——

CSC

Elmer

Software Development Practices
APIs for Solver and UDF

ElmerTeam
CSC - IT Center for Science

Elmer programming languages *

cscC

v Fortran90 (and newer)

— ElmerSolver (~ 280,000 lines of which ~50% in DLLs)
v C++

— ElmerGUI (~18,000 lines)

— ElmerSolver (~15,000 lines)
v C

— ElmerPost (~45,000 lines)

— ElmerGrid (~30,000 lines)

— MATC (~11,000 lines)

Tools for EImer development *

cscC

@ Programming languages
— Fortran90 (and newer), C, C++
@ Compilation
— Compiler (e.g. gnu), configure, automake, make, (cmake)
v Editing
— emacs, vi, notepad++,...
@ Code hosting (git)
— https://github.com/ElmerCSC
v Consistency tests
— Currently around 450
v Code documentation
— Doxygen
v Theory documentation
— Latex
v Community server
— www.elmerfem.org (forum, wiki, etc.)

Elmer libraries *

CscC

v ElmerSolver
— Required: Matc, Hutlter, Lapack, Blas, Umfpack (GPL)

— Optional: Arpack, Mumps, Hypre, Pardiso, Trilinos,
SuperLU, Cholmod, NetCDF, HDF5, ...

v ElmerGUI
— Required: Qt, EImerGrid, Netgen
— Optional: Tetgen, OpenCASCADE, VTK, QVT

Elmer licenses *

CscC

v ElmerSolver library is published under LGPL
— Enables linking with all license types

— It is possible to make a new solver even under proprierity
license

— Note: some optional libraries may constrain this freedom
due to use of GPL licences

v Most other parts of ElImer published under GPL
— Derived work must also be under same license (“copyleft”)

@ Proprierity modules linked with EImerSolver may be
freely licensed if they are not derived work

— Note that you must not violete licences of other libraries

Elmer version control at GitHub *

CscC

@ In 2015 the official version control of EImer was
transferred from svn at sf.net to git hosted at GitHub

v Git offers more flexibility over svn
— Distributed version control system
— Easier to maintain several development branches
— More options and hence also steeper learning curve

— Developed by Linus Torvalds to host Linux kernel
development

@ GitHub is a portal providing Git and some additional
servives

— Management of user rights
— Controlling pull requests

Directory listing of elmerfem/trunk with TortmseGIjL

Mame

MR R0

5|
5|

Date modified Type
buildtools 311.201611:56 File folder
cmake 3112016 11:56 File folder
cpack 311.201611:56 File folder
el 311.201611:56 File folder
elmergrid 311.201611:56 File folder
ElmerGUI 311.201611:56 File folder
ElmerGUllogger 3.11.2016 11:56 File folder
ElmerGUltester 3.11.2016 11:56 File folder
elmerice 311.201611:56 File folder
elmerparam 311.201611:56 File folder
fern 3112016 11:57 File folder
fhutiter 311.2016 11:57 File folder
front 3112016 11:57 File folder
hutiter 3112016 11:57 File folder
license_texts 3.11.2016 11:57 File folder
rmatc 3112016 11:57 File folder
rmathlibs 311.2016 11:57 File folder
rmeshgendd 3.11.2016 11:57 File folder
rrisc 3112016 11:57 File folder
post 311.2016 11:57 File folder
umfpack 3.11.2016 11:57 File folder
utils 3112016 11:57 File folder

311.201611:56 Text Document
Chakelists 3112016 11:56 Text Document
README 311.201611:56 Text Document

ElmerGrid mesh manipulation
ElmerGUI graphical user interface

Elmer/ICE community developments
ElmerParam optimization module
ElmerSolver library and modules

HUTiter Krylov methods library
ElmerFront: Initial user interface (obsolite)

MATC library
Basic math libraries
Mesh2D (Delaunay triangularization,obsolite)

ElmerPost: Initial postprocessor (obsolite)
Umfpack sparse direct solver undel GPL

