
+ * directly into one on a PC - it might be above the 16Mb
+ * boundary. Optimisation - we could check to see if we
+ * can avoid the copy. Optimisation 2 - make the memcpy
+ * a copychecksum.
+ */
+
+ skb=dev_alloc_skb(ct);
+ if(skb==NULL)
+ printk("%s: Memory squeeze.\n", c->netdevice->name);
+ else
+ {
+ skb_put(skb, ct);
+ memcpy(skb->data, rxb, ct);
+ skb_pull(skb,2);
+ }
+ c->dma_ready=1;
+ }
+ else
+ {
+ RT_LOCK;
+ skb=c->skb;
+
+ /*
+ * The game we play for non DMA is similar. We want to
+ * get the controller set up for the next packet as fast
+ * as possible. We potentially only have one byte + the
+ * fifo length for this. Thus we want to flip to the new
+ * buffer and then mess around copying and allocating
+ * things. For the current case it doesn't matter but
+ * if you build a system where the sync irq isnt blocked
+ * by the kernel IRQ disable then you need only block the
+ * sync IRQ for the RT_LOCK area.
+ *
+ */
+ ct=c->count;
+
+ c->skb = c->skb2;
+ c->count = 0;
+ c->max = c->mtu;
+ if(c->skb)
+ {
+ c->dptr = c->skb->data;
+ c->max = c->mtu;
+ }
+ else
+ {
+ c->count= 0;
+ c->max = 0;
+ }
+ RT_UNLOCK;
+
+ c->skb2 = dev_alloc_skb(c->mtu);
+ if(c->skb2==NULL)
+ printk(KERN_WARNING "%s: memory squeeze.\n",
+ c->netdevice->name);
+ else
+ {
+ skb_put(c->skb2,c->mtu);
+ }
+ }
+ /*
+ * If we received a frame we must now process it.
+ */
+ if(skb)
+ {
+ skb_trim(skb, ct);
+ c->rx_function(c,skb);
+ }
+ else
+ printk("Lost a frame\n");
+}
+
+
+/*
+ * Queue a packet for transmission. Because we have rather
+ * hard to hit interrupt latencies for the Z85230 per packet
+ * even in DMA mode we do the flip to DMA buffer if needed here
+ * not in the IRQ.
+ */
+
+int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
+{
+ unsigned long flags;
+ if(c->tx_next_skb)
+ {
+ skb->dev->tbusy=1;
+ return 1;
+ }
+
+ /* PC SPECIFIC - DMA limits */
+
+ /*
+ * If we will DMA the transmit and its gone over the ISA bus
+ * limit, then copy to the flip buffer
+ */
+
+ if(c->dma_tx && (unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024)
+ {
+ /*
+ * Send the flip buffer, and flip the flippy bit.
+ * We don't care which is used when just so long as
+ * we never use the same buffer twice in a row. Since
+ * only one buffer can be going out at a time the other
+ * has to be safe.
+ */
+ c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
+ c->tx_dma_used^=1; /* Flip temp buffer */
+ memcpy(c->tx_next_ptr, skb->data, skb->len);
+ }
+ else
+ c->tx_next_ptr=skb->data;
+ RT_LOCK;
+ c->tx_next_skb=skb;
+ RT_UNLOCK;
+
+ spin_lock_irqsave(&z8530_buffer_lock, flags);
+ z8530_tx_begin(c);
+ spin_unlock_irqrestore(&z8530_buffer_lock, flags);
+ return 0;
+}
+
+EXPORT_SYMBOL(z8530_queue_xmit);
+
+struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
+{
+ return &c->stats;
+}
+
+EXPORT_SYMBOL(z8530_get_stats);
+
+#ifdef MODULE
+
+/*
+ * Module support
+ */
+
+int init_module(void)
+{
+ printk(KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n");
+ return 0;
+}
+
+void cleanup_module(void)
+{
+}
+
+#endif
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov