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About Elmer Tutorials

The Elmer Tutorials is part of the documentation of Elmer finite element software. Elmer Tutorials gives
examples on the use of Elmer in different field of continuum physics. Also coupled problems are included.

The tutorials starts with problems which require the use of ElmerGUI, the graphical user interface. How-
ever, also problems which assume only the use of an text editor are given. There are also obsolite problems
that utilize the old graphical user interface, ElmerFront. These are provided only for backward compability
but should rather not be studied by new users.

The present manual corresponds to Elmer software version 6.0. Latest documentations and program
versions of Elmer are available (or links are provided) at http://www.csc.fi/elmer.
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Tutorial 1

Heat equation – Temperature field of a
solid object

Directory: TemperatureGenericGUI
Solvers: HeatSolve
Tools: ElmerGUI,netgen,OpenCascade
Dimensions: 3D, Steady-state

Problem description
This tutorial tried to demonstrate how to solve the heat equation for a generic 3D object. The solid object
(see figure 1.1) is heated internally by a heat source. At some part of the boundary the temperature is fixed.
Mathemetically the problem is described by the Poisson equation{

−κ∆T = ρf in Ω
T = 0 on Γ (1.1)

where κ is the heat conductivity, T is the temperature and f is the heat source. It is assumed that density and
heat conductivity are constants.

To determine the problem we assume that the part of the boundary is fixed at T0 = 293 K, the internal
heat generation is, h = 0.01 W/kg, and use the material properties of aluminium.

Figure 1.1: Generic object being heated
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1. Heat equation – Temperature field of a solid object 5

Solution procedure
Start ElmerGUI from command line or by clicking the icon in your desktop. Here we describe the essential
steps in the ElmerGUI by writing out the clicking procedure. Tabulation generally means that the selections
are done within the window chosen at the higher level.

The geometry is given in step format in file pump_carter_sup.stp in the samples/step direc-
tory of ElmerGUI, This file is kindly provided at the AIM@SHAPE Shape Repository by INRIA. The heat
equation is ideally suited for the finite element method and the solution may be found even at meshes that for
some other problems would not be feasible. Therefore you may easily experiment solving the same problem
with different meshes. If you lack OpenCascade you might try to solve a similar problem with the grd files
angle3d.grd, angles3d.grd, bench.grd, or cooler.grd, for example.

The CAD geometry defined by the step file is transformed on-the-fly by OpenCascade library into a stl
file for which nglib creates tetrahedral volume discretization. You may also use the tetlib library (tetgen) if
you have installed it as a plug-in.

Load the input file:

File
Open -> pump_carter_sup.stp

The meshing will take a minute or two. You should obtain your mesh and may check in the number of ele-
ment in the Model summary. With netgen the default setting generates 8371 nodes and 36820 tetrahedral
elements. Visual inspection rewiels that the mesh is not quite satisfactory in geometric accuracy. We choose
to modify the mesh by altering the settings in the following way.

View -> Cad model...
Model -> Preferences...

Restrict mesh size on surfaces by STL density = on
Apply

Mesh -> Remesh

The meshing a take a minute or two. The modified mesh should include 16159 nodes and 65689 tetrahderal
elements and be more appieling to the eye. In order to affect the mesh density study the command-line
options of the netgen manual. Here we continue with the default mesh.

We want to set the temperature at the inside of the holes and in that aim you may join the three boundaries
(see figure 1.2). For that aim we may choose the six pieces that constitute the boundaries as shown in the
picture by pressing the Ctrl-key down.

Mesh
Unify Surface

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation such as file names, time stepping, constants etc. The simulation
is carried out in 3-dimensional cartesian coordinates and in steady-state. Only one steady-state iteration is
needed as the case is linear.

Model
Setup

Simulation Type = Steady state
Steady state max. iter = 1

Choose Apply to close the window.
In the equation section we choose the relevant equations and parameters related to their solution. In this

case we’ll have one set only one equation – the heat equation.
When defining Equations and Materials it is possible to assign the to bodies immediately, or to use

mouse selection to assign them later. In this case we have just one body and therefore its easier to assign the
Equation and Material to it directly, whereas the active boundary is chosen graphically.