Consistency tests *

CscC

v Utilize ctest system to run a set of ElImer cases

— Upon success each case writes 1 to file TEST.PASSED,
and on failure O, respectively

v There are more than 460 consistency tests (Nov 2016)
— Located under fem/tests

v Each time a significant commit is made the tests are run
with the fresh version

— Aim: even devel version is a stable

— New tests for each major new feature

v The consistency tests provide a good starting point for
taking some Solver into use

— cut-paste from sif file
— Note: the consistency tests have often poor resolution

Executing the consistency tests of Eimer

>ctest —-j4 -LE elmerice

1/310

2/310

3/310

308/310
309/310

310/310

Start 143:
Start 304:
Start 344:
Test #344:
Start 293:
Test #304:
Start 222:
Test #293:
Start 322:

Test #46:
Test #212:
Start 54:
Test #54:

100% tests passed,

Total Test time

(real) =

mgdyn torus harmonic
ThermalActuator
RotatingBCMagnetoDynamicsGeneric
RotatingBCMagnetoDynamicsGeneric
mgdyn lamstack lowfreq harmonic
ThermalActuator
mgdyn transient loss

mgdyn lamstack lowfreq harmonic
mgdyn bh

CoupledPoisson?
CoordinateScaling
RotatingBCPoisson3DSymmSkev
RotatingBCPoisson3DSymmSkev

0O tests failed out of 310

365.062 sec

Passed

Passed

Passed

Passed
Passed

Passed

cscC

.38
.38

.34

sSecC

sSecC

sSecC

sSecC
SecC

SEeC

Cmake build system *

CscC

@ During 2014-2015 Elmer was migrated from gnu autotools
into cmake

@ Cmake offers several advantages

— Enables cross compilation for diffirent platforms
(e.g. Intel MICs)

— More standardizes installation scripts

— Straight-forward package creation for many systems
(using cpack)

— Great testing utility with ctest — now also in parallel
@ Transition to cmake required significant code changes

— ISO C-bindings & many changes in APIls
— Backward compatibility in compilation lost

Compiling fresh Elmer source from GitHub *

cCscC
clone the git repository.
S git clone https://www.github.com/ElmerCSC/elmerfem

Switch to devel branch (currently the default branch)
S cd elImerfem

S git checkout devel

Scd..

S cmake -DWITH_ELMERGUI:BOOL=FALSE -
DWITH_MPI:BOOL=FALSE -
DCMAKE_INSTALL PREFIX=../install ../elmerfem

create build directory
S mkdir build
S cd build

S cmake <flags>
You can tune the compilation parameters graphically with S ccmake or Scmake-gL

S make install
or alternatively compile in parallel (4 procs) S make -j4 install

Elmer binaries at sourceforge.net

Home / Browse / Mathematics / Elmer finit

Summary Files Reviews Support Develop Tracker Code

Elmer finite element software

i apursula, juhar, juhavierinen, misf, mmalinen, raback, sjsillan, tzwinger

& 54 Recommendations
© 305 Downloads (T Eimer-synS475-2011-12-16

Download

Browse All Files

M Tweet < 0 +1 0 KlLke 3

Description

Elmer is a finite element software for numerical solution of partial differential equations and multiphysical
problems. It includes models of structural mechanics, fluid dynamics, heat transfer, electromagnetics etc. Eimer

home is www.csc fi/elmer

Elmer finite element software Web Site »

CscC

naytepakkausta JBOSSB
KLIKKAA TASTA!)

