
RFC 9569
The Application-Layer Traffic Optimization (ALTO)
Transport Information Publication Service (TIPS)

Abstract
"Application-Layer Traffic Optimization (ALTO) Protocol" (RFC 7285) leverages HTTP/1.1 and is
designed for the simple, sequential request-reply use case, in which an ALTO client requests a
sequence of information resources and the server responds with the complete content of each
resource, one at a time.

RFC 8895, which describes ALTO incremental updates using Server-Sent Events (SSE), defines a
multiplexing protocol on top of HTTP/1.x, so that an ALTO server can incrementally push
resource updates to clients whenever monitored network information resources change,
allowing the clients to monitor multiple resources at the same time. However, HTTP/2 and later
versions already support concurrent, non-blocking transport of multiple streams in the same
HTTP connection.

To take advantage of newer HTTP features, this document introduces the ALTO Transport
Information Publication Service (TIPS). TIPS uses an incremental RESTful design to give an ALTO
client the new capability to explicitly and concurrently (in a non-blocking manner) request (or
pull) specific incremental updates using HTTP/2 or HTTP/3, while still functioning for HTTP/1.1.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9569
Standards Track
September 2024
2070-1721
K. Gao
Sichuan University

R. Schott
Deutsche Telekom

Y. R. Yang
Yale University

L. Delwiche
Yale University

L. Keller
Yale University

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Gao, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9569

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9569

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

1.2. Notations

2. TIPS Overview

2.1. Transport Requirements

2.2. TIPS Terminology

3. TIPS Updates Graph

3.1. Basic Data Model of an Updates Graph

3.2. Updates Graph Modification Invariants

4. TIPS Workflow and Resource Location Schema

4.1. Workflow

4.2. Resource Location Schema

5. TIPS Information Resource Directory (IRD) Announcement

5.1. Media Type

5.2. Capabilities

5.3. Uses

5.4. An Example

4

5

5

6

6

7

9

10

11

12

12

13

14

14

15

15

16

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 2

https://www.rfc-editor.org/info/rfc9569
https://trustee.ietf.org/license-info

6. TIPS Management

6.1. Open Request

6.2. Open Response

6.3. Open Example

6.3.1. Basic Example

6.3.2. Example Using Digest Authentication

6.3.3. Example Using ALTO/SSE

7. TIPS Data Transfers - Client Pull

7.1. Request

7.2. Response

7.3. Example

7.4. New Next Edge Recommendation

7.4.1. Request

7.4.2. Response

7.4.3. Example

8. Operation and Processing Considerations

8.1. Considerations for Load Balancing

8.2. Considerations for Cross-Resource Dependency Scheduling

8.3. Considerations for Managing Shared TIPS Views

8.4. Considerations for Offering Shortcut Incremental Updates

9. Security Considerations

9.1. TIPS: Denial-of-Service Attacks

9.2. ALTO Client: Update Overloading or Instability

10. IANA Considerations

10.1. application/alto-tips+json Media Type

10.2. application/alto-tipsparams+json Media Type

11. References

11.1. Normative References

11.2. Informative References

Appendix A. A High-Level Deployment Model

18

18

19

22

22

23

24

26

26

26

27

27

27

28

28

29

29

30

31

31

32

32

33

33

33

34

35

35

35

36

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 3

Appendix B. Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current
Practices

Appendix C. Push-Mode TIPS Using HTTP Server Push

Appendix D. Persistent HTTP Connections

Acknowledgments

Authors' Addresses

37

38

38

39

39

1. Introduction
The Application-Layer Traffic Optimization (ALTO) protocol provides means for network
applications to obtain network status information. So far, the ALTO information can be
transported in two ways:

Using the ALTO base protocol , which is designed for the simple use case in which
an ALTO client requests a network information resource and the server sends the complete
content of the requested information (if any) resource to the client.
Using ALTO incremental updates using Server-Sent Events (ALTO/SSE) ; this
method is designed for an ALTO client to indicate to the server that it wants to receive
updates for a set of resources, and the server can then concurrently and incrementally push
updates to that client whenever monitored resources change.

Both protocols are designed for HTTP/1.1 . While they still work with HTTP/2
and HTTP/3 , ALTO and ALTO/SSE cannot take full advantage of new features offered
by HTTP/2 and HTTP/3.

First, consider the ALTO base protocol, which is designed to transfer only complete
information resources. A client can run the base protocol on top of HTTP/2 or HTTP/3 to
request multiple information resources in concurrent streams, but each request must be for
a complete information resource: there is no capability for the server to transmit
incremental updates. Hence, there can be a large overhead when the client already has an
information resource and then there are small changes to the resource.
Next, consider ALTO/SSE . Although ALTO/SSE can transfer incremental updates, it
introduces a customized multiplexing protocol on top of HTTP, assuming a total-order
message channel from the server to the client. The multiplexing design does not provide
naming (i.e., a resource identifier) to individual incremental updates. Such a design cannot
use concurrent data streams available in HTTP/2 and HTTP/3 because both cases require a
resource identifier. Additionally, ALTO/SSE is a push-only protocol, which denies the client
flexibility in choosing how and when it receives updates.

1. [RFC7285]

2. [RFC8895]

[RFC9112] [RFC9113]
[RFC9114]

•

• [RFC8895]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 4

To mitigate these concerns, this document introduces a new ALTO service called the Transport
Information Publication Service (TIPS). TIPS uses an incremental RESTful design to provide an
ALTO client with a new capability to explicitly, concurrently issue non-blocking requests for
specific incremental updates using HTTP/2 or HTTP/3, while still functioning for HTTP/1.1.

While both ALTO/SSE and TIPS can transport incremental updates of ALTO
information resources to clients, they have different design goals. The TIPS extension enables
more scalable and robust distribution of incremental updates but is missing the session
management and built-in server push capabilities of ALTO/SSE. From the performance
perspective, TIPS is optimizing throughput by leveraging concurrent and out-of-order transport
of data, while ALTO/SSE is optimizing latency as new events can be immediately transferred to
the clients without waiting for another round of communication when there are multiple
updates. Thus, we do not see TIPS as a replacement for ALTO/SSE, but as a complement to it. One
example of combining these two extensions is shown in Section 6.3.3.

Note that future extensions may leverage server push, a feature of HTTP/2 and HTTP/3
, as an alternative of SSE. We discuss why this alternative design is not ready at the

time of writing in Appendix C.

Specifically, this document specifies:

Extensions to the ALTO Protocol for dynamic subscription and efficient uniform update
delivery of an incrementally changing network information resource.
A new resource type that indicates the TIPS updates graph model for a resource.
URI patterns to fetch the snapshots or incremental updates.

Some operational complexities that must be taken into consideration when implementing this
extension are discussed in Section 8: these include load balancing in Section 8.1 and fetching and
processing incremental updates of dependent resources in Section 8.2.

Appendix B discusses to what extent the TIPS design adheres to the best current practices for
building protocols with HTTP .

[RFC8895]

[RFC9113]
[RFC9114]

•

•
•

[RFC9205]

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Notations
This document uses the same syntax and notations as introduced in to
specify the extensions to existing ALTO resources and services.

Section 8.2 of [RFC7285]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 5

https://rfc-editor.org/rfc/rfc7285#section-8.2

2. TIPS Overview

Incremental updates:

Concurrent, non-blocking update transmission:

Long polling updates:

Backward compatibility:

2.1. Transport Requirements
The ALTO Protocol and its extensions support two transport mechanisms:

A client can directly request an ALTO resource and obtain a complete snapshot of that ALTO
resource, as specified in the base protocol ;
A client can subscribe to incremental changes of one or multiple ALTO resources using the
incremental update extension , and a server pushes the updates to the client
through SSE.

However, the current transport mechanisms are not optimized for storing, transmitting, and
processing (incremental) updates of ALTO information resources. Specifically, the new transport
mechanism must satisfy the following requirements:

Incremental updates only maintain and transfer the "diff" upon changes.
Thus, it is more efficient than storing and transferring the full updates, especially when the
change of an ALTO resource is minor. The base protocol does not support incremental
updates and the current incremental update mechanism in has limitations (as
discussed below).

When a client needs to receive and apply
multiple incremental updates, it is desired to transmit the updates concurrently to fully utilize
the bandwidth and to reduce head-of-line blocking. Unfortunately, the ALTO incremental
update extension does not satisfy this requirement. Even though the updates can
be multiplexed by the server to avoid head-of-line blocking between multiple resources, the
updates are delivered sequentially and can suffer from head-of-line blocking inside the
connection (for example, when there is a packet loss).

Long polling updates can reduce the time to send the request, making it
possible to achieve sub-RTT transmission of ALTO incremental updates. In , this
requirement is fulfilled using SSE and is still desired in the new ALTO transport.

While some of the previous requirements are offered by HTTP/2
 and HTTP/3 , it is desired that the new ALTO transport mechanism can

work with HTTP/1.1 as many development tools and current ALTO implementations are based
on HTTP/1.1.

The new ALTO transport specified in this document satisfies all of the following design
requirements above by:

Reusing the data format introduced in that enables incremental updates using
JSON patches or merge patches.

1.
[RFC7285]

2.
[RFC8895]

[RFC8895]

[RFC8895]

[RFC8895]

[RFC9113] [RFC9114]

• [RFC8895]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 6

Introducing a unified data model to describe the changes (snapshots and incremental
updates) of an ALTO resource, referred to as a "TIPS view". In the data model, snapshots and
incremental updates are indexed as individual HTTP resources following a unified naming
convention, independent of the HTTP version. Thus, these updates can be concurrently
requested and be transferred in a non-blocking manner either by using multiple connections
or leveraging multiplexed data transfer offered by HTTP/2 or HTTP/3.
Basing the unified naming convention on a monotonically increasing sequence number,
making it possible for a client to construct the URL of a future update and send a long polling
request.
Making the unified naming convention independent of the HTTP versions and able to
operate atop HTTP/1.1, HTTP/2, or HTTP/3.

This document assumes the deployment model discussed in Appendix A.

•

•

•

Transport Information Publication Service (TIPS):

Network information resource:

TIPS view (tv):

Updates graph (ug):

Version:

Start sequence number (<start-seq>):

End sequence number (<end-seq>):

2.2. TIPS Terminology
In addition to the terms defined in , this document uses the following terms:

A new type of ALTO service, as specified in
this document, to enable a uniform transport mechanism for updates of an incrementally
changing ALTO network information resource.

A piece of retrievable information about network state, per
.

The container of incremental transport information about the network
information resource. The TIPS view has one basic component, the updates graph (ug), but
may include other transport information.

A directed, acyclic graph whose nodes represent the set of versions of an
information resource and whose edges represent the set of update items to compute these
versions. An ALTO map service (e.g., a cost map or a network map) may need only a single
updates graph. A dynamic network information service (e.g., a filtered cost map) may create
an updates graph (within a new TIPS view) for each unique request. The encoding of an
updates graph is specified in Section 6.1.

The representation of a historical content of an information resource. For an
information resource, each version is associated with and uniquely identified by a
monotonically and consecutively increased sequence number. This document uses the term
"version s" to refer to the version associated with sequence number "s". The version is
encoded as a JSONNumber, as specified in Section 6.1.

The smallest non-zero sequence number in an updates
graph.

The largest sequence number in an updates graph.

[RFC7285]

[RFC7285]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 7

Snapshot:

Incremental update:

Update item:

ID#i-#j:

A full replacement of a resource that is contained within an updates graph.

A partial replacement of a resource contained within an updates graph,
codified in this document as a JSON merge patch or a JSON patch. An incremental update is
mandatory if the source version (i) and the target version (j) are consecutive (i.e., i + 1 = j);
otherwise, it is optional (or a shortcut). Mandatory incremental updates are always in an
updates graph, while optional/shortcut incremental updates may or may not be included in
an updates graph.

The content on an edge of the updates graph, which can be either a snapshot or an
incremental update. An update item can be considered to be a pair (op, data) where op
denotes whether the item is an incremental update or a snapshot and data is the content of
the item.

Denotation of the update item on a specific edge in the updates graph to transition from
version i to version j, where i and j are the sequence numbers of the source node and the
target node of the edge, respectively.

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 8

Figure 1 shows an example illustrating an overview of the ALTO TIPS extension. The server
provides TIPS for two information resources (#1 and #2) where #1 is an ALTO map service and #2
is a filterable service. There are three ALTO clients (Client 1, Client 2, and Client 3) that are
connected to the ALTO server.

Each client uses the TIPS view to retrieve updates. Specifically, a TIPS view (tv1) is created for the
map service #1 and is shared by multiple clients. For the filtering service #2, two different TIPS
views (tv2 and tv3) are created upon different client requests with different filter sets.

Figure 1: Overview of ALTO TIPS

 +-------------+
 +-----------+ +--------------+ | Dynamic | +-----------+
 | Routing | | Provisioning | | Network | | External |
 | Protocols | | Policy | | Information | | Interface |
 +-----------+ +--------------+ +-------------+ +-----------+
 | | | |
+---+
| ALTO Server |
| +---+ |
	Network Information							
	+-------------+ +-------------+							
		Information		Information				
		Resource #1		Resource #2				
	+-------------+ +-------------+							
+-----	--------------------------------------/-------\--------+							
	/ \							
+-----	------------------------------------/-----------\------+							
		Transport Information / \						
	+--------+ +--------+ +--------+							
		tv1		tv2		tv3		
	+--------+ +--------+ +--------+							
		/						
	+--------+ +--------+ +--------+							
		tv1/ug		tv2/ug		tv3/ug		
	+--------+ +--------+ +--------+							
+----	----\----------------	-------------------------	--------+					
	\							
+------|------\--------------|-------------------------|----------+
 | +------+ | |
 | \ | |
 +----------+ +----------+ +----------+
 | Client 1 | | Client 2 | | Client 3 |
 +----------+ +----------+ +----------+

tvi = TIPS view i
tvi/ug = incremental updates graph associated with tvi

3. TIPS Updates Graph
In order to provide incremental updates for a resource, an ALTO server creates an updates
graph, which is a directed acyclic graph that contains a sequence of incremental updates and
snapshots (collectively called "update items") of a network information resource.

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 9

3.1. Basic Data Model of an Updates Graph
For each resource (e.g., a cost map or a network map), the incremental updates and snapshots
can be represented using the following directed acyclic graph model, where the server tracks the
change of the resource maps with version IDs that are assigned sequentially (i.e., incremented by
one each time):

Each node in the graph is a version of the resource, which is identified by a sequence
number (defined as a JSONNumber). Version 0 is reserved as the initial state (empty/null).
A tag identifies the content of a node. A tag has the same format as the "tag" field in

 and is valid only within the scope of the resource.
Each edge is an update item. In particular, the edge from i to j is the update item to transit
from version i to version j.
The version is path independent, i.e., different paths arriving at the node associated with the
same version have the same content.

A concrete example is shown in Figure 2. There are seven nodes in the graph, representing seven
different versions of the resource. Edges in the figure represent the updates from the source
version to the target version. Thick lines represent mandatory incremental updates (e.g.,
ID103-104), dotted lines represent optional incremental updates (e.g., ID103-105), and thin lines
represent snapshots (e.g., ID0-103). Note that node content is path independent: the content of
node v can be obtained by applying the updates from any path that ends at v. For example,
assume the latest version is 105 and a client already has version 103. The base version of the
client is 103 as it serves as a base upon which incremental updates can be applied.