For the linear system solvers we are happy to use the defaults. One may however, try out different
preconditioners (ILU1,. . . ), for example.
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1. Heat equation – Temperature field of a solid object 6

Figure 1.2: The computational mesh showing the three joined boundaries

Model
Equation

Add
Name = Heat Equation
Apply to bodies = Body 1
Heat Equation

Active = on
Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which
are direct properties of the material without making any assumptions on the physical model, such as the
mass. Other properties assume a physical law, such heat conductivity. We choose Aluminium from the
Material library which automatically sets for the needed material properties.

Model
Material

Add
Material library
Aluminium

Apply to bodies = Body 1
Add
OK

A Body Force represents the right-hand-side of a equation that in this case represents the heat source.

Model
Body Force

Add
Name = Heating
Heat Source = 0.01
Apply to bodies = Body 1
Add
OK

No initial conditions are required in steady state case.
In this case we have only one boundary and set it to room temperature. First we create the boundary

condition
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1. Heat equation – Temperature field of a solid object 7

Model
BoundaryCondition

Add
Heat Equation
Temperature = 293.0

Name = RoomTemp
Add
OK

Then we set the boundary properties

Model
Set boundary properties

Choose the defined group of three boundaries by clicking with the mouse and apply the condition for this
boundary.

Boundary condition
RoomTemp

For the execution ElmerSolver needs the mesh files and the command file. We have know basically
defined all the information for ElmerGUI to write the command file. After writing it we may also visually
inspect the command file.

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. In saving the project all the
necessary files for restarting the case will be saved to the destination directory.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. As the case is linear
only one iteration was required for the solution and the second one just is needed to check the convergence.
The norm of the solution should be around 432.4 K (with the default tetgen mesh 389.8 K, respectively).

Note: if you face problems in the solution phase and need to edit the setting, always remember to
regenerate the sif file and save the project before execution.

Postprocessing
To view the results we may use the ElmerPost postprocessor or start the the internal VTK widget as is done
here,

Run
Postprocessor (VTK)

The default configuration shows just the object. To color the surface with the temperature choose

Surfaces
Surface: Temperature
Apply

The maximum temperature should be about 586.5 K. You may turn on opasity in order to see through the
object, 10-20% is a good value. This way you’ll able to see some isosurfaces that you might want to define.
Some examples of the visualizations may be seen in figure 1.3.

CSC – IT Center for Science



1. Heat equation – Temperature field of a solid object 8

Figure 1.3: The temperature distribution of the solid object domain as visualized using the VTK-based
postprocessor

CSC – IT Center for Science



Tutorial 2

Linear elasticity equation – Loaded
elastic beam

Directory: ElasticBeam3D
Solvers: StressSolve
Tools: ElmerGUI
Dimensions: 3D, Steady-state

Case definition
Assume a homogenous, elastic beam being rigidly supported on one end. On the other end it is subjected
with a load of 2000 N resulting from an attached object in the gravitational field. The gravity affects also
the beam itself. The length of the beam is 1 m and the thickness is 0.05 m, and the width 0.1 m. Material
properties of the beam are those of dry pine timber: Poisson ratio 0.37, Young’s modulus 10 · 109N/m2,
and density 550 kg/m3. The problem is to solve the displacement and stress field of the beam. Here the
StressSolve routine based on the linear theory of elasticity is applied.

Solution procedure
The mesh is given in ElmerGrid format in file beam3d.grd, load this file.

File
Open -> beam3d.grd

You should obtain your mesh and may check that it consists of 6073 nodes and of 1200 quadratic hexahedral
elements. The second order elements give improved accuracy compared to the first order elements as they
avoid the phenomenom known as locking.

Figure 2.1: The mesh used in the computations
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2. Linear elasticity equation – Loaded elastic beam 10

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation such as file names, time stepping, constants etc. The simulation
is carried in steady-state in 3-dimensional cartesian coordinates.

Model
Setup

Simulation Type = Steady state
Steady state max. iter = 1

In the Equation section we choose the relevant equations which in this case only includes the Linear
elasticity equation which solves the problem according to linear elastic theory. We also want to com-
pute the stresses as a post-processing step. For the linear system solvers we change the default settings
in order to obtain a better convergence in this case. As the equation is fully linear we also eliminate the
nonlinear iteration loop.

Model
Equation

Name = Elasticity
Apply to Bodies = Body 1
Linear elasticity

Active = on
Calculate Stresses = on

Edit Solver Setting
Linear System
Method = Iterative / GCR
Preconditioning = ILU1

Nonlinear system
Max. iterations = 1

Apply
Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which
are direct properties of the material without making any assumptions on the physical model, such as the
mass. Other properties assume a physical law, such as Young’s modulus and Poisson ratio.