TreeGrid Web Gantt Charl”

Fully customizable, fully interactive, suto and manuasl scheduling, 10003 tasks
Tasks, mil , lags, dependencies (s3,fs,of ff; lags; floats), constraints
Percent pletion, price calcul , critical path, holideys, smooth z0om
Resources assigning, resource charts, any custom columns, custom bars
Sorting, filtering, grouping, tree, pnntmgl PDF, paging, AJAX, localization

——

I T T e LT -

FUe AT L0 T ——— — -~

AR T Y T i R T Rt T AT LT N A Iy Yy

Doxygen - WWW documentation

IElle Edit View History Bookmarks Tools Help

17 -

';" ~ Google

@ Y hd c A ﬁ' €2 http://www.elmerfern.org/doxygen/modules.html

2 Most Visited [BJ Elmer-fem | Download...

. {3 Elmer finite element software: Modu....l - |

IR S
]

Elmer finite element software

preliminary version open for comments

Main Page | Related Pages m Data Types List

¥ Elmer finite element software
¢ Related Pages
Modules
» Elmer library
Dynamically linked solvers
Dynamically linked functions
F Utility programs
b Class List
Data Types
Data Fields
b File List

File Members

Generated on Fri Sep =~ 162011 09 &3 :28:55 for Elmer finite element software by ﬁ!.mmmggn 1.7.5.1

Modules

Here is a list of all modules:

+ Elmer library
o Default APT
+« Dynamically linked solvers
+ Dynamically linked functions
« Utility programs
¢ Program ResultToPost
¢ Program ResultToResult
o Program ViewFactors

| Files

P
(Q Search

) |

Doxygen — Example in code *

@ Special comment indicators: I> and <!

!> Subroutine for computing fluxes and gradients of scalar fields.

!> For example, one may compute the the heat flux as the negative grad:
!> field multiplied by the heat conductivity.

!> \ingroup Solvers

USE CoordinateSystems
USE DefUtils
IMPLICIT NONE

TYPE (Solver t) :: Solver I< Linear & nonlinear equation solver option.
TYPE (Model t) :: Model !< All model information (mesh, materials, Bl
REAL (KIND=dp) :: dt !< Timestep size for time dependent simulati
LOGICAL :: Transient !< Steady state or transient simulation

TYPE (ValueList t),POINTER :: SolverParams

Doxygen — Example in WWW

CscC

subroutine FluxSolver { TYPE{(Model_t) Model,
TYPE(Solver_t) Solver,
REAL(KIND=dp) dt,
LOGICAL Transient
)

Subroutine for computing fluxes and gradients of scalar fields. For example, one may compute the the heat flux as the
negative gradient of temperature field multiplied by the heat conductivity.

Parameters:
Solver Linear & nonlinear eguation solver options
Model All model information (mesh, materials, BCs, etc...)
dt Timestep size for time dependent simulations

Transient Steady state or transient simulation

References BulkfAssembly().
Here is the call graph for this function:

FluxSolver ——» Bulkfssambly

Installers *

CscC

v Fresh Windows installers

— Currently only 64 bit version

— Also a parallel version with msmpi

— http://www.nic.funet.fi/pub/sci/physics/elmer/bin/windows/
v Elmer for Debian & Ubuntu etc. at launchpad

— Nightly builds from Git repository

— To install
S sudo apt-add-repository ppa:elmer-csc-ubuntu/elmer-csc-ppa
S sudo apt-get update
S sudo apt-get install elmerfem-csc

Compilation of a DLL module *

CscC

@ Applies both to Solvers and User Defined Functions (UDF)

@ Assumes that there is a working compile environment
that provides "elmer£90” script

— Comes with the Windows installer, and Linux packages
— Generated automatically when ElmerSolver is compiled

elmerf90 MySolver.F90 -o MySolver.so

User defined function API

FUNCTION MyProperty(Model, n, t) RESULT(f)

USE DefUtils
IMPLICIT NONE

TYPE (Model t) :: Model !< Handle &o’ akly data
INTEGER :: n !< Current node

REAL (KIND=dp) :: t !< Parameter (s)

REAL (KIND=dp) :: £ 1< Parameter wvalue at node

Actual code ..

Function API *

CscC

MyProperty = Variable time
"MyModule" "“MyProperty”

v User defined function (UDF) typically returns a real
valued property at a given point
@ It can be located in any section that is used to fetch these

values from a list
— Boundary Condition, Initial Condition, Material,...