The target version 105 can be:

directly fetched as a snapshot;
computed incrementally by applying the incremental updates between 103 and 104, then 104
and 105; or,
computed incrementally by taking the "shortcut" path from 103 to 105 if the optional update
from 103 to 105 exists.

•

• Section
10.3 of [RFC7285]

•

•

•
•

•

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 10

https://rfc-editor.org/rfc/rfc7285#section-10.3
https://rfc-editor.org/rfc/rfc7285#section-10.3

Figure 2: TIPS Model Example

 +======+
 ------| 0 |
 / +======+
 ID0-101 / | |
 |/__ | |
 +======+ | |
 tag: 3421097 -> | 101 | | |
 +======+ | |
 ID101-102 || | |
 \/ | |
 +======+ | |
 tag: 6431234 -> | 102 | | |
 +======+ | |
 ID102-103 || | |
 \/ | |
 +======+ / |
+--------------+ tag: 0881080 -> | 103 |<--------/ |
| Base Version | =======> +======+ ID0-103 |
+--------------+ 103-104 || .. |
 \/ .. |
 +======+ .. |
 tag: 6452654 -> | 104 | .. ID103 |
 +======+ .. -105 |
 ID104-105 || .. | ID0-105
 \/ |._ /
 +======+ /
 tag: 7838392 -> | 105 |<-----------/
 +======+
 ID105-106 ||
 \/
 +======+
 tag: 6470983 -> | 106 |
 +======+

Continuity:

3.2. Updates Graph Modification Invariants
A server might change its updates graph (to compact it, to add nodes, etc.), but it will need to
ensure that any resource state that it makes available is reachable by clients, either directly via a
snapshot (that is, relative to 0) or indirectly by requesting an earlier snapshot and a contiguous
set of incremental updates. Additionally, to allow clients to proactively construct URIs for future
update items, the ID of each added node in the updates graph will need to increment
contiguously by 1. More specifically, the updates graph satisfy the following invariants:

At any time, let ns denote the smallest non-zero version (i.e., <start-seq>) in the
updates graph and let ne denote the latest version (i.e., <end-seq>). Then, any version in
between ns and ne also exist. This implies that the incremental update from ni to ni + 1
exists for any ns <= ni <= ne, and all the version numbers in the updates graph (except 0)
constitute exactly the integer interval [ns, ne].

MUST

MUST

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 11

Feasibility:

"Right shift" only:

Let ns denote <start-seq> in the updates graph. The server provide a snapshot
of ns; in other words, there is always a direct link to ns in the updates graph.

Assume a server provides versions in [n1, n2] at time t and versions in [n1',
n2'] at time t'. If t' > t, then n1' >= n1 and n2' >= n2.

For example, consider the case that a server compacts a resource's updates graph to conserve
space, using the example model in Section 3.1. Assume at time 0, the server provides the versions
{101, 102, 103, 104, 105, 106}. At time 1, both {103, 104, 105, 106} and {105, 106} are valid sets.
However, {102, 103, 104, 105, 106} and {104, 105, 106} are not valid sets as there is no snapshot to
version 102 or 104 in the updates graph. Thus, there is a risk that the right content of version 102
(in the first example) or 104 (in the second example) cannot be obtained by a client that does not
have the previous version 101 or 103, respectively.

MUST

4. TIPS Workflow and Resource Location Schema

4.1. Workflow
At a high level, an ALTO client first requests the TIPS information resource (denoted as TIPS-F,
where F is for frontend) to indicate the information resource or resources that the client wants to
monitor. For each requested resource, the server returns a JSON object that contains a URI,
which points to the root of a TIPS view (denoted as TIPS-V), and a summary of the current view,
which contains the information to correctly interact with the current view. With the URI to the
root of a TIPS view, clients can construct URIs (see Section 4.2) to fetch incremental updates.

An example workflow is shown in Figure 3. After the TIPS-F receives the request from the client
to monitor the updates of an ALTO resource, it creates a TIPS view resource and returns the
corresponding information to the client. The URI points to that specific TIPS-V instance, and the
summary contains the <start-seq> and <end-seq> of the updates graph and a server-
recommended edge to consume first (e.g., from i to j).

An ALTO client can then continuously pull each additional update with the information. For
example, the client in Figure 3 first fetches the update from i to j and then from j to j+1. Note that
the update item at "<tips-view-uri>/ug/<j>/<j+1>" might not yet exist, so the server holds the
request until the update becomes available (i.e., long polling).

A server close a TIPS view at any time (e.g., under high system load or due to client
inactivity). In the event that a TIPS view is closed, an edge request will receive error code 404
(Not Found) in response, and the client will have to request a new TIPS view URI.

If resources allow, a server avoid closing TIPS views that have active polling edge
requests or have recently served responses until clients have had a reasonable interval to
request the next update, unless guided by specific control policies.

MAY

SHOULD

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 12

Figure 3: ALTO TIPS Workflow Supporting Client Pull

Client TIPS-F TIPS-V
 o . .
 | POST to create/receive a TIPS view . Create TIPS .
 | for resource 1 . View .
 |-------------------------------------> |.-.-.-.-.-.-.-> |
 | <tips-view-uri>, <tips-view-summary> . |
 | <-------------------------------------| <-.-.-.-.-.-.-.|
 | .
 | GET /<tips-view-path>/ug/<i>/<j> .
 |--> |
 | content on edge i to j |
 | <--|
 | .
 | GET /<tips-view-path>/ug/<j>/<j+1> .
 |--> |
 . .
 . .
 | content on edge j to j+1 |
 | <--|
 | .
 o .
 .
 TIPS View Closed o

4.2. Resource Location Schema
The resource location schema defines how a client constructs URIs to fetch incremental updates.

To access each update in an updates graph, consider the model represented as a "virtual" file
system (adjacency list), contained within the root of a TIPS view URI (see Section 6.2 for the
definition of tips-view-uri). For example, assuming that the updates graph of a TIPS view is as
shown in Figure 2, the location schema of this TIPS view will have the format as in Figure 4.

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 13

TIPS uses this directory schema to generate template URIs that allow clients to construct the
location of incremental updates after receiving the tips-view-uri from the server. The generic
template for the location of the update item on the edge from node 'i' to node 'j' in the updates
graph is:

Due to the sequential nature of the update item IDs, a client can long poll a future update that
does not yet exist (e.g., the incremental update from 106 to 107). This can be done by constructing
the URI for the next edge that will be added, starting from the sequence number of the current
last node (denoted as <end-seq>) in the graph to the next sequential node (with the sequence
number of <end-seq + 1>):

Incremental updates of a TIPS view are read-only. Thus, they are fetched using the HTTP GET
method.

Figure 4: Location Schema Example

 <tips-view-path> // root path to a TIPS view
 |_ ug // updates graph
 | |_ 0
 | | |_ 101 // full 101 snapshot
 | | |_ 103
 | | _ 105
 | |_ 101
 | | _ 102 // 101 -> 102 incremental update
 | |_ 102
 | | _ 103
 | |_ 103
 | | |_ 104
 | | _ 105 // optional shortcut 103 -> 105 incr. update
 | |_ 104
 | | _ 105
 | _ 105
 | _ 106
 _ ...

 <tips-view-uri>/ug/<i>/<j>

 <tips-view-uri>/ug/<end-seq>/<end-seq + 1>

5. TIPS Information Resource Directory (IRD) Announcement
To announce a TIPS information resource in the IRD, an ALTO server specify "media-type",
"capabilities", and "uses" as follows.

MUST

5.1. Media Type
The media type of the Transport Information Publication Service (TIPS) resource is "application/
alto-tips+json".

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 14

incremental-change-media-types:

5.2. Capabilities
The "capabilities" field of a TIPS information resource is modeled on that defined in

.

Specifically, the capabilities are defined as an object of the TIPSCapabilities type:

with the field:

If a TIPS information resource can provide updates with
incremental changes for a resource, the "incremental-change-media-types" field has an entry
whose key is the ID of the resource and the value is the supported media types of incremental
changes, separated by commas. For the implementation of this specification, this be
"application/merge-patch+json", "application/json-patch+json", or "application/merge-
patch+json,application/json-patch+json", unless defined by a future extension.

When choosing the media types to encode incremental updates for a resource, the server
 consider the limitations of the encoding. For example, when a JSON merge patch

specifies that the value of a field is null, its semantics are that the field is removed from the
target; hence, the field is no longer defined (i.e., undefined). However, this may not be the
intended result for the resource, when null and undefined have different semantics for the
resource. In such a case, the server choose JSON patch encoding over JSON merge patch
encoding for the incremental update if both media types "application/json-patch+json" and
"application/merge-patch" are supported by the TIPS information resource.

Section 6.3 of
[RFC8895]

Figure 5: TIPSCapabilities

 object {
 IncrementalUpdateMediaTypes incremental-change-media-types;
 } TIPSCapabilities;

 object-map {
 ResourceID -> String;
 } IncrementalUpdateMediaTypes;

MUST

MUST

MUST

5.3. Uses
The "uses" attribute be an array with the resource IDs of every network information
resource for which this TIPS information resource can provide service.

This set be any subset of the ALTO server's network information resources and include
resources defined in linked IRDs. However, it is that the ALTO server selects a set
that is closed under the resource dependency relationship. That is, if a TIPS information
resource's "uses" set includes resource R1, and resource R1 depends on ("uses") resource R0, then

MUST

MAY MAY
RECOMMENDED

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 15

https://rfc-editor.org/rfc/rfc8895#section-6.3

the "uses" set should include R0 as well as R1. For example, if a TIPS information resource
provides a TIPS view for a cost map, it should also provide a TIPS view for the network map
upon which that cost map depends.

If the set is not closed, at least one resource R1 in the "uses" field of a TIPS information resource
depends on another resource R0 that is not in the "uses" field of the same TIPS information
resource. Thus, a client cannot receive incremental updates for another resource R0 that is not in
the "uses" field of the same TIPS information resource. If the client observes in an update of R1
that the version tag for R0 has changed, it must request the full content of R0, which is likely to
be less efficient than receiving the incremental updates of R0.

5.4. An Example
Extending the IRD example in , Figure 6 is the IRD of an ALTO server
supporting the ALTO base protocol, ALTO/SSE, and ALTO TIPS.

Section 8.1 of [RFC8895]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc8895#section-8.1

 "my-network-map": {
 "uri": "https://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json"
 },
 "my-routingcost-map": {
 "uri": "https://alto.example.com/costmap/routingcost",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "https://alto.example.com/costmap/hopcount",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-simple-filtered-cost-map": {
 "uri": "https://alto.example.com/costmap/filtered/simple",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": false
 }
 },
 "update-my-costs": {
 "uri": "https://alto.example.com/updates/costs",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 },
 "update-my-costs-tips": {
 "uri": "https://alto.example.com/updates-new/costs",
 "media-type": "application/alto-tips+json",
 "accepts": "application/alto-tipsparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 17

Note that it is straightforward for an ALTO server to run HTTP/2 and support concurrent
retrieval of multiple resources such as "my-network-map" and "my-routingcost-map" using
multiple HTTP/2 streams.

The resource "update-my-costs-tips" provides an ALTO TIPS information resource, and this is
indicated by the media type "application/alto-tips+json".

Figure 6: Example of an ALTO Server Supporting the ALTO Base Protocol, ALTO/SSE, and ALTO
TIPS

 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json",
 "my-simple-filtered-cost-map": "application/merge-patch+json"
 }
 }
 },
 "tips-sse": {
 "uri": "https://alto.example.com/updates/tips",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": ["update-my-costs-tips"],
 "capabilities": {
 "incremental-change-media-types": {
 "update-my-costs-tips": "application/merge-patch+json"
 }
 }
 }

6. TIPS Management
Upon request, a server sends a TIPS view to a client. This TIPS view might be created at the time
of the request or might already exist (either because another client has already created a TIPS
view for the same requested network resource or because the server perpetually maintains a
TIPS view for an often-requested resource).

6.1. Open Request
An ALTO client requests that the server provide a TIPS view for a given resource by sending an
HTTP POST body with the media type "application/alto-tipsparams+json". That body contains a
JSON object of the TIPSReq type, where:

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 18

resource-id:

tag:

input:

with the following fields:

This field contains the resource ID of an ALTO resource to be monitored, which
 be in the TIPS information resource's "uses" list (Section 5). If a client does not support

all incremental methods from the set announced in the server's capabilities, the client
 use the TIPS information resource.

If the "resource-id" is associated with a GET-mode resource with a version tag (or "vtag"), as
defined in , and the ALTO client has previously retrieved a version of
that resource from ALTO, the ALTO client set the "tag" field to the tag part of the client's
version of that resource. The server use the tag when calculating a recommended
starting edge for the client to consume. Note that the client support all incremental
methods from the set announced in the server's capabilities for this resource.

If the resource is a POST-mode service that requires input, the ALTO client set the
"input" field to a JSON object with the parameters that the resource expects.

Figure 7: TIPSReq

 object {
 ResourceID resource-id;
 [JSONString tag;]
 [Object input;]
 } TIPSReq;

MUST
MUST

NOT

Section 10.3 of [RFC7285]
MAY

MAY
MUST

MUST

6.2. Open Response
The response to a valid request be a JSON object of the AddTIPSResponse type, denoted as
media type "application/alto-tips+json":

MUST

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 19

https://rfc-editor.org/rfc/rfc7285#section-10.3

tips-view-uri:

with the following fields:

This is the URI to the requested TIPS view. The value of this field have the
following format:

where scheme be "http" or "https" unless specified by a future extension, and host, port,
and path are as specified in Sections 3.2.2, 3.2.3, and 3.3 in . An ALTO server
use the "https" scheme unless the contents of the TIPS view are intended to be publicly
accessible and do not raise security concerns. The field contain only ASCII characters. In
case the original URL contains international characters (e.g., in the domain name), the ALTO
server implementation properly encode the URL into the ASCII format (e.g., using the
"urlencode" function).

A server use the same URI for different TIPS views, either for different resources or
for different request bodies to the same resource. URI generation is implementation specific;
for example, one may compute a Universally Unique Identifier (UUID) or a hash
value based on the request and append it to a base URL. For performance considerations, it is

 to use properties that are not included in the request body to determine
the URI of a TIPS view, such as cookies or the client's IP address, which may result in

Figure 8: AddTIPSResponse

 object {
 URI tips-view-uri;
 TIPSViewSummary tips-view-summary;
 } AddTIPSResponse;

 object {
 UpdatesGraphSummary updates-graph-summary;
 } TIPSViewSummary;

 object {
 JSONNumber start-seq;
 JSONNumber end-seq;
 StartEdgeRec start-edge-rec;
 } UpdatesGraphSummary;

 object {
 JSONNumber seq-i;
 JSONNumber seq-j;
 } StartEdgeRec;

MUST

 scheme "://" tips-view-host "/" tips-view-path

 tips-view-host = host [":" port]
 tips-view-path = path

MUST
[RFC3986] SHOULD

MUST

MUST

MUST NOT

[RFC9562]

NOT RECOMMENDED

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc3986#section-3.2.2
https://rfc-editor.org/rfc/rfc3986#section-3.2.3
https://rfc-editor.org/rfc/rfc3986#section-3.3

tips-view-summary:

duplicated TIPS views in cases such as mobile clients. However, this is not mandatory as a
server might intentionally use client information to compute the TIPS view URI to provide
service isolation between clients.