Model
Material

Name = Pine
General

Density = 550
Linear Elasticity

Youngs Modulus = 10.0e9
Poisson ratio = 0.37

Apply to Bodies = Body 1
Add
OK

In this case there is a body force i.e. the gravity acting on the beam. We assume that the gravity points
to the negative y direction.

Model
BodyForce

Name = Gravity
Linear Elasticity

Force 2 = $ -9.81 * 550
Apply to Bodies = Body 1
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2. Linear elasticity equation – Loaded elastic beam 11

Add
OK

Here we use a MATC expression for computing the volume force. This expression is constant and is computed
when the command file is interpreted.

Convergence should be obtained with the default initial condition i.e. zero for all fields, hence no initial
condition is applied.

The first boundary condition fixes the beam rigidly at the wall. The second boundary condition distributes
the load of 2000 N uniformly on the area of 5.0e-3 m2.

Model
BoundaryCondition

Name = Wall
Linear elasticity

Displacement 1 = 0.0
Displacement 2 = 0.0
Displacement 3 = 0.0

Add
New

Name = Mass
Linear elasticity

Force 2 = -4.0e5
Add

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
Set boundary properties

Choose the wall end of the beam -> set boundary condition Wall
Choose the other end of the beam -> set boundary condition Mass

For the execution ElmerSolver needs the mesh files and the command file. We have know basically
defined all the information for ElmerGUI to write the command file. After writing it we may also visually
inspect the command file.

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

The simulation may take a minute or so depending on the speed of the processor. This time the convergence
monitor does not have a meaningfull output since the of the different steps only one is related to the actual
solution and the six other ones to the computation of stresses with the Galerkin method.
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2. Linear elasticity equation – Loaded elastic beam 12

Results
When there are some results to view we may start the postprocessor, this time we use ElmerPost.

Run
Start postprocessor

As a result the absolute value of maximum displacement is shown. The maximum displacement is 6.36 cm
To visualize the displacement in the geometry using ElmerPost can be done with the following command in
the Elmer-Post command line.

math n0=nodes
math nodes=n0+Displacement

To redraw the picture with new settings use the rightenmost icon on the top row. The resulting picture is
shown in Fig 2.2 Note that the displacement are so large that the assumption of linearity may be severely

Figure 2.2: The displaced shape of the elastic beam colored with the von Mises stresses

questioned. When further increasing the loading one should resort to a solver that is able to catch the
geometric nonlinearities.

Extra task: Gravity in x direction
The beam should be more rigid if the beam is oriented differently. For that aim, change the direction of
gravity to orient in the negitive x. Change the body force

Model
BodyForce

Linear Elasticity
Force 1 = $ -9.81*550

Update
OK

and the boundary condition

Model
BoundaryCondition

Linear elasticity
Force 1 = -4.0e5

Update
OK

The rigidity should scale as dh3 and hence the maximum displacement should be reduced roughly to one
quarter of the original.
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Tutorial 3

Smitc solver – Eigenmodes of an elastic
plate

Directory: ElasticPlateEigenmodesGUI
Solvers: SmitcSolver
Tools: ElmerGUI
Dimensions: 2D, Eigenmode

Problem description
For thin elastic structures it is often advicable to use dimensionally reduced models i.e. study plates or shells.
In this tutorial we compute the few lowest eigenmodes of an elastic plate. Our geometry is a simple pentagon
which (compared to a square) eliminates some of the trivial symmetries. The pentagon is rigidly fixed at all
boundaries.

For more details on the solver we refer to the documentation of Smitc solver in the Elmer Models Manual.

Solution procedure
Start ElmerGUI from command line or by clicking the icon in your desktop. Here we describe the essential
steps in the ElmerGUI by writing out the clicking procedure. Tabulation generally means that the selections
are done within the window chosen at the higher level.

Before we can start the set-up we shoud make sure that the menus for Smitc solver are present. If not,
they may be found in file

$ELMERHOME/bin/edf-extra/elasticplate.hml

To load these definitions do the following

File
Definitions

Append -> choose the file

To see what kind of new menu structures you got you may play around with viewer collapsing and opening.
Note that if you want to load an existing project you should load the xml-definitions that were used in
creating the project. Therefore it may be best to place all actively used menu definitions in directory

$ELMERHOME/bin/edf

When the menu structures for plate solver are there we are ready to continue. The mesh is given in 2d
netgen format in file pentagon.grd in the samples directory of ElmerGUI, load this file.