Solver API ~-

USE DefUtils
IMPLICIT NONE

TYPE (Solver t) :: Solver I!< Current solver

TYPE (Model t) :: Model !< Handle to all data
REAL (KIND=dp) :: dt !< Timestep size

LOGICAL :: Transient !< Time-dependent or not

Actual code ..

Solver API ~-

CscC
Solver 1
Equation = "“"MySolver"
Procedure = "“MyModule" “MySolver”

End

@ Solver is typically a FEM implementation of a physical
equation

@ But it could also be an auxiliary solver that does
something completely different

@ Solver is usually called once for each coupled system
iteration

Elmer — High level abstractions

L 4

The quite good success of EImer as a multiphysics code
may be addressed to certain design choices

— Solver is an asbtract dynamically loaded object

— Parameter value is an abstract property fecthed from a list

The abstractions mean that new solvers may be
implemented without much need to touch the main
library

— Minimizes need of central planning

— Several applications fields may live their life quite independently
(electromagnetics vs. glaceology)

MATC — a poor man’s Matlab adds to flexibility as
algebraic expressions may be evalueted on-the-fly

CscC

Solver as an abstract object *

v

CscC

Solver is an dynamically loaded object (.dll or .so)
— May be developed and compiled seperately

Solver utilizes heavily common library utilities
— Most common ones have interfaces in DefUtils

@ Any solver has a handle to all of the data
v Typically a solver solves a weak form of a differential equation
@ Currently ~60 different Solvers,

roughly half presenting physical phenomena
— No upper limit to the number of Solvers
— Often cases include ~10 solvers

Solvers may be active in different domains,
and even meshes

The menu structure of each solver in EImerGUI may be
defined by an . xm1 file

Property as an abstract object $

@ Properties are saved in a list structure by their name o
@ Namespace of properties is not fixed, they may be introduced in the
command file
— E.g."MyProperty = Real 1.23” adds a property "MyProperty” to
a list structure related to the solver block

@ In code parameters are fetched from the list
— E.g.”val = GetReal (Material, "MyProperty’, Found)”
retrieves the above value 1.23 from the list
v A”Real” property may be any of the following

— Constant value

— Linear or cubic dependence via table of values

— Expression given by MATC (MatLab-type command language)
— User defined functions with arbitrary dependencies

— Real vector or tensor

@ As aresult solvers may be weakly coupled without any a priori
defined manner

@ There is a price to pay for the generic approach but usually it is less
than 10%

¢ SOLVER.KEYWORDS file may be used to give the types for the
keywords in the command file

Code structure *

CscC

v Elmer code structure has evolved over the years
— There has been no major restructuring operations
v Ufortunately there is no optimal hierarchy and the
number of subroutines is rather large

— ElmerSolver library consists of more than ~40 modules

— There are all-in-all around 1050 SUBROUTINES and
650 FUNCTIONS (both internal and external)

v To ease the learning curve the most important routines
for basic use have been collected into module
DefUtils.FO0

DefUrtils ~-

CscC

v DefUtils module includes wrappers to the basic tasks
common to standard solvers
— E.g. "DefaultDirichlet()” sets Dirichlet boundary
conditions to the given variable of the Solver

— E.g. "DefaultSolve ()" solves linear systems with all
available direct, iterative and multilevel solvers, both in
serial and parallel

@ Programming new Solvers and UDFs may usually be done
without knowledge of other modules

DefUtils — some functions

Public Member Functions

TYPE(Solver_t) function, pointer
TYPE(Matrix_t) function, pointer
TYPE(Mesh_t) function, pointer
TYPE(Element_t) function, pointer
INTEGER function