Contains an updates-graph-summary.

The "updates-graph-summary" field contains the <start-seq> of the updates graph (in the
"start-seq" field) and the <end-seq> that is currently available (in the "end-seq" field), along
with a recommended edge to consume (in the "start-edge-rec" field). If the client does not
provide a version tag, the server recommend the edge of the latest available snapshot. If
the client provides a version tag, the server either recommend the first incremental
update edge starting from the client's tagged version or recommend the edge of the latest
snapshot: which edge is selected depends on the implementation. For example, a server
calculate the cumulative size of the incremental updates available from that version onward
and compare it to the size of the complete resource snapshot. If the snapshot is bigger, the
server recommends the first incremental update edge starting from the client's tagged
version. Otherwise, the server recommends the latest snapshot edge.

If the request has any errors, the ALTO server return an HTTP 400 (Bad Request) error code
to the ALTO client; the body of the response follows the generic ALTO error response format
specified in . Hence, an example ALTO error response has the format
shown in Figure 9.

Note that "field" and "value" are optional fields. If the "value" field exists, the "field" field
exist.

If the TIPS request does not have a "resource-id" field, the error code of the error message
 be "E_MISSING_FIELD" and the "field" field, if present, be "resource-id". The

ALTO server create any TIPS view.
If the "resource-id" field is invalid or is not associated with the TIPS information resource,
the error code of the error message be "E_INVALID_FIELD_VALUE". If present, the
"field" field be the full path of the "resource-id" field, and the "value" field be the
value of the "resource-id" field in the request.

MUST
MUST

MAY

MUST

Section 8.5.2 of [RFC7285]

Figure 9: ALTO Error Example

 HTTP/1.1 400 Bad Request
 Content-Length: 131
 Content-Type: application/alto-error+json

 {
 "meta":{
 "code": "E_INVALID_FIELD_VALUE",
 "field": "resource-id",
 "value": "my-network-map/#"
 }
 }

MUST

•
MUST MUST

MUST NOT

•
MUST

MUST MUST

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 21

https://rfc-editor.org/rfc/rfc7285#section-8.5.2

429 (Too Many Requests):

If the resource is a POST-mode service that requires input, the client set the "input"
field to a JSON object with the parameters that resource expects. If the "input" field is missing
or invalid, the ALTO server return the same error response that resource would return
for missing or invalid inputs (see).

Furthermore, it is that the server use the following HTTP code to indicate other
errors, with the media type "application/alto-error+json".

Indicates when the number of TIPS views open requests exceeds the
server threshold. The server indicate when to retry the request in the "Re-Try After"
headers.

It is that the server provide the ALTO/SSE support for the TIPS resource. Thus,
the client can be notified of the version updates of all the TIPS views that it monitors and make
better cross-resource transport decisions (see Section 8.2 for related considerations).

• MUST

MUST
[RFC7285]

RECOMMENDED

MAY

RECOMMENDED

6.3. Open Example

6.3.1. Basic Example

For simplicity, assume that the ALTO server is using Basic authentication . If a client
with username "client1" and password "helloalto" wants to create a TIPS view of an ALTO cost
map resource with the resource ID "my-routingcost-map", it can send the request depicted in
Figure 10.

If the operation is successful, the ALTO server returns the message shown in Figure 11.

[RFC7617]

Figure 10: Request Example of Opening a TIPS View

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 22

Figure 11: Response Example of Opening a TIPS View

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 255

 {
 "tips-view-uri": "https://alto.example.com/tips/2718281828",
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec" : {
 "seq-i": 0,
 "seq-j": 105
 }
 }
 }
 }

6.3.2. Example Using Digest Authentication

Below is another example of the same query using Digest authentication, a mandatory
authentication method of ALTO servers as defined in . The content of
the response is the same as in Figure 11; thus, it has been omitted for simplicity.

Section 8.3.5 of [RFC7285]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 23

https://rfc-editor.org/rfc/rfc7285#section-8.3.5

Figure 12: Open Example with Digest Authentication

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 401 UNAUTHORIZED
 WWW-Authenticate: Digest
 realm="alto.example.com",
 qop="auth",
 algorithm="MD5",
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 opaque="a237ff9ab865379a69d9993162ef55e4"

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Digest
 username="client1",
 realm="alto.example.com",
 uri="/tips",
 qop=auth,
 algorithm=MD5,
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 nc=00000001,
 cnonce="ZTg3MTI3NDFmMDQ0NzI1MDQ3MWE3ZTFjZmM5MTNiM2I=",
 response="8e937ae696c1512e4f990fa21c7f9347",
 opaque="a237ff9ab865379a69d9993162ef55e4"
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 258

 {....}

6.3.3. Example Using ALTO/SSE

This section gives an example of receiving incremental updates of the TIPS view summary using
ALTO/SSE . Consider the "tips-sse" resource, as announced by the IRD in Figure 6,
which provides ALTO/SSE for the "update-my-cost-tips" resource; a client might send the
following request to receive updates of the TIPS view (authentication is omitted for simplicity).

[RFC8895]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 24

Then, the client will be able to receive the TIPS view summary as follows.

When there is an update to the TIPS view (for example, when the "end-seq" field is increased by
1), the client will be able to receive the incremental update of the TIPS view summary as follows.

Figure 13: Example of Monitoring TIPS View with ALTO/SSE

 POST /updates/tips HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 76

 {
 "add": {
 "tips-123": { "resource-id": "update-my-cost-tips" }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-tips+json,tips-123
 data: {
 data: "tips-view-uri": "https://alto.example.com/tips/2718281828",
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "start-seq": 101,
 data: "end-seq": 106,
 data: "start-edge-rec" : {
 data: "seq-i": 0,
 data: "seq-j": 105
 data: }
 data: }
 data: }
 data: }

 event: application/merge-patch+json,tips-123
 data: {
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "end-seq": 107
 data: }
 data: }
 data: }

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 25

7. TIPS Data Transfers - Client Pull
TIPS allows an ALTO client to retrieve the content of an update item from the updates graph,
with an update item defined as the content (incremental update or snapshot) on an edge in the
updates graph.

7.1. Request
The client sends an HTTP GET request, where the media type of an update item resource be
the same as the "media-type" field of the update item on the specified edge in the updates graph.

The GET request have the following format:

For example, consider the updates graph in Figure 4. If the client wants to query the content of
the first update item (0 -> 101) whose media type is "application/alto-costmap+json", it sends a
request to "/tips/2718281828/ug/0/101" and sets the "Accept" header to "application/alto-
costmap+json,application/alto-error+json". See Section 7.3 for a concrete example.

MUST

MUST

 GET /<tips-view-path>/ug/<i>/<j>
 HOST: <tips-view-host>

404 (Not Found):

7.2. Response
If the request is valid (i.e., "ug/<i>/<j>" exists), the response is encoded as a JSON object whose
data format is indicated by the media type.

A client conduct proactive fetching of future updates, by long polling updates that have not
been provided in the directory yet. For such updates, the client indicate all media types
that might appear. It is that the server allow for at least the long polling of <end-
seq> -> <end-seq + 1>.

Hence, the server processing logic be:

If a resource with path "ug/<i>/<j>" exists, return content using encoding.
Else, if long polling "ug/<i>/<j>" is acceptable, put request in a backlog queue, then either a
response is triggered when the content is ready or the request is interrupted (e.g., by a
network error).
Else, return error.

It is that the server use the following HTTP codes to indicate errors, with the
media type "application/alto-error+json", regarding update item requests.

Indicates that the requested update does not exist or the requested TIPS view
does not exist or is closed by the server.

MAY
MUST

RECOMMENDED

MUST

•
•

•

RECOMMENDED

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 26

410 (Gone):

415 (Unsupported Media Type):

425 (Too Early):

429 (Too Many Requests):

Indicates an update has a seq that is smaller than the <start-seq>.

Indicates the media type (or types) accepted by the client does
not include the media type of the update chosen by the server.

Indicates the seq exceeds the server long polling window.

Indicates the number of pending (long poll) requests exceeds the
server threshold. The server indicate when to retry the request in the "Re-Try After"
headers.

MAY

7.3. Example
Assume the client wants to get the contents of the update item on edge 0 to 101. The format of the
request is shown in Figure 14.

The response is shown in Figure 15.

Figure 14: GET Example

 GET /tips/2718281828/ug/0/101 HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-costmap+json, \
 application/alto-error+json

Figure 15: Response to a GET Request

 HTTP/1.1 200 OK
 Content-Type: application/alto-costmap+json
 Content-Length: 50

 { ... full replacement of my-routingcost-map ... }

7.4. New Next Edge Recommendation
While intended TIPS usage is for the client to receive a recommended starting edge in the TIPS
summary, consume that edge, and then construct all future URIs by incrementing the sequence
count by one, there may be cases in which the client needs to request a new next edge to
consume. For example, if a client has an open TIPS view but has not polled in a while, the client
might request the next logical incremental URI; however, the server has compacted the updates
graph, so it no longer exists. Thus, the client request a new next edge to consume based on
its current version of the resource.

MAY

7.4.1. Request

An ALTO client requests that the server provide a next edge recommendation for a given TIPS
view by sending an HTTP POST request with the media type "application/alto-tipsparams+json".
The URL of the request have the following format:MUST

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 27

and the "HOST" field be "<tips-view-host>".

The POST body has the same format as the TIPSReq in Figure 7. The "resource-id" field be
the same as the resource ID used to create the TIPS view, and the optional "input" field
be present.

 <tips-view-path>/ug

MUST

MUST
MUST NOT

404 (Not Found):

7.4.2. Response

The response to a valid request be a JSON merge patch to the object of the
AddTIPSResponse type (defined in Section 6.2), denoted as media type "application/merge-
patch+json". The "updates-graph-summary" field be present in the response; hence, its
parent field "tips-view-summary" be present as well.

If the "tag" field is present in the request, the server check if any version within the range
[<start-seq>, <end-seq>] has the same tag value. If the version exists (e.g., denoted as <tag-seq>),
the server compute the paths from both <tag-seq> and 0 to the <end-seq> and choose the
one with the minimal cost. The cost be implementation specific (e.g., number of messages,
accumulated data size, etc.). The first edge of the selected path be returned as the
recommended next edge.

If the "tag" field is not present, the interpretation be that the <tag-seq> is 0.

It is that the server use the following HTTP code to indicate errors, with the
media type "application/alto-error+json", regarding new next edge requests.

Indicates that the requested TIPS view does not exist or has been closed by the
server.

MUST

MUST
MUST

MUST

MUST
MAY

MUST

MUST

RECOMMENDED

7.4.3. Example

In this section, we give an example of the new next edge recommendation service. Assume that a
client already creates a TIPS view (as in Section 6.3) whose updates graph is as shown in Figure 2.
Now assume that the client already has tag 0881080, whose corresponding sequence number is
103, and sends the following new next edge recommendation request (authentication is omitted
for simplicity):

 POST /tips/2718281828/ug HTTP/1.1
 HOST alto.example.com
 Accept: application/merge-patch+json, application/alto-error+json
 Content-Type: application/alto-tipsparams+json
 Content-Length: 62

 {
 "resource-id": "my-routingcost-map",
 "tag": "0881080"
 }

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 28

According to Figure 2, there are three potential paths: 103 -> 104 -> 105 -> 106, 103 -> 105 -> 106,
and 0 -> 105 -> 106. Assume that the server chooses the shortest update path by the accumulated
data size and the best path is 103 -> 105 -> 106. Thus, the server responds with the following
message:

 HTTP/1.1 200 OK
 Content-Type: application/merge-patch+json
 Content-Length: 193

 {
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec": {
 "seq-i": 103,
 "seq-j": 105
 }
 }
 }
 }

8. Operation and Processing Considerations
TIPS has some common operational considerations as ALTO/SSE , including:

the server choosing update messages ();
the client processing update messages ();
the updates of filtered map services (); and
the updates of ordinal mode costs ().

There are also some operational considerations specific to TIPS, which we discuss below.

[RFC8895]

• Section 9.1 of [RFC8895]
• Section 9.2 of [RFC8895]
• Section 9.3 of [RFC8895]
• Section 9.4 of [RFC8895]

8.1. Considerations for Load Balancing
There are two levels of load balancing in TIPS: the first level is to balance the load of TIPS views
for different clients and the second is to balance the load of incremental updates.

Load balancing of TIPS views can be achieved either at the application layer or at the
infrastructure layer. For example, an ALTO server set <tips-view-host> to different
subdomains to distribute TIPS views or simply use the same host of the TIPS information
resource and rely on load balancers to distribute the load.

MAY

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 29

https://rfc-editor.org/rfc/rfc8895#section-9.1
https://rfc-editor.org/rfc/rfc8895#section-9.2
https://rfc-editor.org/rfc/rfc8895#section-9.3
https://rfc-editor.org/rfc/rfc8895#section-9.4

Using a stateless architecture:

Configuring the load balancers properly:

TIPS allows a client to make concurrent pulls of incremental updates for the same TIPS view,
potentially through different HTTP connections. As a consequence, TIPS introduces additional
complexities when the ALTO server balances the load by distributing the requests to a set of
backend servers. For example, a request might be directed to the wrong backend server and get
processed incorrectly if the following two conditions both hold:

these backend servers are stateful (i.e., the TIPS view is created and stored only on a single
server); and
the ALTO server is using Layer 4 load balancing (i.e., the requests are distributed based on
the TCP 5-tuple).

Thus, additional considerations are required to enable correct load balancing for TIPS, including:

One solution is to follow the stateless computing pattern: states
about the TIPS view are not maintained by the backend servers but are stored in a distributed
database. Thus, concurrent requests to the same TIPS view can be processed on arbitrary
stateless backend servers, which all fetch data from the same database.

In the case that the backend servers are stateful, the
load balancers must be properly configured to guarantee that requests of the same TIPS view
always arrive at the same server. For example, an operator or a provider of an ALTO server

 configure Layer 7 load balancers that distribute requests based on the tips-view-path
component in the URI.

•

•

MAY

8.2. Considerations for Cross-Resource Dependency Scheduling
Dependent ALTO resources result in cross-resource dependencies in TIPS. Consider the following
pair of resources, where my-cost-map (C) is dependent on my-network-map (N). The updates
graph for each resource is shown, along with links between the respective updates graphs to
show dependency:

In Figure 16, the cost-map versions 101 and 102 (denoted as C101 and C102) are dependent on the
network-map version 89 (denoted as N89). The cost-map version 103 (C103) is dependent on the
network-map version 90 (N90), and so on.

Figure 16: Example Dependency Model

 +---+ +---+ +---+ +---+ +---+
 my-network-map (N) | 0 |-->|89 |-->|90 |-->|91 |-->|92 |
 +---+ +---+ +---+ +---+ +---+
 | \ \ \
 | \ \ \
 +---+ +---+ +---+ +---+ +---+
 my-cost-map (C) | 0 |-->|101|-->|102|-->|103|-->|104|
 +---+ +---+ +---+ +---+ +---+
 |_______________________|

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 30

Example 1:

Example 2:

Thus, the client must decide the order in which to receive and apply the updates. The order may
affect how fast the client can build a consistent view and how long the client needs to buffer the
update.