File
Open -> pentagon.in2d
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3. Smitc solver – Eigenmodes of an elastic plate 14

Figure 3.1: The finite element mesh in ElmerGUI

You should obtain a pentagon consisting of 5 triangles. To increase the number of elements change the
parameters passed on to the nglib library by going to

Mesh
Configure

nglib / Max H: 0.05

You may check in the Model summary window that it consists of 1199 nodes and 2276 linear triangles.
If the mesh was successfully imported your window should look something in figure 3.1.

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation such as file names, time stepping, constants etc. The simulation
is carried out in 2-dimensional cartesian coordinates and in steady-state (also used for eigenmodes). Only
one steady-state iteration is needed as the case is linear.

Model
Setup

Simulation Type = Steady state
Steady state max. iter = 1
Apply

In the equation section we choose the relevant equations and parameters related to their solution. When
defining Equations and Materials it is possible to assign the to bodies immediately, or to use mouse selection
to assign them later. In this case we have just one body and therefore its easier to assign the Equation and
Material to it directly.

For the solver setting we need to activate the eigen mode computation. We also choose the direct umfpack
solver which for small 2D problems often performes great.

Model
Equation

Add
Name = Plate Equation
Apply to bodies = 1
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3. Smitc solver – Eigenmodes of an elastic plate 15

Elastic Plates
Active = on
Edit Solver Settings

Solver Specific Options
Eigen Analysis = on
Eigen System Values = 10

Linear System
Direct = on

Umfpack
Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which
are direct properties of the material without making any assumptions on the physical model, such as the
mass. Other properties assume a physical law, such heat Youngs modulus. As our problem is academic in
nature we choose some simple ideal parameters but data from material database could also be used instead.

Model
Material

Add
Name = Ideal
Apply to bodies = 1
General
Density = 1000.0

Elastic Plates
Youngs Modulus = 1e9
Poisson ratio = 0.3
Thickness = 0.001
Tension = 0.0

Add
OK

A Body Force represents the right-hand-side of a equation i.e. external forces. In eigenmode analysis no
body forces are used. Nor are any Initial conditions required.

In this case all the boundaries are rigidly fixed we set all the components of the solution field to be zero.
The 1st component is the displacement in the normal direction while the 2nd and 3rd components are its
derivaties in x and y directions.

Model
BoundaryCondition

Add
Elastic Plates

Deflection 1 = 0.0
Deflection 2 = 0.0
Deflection 3 = 0.0

Name = Fixed
Apply to boundaries = 1 2 3 4 5
Add
OK

For the execution ElmerSolver needs the mesh files and the command file. We have now basically defined
all the information for ElmerGUI to write the command file. After writing it we may also visually inspect
the command file.

Sif
Generate
Edit -> look how your command file came out
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3. Smitc solver – Eigenmodes of an elastic plate 16

Before we can execute the solver we should save the files in a directory. In saving the project all the
necessary files for restarting the case will be saved to the destination directory.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. In this case there is
just one iteration and thus no curve appears.

Results
The resulting eigenvalues are shown in table 3.1. Note that some eigenmodes are degenerated but as the
finite element mesh is not perfectly symmetric there will be minor differencies in the eigenvalues.

Table 3.1: Ten lowest eigenvalues for the pentagon plate

No ω2

1 18.9
2,3 81.3
4,5 214.5
6 281.1
7, 8 472.5
9, 10 621.0

Note: if you face problems in the solution phase and need to edit the setting, always remember to save
the project before execution.

To view the results we may start the ElmerPost or use the internal VTK widget, as is done here

Run
Postprocessor (VTK)

To show the 1st component

Surfaces
Control / Surface: Deflection.1
Apply
OK

The default configuration shows only the 1st eigenmode. To get all the eigenmodes do the following:

File
Read input file

Timesteps / End: 10
Apply
OK

To go through all eigenmodes (treated here as timesteps)

Edit
Time step control

Loop

Here you may also save the pictures to files frame*.png by activating the checkbox. In figure 3.2 the lowest
eigenmodes are depicted.
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Figure 3.2: The 1st, 2nd, 4th, 6th, 7th and 9th eigenmode of the plate

Extra task
You may test the effect of pre-stressing by altering the Tension material parameter.