INTEGER function

REAL(KIND=dp) function
INTEGER function

INTEGER function

REAL(KIND=dp) function
REAL(KIND=dp) function
INTEGER function

INTEGER function

INTEGER function

subroutine

subroutine

INTEGER function

subroutine

subroutine
CHARACTER(LEN=MAX_NAME_LEN)
function

INTEGER function

LOGICAL function

recursive REAL(KIND=dp) function
recursive REAL(KIND=dp) function
recursive REAL(KIND=dp)

function, dimension(:),
pointer

CscC

GetSolver ()

GetMatrix (USolver)

GetMesh (USolver)

GetCurrentElement (Element)

GetElementIndex (Element)

GetNOFActive (USolver)

GetTime ()

GetTimeStep ()

GetTimeSteplInterval ()

GetTimestepSize ()

GetAngularFrequency (Valuelist, Found)

GetCoupledIter ()

GetNonlinIter ()

GetNOFBoundaryElements (UMesh)

GetScalarLocalSolution (x, name, UElement, USaolver, tStep)
GetVectorLocalSolution (x, name, UElement, USolver, tStep)
GetNofEigenModes (name, USolver)

GetScalarLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)
GetVectorlLocalEigenmode (x, name, UElement, USolver, NoEigen, ComplexPart)

GetString (List, Name, Found)
GetInteger (List, Name, Found)
GetlLogical (List, Name, Found)
GetConstReal (List, Name, Found, x, v,)
GetCReal (List, Name, Found)

GetReal (List, Name, Found, UElement)

Modules related to linear algebra *

cscC

BandMatrix.F90
BandwidthOptimize.F90
BlockSolve.F90
cholmod.c
CircuitUtils.F90
ClusteringMethods.F90
CRSMatrix.F90
DirectSolve.F90
EigenSolve.F90
IterativeMethods.F90
IterSolve.F90
LinearAlgebra.F90
LUDecomposition.F90
MGPrec.FO0
Multigrid.F90
Smoothers.F90
SolveBand.F90
SolveHypre.c
SolverUtils.F90
SolveSBand.F90
SolveSuperlLU.c
SolveTrilinos.cxx

Modules related to space and time discretization *

ElementDescription.F90
ElementUtils.F90
H1ElementBasisFunctions.F90
PElementBase.F90
PElementMaps.F90
Timelntegrate.F90

Historical modules including physics *
CScC

Differentials.F90

DiffuseConvectiveAnisotropic.F90

DiffuseConvectiveGeneralAnisotropic.F90

ExchangeCorrelations.F90

MaxwellAxiS.F90

Maxwell.F90

MaxwellGeneral.F90

NavierStokesCylindrical.F90

NavierStokes.F90

NavierStokesGeneral.F90

Stress.F90

StressGeneral.F90

VelocityUpdate.F90

Walls.F90

Example: Poisson equation _v2¢ = p

CscC

v Implemented as an dynamically linked solver
— Available under tests/1dtests

v Compilation by:
Elmerf90 Poisson.F90 -o Poisson.so

v Execution by:
ElmerSolver case.sif

v The example is ready to go massively parallel and with all
a plethora of elementtypes in 1D, 2D and 3D

Poisson equation: code Poisson.F90

1> Solve the Poisson equation -\nabla\cdot\nabla \phi = \rho

SUBROUTINE PoissonSolver(Model,Solver,dt, TransientSimulation)

USE DefUtils
IMPLICIT NONE

lInitialize the system and do the assembly:
]

CALL DefaultlInitialize()

active = GetNOFActive()

DO t=1,active
Element => GetActiveElement(t)
n = GetElementNOFNodes()

LOAD =0.0d0
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &
Load(1:n) = GetReal(BodyForce, 'Source', Found)

| Get element local matrix and rhs vector:
|

CALL LocalMatrix(STIFF, FORCE, LOAD, Element, n)

I Update global matrix and rhs vector from local contribs

!