The client requests N89, N90, N91, C101, C102 in that order. The client either gets no
consistent view of the resources or has to buffer N90 and N91.

The client requests C101, C102, C103, N89. The client either gets no consistent view
or has to buffer C103.

To get consistent ALTO information, a client must process the updates following the guidelines
specified in . If resources permit (i.e., sufficient updates can be buffered),
an ALTO client can safely use long polling to fetch all the updates. This allows a client to build
consistent views quickly as the updates are already stored in the buffer. Otherwise, it is

 to request a full snapshot if the client does not have enough local resources to
buffer and process the incremental updates.

Section 9.2 of [RFC8895]

RECOMMENDED

8.3. Considerations for Managing Shared TIPS Views
From a client's point of view, it sees only one copy of the TIPS view for any resource. However,
on the server side, there are different implementation options, especially for common resources
(e.g., network maps or cost maps) that may be frequently queried by many clients. Some
potential options are listed below:

An ALTO server creates one TIPS view of the common resource for each client.
An ALTO server maintains one copy of the TIPS view for each common resource and all
clients requesting the same resources use the same copy. There are two ways to manage the
storage for the shared copy:

the ALTO server maintains the set of clients that have sent a polling request to the TIPS
view and only removes the view from the storage when the set becomes empty and no
client immediately issues a new edge request; or
the TIPS view is never removed from the storage.

Developers may choose different implementation options depending on criteria such as request
frequency, available resources of the ALTO server, the ability to scale, and programming
complexity.

•
•

◦

◦

8.4. Considerations for Offering Shortcut Incremental Updates
Besides the mandatory stepwise incremental updates (from i to i+1), an ALTO server
optionally offer shortcut incremental updates, or simple shortcuts, between two non-consecutive
versions i and i+k (k > 1). Such shortcuts offer alternative paths in the updates graph and can

MAY

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 31

https://rfc-editor.org/rfc/rfc8895#section-9.2

potentially speed up the transmission and processing of incremental updates, leading to faster
synchronization of ALTO information, especially when the client has limited bandwidth and
computation. However, implementors of an ALTO server must be aware that:

optional shortcuts may increase the size of the updates graph, worst case scenario being the
square of the number of updates (i.e., when a shortcut is offered for each version to all
future versions).
optional shortcuts require additional storage on the ALTO server.
optional shortcuts may reduce concurrency when the updates do not overlap (e.g., when the
updates apply to different parts of an ALTO resource). In such a case, the total size of the
original updates is close to the size of the shortcut, but the original updates can be
transmitted concurrently while the shortcut is transmitted in a single connection.

1.

2.
3.

9. Security Considerations
The security considerations of the base protocol () fully apply to this
extension. For example, the same authenticity and integrity considerations (

) still fully apply; the same considerations for the privacy of ALTO users (
) also still fully apply. Additionally, operators of the ALTO servers follow the

guidelines in to avoid new TLS vulnerabilities discovered after was
published.

The additional services (the addition of update read service and update push service) provided
by this extension extend the attack surface described in . The
following subsections discuss the additional risks and their remedies.

Section 15 of [RFC7285]
Section 15.1 of

[RFC7285] Section 15.4 of
[RFC7285] MUST

[RFC9325] [RFC7285]

Section 15.1.1 of [RFC7285]

9.1. TIPS: Denial-of-Service Attacks
Allowing TIPS views enables new classes of DoS attacks. In particular, for the TIPS server, one or
multiple malicious ALTO clients might create an excessive number of TIPS views, to exhaust the
server resource and/or to block normal users from accessing the service.

To avoid such attacks, the server choose to limit the number of active views and reject new
requests when that threshold is reached. TIPS allows predictive fetching and the server also
choose to limit the number of pending requests. If a new request exceeds the threshold, the
server log the event and return the HTTP status 429 (Too Many Requests).

It is important to note that the preceding approaches are not the only possibilities. For example,
it might be possible for a TIPS server to use somewhat more clever logic involving TIPS view
eviction policies, IP reputation, rate-limiting, and compartmentalization of the overall threshold
into smaller thresholds that apply to subsets of potential clients. If service availability is a
concern, ALTO clients establish service level agreements with the ALTO server.

MAY
MAY

MAY

MAY

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 32

https://rfc-editor.org/rfc/rfc7285#section-15
https://rfc-editor.org/rfc/rfc7285#section-15.1
https://rfc-editor.org/rfc/rfc7285#section-15.4
https://rfc-editor.org/rfc/rfc7285#section-15.1.1

9.2. ALTO Client: Update Overloading or Instability
The availability of continuous updates can also cause overload for an ALTO client, in particular,
an ALTO client with limited processing capabilities. The current design does not include any flow
control mechanisms for the client to reduce the update rates from the server. For example, TCP,
HTTP/2, and QUIC provide stream and connection flow control data limits, which might help
prevent the client from being overloaded. Under overloading, the client choose to remove
the information resources with high update rates.

Also, under overloading, the client might no longer be able to detect whether information is still
fresh or has become stale. In such a case, the client should be careful in how it uses the
information to avoid stability or efficiency issues.

MAY

10. IANA Considerations
IANA has registered the following media types from the registry available at :

application/alto-tips+json: as described in Section 6.2;
application/alto-tipsparams+json: as described in Section 6.1;

[IANA-Media-Type]

•
•

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):

10.1. application/alto-tips+json Media Type

application

alto-tips+json

N/A

N/A

Encoding considerations are identical to those specified for the
"application/json" media type. See .

See the Security Considerations section of RFC 9569.

N/A

Section 6.2 of RFC 9569.

ALTO servers and ALTO clients either stand alone or are
embedded within other applications.

N/A

N/A
N/A

[RFC8259]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 33

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

RFC 9569 uses the media type to refer to protocol messages; thus, it does
not require a file extension.

N/A

See the Authors' Addresses section of RFC 9569.

COMMON

N/A

See the Authors' Addresses section of RFC 9569.

Internet Engineering Task Force (iesg@ietf.org).

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:
Magic number(s):
File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

10.2. application/alto-tipsparams+json Media Type

application

alto-tipsparams+json

N/A

N/A

Encoding considerations are identical to those specified for the
"application/json" media type. See .

See the Security Considerations section of RFC 9569.

N/A

Section 6.1 of RFC 9569.

ALTO servers and ALTO clients either stand alone or are
embedded within other applications.

N/A

N/A
N/A

RFC 9569 uses the media type to refer to protocol messages; thus, it does
not require a file extension.

N/A

See the Authors' Addresses section of RFC 9569.

COMMON

N/A

[RFC8259]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 34

[RFC2119]

[RFC3986]

[RFC7285]

[RFC8174]

[RFC8259]

[RFC8895]

[RFC9112]

[RFC9113]

[RFC9114]

[RFC9325]

11. References

11.1. Normative References

, , ,
, , March 1997,
.

, , and ,
, , , , January 2005,

.

, , , , , ,
, and ,

, , , September 2014,
.

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

 and ,
, ,

, November 2020, .

, , and , , ,
, , June 2022,

.

 and , , ,
, June 2022, .

, , , , June 2022,
.

, , and ,
,

, , , November 2022,
.

11.2. Informative References

Author:

Change controller:

See the Authors' Addresses section of RFC 9569.

Internet Engineering Task Force (iesg@ietf.org).

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Alimi, R., Ed. Penno, R., Ed. Yang, Y., Ed. Kiesel, S. Previdi, S. Roome, W.
Shalunov, S. R. Woundy "Application-Layer Traffic Optimization (ALTO)
Protocol" RFC 7285 DOI 10.17487/RFC7285 <https://www.rfc-
editor.org/info/rfc7285>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Roome, W. Y. Yang "Application-Layer Traffic Optimization (ALTO)
Incremental Updates Using Server-Sent Events (SSE)" RFC 8895 DOI 10.17487/
RFC8895 <https://www.rfc-editor.org/info/rfc8895>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC
9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/
rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/
RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://
www.rfc-editor.org/info/rfc9114>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 35

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8895
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325

[IANA-Media-Type]

[RFC7617]

[RFC9205]

[RFC9562]

, , .

, , ,
, September 2015, .

, , , ,
, June 2022, .

, , and , ,
, , May 2024,
.

IANA "Media Types" <https://www.iana.org/assignments/media-types>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI 10.17487/
RFC7617 <https://www.rfc-editor.org/info/rfc7617>

Nottingham, M. "Building Protocols with HTTP" BCP 56 RFC 9205 DOI
10.17487/RFC9205 <https://www.rfc-editor.org/info/rfc9205>

Davis, K. Peabody, B. P. Leach "Universally Unique IDentifiers (UUIDs)"
RFC 9562 DOI 10.17487/RFC9562 <https://www.rfc-editor.org/info/
rfc9562>

(R1):

(R2):

(R3):

Design 1 (Single):

Appendix A. A High-Level Deployment Model
Conceptually, the TIPS system consists of three types of resources:

The TIPS frontend to create TIPS views.

The TIPS view directory, which provides metadata (e.g., references) about the network
resource data.

The actual network resource data, encoded as complete ALTO network resources (e.g., a
cost map or a network map) or incremental updates.

Design Point: Component Resource Location

Figure 17: Sample TIPS Deployment Model

 +--+
 | |
 +------+ |R1: Frontend/Open R2: Directory/Meta R3: Data |
	"iget" base	+-----+ +-----+ +-----+						
	resource 1							
	-------------	---->						
	incremental					-------->		
	transfer							
	resource							
	<------------	-----------------------						
Client				+-----+ +-----+				
	"iget" base							
	resource 2			+-----+ +-----+				
	-------------	---->						
	incremental							
	transfer	+-----+		------->				
	resource							
	<------------	-----------------------						
 +------+ | +-----+ +-----+ |
 | |
 +--+

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 36

https://www.iana.org/assignments/media-types
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc9205
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562

Design 2 (Flexible):

Design 3 (Dir + Data):

all the three resource types at the same single server (accessed via relative reference).

all three resource types can be at their own server (accessed via absolute
reference).

R2 and R3 must remain together, though R1 might not be on the same
server.

This document supports Designs 1 and 3. For Design 1, the ALTO server simply needs to always
use the same host for the TIPS views. For Design 3, the ALTO server can set tips-view-host to a
different server. Note that the deployment flexibility is at the logical level, as these services can
be distinguished by different paths and potentially be routed to different physical servers by
Layer 7 load balancing. See Section 8.1 for a discussion on load balancing considerations. Future
documents could extend the protocol to support Design 2.

Appendix B. Conformance with "Building Protocols with
HTTP" (RFC 9205) Best Current Practices
This specification adheres fully to as further elaborated below:

TIPS does not (as described in):

...redefine, refine, or overlay the semantics of generic protocol elements such as
methods, status codes, or existing header fields.

and instead focuses on

...protocol elements that are specific to [the TIPS] application -- namely, [its] HTTP
resources.

There are no statically defined URI components ().
No minimum version of HTTP is specified by TIPS, which is recommended (in

).
The TIPS design follows the advice (in) that:

When specifying examples of protocol interactions, applications should document
both the request and response messages with complete header sections, preferably
in HTTP/1.1 format...

TIPS uses URI templates, which is recommended (in).
TIPS follows the pattern (in) that:

[RFC9205]

• Section 3.1 of [RFC9205]

• Section 3.2 of [RFC9205]
• Section 4.1 of

[RFC9205]
• Section 4.1 of [RFC9205]

• Section 4.2 of [RFC9205]
• Section 4.4.1 of [RFC9205]

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 37

https://rfc-editor.org/rfc/rfc9205#section-3.1
https://rfc-editor.org/rfc/rfc9205#section-3.2
https://rfc-editor.org/rfc/rfc9205#section-4.1
https://rfc-editor.org/rfc/rfc9205#section-4.1
https://rfc-editor.org/rfc/rfc9205#section-4.2
https://rfc-editor.org/rfc/rfc9205#section-4.4.1

Generally, a client will begin interacting with a given application server by
requesting an initial document that contains information about that particular
deployment, potentially including links to other relevant resources. Doing so
ensures that the deployment is as flexible as possible (potentially spanning multiple
servers), allows evolution, and also gives the application the opportunity to tailor
the "discovery document" to the client.

TIPS uses existing HTTP schemes ().
TIPS defines its errors "to use the most applicable status code" ().
TIPS does not (as in):

...make assumptions about the relationship between separate requests on a single
transport connection; doing so breaks many of the assumptions of HTTP as a
stateless protocol and will cause problems in interoperability, security, operability,
and evolution.

The only relationship between requests is that a client has to first discover where a TIPS
view of a resource will be served, which is consistent with the URI discovery in

.

• Section 4.4.2 of [RFC9205]
• Section 4.6 of [RFC9205]
• Section 4.11 of [RFC9205]

Section 4.4.1
of [RFC9205]

Appendix C. Push-Mode TIPS Using HTTP Server Push
TIPS allows ALTO clients to subscribe to incremental updates of an ALTO resource, and the
specification in this document is based on the current best practice of building such a service
using basic HTTP. Earlier versions of this document had investigated the possibility of enabling
push-mode TIPS (i.e., by taking advantage of the server push feature in HTTP/2 and HTTP/3).

In the ideal case, push-mode TIPS can potentially improve performance (e.g., latency) in more
dynamic environments and use cases with wait-free message delivery. Using the built-in HTTP
server push also results in minimal changes to the current protocol. While not adopted due to the
lack of server push support and increased protocol complexity, push-mode TIPS remains a
potential direction of protocol improvement.

Appendix D. Persistent HTTP Connections
Previous draft versions of this document use persistent HTTP connections to detect the liveness
of clients. However, this design does not conform well with the best current practices of HTTP.
For example, if an ALTO client is accessing a TIPS view over an HTTP proxy, the connection is not
established directly between the ALTO client and the ALTO server, but between the ALTO client
and the proxy and between the proxy and the ALTO server. Thus, using persistent connections
might not correctly detect the right liveness state.

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 38

https://rfc-editor.org/rfc/rfc9205#section-4.4.2
https://rfc-editor.org/rfc/rfc9205#section-4.6
https://rfc-editor.org/rfc/rfc9205#section-4.11
https://rfc-editor.org/rfc/rfc9205#section-4.4.1

Acknowledgments
The authors of this document would like to thank and for
providing invaluable reviews of earlier draft versions of this document; , ,
and for their continuous feedback; , ,

, , , , and for the directorate
reviews; for the area director review; , ,

, , and for the telechat and IESG reviews; and
 for shepherding the document.