There are other similar geometries that you could use i.e. hexagon.in2d, heptagon.in2d, octagon.in2d.
When the number of vertices is increased the eigenvalues should slightly decrease.
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Tutorial 4

Navier-Stokes equation – Laminar
incompressible flow passing a step

Directory: FlowStepGUI
Solvers: FlowSolve
Tools: ElmerGUI
Dimensions: 2D, Steady-state

Case definition
This tutorial represents the canonical step flow of viscous fluid. A fluid, flowing past a step (see figure 4.1),
has the density 1 kg/m and viscosity 0.01 kg/ms. The velocity profile at the inlet is parabolic with a mean
velocity < vx >= 1.0 m/s and vy = 0.0 m/s. At the outlet only the vertical component is defined, vy =
0.0 m/s. At all other walls the no-slip boundary condition, ~v = 0, is applied. Thus the Reynolds number for
the case is around 100.

Figure 4.1: Geometry of the step flow problem

Mathematically the problem to be solved is{
−∇ · (2µε) + ρ~u · ∇~u+∇p = 0 in Ω

∇ · ~u = 0 in Ω (4.1)

with the boundary conditions ux = 1 on Γinlet

ux = 0 on Γno−slip

uy = 0 on Γinlet ∪ Γoutlet ∪ Γno−slip

(4.2)

where µ is the viscosity, ε is the strain tensor, ρ is the density, ~u is the velocity and p is the pressure. It is
assumed that the density and viscosity are constants.
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4. Navier-Stokes equation – Laminar incompressible flow passing a step 19

Solution procedure
The mesh is given in ElmerGrid format in file step.grd, load this file.

File
Open -> step.grd

You should obtain your mesh and may check that it consists of 9696 nodes and of 9442 bilinear elements.

Model
Summary...

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation. The steady-state simulation is carried out in 2-dimensional
cartesian coordinates, which are also the defaults.

Model
Setup

Simulation Type = Steady state
Coordinate system = Cartesian

In the equation section we choose the relevant equations and parameters related to their solution. In this case
the only the Navier-Stokes equation is needed.

When defining Equations and Materials it is possible to assign the to bodies immediately, or to use
mouse selection to assign them later. In this case we have just one body and therefore its easier to assign the
Equation and Material to it directly. One could also edit the solver setting in order to try different strategies
for solving the nonlinear or linear system. Initially the Navier-Stokes solver uses the more robust Picard
iteration which is changed to Newton iteration after few initial steps. For the given viscosity the default
values are ok, but may need tuning when going into higher Reynolds numbers.

Model
Equation

Name = Navier-Stokes
Apply to Bodies = Body 1
Navier-Stokes

Active = on
Edit Solver Setting
Nonlinear System

Max. iterations = 20
Newton after iterations = 3

Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which
are direct properties of the material without making any assumptions on the physical model, such as the
density. Other properties assume a physical law, such as viscosity.

Model
Material

Name = Ideal
General

Density = 1.0
Navier-Stokes

Viscosity = 0.01
Apply to Bodies = Body 1
Add
OK
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4. Navier-Stokes equation – Laminar incompressible flow passing a step 20

The current case does not have any body forces. Convergence should also be obtained using the default
initial condition which sets all field values to zero. Hence no setting for initial condition are needed.

Only one boundary condition may be applied to each boundary and therefore all the different physical
BCs for a boundary should be grouped together. In this case the Temperature and Velocity. The side walls
are assumed to be adiabatic.

The parabolic inlet-profile is achieved using the MATC environment. To be able to edit the content of the
inlet profile click Enter to open an edit box for the Velocity 1. The given expression will be interpreted
at run-time so that vx = 6(y − 1)(2 − y). As y ∈ [1, 2] thereby creating a parabolic velocity profile with a
mean velocity of unity.