CALL DefaultUpdateEquations(STIFF, FORCE)
END DO

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

CONTAINS

cscC

SUBROUTINE LocalMatrix(STIFF, FORCE, LOAD, Element, n)

CALL GetElementNodes(Nodes)

STIFF = 0.0d0
FORCE = 0.0d0

I Numerical integration:

IP = GaussPoints(Element)
DOt=1,IP%n
I Basis function values & derivatives at the integration point:
|
stat = Elementinfo(Element, Nodes, IP % U(t), IP % V(t), &
IP % W(t), detl, Basis, dBasisdx)

I The source term at the integration point:
]

LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

| Finally, the elemental matrix & vector:
!
STIFF(1:n,1:n) = STIFF(1:n,1:n) + IP % s(t) * Det) * &
MATMUL(dBasisdx, TRANSPOSE(dBasisdx))
FORCE(1:n) = FORCE(1:n) + IP % s(t) * Det) * LoadAtIP * Basis(1:n)
END DO

END SUBROUTINE LocalMatrix

END SUBROUTINE PoissonSolver

Poisson equation: command file case.sif

Check Keywords "Warn"

Header
Mesh DB "." "mesh"
End

Simulation
Coordinate System = "Cartesian"
Simulation Type = Steady State
Steady State Max Iterations = 50
End

Body 1
Equation=1
Body Force =1

End

Equation 1
Active Solvers(1) = 1
End

Solver 1
Equation = "Poisson"
Variable = "Potential"
Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct”

Linear System Direct Method = umfpack
Steady State Convergence Tolerance = 1e-09

End

Body Force 1
Source = Variable Potential
Real Procedure "Source" "Source"
End

Boundary Condition 1
Target Boundaries(2) =12
Potential = Real O

End

cscC

Poisson equation: source term, examples *

cscC

Constant source:

Source = 1.0

Source dependeing piecewise linear on x:

Source = Variable Coordinate 1

Real
0.0 0.0
1.0 3.0
2.0 4.0
End

Source depending on x and y:

Source = Variable Coordinate
Real MATC "sin(2*pi*tx(0)) *cos (2*pi (tx(1))”

Source depending on anything

Source = Variable Coordinate 1
Procedure "“Source” "MySource”

Poisson equation: EImerGUI menus

<?xml version='1.0' encoding="UTF-8'?>
<IDOCTYPE edf>
<edf version="1.0" >
<PDE Name="Poisson" >
<Name>Poisson</Name>

<BodyForce>
<Parameter Widget="Label" > <Name> Properties </Name> </Parameter>
<Parameter Widget="Edit" >
<Name> Source </Name>
<Type> String </Type>
<Whatis> Give the source term. </Whatis>
</Parameter>
</BodyForce>

<Solver>
<Parameter Widget="Edit" >
<Name> Procedure </Name>
<DefaultValue> "Poisosn" "PoissonSolver" </DefaultValue>
</Parameter>
<Parameter Widget="Edit">
<Name> Variable </Name>
<DefaultValue> Potential</DefaultValue>
</Parameter>
</Solver>

<BoundaryCondition>

<Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>

<Parameter Widget="Edit">
<Name> Potential </Name>
<Whatis> Give potential value for this boundary. </Whatis>
</Parameter>
</BoundaryCondition>
</PDE>
</edf>

cscC

Development tools for EImerSolver *

cscC

v Basic use
— Editor (emacs, vi, notepad++, jEdit,...)
— elmerfo0 script
v Advanced
— Editor
— svn client

— Compiler suite (gfortran, ifort, pathf90, pgf9o0,...)

— Documentation tools (Doxygen, LaTeX)
— Debugger (gdb)
— Profiling tools

Elmer — some best practices *

CscC

@ Use version control when possible

— If the code is left to your own local disk, you might as well
not write it at all

— Do not fork! (userbase of 1000’s)

@ Always make a consistency test for a new feature
— Always be backward compatible
— If not, implement a warning to the code

@ Maximize the level of abstraction
— Essential for multiphysics software

— E.g. any number of physical equations,
any number of computational meshes,
any number of physical or numerical parameters — without
the need for recompilation