Mark Nottingham Spencer Dawkins
Adrian Farrel Qin Wu

Jordi Ros Giralt Russ White Donald Eastlake 3rd Martin
Thomson Bernard Aboba Spencer Dawkins Linda Dunbar Sheng Jiang

Martin Duke Francesca Palombini Wesley Eddy Roman
Danyliw Murray Kucherawy Zaheduzzaman Sarker
Mohamed Boucadair

Authors' Addresses
Kai Gao
Sichuan University
No.24 South Section 1, Yihuan Road
Chengdu
610000
China

kaigao@scu.edu.cnEmail:

Roland Schott
Deutsche Telekom
Deutsche-Telekom-Allee 9
64295 Darmstadt
Germany

Roland.Schott@telekom.deEmail:

Yang Richard Yang
Yale University
51 Prospect Street

, New Haven CT 06511
United States of America

yry@cs.yale.eduEmail:

Lauren Delwiche
Yale University
51 Prospect Street

, New Haven CT 06511
United States of America

lauren.delwiche@yale.eduEmail:

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 39

mailto:kaigao@scu.edu.cn
mailto:Roland.Schott@telekom.de
mailto:yry@cs.yale.edu
mailto:lauren.delwiche@yale.edu

Lachlan Keller
Yale University
51 Prospect Street

, New Haven CT 06511
United States of America

lachlan.keller@aya.yale.eduEmail:

RFC 9569 ALTO TIPS September 2024

Gao, et al. Standards Track Page 40

mailto:lachlan.keller@aya.yale.edu

	RFC 9569
	The Application-Layer Traffic Optimization (ALTO) Transport Information Publication Service (TIPS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Notations

	2. TIPS Overview
	2.1. Transport Requirements
	2.2. TIPS Terminology

	3. TIPS Updates Graph
	3.1. Basic Data Model of an Updates Graph
	3.2. Updates Graph Modification Invariants

	4. TIPS Workflow and Resource Location Schema
	4.1. Workflow
	4.2. Resource Location Schema

	5. TIPS Information Resource Directory (IRD) Announcement
	5.1. Media Type
	5.2. Capabilities
	5.3. Uses
	5.4. An Example

	6. TIPS Management
	6.1. Open Request
	6.2. Open Response
	6.3. Open Example
	6.3.1. Basic Example
	6.3.2. Example Using Digest Authentication
	6.3.3. Example Using ALTO/SSE

	7. TIPS Data Transfers - Client Pull
	7.1. Request
	7.2. Response
	7.3. Example
	7.4. New Next Edge Recommendation
	7.4.1. Request
	7.4.2. Response
	7.4.3. Example

	8. Operation and Processing Considerations
	8.1. Considerations for Load Balancing
	8.2. Considerations for Cross-Resource Dependency Scheduling
	8.3. Considerations for Managing Shared TIPS Views
	8.4. Considerations for Offering Shortcut Incremental Updates

	9. Security Considerations
	9.1. TIPS: Denial-of-Service Attacks
	9.2. ALTO Client: Update Overloading or Instability

	10. IANA Considerations
	10.1. application/alto-tips+json Media Type
	10.2. application/alto-tipsparams+json Media Type

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. A High-Level Deployment Model
	Appendix B. Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current Practices
	Appendix C. Push-Mode TIPS Using HTTP Server Push
	Appendix D. Persistent HTTP Connections
	Acknowledgments
	Authors' Addresses

 The Application-Layer Traffic Optimization (ALTO) Transport Information Publication Service (TIPS)

 Sichuan University

 No.24 South Section 1, Yihuan Road
 Chengdu
 610000
 China

 kaigao@scu.edu.cn

 Deutsche Telekom

 Deutsche-Telekom-Allee 9
 Darmstadt
 64295
 Germany

 Roland.Schott@telekom.de

 Yale University

 51 Prospect Street
 New Haven
 06511
 CT
 United States of America

 yry@cs.yale.edu

 Yale University

 51 Prospect Street
 New Haven
 CT
 06511
 United States of America

 lauren.delwiche@yale.edu

 Yale University

 51 Prospect Street
 New Haven
 CT
 06511
 United States of America

 lachlan.keller@aya.yale.edu

 Transport Area
 ALTO

 "Application-Layer Traffic Optimization (ALTO) Protocol" (RFC 7285) leverages HTTP/1.1 and is designed for
 the simple, sequential request-reply use case, in which an ALTO client
 requests a sequence of information resources and the server responds
 with the complete content of each resource, one at a time.
 RFC 8895, which describes ALTO incremental updates using Server-Sent Events (SSE),
 defines a multiplexing protocol on top of HTTP/1.x, so that an ALTO
 server can incrementally push resource updates to clients whenever
 monitored network information resources change, allowing the clients to
 monitor multiple resources at the same time. However, HTTP/2 and later
 versions already support concurrent, non-blocking transport of multiple
 streams in the same HTTP connection.
 To take advantage of newer HTTP features, this document introduces
 the ALTO Transport Information Publication Service (TIPS). TIPS uses an
 incremental RESTful design to give an ALTO client the new capability to
 explicitly and concurrently (in a non-blocking manner) request (or pull)
 specific incremental updates using HTTP/2 or HTTP/3, while still
 functioning for HTTP/1.1.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Language

 . Notations

 . TIPS Overview

 . Transport Requirements

 . TIPS Terminology

 . TIPS Updates Graph

 . Basic Data Model of an Updates Graph

 . Updates Graph Modification Invariants

 . TIPS Workflow and Resource Location Schema

 . Workflow

 . Resource Location Schema

 . TIPS Information Resource Directory (IRD) Announcement

 . Media Type

 . Capabilities

 . Uses

 . An Example

 . TIPS Management

 . Open Request

 . Open Response

 . Open Example

 . Basic Example

 . Example Using Digest Authentication

 . Example Using ALTO/SSE

 . TIPS Data Transfers - Client Pull

 . Request

 . Response

 . Example

 . New Next Edge Recommendation

 . Request

 . Response

 . Example

 . Operation and Processing Considerations

 . Considerations for Load Balancing

 . Considerations for Cross-Resource Dependency Scheduling

 . Considerations for Managing Shared TIPS Views

 . Considerations for Offering Shortcut Incremental Updates

 . Security Considerations

 . TIPS: Denial-of-Service Attacks

 . ALTO Client: Update Overloading or Instability

 . IANA Considerations

 . application/alto-tips+json Media Type

 . application/alto-tipsparams+json Media Type

 . References

 . Normative References

 . Informative References

 . A High-Level Deployment Model

 . Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current Practices

 . Push-Mode TIPS Using HTTP Server Push

 . Persistent HTTP Connections

 Acknowledgments

 Authors' Addresses

 Introduction
 The Application-Layer Traffic Optimization (ALTO) protocol provides means for network
applications to obtain network status information. So far, the ALTO information
can be transported in two ways:
 Using the ALTO base protocol , which is designed for the simple use case
in which an ALTO client requests a network information resource and the
server sends the complete content of the requested information (if any)
resource to the client.
 Using ALTO incremental updates using Server-Sent Events (ALTO/SSE) ;
this method is designed for an ALTO client to indicate to the server that it wants
to receive updates for a set of resources, and the server can then
concurrently and incrementally push updates to that client whenever
monitored resources change.

 Both protocols are designed for HTTP/1.1 . While they still work with HTTP/2 and
HTTP/3 , ALTO and ALTO/SSE cannot take full advantage of new features offered by HTTP/2 and HTTP/3.

 First, consider the ALTO base protocol, which is designed to transfer only
complete information resources. A client can run the base protocol on top of
HTTP/2 or HTTP/3 to request multiple information resources in concurrent
streams, but each request must be for a complete information resource: there is
no capability for the server to transmit incremental updates. Hence, there can be a large
overhead when the client already has an information resource and then there are
small changes to the resource.
 Next, consider ALTO/SSE . Although ALTO/SSE can transfer
incremental updates, it introduces a customized multiplexing protocol on top
of HTTP, assuming a total-order message channel from the server to the client.
The multiplexing design does not provide naming (i.e., a resource identifier)
to individual incremental updates. Such a design cannot use concurrent data
streams available in HTTP/2 and HTTP/3 because both cases require a resource
identifier. Additionally, ALTO/SSE is a push-only protocol, which denies the
client flexibility in choosing how and when it receives updates.

 To mitigate these concerns, this document introduces a new ALTO service called
the Transport Information Publication Service (TIPS). TIPS uses an incremental
RESTful design to provide an ALTO client with a new capability to explicitly,
concurrently issue non-blocking requests for specific incremental updates using
HTTP/2 or HTTP/3, while still functioning for HTTP/1.1.
 While both ALTO/SSE and TIPS can transport incremental updates of
ALTO information resources to clients, they have different design goals. The
TIPS extension enables more scalable and robust distribution of incremental
updates but is missing the session management and built-in server push
capabilities of ALTO/SSE. From the performance perspective, TIPS is optimizing
throughput by leveraging concurrent and out-of-order transport of data, while
ALTO/SSE is optimizing latency as new events can be immediately transferred to
the clients without waiting for another round of communication when there are
multiple updates. Thus, we do not see TIPS as a replacement for ALTO/SSE, but as a complement
to it. One example of combining these two extensions is shown in
 .
 Note that future extensions may leverage server push, a feature of HTTP/2
 and HTTP/3 , as an alternative of SSE. We discuss why
this alternative design is not ready at the time of writing in .
 Specifically, this document specifies:

 Extensions to the ALTO Protocol for dynamic subscription and efficient
uniform update delivery of an incrementally changing network information
resource.
 A new resource type that indicates the TIPS updates graph model for a
resource.
 URI patterns to fetch the snapshots or incremental updates.

 Some operational complexities that must be taken into consideration when
implementing this extension are discussed in : these include
load balancing in and fetching and processing incremental updates
of dependent resources in .
 discusses to what extent the TIPS design adheres to the best
current practices for building protocols with HTTP .

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Notations
 This document uses the same syntax and notations as introduced in
 to specify the extensions to existing ALTO resources and services.

 TIPS Overview

 Transport Requirements
 The ALTO Protocol and its extensions support two transport mechanisms:

 A client can directly request an ALTO resource and obtain a complete
snapshot of that ALTO resource, as specified in the base protocol ;
 A client can subscribe to incremental changes of one or multiple ALTO
resources using the incremental update extension , and a server pushes
the updates to the client through SSE.

 However, the current transport mechanisms are not optimized for storing,
transmitting, and processing (incremental) updates of ALTO information
resources. Specifically, the new transport mechanism must satisfy the following
requirements:

 Incremental updates:

 Incremental updates only maintain and transfer the "diff" upon changes. Thus,
it is more efficient than storing and transferring the full updates,
especially when the change of an ALTO resource is minor. The base protocol
does not support incremental updates and the current incremental update
mechanism in has limitations (as discussed below).

 Concurrent, non-blocking update transmission:

 When a client needs to receive and apply multiple incremental updates, it is
desired to transmit the updates concurrently to fully utilize the bandwidth
and to reduce head-of-line blocking. Unfortunately, the ALTO incremental update extension
 does not satisfy this requirement. Even though
the updates can be multiplexed by the server to avoid head-of-line blocking
between multiple resources, the updates are delivered sequentially and can
suffer from head-of-line blocking inside the connection (for example, when
there is a packet loss).

 Long polling updates:

 Long polling updates can reduce the time to send the request, making it
possible to achieve sub-RTT transmission of ALTO incremental updates. In
 , this requirement is fulfilled using SSE and
is still desired in the new ALTO transport.

 Backward compatibility:

 While some of the previous requirements are offered by HTTP/2 and
HTTP/3 , it is desired that the new ALTO transport mechanism can
work with HTTP/1.1 as many development tools and current ALTO implementations
are based on HTTP/1.1.

 The new ALTO transport specified in this document satisfies all of the following design
requirements above by:

 Reusing the data format introduced in that enables
incremental updates using JSON patches or merge patches.
 Introducing a unified data model to describe the
 changes (snapshots and incremental updates) of an ALTO resource,
 referred to as a "TIPS view". In the data model, snapshots and
 incremental updates are indexed as individual HTTP resources
 following a unified naming convention, independent of the HTTP
 version. Thus, these updates can be concurrently requested and be
 transferred in a non-blocking manner either by using multiple
 connections or leveraging multiplexed data transfer offered by
 HTTP/2 or HTTP/3.
 Basing the unified naming convention on a monotonically
 increasing sequence number, making it possible for a client to
 construct the URL of a future update and send a long polling
 request.
 Making the unified naming convention independent of the HTTP versions
 and able to operate atop HTTP/1.1, HTTP/2, or HTTP/3.

 This document assumes the deployment model discussed in .

 TIPS Terminology
 In addition to the terms defined in , this document uses the following terms:

 Transport Information Publication Service (TIPS):

 A new type of ALTO service, as specified in this document, to enable a
uniform transport mechanism for updates of an incrementally changing ALTO
network information resource.

 Network information resource:

 A piece of retrievable information about network state, per .

 TIPS view (tv):

 The container of incremental transport
information about the network information resource. The TIPS view has one
basic component, the updates graph (ug), but may include other transport
information.

 Updates graph (ug):

 A directed, acyclic graph whose nodes represent the set of
 versions of an information resource and whose edges represent the
 set of update items to compute these versions. An ALTO map service
 (e.g., a cost map or a network map) may need only a single updates
 graph. A dynamic network information service (e.g., a filtered
 cost map) may create an updates graph (within a new TIPS view) for
 each unique request. The encoding of an updates graph is specified
 in .

 Version:

 The representation of a historical content of an information resource. For an information
resource, each version is associated with and uniquely identified by a
monotonically and consecutively increased sequence number. This document uses
the term "version s" to refer to the version associated with sequence number
"s". The version is encoded as a JSONNumber, as specified in .

 Start sequence number (<start-seq>):

 The smallest non-zero sequence number in an updates graph.

 End sequence number (<end-seq>):

 The largest sequence number in an updates graph.

 Snapshot:

 A full replacement of a resource that is contained within an updates graph.

 Incremental update:

 A partial replacement of a resource contained within an
 updates graph, codified in this document as a JSON merge patch or
 a JSON patch. An incremental update is mandatory if the source
 version (i) and the target version (j) are consecutive (i.e., i + 1 =
 j); otherwise, it is optional (or a shortcut). Mandatory incremental
 updates are always in an updates graph, while optional/shortcut
 incremental updates may or may not be included in an updates
 graph.

 Update item:

 The content on an edge of the updates graph, which can be either a
snapshot or an incremental update. An update item can be considered to be a pair
(op, data) where op denotes whether the item is an incremental update or a
snapshot and data is the content of the item.

 ID#i-#j:

 Denotation of the update item on a specific edge in the updates graph to transition
from version i to version j, where i and j are the sequence numbers of the
source node and the target node of the edge, respectively.

 Overview of ALTO TIPS

 +-------------+
 +-----------+ +--------------+ | Dynamic | +-----------+
 | Routing | | Provisioning | | Network | | External |
 | Protocols | | Policy | | Information | | Interface |
 +-----------+ +--------------+ +-------------+ +-----------+
 | | | |
+---+
| ALTO Server |
| +---+ |
	Network Information							
	+-------------+ +-------------+							
		Information		Information				
		Resource #1		Resource #2				
	+-------------+ +-------------+							
+-----	--------------------------------------/-------\--------+							
	/ \							
+-----	------------------------------------/-----------\------+							
		Transport Information / \						
	+--------+ +--------+ +--------+							
		tv1		tv2		tv3		
	+--------+ +--------+ +--------+							
		/						
	+--------+ +--------+ +--------+							
		tv1/ug		tv2/ug		tv3/ug		
	+--------+ +--------+ +--------+							
+----	----\----------------	-------------------------	--------+					
	\							
+------|------\--------------|-------------------------|----------+
 | +------+ | |
 | \ | |
 +----------+ +----------+ +----------+
 | Client 1 | | Client 2 | | Client 3 |
 +----------+ +----------+ +----------+

tvi = TIPS view i
tvi/ug = incremental updates graph associated with tvi

 shows an example illustrating an overview of the ALTO TIPS
extension. The server provides TIPS for two information resources (#1
and #2) where #1 is an ALTO map service and #2 is a filterable
service. There are three ALTO clients (Client 1, Client 2, and Client 3) that are
connected to the ALTO server.
 Each client uses the TIPS view to retrieve updates. Specifically, a TIPS view
(tv1) is created for the map service #1 and is shared by multiple clients. For
the filtering service #2, two different TIPS views (tv2 and tv3) are created upon
different client requests with different filter sets.