Model
BoundaryCondition

Name = Inlet
Navier-Stokes

Velocity 1 = Variable Coordinate 2; Real MATC "6*(tx-1)*(2-tx)"
Velocity 2 = 0.0

Add
New

Name = Outlet
Navier-Stokes

Velocity 2 = 0.0
Add
New

Name = Walls
Navier-Stokes

Velocity 2 = 0.0
Add
New

Name = Outlet
Navier-Stokes

Velocity 2 = 0.0
Add
New

Name = Walls
Navier-Stokes

Noslip wall BC = on
Add
OK

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
Set boundary properties

Choose Inlet -> set boundary condition Inlet
Choose Outlet -> set boundary condition Outlet
Choose Walls -> set boundary condition Walls

For the execution ElmerSolver needs the mesh files and the command file. We have now basically defined
all the information for ElmerGUI to write the command file. After writing it we may also visually inspect
the command file.

CSC – IT Center for Science



4. Navier-Stokes equation – Laminar incompressible flow passing a step 21

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case. Create a suitable directory for the case if needed.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. The problem should
converge in about ten iterations. When there are some results to view we may start the postprocessor also

Run
Start postprocessor

Results
The results may be viewed using the postprocessor as shown in Figure 4.2 and 4.3. One may also register
specific values, for example the pressure difference is 4.23 Pa, the minimum and maximum lateral velocities
are -0.1666 m/s and 1.5 m/s, respectively. One special result of interest is the point, on the x-axis, at which
the direction of the flow changes. In this case its position is about 5.0 m after the step.

Figure 4.2: Absolute value of the velocity field

Figure 4.3: Pressure field
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4. Navier-Stokes equation – Laminar incompressible flow passing a step 22

Extra task: Decreasing the viscosity
Try what happens if the viscosity is further decaresed by a factor 10. Convergence may be difficult to obtain.
Some tricks that may be tested include

• Introducting a relaxation factor (typically in the range 0.5–0.7)

• Increasing number of nonlinear iterations

• Favoring Picard iteration over Newton

• Increasing mesh density (and length of domain)

Don’t be worried if you fail to find convergence. This task will mainly act as a motivator in using turbulence
models for higher Reynolds numbers.

Remember to re-perform the following phases in order to get the updated results

Sif
Generate

File
Save Project

Run
Start solver

You may just reload the results in the postprocessor rather than closing and opening the program.
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Tutorial 5

Vortex Shedding – von Karman
instability

Directory: VonKarmanGUI
Solvers: FlowSolve
Tools: ElmerGUI
Dimensions: 2D, Transient

Case definition
This tutorial is about simulating the developing of the vortex shedding i.e. the von Karman instability. The
geometry is a tube with a circular obstacle. For more details on the problem look at the benckmark case
definition by by M. Schäfer and S. Turek in "Benchmark computations of laminar flow around a cylinder".

Solution procedure
The mesh is given in 2d netgen format in file circle_in_channel.in2d, load this file.

File
Open -> circle_in_channel.in2d

You should get a mesh consisting of 749 nodes and 1328 triangles. This is a rather sparse mesh. To increase
the element number

Mesh
Configure

nglib / Max H: 0.02
Mesh

Remesh

This mesh includes 3464 nodes and 6506 triangles. The mesh is presented in figure 5.1.
After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we

choose things related to the whole simulation such as file names, time stepping, constants etc. The simulation
is carried out in 2-dimensional cartesian coordinates. 2nd order bdf time-stepping method is selected with
200 steps and we want the total simulation time to be 8 seconds.

Model
Setup

Simulation Type = Transient
Steady state max. iter = 1
Time Stepping Method = bdf
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Figure 5.1: Computational mesh of the problem.

BDF Order = 2
Time Step Intervals = 200
Time Step Sizes = $ 8/200

For the solver specific settings we are quite happy to use the defaults. However, we relax a little bit the
convergence tolerances to get speedier simulation.

Model
Equation

Name = Navier-Stokes
Apply to Bodies = 1
Navier-Stokes

Active = on
Edit Solver Settings

Nonlinear system
Convergence tol. = 1.0e-4

Linear System
Convergence tol. = 1.0e-6

Add
OK

The Material section includes all the material parameters. Here we choose simple parameters for the aca-
demic test case

Model
Material

General
Density = 1

Navier Stokes
Viscosity = 0.001

Apply to Bodies = 1
Add
OK

The system does not need any body forces nor initial conditions i.e. we are happy with the default guess
zero.

We have three different kinds of boundaries: inlet, no-slip walls, and outlet. The inlet has a parabolic
fully developed laminar profile with a maximum velocity of 1.5 m/s. Additionally for the inlet the vertical
velocity component is assumed zero. The circle and the lower and upper walls are given the no-slip treatment.
For the outlet only the vertical component is set to zero since the default discretization weakly imposes a
zero pressure condition if the normal velocity component is not defined.

CSC – IT Center for Science



5. Vortex Shedding – von Karman instability 25

Model
BoundaryCondition

Name = Inlet
Navier-Stokes

Velocity 1 = Variable Coordinate 2; Real MATC "4*1.5*tx*(0.41-tx)/0.41^2"
Velocity 2 = 0.0

Add
New

Name = Walls
Navier-Stokes

Velocity 1 = 0.0
Velocity 2 = 0.0

Add
New

Name = Outlet
Navier-Stokes

Velocity 2 = 0.0
Add
Ok

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
Set boundary properties

Choose inlet -> set boundary condition Inlet
Choose both horizontal walls and circle -> set boundary condition Walls
Choose outlet -> set boundary condition Outlet

For the execution ElmerSolver needs the mesh files and the command file. We have know basically
defined all the information for ElmerGUI to write the command file. After writing it we may also visually
inspect the command file.

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. When there are some
results to view we may start the postprocessor also

Run
Start postprocessor
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Results
Due to the number of the time-steps the simulation will take a few minutes. You may inspect the results with
ElmerPost as the time-steps are computed, or wait until all timesteps have been computed. When opening
the result file using ElmerGUI ElmerPost only opens the first time-step. Therefore it is important to reopen
the file and load the time-steps of interest. Pressing the button All selects all the calculated time steps. A
video of the results can be viewed by selecting the option Timestep Control and pressing the button
Loop under the Edit menu.

In Figure 5.2 the velocity field is presented for three different timesteps. The maximum velocity in the
system should be about 1.95 m/s.

Figure 5.2: Temperature distribution at steps 20, 100 and 200

Effect of Reynolds number
The Reynolds number in this case is around 100 resulting to unsteady flow. The critical Reynolds number
is around 90 and reducing the flow velocity so that Reynolds number becomes, say 20, makes the system
to possess a steady-state solution. On the other hand, increasing the velocity will make the von Karman
vortecis even more pronounced until they break into fully chaotic motion. This finite element mesh will
allow only minor increase in Reynolds number to be able to capture the phenomena.
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Tutorial 6

Transient flow and heat equations –
Rayleigh-Benard instability

Directory: RayleighBenardGUI
Solvers: HeatSolve, FlowSolve
Tools: ElmerGUI
Dimensions: 2D, Transient

Case definition
This tutorial is about simulating the developing of the Rayleigh-Benard instability in a rectangular domain
(Figure 6.1) of dimensions 0.01 m height and 0.06 m length. The simulation is performed with water and
the material parameters of water required by the Elmer model are presented in Table 6.1. The temperature
difference between the upper and lower boundary is set to 0.5 so that lower one has the temperature of 293.5
K and the upper one has the temperature of 293 K.

The density of water is inversely proportional to its temperature. Thus, heated water starts to flow
upwards, and colder downwards due to gravity. In this case we assume that the Boussinesq approximation is
valid for thermal incompressible fluid flow. In other words, the density of the term ρ~f in the incompressible
Navier-Stokes equation can be redefined by the Boussinesq approximation

ρ = ρ0(1− β(T − T0))

where β is the heat expansion coefficient and the subscript 0 refers to a reference sate.

Figure 6.1: Domain.
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Table 6.1: Material parameters for water

parameter value
density 998.3 kg/m3

viscosity 1040e-6 Ns/m2

heat capacity 4183 J/(kg·K)
heat conductivity 0.58 W/(m·K)
heat expansion coefficient 2.07e-4 K−1

reference temperature 293 K

Solution procedure
The mesh is given in ElmerGrid format in file box.grd, load this file.

File
Open -> box.grd

You should obtain your mesh and may check that it consists of 3036 bilinear elements.
There is a possibility to divide and unify edges to simplify the case definition in the future.

Choose (left wall + right wall (Ctrl down)) -> unify edge

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation such as file names, time stepping, constants etc. The simulation
is carried out in 2-dimensional cartesian coordinates. 2nd order bdf time-stepping method is selected with
200 steps and with step size of two seconds.

Model
Setup

Simulation Type = Transient
Steady state max. iter = 20
Time Stepping Method = bdf
BDF Order = 2
Time Step Intervals = 200
Time Step Sizes = 2.0
Gravity = ...