 TIPS Updates Graph
 In order to provide incremental updates for a resource, an ALTO server creates
an updates graph, which is a directed acyclic graph that contains a sequence of
incremental updates and snapshots (collectively called "update items") of a
network information resource.

 Basic Data Model of an Updates Graph
 For each resource (e.g., a cost map or a network map), the incremental updates and
snapshots can be represented using the following directed acyclic graph model,
where the server tracks the change of the resource maps with version IDs that are
assigned sequentially (i.e., incremented by one each time):

 Each node in the graph is a version of the resource, which is identified by a
sequence number (defined as a JSONNumber). Version 0 is reserved as the
initial state (empty/null).
 A tag identifies the content of a node. A tag has the same format as the
"tag" field in and is valid only within the
scope of the resource.
 Each edge is an update item. In particular, the edge from i to j is the update
item to transit from version i to version j.
 The version is path independent, i.e., different paths arriving at the node associated with the same version
have the same content.

 A concrete example is shown in . There are seven nodes in the graph,
representing seven different versions of the resource. Edges in the figure represent
the updates from the source version to the target version. Thick lines represent
mandatory incremental updates (e.g., ID103-104), dotted lines represent optional
incremental updates (e.g., ID103-105), and thin lines represent snapshots (e.g.,
ID0-103). Note that node content is path independent: the content of node v can
be obtained by applying the updates from any path that ends at v. For example,
assume the latest version is 105 and a client already has version 103. The base
version of the client is 103 as it serves as a base upon which incremental
updates can be applied.
 The target version 105 can be:

 directly fetched as a snapshot;
 computed incrementally by applying the incremental updates between
 103 and 104, then 104 and 105; or,
 computed incrementally by taking the "shortcut" path from 103 to
 105 if the optional update from 103 to 105 exists.

 TIPS Model Example

 +======+
 ------| 0 |
 / +======+
 ID0-101 / | |
 |/__ | |
 +======+ | |
 tag: 3421097 -> | 101 | | |
 +======+ | |
 ID101-102 || | |
 \/ | |
 +======+ | |
 tag: 6431234 -> | 102 | | |
 +======+ | |
 ID102-103 || | |
 \/ | |
 +======+ / |
+--------------+ tag: 0881080 -> | 103 |<--------/ |
| Base Version | =======> +======+ ID0-103 |
+--------------+ 103-104 || .. |
 \/ .. |
 +======+ .. |
 tag: 6452654 -> | 104 | .. ID103 |
 +======+ .. -105 |
 ID104-105 || .. | ID0-105
 \/ |._ /
 +======+ /
 tag: 7838392 -> | 105 |<-----------/
 +======+
 ID105-106 ||
 \/
 +======+
 tag: 6470983 -> | 106 |
 +======+

 Updates Graph Modification Invariants
 A server might change its updates graph (to compact it, to add nodes,
etc.), but it will need to ensure that any resource state that it makes
available is reachable by clients, either directly via a snapshot
(that is, relative to 0) or indirectly by requesting an earlier
snapshot and a contiguous set of incremental updates. Additionally,
to allow clients to proactively construct URIs for future update
items, the ID of each added node in the updates graph will need to increment
contiguously by 1. More specifically, the updates graph MUST satisfy
the following invariants:

 Continuity:
 At any time, let ns denote the smallest non-zero version (i.e.,
<start-seq>) in the updates graph and let ne denote the latest version (i.e.,
<end-seq>). Then, any version in between ns and ne MUST also exist. This implies
that the incremental update from ni to ni + 1 exists for any ns <= ni <= ne, and all the version numbers in the updates graph (except 0)
 constitute exactly the integer interval [ns, ne].
 Feasibility:
 Let ns denote <start-seq> in the updates graph. The server MUST
provide a snapshot of ns; in other words, there is always a direct link
to ns in the updates graph.
 "Right shift" only:
 Assume a server provides versions in [n1, n2] at time t
and versions in [n1', n2'] at time t'. If t' > t, then n1' >= n1 and n2' >=
n2.

 For example, consider the case that a server compacts a resource's updates graph
to conserve space, using the example model in . Assume at time 0,
the server provides the versions {101, 102, 103, 104, 105, 106}. At time 1,
both {103, 104, 105, 106} and {105, 106} are valid sets. However, {102,
103, 104, 105, 106} and {104, 105, 106} are not valid sets as there is no
snapshot to version 102 or 104 in the updates graph. Thus, there is a risk that
the right content of version 102 (in the first example) or 104 (in the second
example) cannot be obtained by a client that does not have the previous version
101 or 103, respectively.

 TIPS Workflow and Resource Location Schema

 Workflow
 At a high level, an ALTO client first requests the TIPS information resource (denoted as TIPS-F,
where F is for frontend) to indicate the information resource or resources that the client
wants to monitor. For each requested resource, the server returns a JSON object
that contains a URI, which points to the root of a TIPS view (denoted as
TIPS-V), and a summary of the current view, which contains the information to
correctly interact with the current view. With the URI to the root of a TIPS
view, clients can construct URIs (see) to fetch incremental updates.
 An example workflow is shown in . After the TIPS-F
 receives the request from the client to monitor the updates of an ALTO
resource, it creates a TIPS view resource and returns the corresponding
information to the client. The URI points to that specific TIPS-V instance, and
the summary contains the <start-seq> and <end-seq> of the updates graph and a
server-recommended edge to consume first (e.g., from i to j).
 An ALTO client can then continuously pull each additional update with the
information. For example, the client in first fetches the
update from i to j and then from j to j+1. Note that the update item at
"<tips-view-uri>/ug/<j>/<j+1>" might not yet exist, so the server holds the
request until the update becomes available (i.e., long polling).
 A server MAY close a TIPS view at any time (e.g., under high system load or due
to client inactivity). In the event that a TIPS view is closed, an edge request
will receive error code 404 (Not Found) in response, and the client will have to request a
new TIPS view URI.
 If resources allow, a server SHOULD avoid closing TIPS views that have active
polling edge requests or have recently served responses until clients have had a
reasonable interval to request the next update, unless guided by specific
control policies.

 ALTO TIPS Workflow Supporting Client Pull

Client TIPS-F TIPS-V
 o . .
 | POST to create/receive a TIPS view . Create TIPS .
 | for resource 1 . View .
 |-------------------------------------> |.-.-.-.-.-.-.-> |
 | <tips-view-uri>, <tips-view-summary> . |
 | <-------------------------------------| <-.-.-.-.-.-.-.|
 | .
 | GET /<tips-view-path>/ug/<i>/<j> .
 |--> |
 | content on edge i to j |
 | <--|
 | .
 | GET /<tips-view-path>/ug/<j>/<j+1> .
 |--> |
 . .
 . .
 | content on edge j to j+1 |
 | <--|
 | .
 o .
 .
 TIPS View Closed o

 Resource Location Schema
 The resource location schema defines how a client constructs URIs to fetch
incremental updates.
 To access each update in an updates graph, consider the model
represented as a "virtual" file system (adjacency list), contained within the
root of a TIPS view URI (see for the definition of tips-view-uri).
For example, assuming that the updates graph of a TIPS view is as shown in
 , the location schema of this TIPS view will have the format as in
 .

 Location Schema Example

 <tips-view-path> // root path to a TIPS view
 |_ ug // updates graph
 | |_ 0
 | | |_ 101 // full 101 snapshot
 | | |_ 103
 | | _ 105
 | |_ 101
 | | _ 102 // 101 -> 102 incremental update
 | |_ 102
 | | _ 103
 | |_ 103
 | | |_ 104
 | | _ 105 // optional shortcut 103 -> 105 incr. update
 | |_ 104
 | | _ 105
 | _ 105
 | _ 106
 _ ...

 TIPS uses this directory schema to generate template URIs that allow
clients to construct the location of incremental updates after receiving the
tips-view-uri from the server. The generic template for the location of the
update item on the edge from node 'i' to node 'j' in the updates graph is:

 <tips-view-uri>/ug/<i>/<j>

 Due to the sequential nature of the update item IDs, a client can long poll a
future update that does not yet exist (e.g., the incremental update from 106 to
107). This can be done by constructing the URI for the next edge that will be added, starting from
the sequence number of the current last node (denoted as <end-seq>) in the graph
to the next sequential node (with the sequence number of <end-seq + 1>):

 <tips-view-uri>/ug/<end-seq>/<end-seq + 1>

 Incremental updates of a TIPS view are read-only. Thus, they are fetched using
the HTTP GET method.

 TIPS Information Resource Directory (IRD) Announcement
 To announce a TIPS information resource in the IRD, an ALTO server MUST specify "media-type", "capabilities", and "uses"
as follows.

 Media Type
 The media type of the Transport Information Publication Service (TIPS) resource is
"application/alto-tips+json".

 Capabilities
 The "capabilities" field of a TIPS information resource is modeled on that defined in
 .
 Specifically, the capabilities are defined as an object of the TIPSCapabilities type:

 TIPSCapabilities

 object {
 IncrementalUpdateMediaTypes incremental-change-media-types;
 } TIPSCapabilities;

 object-map {
 ResourceID -> String;
 } IncrementalUpdateMediaTypes;

 with the field:

 incremental-change-media-types:

 If a TIPS information resource can provide updates with incremental changes for a
resource, the "incremental-change-media-types" field has an entry
whose key is the ID of the resource and the value is the supported media types
of incremental changes, separated by commas. For the implementation of this
specification, this MUST be "application/merge-patch+json",
"application/json-patch+json", or
"application/merge-patch+json,application/json-patch+json", unless defined by
a future extension.

 When choosing the media types to encode incremental updates for a
resource, the server MUST consider the limitations of the
encoding. For example, when a JSON merge patch specifies that the
value of a field is null, its semantics are that the field is
removed from the target; hence, the field is no longer defined
(i.e., undefined). However, this may not be the intended result
for the resource, when null and undefined have different semantics
for the resource. In such a case, the server MUST choose JSON
patch encoding over JSON merge patch encoding for the incremental update if both media types "application/json-patch+json" and "application/merge-patch" are supported by the TIPS information resource.

 Uses
 The "uses" attribute MUST be an array with the resource IDs of every
network information resource for which this TIPS information resource can provide service.
 This set MAY be any subset of the ALTO server's network information resources
and MAY include resources defined in linked IRDs. However, it is RECOMMENDED
that the ALTO server selects a set that is closed under the resource dependency
relationship. That is, if a TIPS information resource's "uses" set includes resource R1, and resource
R1 depends on ("uses") resource R0, then the "uses" set should include R0
as well as R1. For example, if a TIPS information resource provides a TIPS view for a cost map, it
should also provide a TIPS view for the network map upon which that cost map
depends.
 If the set is not closed, at least one resource R1 in the "uses" field of a TIPS information resource
depends on another resource R0 that is not in the "uses" field of the same
TIPS information resource. Thus, a client cannot receive incremental updates for another resource R0 that is not in the "uses" field of the same TIPS information resource. If the client observes in an update of R1 that the version tag for
R0 has changed, it must request the full content of R0, which is likely to be
less efficient than receiving the incremental updates of R0.

 An Example
 Extending the IRD example in , is the IRD of an
ALTO server supporting the ALTO base protocol, ALTO/SSE, and ALTO TIPS.

 Example of an ALTO Server Supporting the ALTO Base Protocol, ALTO/SSE, and ALTO TIPS

 "my-network-map": {
 "uri": "https://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json"
 },
 "my-routingcost-map": {
 "uri": "https://alto.example.com/costmap/routingcost",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "https://alto.example.com/costmap/hopcount",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-simple-filtered-cost-map": {
 "uri": "https://alto.example.com/costmap/filtered/simple",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": false
 }
 },
 "update-my-costs": {
 "uri": "https://alto.example.com/updates/costs",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 },
 "update-my-costs-tips": {
 "uri": "https://alto.example.com/updates-new/costs",
 "media-type": "application/alto-tips+json",
 "accepts": "application/alto-tipsparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json",
 "my-simple-filtered-cost-map": "application/merge-patch+json"
 }
 }
 },
 "tips-sse": {
 "uri": "https://alto.example.com/updates/tips",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": ["update-my-costs-tips"],
 "capabilities": {
 "incremental-change-media-types": {
 "update-my-costs-tips": "application/merge-patch+json"
 }
 }
 }

 Note that it is straightforward for an ALTO server to run HTTP/2 and
support concurrent retrieval of multiple resources such as "my-network-map" and "my-routingcost-map" using multiple HTTP/2 streams.
 The resource "update-my-costs-tips" provides an ALTO TIPS information resource, and this is
indicated by the media type "application/alto-tips+json".

 TIPS Management
 Upon request, a server sends a TIPS view to a client. This TIPS view might be
created at the time of the request or might already exist (either because another
client has already created a TIPS view for the same requested network resource
or because the server perpetually maintains a TIPS view for an often-requested
resource).

 Open Request
 An ALTO client requests that the server provide a TIPS view for a given resource
by sending an HTTP POST body with the media type
"application/alto-tipsparams+json". That body contains a JSON object of the TIPSReq type, where:

 TIPSReq

 object {
 ResourceID resource-id;
 [JSONString tag;]
 [Object input;]
 } TIPSReq;

 with the following fields:

 resource-id:

 This field contains the resource ID of an ALTO resource to be monitored, which MUST be in the TIPS information resource's "uses" list
(). If a client does not support all incremental methods from the set
announced in the server's capabilities, the client MUST NOT use the TIPS
information resource.

 tag:

 If the "resource-id" is associated with a GET-mode resource with a version tag (or
"vtag"), as defined in , and the ALTO
client has previously retrieved a version of that resource from
ALTO, the ALTO client MAY set the "tag" field to the tag part of
the client's version of that resource. The server MAY use the tag
when calculating a recommended starting edge for the client to
consume. Note that the client MUST support all incremental
methods from the set announced in the server's capabilities for
this resource.

 input:

 If the resource is a POST-mode service that requires input, the
ALTO client MUST set the "input" field to a JSON object with the
parameters that the resource expects.

 Open Response
 The response to a valid request MUST be a JSON object of the AddTIPSResponse type, denoted as media type "application/alto-tips+json":

 AddTIPSResponse

 object {
 URI tips-view-uri;
 TIPSViewSummary tips-view-summary;
 } AddTIPSResponse;

 object {
 UpdatesGraphSummary updates-graph-summary;
 } TIPSViewSummary;

 object {
 JSONNumber start-seq;
 JSONNumber end-seq;
 StartEdgeRec start-edge-rec;
 } UpdatesGraphSummary;

 object {
 JSONNumber seq-i;
 JSONNumber seq-j;
 } StartEdgeRec;

 with the following fields:

 tips-view-uri:

 This is the URI to the requested TIPS view. The value of this field MUST have the
following format:

 scheme "://" tips-view-host "/" tips-view-path

 tips-view-host = host [":" port]
 tips-view-path = path

 where scheme MUST be "http" or "https" unless specified by a future
extension, and host, port, and path are as specified in Sections , , and in . An ALTO server SHOULD use the "https" scheme unless
the contents of the TIPS view are intended to be publicly accessible and do
not raise security concerns. The field MUST contain only ASCII characters. In
case the original URL contains international characters (e.g., in the domain
name), the ALTO server implementation MUST properly encode the URL into the
ASCII format (e.g., using the "urlencode" function).
 A server MUST NOT use the same URI for different TIPS views, either for
different resources or for different request bodies to the same resource. URI
generation is implementation specific; for example, one may compute a
Universally Unique Identifier (UUID) or a hash value based on
the request and append it to a base URL. For performance considerations, it
is NOT RECOMMENDED to use properties that are not included in the request
body to determine the URI of a TIPS view, such as cookies or the client's IP
address, which may result in duplicated TIPS views in cases such as mobile
clients. However, this is not mandatory as a server might intentionally use
client information to compute the TIPS view URI to provide service isolation
between clients.

 tips-view-summary:

 Contains an updates-graph-summary.

 The "updates-graph-summary" field contains the
<start-seq> of the updates graph (in the "start-seq" field) and the <end-seq> that
is currently available (in the "end-seq" field), along with a recommended edge to consume
(in the "start-edge-rec" field). If the client does not provide a version tag, the server
 MUST recommend the edge of the latest available snapshot.
If the client provides a version tag, the server MUST either recommend
the first incremental update edge starting from the client's tagged version
or recommend the edge of the latest snapshot: which edge is selected depends on the
implementation. For example, a server MAY calculate the cumulative size of
the incremental updates available from that version onward and compare it to
the size of the complete resource snapshot. If the snapshot is bigger, the
server recommends the first incremental update edge starting from the
client's tagged version. Otherwise, the server recommends the latest snapshot
edge.

 If the request has any errors, the ALTO server MUST return an HTTP
400 (Bad Request) error code to the ALTO client; the body of the response
follows the generic ALTO error response format specified in
 . Hence, an example ALTO error response
has the format shown in .

 ALTO Error Example

 HTTP/1.1 400 Bad Request
 Content-Length: 131
 Content-Type: application/alto-error+json

 {
 "meta":{
 "code": "E_INVALID_FIELD_VALUE",
 "field": "resource-id",
 "value": "my-network-map/#"
 }
 }

 Note that "field" and "value" are optional fields. If the "value"
field exists, the "field" field MUST exist.

 If the TIPS request does not have a "resource-id" field, the error code of
the error message MUST be "E_MISSING_FIELD" and the "field" field, if
present, MUST be "resource-id". The ALTO server MUST NOT create any TIPS
view.
 If the "resource-id" field is invalid or is not associated with the TIPS information resource, the
error code of the error message MUST be "E_INVALID_FIELD_VALUE". If present,
the "field" field MUST be the full path of the "resource-id" field, and the
"value" field MUST be the value of the "resource-id" field in the request.
 If the resource is a POST-mode service that requires input, the client MUST
set the "input" field to a JSON object with the parameters that resource
expects. If the "input" field is missing or invalid, the ALTO server MUST return the
same error response that resource would return for missing or invalid inputs
(see).

 Furthermore, it is RECOMMENDED that the server use the following HTTP code to
indicate other errors, with the media type "application/alto-error+json".

 429 (Too Many Requests):
 Indicates when the number of TIPS views open requests exceeds
the server threshold. The server MAY indicate when to retry the request in
the "Re-Try After" headers.

 It is RECOMMENDED that the server provide the ALTO/SSE support for the TIPS
resource. Thus, the client can be notified of the version updates of all the
TIPS views that it monitors and make better cross-resource transport decisions
(see for related considerations).

 Open Example

 Basic Example
 For simplicity, assume that the ALTO server is using Basic
authentication . If a client with username "client1" and password
"helloalto" wants to create a TIPS view of an ALTO cost map resource
with the resource ID "my-routingcost-map", it can send the
request depicted in .

 Request Example of Opening a TIPS View

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 If the operation is successful, the ALTO server returns the
message shown in .

 Response Example of Opening a TIPS View

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 255

 {
 "tips-view-uri": "https://alto.example.com/tips/2718281828",
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec" : {
 "seq-i": 0,
 "seq-j": 105
 }
 }
 }
 }

 Example Using Digest Authentication
 Below is another example of the same query using Digest authentication, a
mandatory authentication method of ALTO servers as defined in . The content of the response is the same as in ; thus, it has been
omitted for simplicity.

 Open Example with Digest Authentication

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 401 UNAUTHORIZED
 WWW-Authenticate: Digest
 realm="alto.example.com",
 qop="auth",
 algorithm="MD5",
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 opaque="a237ff9ab865379a69d9993162ef55e4"

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Digest
 username="client1",
 realm="alto.example.com",
 uri="/tips",
 qop=auth,
 algorithm=MD5,
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 nc=00000001,
 cnonce="ZTg3MTI3NDFmMDQ0NzI1MDQ3MWE3ZTFjZmM5MTNiM2I=",
 response="8e937ae696c1512e4f990fa21c7f9347",
 opaque="a237ff9ab865379a69d9993162ef55e4"
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 258

 {....}

 Example Using ALTO/SSE
 This section gives an example of receiving incremental updates of the TIPS view
summary using ALTO/SSE . Consider the "tips-sse" resource, as
announced by the IRD in , which provides ALTO/SSE for the
"update-my-cost-tips" resource; a client might send the following request to
receive updates of the TIPS view (authentication is omitted for simplicity).

 Example of Monitoring TIPS View with ALTO/SSE

 POST /updates/tips HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 76

 {
 "add": {
 "tips-123": { "resource-id": "update-my-cost-tips" }
 }
 }

 Then, the client will be able to receive the TIPS view summary as follows.

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-tips+json,tips-123
 data: {
 data: "tips-view-uri": "https://alto.example.com/tips/2718281828",
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "start-seq": 101,
 data: "end-seq": 106,
 data: "start-edge-rec" : {
 data: "seq-i": 0,
 data: "seq-j": 105
 data: }
 data: }
 data: }
 data: }

 When there is an update to the TIPS view (for example, when the "end-seq" field is
increased by 1), the client will be able to receive the incremental update of the
TIPS view summary as follows.

 event: application/merge-patch+json,tips-123
 data: {
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "end-seq": 107
 data: }
 data: }
 data: }

 TIPS Data Transfers - Client Pull
 TIPS allows an ALTO client to retrieve the content of an update item
from the updates graph, with an update item defined as the content
(incremental update or snapshot) on an edge in the updates graph.

 Request
 The client sends an HTTP GET request, where the media type of an
update item resource MUST be the same as the "media-type" field of
the update item on the specified edge in the updates graph.
 The GET request MUST have the following format:

 GET /<tips-view-path>/ug/<i>/<j>
 HOST: <tips-view-host>

 For example, consider the updates graph in . If the client
wants to query the content of the first update item (0 -> 101) whose media type
is "application/alto-costmap+json", it sends a request to
"/tips/2718281828/ug/0/101" and sets the "Accept" header to
"application/alto-costmap+json,application/alto-error+json". See
for a concrete example.

 Response
 If the request is valid (i.e., "ug/<i>/<j>" exists), the response is encoded
as a JSON object whose data format is indicated by the media type.
 A client MAY conduct proactive fetching of future updates, by long polling
updates that have not been provided in the directory yet. For such updates, the
client MUST indicate all media types that might appear. It is RECOMMENDED that the
server allow for at least the long polling of <end-seq> -> <end-seq + 1>.
 Hence, the server processing logic MUST be:

 If a resource with path "ug/<i>/<j>" exists, return content using encoding.
 Else, if long polling "ug/<i>/<j>" is acceptable, put request in a
backlog queue, then either a response is triggered when the content is ready
or the request is interrupted (e.g., by a network error).
 Else, return error.

 It is RECOMMENDED that the server use the following HTTP codes to
indicate errors, with the media type "application/alto-error+json",
regarding update item requests.

 404 (Not Found):
 Indicates that the requested update does not exist or the requested
TIPS view does not exist or is closed by the server.
 410 (Gone):
 Indicates an update has a seq that is smaller than the <start-seq>.
 415 (Unsupported Media Type):
 Indicates the media type (or types) accepted by the
client does not include the media type of the update chosen by the
server.
 425 (Too Early):
 Indicates the seq exceeds the server long polling window.
 429 (Too Many Requests):
 Indicates the number of pending (long poll)
requests exceeds the server threshold. The server MAY indicate when to retry
the request in the "Re-Try After" headers.

 Example
 Assume the client wants to get the contents of the update item on
edge 0 to 101. The format of the request is shown in .

 GET Example

 GET /tips/2718281828/ug/0/101 HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-costmap+json, \
 application/alto-error+json

 The response is shown in .

 Response to a GET Request

 HTTP/1.1 200 OK
 Content-Type: application/alto-costmap+json
 Content-Length: 50

 { ... full replacement of my-routingcost-map ... }

 New Next Edge Recommendation
 While intended TIPS usage is for the client to receive a recommended
starting edge in the TIPS summary, consume that edge, and then construct
all future URIs by incrementing the sequence count by one, there may be
cases in which the client needs to request a new next edge to
consume. For example, if a client has an open TIPS view but has not
polled in a while, the client might request the next logical
incremental URI; however, the server has compacted the updates graph, so it
no longer exists. Thus, the client MAY request a new next edge to
consume based on its current version of the resource.

 Request
 An ALTO client requests that the server provide a next edge recommendation for a
given TIPS view by sending an HTTP POST request with the media type
"application/alto-tipsparams+json". The URL of the request MUST have the following format:

 <tips-view-path>/ug

 and the "HOST" field MUST be "<tips-view-host>".
 The POST body has the same format as the TIPSReq in . The
"resource-id" field MUST be the same as the resource ID used to create the TIPS view,
and the optional "input" field MUST NOT be present.

 Response
 The response to a valid request MUST be a JSON merge patch to the object of the AddTIPSResponse type (defined in), denoted as media type
"application/merge-patch+json". The "updates-graph-summary" field MUST be present
in the response; hence, its parent field "tips-view-summary" MUST be present
as well.
 If the "tag" field is present in the request, the server MUST check if any
version within the range [<start-seq>, <end-seq>] has the same tag value. If the
version exists (e.g., denoted as <tag-seq>), the server MUST compute the paths from
both <tag-seq> and 0 to the <end-seq> and choose the one with the minimal cost. The
cost MAY be implementation specific (e.g., number of messages, accumulated data
size, etc.). The first edge of the selected path MUST be returned as the
	 recommended next edge.
 If the "tag" field is not present, the interpretation MUST be that the <tag-seq> is 0.
 It is RECOMMENDED that the server use the following HTTP code to
indicate errors, with the media type "application/alto-error+json",
regarding new next edge requests.

 404 (Not Found):
 Indicates that the requested TIPS view does not exist or has been
closed by the server.

 Example
 In this section, we give an example of the new next edge recommendation service. Assume that a
client already creates a TIPS view (as in) whose updates graph
is as shown in . Now assume that the client already has tag 0881080,
whose corresponding sequence number is 103, and sends the following new next
edge recommendation request (authentication is omitted for simplicity):

 POST /tips/2718281828/ug HTTP/1.1
 HOST alto.example.com
 Accept: application/merge-patch+json, application/alto-error+json
 Content-Type: application/alto-tipsparams+json
 Content-Length: 62

 {
 "resource-id": "my-routingcost-map",
 "tag": "0881080"
 }

 According to , there are three potential paths: 103 -> 104 -> 105 -> 106,
103 -> 105 -> 106, and 0 -> 105 -> 106. Assume that the server chooses the shortest
update path by the accumulated data size and the best path is 103 -> 105 -> 106.
Thus, the server responds with the following message:

 HTTP/1.1 200 OK
 Content-Type: application/merge-patch+json
 Content-Length: 193

 {
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec": {
 "seq-i": 103,
 "seq-j": 105
 }
 }
 }
 }

 Operation and Processing Considerations
 TIPS has some common operational considerations as ALTO/SSE ,
including:

 the server choosing update messages ();
 the client processing update messages ();
 the updates of filtered map services (); and
 the updates of ordinal mode costs ().

 There are also some operational considerations specific to TIPS, which we discuss
below.

 Considerations for Load Balancing
 There are two levels of load balancing in TIPS: the first level is to balance
the load of TIPS views for different clients and the second is to balance the
load of incremental updates.
 Load balancing of TIPS views can be achieved either at the application layer or
at the infrastructure layer. For example, an ALTO server MAY set
<tips-view-host> to different subdomains to distribute TIPS views or simply
use the same host of the TIPS information resource and rely on load balancers to distribute
	the load.
 TIPS allows a client to make concurrent pulls of incremental updates for the
same TIPS view, potentially through different HTTP connections. As a consequence,
TIPS introduces additional complexities when the ALTO server balances the load by distributing the requests to a set of backend servers. For example, a request might be directed to the wrong backend server and
get processed incorrectly if the following two conditions both hold:

 these backend servers are stateful (i.e., the TIPS view is created
and stored only on a single server); and
 the ALTO server is using Layer 4 load balancing (i.e., the
requests are distributed based on the TCP 5-tuple).

 Thus, additional considerations are required to enable correct load
balancing for TIPS, including:

 Using a stateless architecture:
 One solution is to follow the
stateless computing pattern: states about the TIPS view are not
maintained by the backend servers but are stored in a distributed
database. Thus, concurrent requests to the same TIPS view can be
processed on arbitrary stateless backend servers, which all
fetch data from the same database.
 Configuring the load balancers properly:
 In the case that the backend
servers are stateful, the load balancers must be properly
configured to guarantee that requests of the same TIPS view always
arrive at the same server. For example, an operator or a provider
of an ALTO server MAY configure Layer 7 load balancers that
distribute requests based on the tips-view-path component in the URI.

 Considerations for Cross-Resource Dependency Scheduling
 Dependent ALTO resources result in cross-resource dependencies in
TIPS. Consider the following pair of resources, where my-cost-map
(C) is dependent on my-network-map (N). The updates graph for each
resource is shown, along with links between the respective updates
graphs to show dependency:

 Example Dependency Model

 +---+ +---+ +---+ +---+ +---+
 my-network-map (N) | 0 |-->|89 |-->|90 |-->|91 |-->|92 |
 +---+ +---+ +---+ +---+ +---+
 | \ \ \
 | \ \ \
 +---+ +---+ +---+ +---+ +---+
 my-cost-map (C) | 0 |-->|101|-->|102|-->|103|-->|104|
 +---+ +---+ +---+ +---+ +---+
 |_______________________|

 In , the cost-map versions 101 and 102 (denoted as C101 and C102)
are dependent on the network-map version 89 (denoted as N89). The cost-map
version 103 (C103) is dependent on the network-map version 90 (N90), and so on.
 Thus, the client must decide the order in which to receive and apply the
updates. The order may affect how fast the client can build a consistent view
and how long the client needs to buffer the update.

 Example 1:
 The client requests N89, N90, N91, C101, C102 in that
order. The client either gets no consistent view of the resources
or has to buffer N90 and N91.
 Example 2:
 The client requests C101, C102, C103, N89. The client
either gets no consistent view or has to buffer C103.

 To get consistent ALTO information, a client must process the updates following
the guidelines specified in . If resources permit
(i.e., sufficient updates can be buffered), an ALTO client can safely use long
polling to fetch all the updates. This allows a client to build consistent views
quickly as the updates are already stored in the buffer. Otherwise, it is
 RECOMMENDED to request a full snapshot if the client does not have enough local resources to
 buffer and process the incremental updates.

 Considerations for Managing Shared TIPS Views
 From a client's point of view, it sees only one copy of the TIPS view
for any resource. However, on the server side, there are different
implementation options, especially for common resources (e.g.,
network maps or cost maps) that may be frequently queried by many
clients. Some potential options are listed below:

 An ALTO server creates one TIPS view of the common resource for
each client.

 An ALTO server maintains one copy of the TIPS view for each common
resource and all clients requesting the same resources use the
same copy. There are two ways to manage the storage for the
shared copy:

 the ALTO server maintains the set of clients that have sent a polling
request to the TIPS view and only removes the view from the storage when
the set becomes empty and no client immediately issues a new edge request; or
 the TIPS view is never removed from the storage.

 Developers may choose different implementation options depending on
criteria such as request frequency, available resources of the ALTO
server, the ability to scale, and programming complexity.

 Considerations for Offering Shortcut Incremental Updates
 Besides the mandatory stepwise incremental updates (from i to i+1),
an ALTO server MAY optionally offer shortcut incremental updates, or
simple shortcuts, between two non-consecutive versions i and i+k (k >
1). Such shortcuts offer alternative paths in the updates graph and
can potentially speed up the transmission and processing of
incremental updates, leading to faster synchronization of ALTO
information, especially when the client has limited bandwidth and
computation. However, implementors of an ALTO server must be aware
that:
 optional shortcuts may increase the size of the updates graph, worst case scenario being the square of the number of updates (i.e.,
when a shortcut is offered for each version to all future
versions).
 optional shortcuts require additional storage on the ALTO server.
 optional shortcuts may reduce concurrency when the updates do not
overlap (e.g., when the updates apply to different parts of an
ALTO resource). In such a case, the total size of the original
updates is close to the size of the shortcut, but the original
updates can be transmitted concurrently while the shortcut is
transmitted in a single connection.

 Security Considerations
 The security considerations of the base protocol () fully apply to this
 extension. For example, the same authenticity and integrity
 considerations () still fully apply; the same considerations for the
 privacy of ALTO users () also still fully apply. Additionally, operators of the
 ALTO servers MUST follow the guidelines in to avoid new TLS vulnerabilities discovered after
 was published.
 The additional services (the addition of update read service and update
push service) provided by this extension extend the attack surface
described in . The following subsections discuss the
additional risks and their remedies.

 TIPS: Denial-of-Service Attacks
 Allowing TIPS views enables new classes of DoS attacks. In
particular, for the TIPS server, one or multiple malicious ALTO clients might
create an excessive number of TIPS views, to exhaust the server resource and/or
to block normal users from accessing the service.
 To avoid such attacks, the server MAY choose to limit the number of active
views and reject new requests when that threshold is reached. TIPS allows
predictive fetching and the server MAY also choose to limit the number of
pending requests. If a new request exceeds the threshold, the server MAY log
the event and return the HTTP status 429 (Too Many Requests).
 It is important to note that the preceding approaches are not the only
possibilities. For example, it might be possible for a TIPS server to use somewhat more
clever logic involving TIPS view eviction policies, IP reputation,
rate-limiting, and compartmentalization of the overall threshold into smaller
thresholds that apply to subsets of potential clients. If service availability
is a concern, ALTO clients MAY establish service level agreements with the ALTO
server.

 ALTO Client: Update Overloading or Instability
 The availability of continuous updates can also cause overload for an ALTO
client, in particular, an ALTO client with limited processing capabilities. The
current design does not include any flow control mechanisms for the client to
reduce the update rates from the server. For example, TCP, HTTP/2, and QUIC
provide stream and connection flow control data limits, which might help prevent
the client from being overloaded. Under overloading, the client MAY choose to
remove the information resources with high update rates.
 Also, under overloading, the client might no longer be able to detect
whether information is still fresh or has become stale. In such a
case, the client should be careful in how it uses the information to
avoid stability or efficiency issues.

 IANA Considerations
 IANA has registered the following media types from the registry available at :

 application/alto-tips+json: as described in ;
 application/alto-tipsparams+json: as described in ;

 application/alto-tips+json Media Type

 Type name:
 application
 Subtype name:
 alto-tips+json
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 Encoding considerations are identical to those specified for the
"application/json" media type. See .
 Security considerations:
 See the Security Considerations section of RFC 9569.
 Interoperability considerations:
 N/A
 Published specification:

 of RFC 9569.
 Applications that use this media type:
 ALTO servers and ALTO clients either stand alone or are embedded within other
applications.
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 RFC 9569 uses the media type to refer to protocol messages; thus, it
 does not require a file extension.
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:

 See the Authors' Addresses section of RFC 9569.
 Intended usage:
 COMMON
 Restrictions on usage:
 N/A
 Author:
 See the Authors' Addresses section of RFC 9569.
 Change controller:
 Internet Engineering Task Force (iesg@ietf.org).

 application/alto-tipsparams+json Media Type

 Type name:
 application
 Subtype name:
 alto-tipsparams+json
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 Encoding considerations are identical to those specified for the
 "application/json" media type. See .
 Security considerations:
 See the Security Considerations section of RFC 9569.
 Interoperability considerations:
 N/A
 Published specification:

 of RFC 9569.
 Applications that use this media type:
 ALTO servers and ALTO clients either stand alone or are embedded within other
applications.
 Fragment identifier considerations:
 N/A
 Additional information:

 Deprecated alias names for this type:
 N/A
 Magic number(s):
 N/A
 File extension(s):
 RFC 9569 uses the media type to refer to protocol messages; thus, it
 does not require a file extension.
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:

 See the Authors' Addresses section of RFC 9569.
 Intended usage:
 COMMON
 Restrictions on usage:
 N/A
 Author:
 See the Authors' Addresses section of RFC 9569.
 Change controller:
 Internet Engineering Task Force (iesg@ietf.org).

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Application-Layer Traffic Optimization (ALTO) Protocol

 Applications using the Internet already have access to some topology information of Internet Service Provider (ISP) networks. For example, views to Internet routing tables at Looking Glass servers are available and can be practically downloaded to many network application clients. What is missing is knowledge of the underlying network topologies from the point of view of ISPs. In other words, what an ISP prefers in terms of traffic optimization -- and a way to distribute it.
 The Application-Layer Traffic Optimization (ALTO) services defined in this document provide network information (e.g., basic network location structure and preferences of network paths) with the goal of modifying network resource consumption patterns while maintaining or improving application performance. The basic information of ALTO is based on abstract maps of a network. These maps provide a simplified view, yet enough information about a network for applications to effectively utilize them. Additional services are built on top of the maps.
 This document describes a protocol implementing the ALTO services. Although the ALTO services would primarily be provided by ISPs, other entities, such as content service providers, could also provide ALTO services. Applications that could use the ALTO services are those that have a choice to which end points to connect. Examples of such applications are peer-to-peer (P2P) and content delivery networks.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Application-Layer Traffic Optimization (ALTO) Incremental Updates Using Server-Sent Events (SSE)

 The Application-Layer Traffic Optimization (ALTO) protocol (RFC 7285) provides network-related information, called network information resources, to client applications so that clients can make informed decisions in utilizing network resources. This document presents a mechanism to allow an ALTO server to push updates to ALTO clients to achieve two benefits: (1) updates can be incremental, in that if only a small section of an information resource changes, the ALTO server can send just the changes and (2) updates can be immediate, in that the ALTO server can send updates as soon as they are available.

 HTTP/1.1

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document specifies the HTTP/1.1 message syntax, message parsing, connection management, and related security concerns.
 This document obsoletes portions of RFC 7230.

 HTTP/2

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on the same connection.
 This document obsoletes RFCs 7540 and 8740.

 HTTP/3

 The QUIC transport protocol has several features that are desirable in a transport for HTTP, such as stream multiplexing, per-stream flow control, and low-latency connection establishment. This document describes a mapping of HTTP semantics over QUIC. This document also identifies HTTP/2 features that are subsumed by QUIC and describes how HTTP/2 extensions can be ported to HTTP/3.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
 RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

 Informative References

 Media Types

 IANA

 The 'Basic' HTTP Authentication Scheme

 This document defines the "Basic" Hypertext Transfer Protocol (HTTP) authentication scheme, which transmits credentials as user-id/ password pairs, encoded using Base64.

 Building Protocols with HTTP

 Applications often use HTTP as a substrate to create HTTP-based APIs. This document specifies best practices for writing specifications that use HTTP to define new application protocols. It is written primarily to guide IETF efforts to define application protocols using HTTP for deployment on the Internet but might be applicable in other situations.
 This document obsoletes RFC 3205.

 Universally Unique IDentifiers (UUIDs)

 This specification defines UUIDs (Universally Unique IDentifiers) --
also known as GUIDs (Globally Unique IDentifiers) -- and a Uniform
Resource Name namespace for UUIDs. A UUID is 128 bits long and is
intended to guarantee uniqueness across space and time. UUIDs were
originally used in the Apollo Network Computing System (NCS), later
in the Open Software Foundation's (OSF's) Distributed Computing
Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the OSF DCE specification with the
kind permission of the OSF (now known as "The Open Group"). Information from earlier versions of the OSF DCE specification have
been incorporated into this document. This document obsoletes RFC
4122.

 A High-Level Deployment Model
 Conceptually, the TIPS system consists of three types of resources:

 (R1):
 The TIPS frontend to create TIPS views.
 (R2):
 The TIPS view directory, which provides metadata (e.g., references) about the
network resource data.
 (R3):
 The actual network resource data, encoded as complete ALTO network
resources (e.g., a cost map or a network map) or incremental updates.

 Sample TIPS Deployment Model
 	
 +--+
 | |
 +------+ |R1: Frontend/Open R2: Directory/Meta R3: Data |
	"iget" base	+-----+ +-----+ +-----+						
	resource 1							
	-------------	---->						
	incremental					-------->		
	transfer							
	resource							
	<------------	-----------------------						
Client				+-----+ +-----+				
	"iget" base							
	resource 2			+-----+ +-----+				
	-------------	---->						
	incremental							
	transfer	+-----+		------->				
	resource							
	<------------	-----------------------						
 +------+ | +-----+ +-----+ |
 | |
 +--+

 Design Point: Component Resource Location

 Design 1 (Single):
 all the three resource types at the same single server (accessed via
relative reference).
 Design 2 (Flexible):
 all three resource types can be at their own server (accessed via
absolute reference).
 Design 3 (Dir + Data):
 R2 and R3 must remain together, though R1 might not be
on the same server.

 This document supports Designs 1 and 3. For Design 1, the ALTO server
simply needs to always use the same host for the TIPS views. For Design 3, the
ALTO server can set tips-view-host to a different server. Note that the
deployment flexibility is at the logical level, as these services
can be distinguished by different paths and potentially be routed to different
physical servers by Layer 7 load balancing. See for a
discussion on load balancing considerations. Future documents could extend the
protocol to support Design 2.

 Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current Practices
 This specification adheres fully to as further elaborated below:

 TIPS does not (as described in):
 ...redefine, refine, or overlay the semantics of
generic protocol elements such as methods, status codes, or
	existing header fields.
 and instead focuses on
 ...protocol elements
	that are specific to [the TIPS] application -- namely, [its] HTTP
	resources.

 There are no statically defined URI components ().
 No minimum version of HTTP is specified by TIPS, which is
recommended (in).

 The TIPS design follows the advice (in) that:
 When specifying examples of protocol interactions,
	applications should document both the request and response messages
	with complete header sections, preferably in HTTP/1.1 format...

 TIPS uses URI templates, which is recommended (in).

 TIPS follows the pattern (in) that:
 Generally, a client will begin interacting with a given
	 application server by requesting an initial document that contains
	 information about that particular deployment, potentially including
	 links to other relevant resources. Doing so ensures that the
	 deployment is as flexible as possible (potentially spanning multiple
	 servers), allows evolution, and also gives the application the
	 opportunity to tailor the "discovery document" to the
	 client.

 TIPS uses existing HTTP schemes ().
 TIPS defines its errors "to use the most applicable status code"
().

 TIPS does not (as in):
 ...make assumptions about the relationship between separate
	requests on a single transport connection; doing so breaks many of the
	assumptions of HTTP as a stateless protocol and will cause problems in
	interoperability, security, operability, and
	evolution.
 The only relationship between requests is that a
	client has to first discover where a TIPS view of a resource will be
	served, which is consistent with the URI discovery in .

 Push-Mode TIPS Using HTTP Server Push
 TIPS allows ALTO clients to subscribe to incremental updates of an ALTO
resource, and the specification in this document is based on the current best
practice of building such a service using basic HTTP. Earlier versions of this
document had investigated the possibility of enabling push-mode TIPS (i.e., by
taking advantage of the server push feature in HTTP/2 and HTTP/3).
 In the ideal case, push-mode TIPS can potentially improve performance (e.g.,
latency) in more dynamic environments and use cases with wait-free message
delivery. Using the built-in HTTP server push also results in minimal changes to the
current protocol. While not adopted due to the lack of server push support and
increased protocol complexity, push-mode TIPS remains a potential direction of
protocol improvement.

 Persistent HTTP Connections
 Previous draft versions of this document use persistent HTTP connections to detect the
liveness of clients. However, this design does not conform well with the best
current practices of HTTP. For example, if an ALTO client is accessing a TIPS
view over an HTTP proxy, the connection is not established directly between the
ALTO client and the ALTO server, but between the ALTO client and the proxy and
between the proxy and the ALTO server. Thus, using persistent connections might
not correctly detect the right liveness state.

 Acknowledgments
 The authors of this document would like to thank and
 for providing invaluable reviews of earlier draft versions of this document;
 , , and
 for their continuous feedback; , ,
 , , , , and for the
 directorate reviews; for the area
 director review; , , , , and for the telechat and IESG reviews; and for shepherding the document.

 Authors' Addresses

 Sichuan University

 No.24 South Section 1, Yihuan Road
 Chengdu
 610000
 China

 kaigao@scu.edu.cn

 Deutsche Telekom

 Deutsche-Telekom-Allee 9
 Darmstadt
 64295
 Germany

 Roland.Schott@telekom.de

 Yale University

 51 Prospect Street
 New Haven
 06511
 CT
 United States of America

 yry@cs.yale.edu

 Yale University

 51 Prospect Street
 New Haven
 CT
 06511
 United States of America

 lauren.delwiche@yale.edu

 Yale University

 51 Prospect Street
 New Haven
 CT
 06511
 United States of America

 lachlan.keller@aya.yale.edu