In the equation section we choose the relevant equations and parameters related to their solution. In this case
we’ll have one set of equations (named “Natural Convection”) which consists of the heat equation and of the
Navier-Stokes equation.

When defining Equations and Materials it is possible to assign the to bodies immediately, or to use
mouse selection to assign them later. In this case we have just one body and therefore its easier to assign
the Equation and Material to it directly. It is important to select the convection to be computed since that
couples the velocity field to the heat equation.

The system may include nonlinear iterations of each equation and steady state iterations to obtain conver-
gence of the coupled system. It is often a good idea to keep the number of nonlinear iterations in a coupled
case low. Here we select just one nonlinear iteration for both equations. For the linear system solvers we are
happy to use the defaults. One may however, try out different preconditioners (ILU1,. . . ) or direct Umfpack
solver, for example.

Model
Equation

Name = Natural Convection
Apply to Bodies = 1
Heat Equation
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Active = on
Convection = Computed
Edit Solver Setting
Nonlinear System

Max. iterations = 1
Navier-Stokes

Active = on
Edit Solver Setting

Nonlinear System
Max. iterations = 1

Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which are
direct properties of the material without making any assumptions on the physical model, such as the mass.
Other properties assume a physical law, such as conductivities and viscosity.

Here we choose water at room temperature from the material library. You may click trough the material
parameters of the various solvers to ensure that the properties are indeed as they should be. Any consistant
set of units may be used in Elmer. The natural choice is of course to perform the computations in SI units.

Apart from the properties from the material database, we reference temperature for the Boussinesq ap-
proximation.

Model
Material

Material library
Water (room temperature)

General
Reference Temperature = 293

Apply to Bodies = 1
Add
OK

A Body Force represents the right-hand-side of a equation. It is generally not a required field for a
body. In this case, however, we apply the buoyancy resulting from heat expansion as a body force to the
Navier-Stokes equation.

Model
Body Force

Name = Buoyancy
Apply to Bodies = 1
Navier-Stokes

Boussinesq = on
Add
OK

Initial conditions should be given to transient cases. In this case we choose a constant Temperature field
and an small initial velocity that initializes the symmetry break.

Model
Initial Condition

Name = Initial Guess
Heat Equation

Temperature = 293
Navier-Stokes

Velocity 1 = 1.0e-9
Velocity 2 = 0.0
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Only one boundary condition may be applied to each boundary and therefore all the different physical
BCs for a boundary should be grouped together. In this case the Temperature and Velocity. The side walls
are assumed to be adiabatic.

Model
BoundaryCondition

Name = Bottom
Heat Equation

Temperature = 293.5
Navier-Stokes

Velocity 1 = 0.0
Velocity 2 = 0.0

Add
New

Name = Top
Heat Equation

Temperature = 293
Navier-Stokes

Velocity 1 = 0.0
Velocity 2 = 0.0

Add
New

Name = Sides
Navier-Stokes

Velocity 1 = 0.0
Velocity 2 = 0.0

Add

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
Set boundary properties

Choose Bottom -> set boundary condition Bottom
Choose Top -> set boundary condition Top
Choose Sides -> set boundary condition Sides

For the execution ElmerSolver needs the mesh files and the command file. We have know basically
defined all the information for ElmerGUI to write the command file. After writing it we may also visually
inspect the command file.

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver
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A convergence view automatically pops up showing relative changes of each iteration. When there are some
results to view we may start the postprocessor also

Run
Start postprocessor

Results
Due to the number of the time-steps the simulation may take around ten minutes. You may inspect the
results with ElmerPost as the time-steps are computed, or wait until all timesteps have been computed. When
opening the result file using ElmerGUI ElmerPost only opens the first time-step. Therefore it is important
to reopen the file and load the time-steps of interest. Pressing the button All selects all the calculated time
steps. A video of the results can be viewed by selecting the option Timestep Control and pressing the
button Loop under the Edit menu.

In Figures 6.2 and 6.3 the obtained temperature distribution and the velocity vectors are presented. The
maximum velocity in the system should be about 0.5 mm/s.

Figure 6.2: Temperature distribution at 260 s.

Figure 6.3: Velocity vectors at 260 s.

Extra task: Sensitivity to temperature difference
If you have time you may try to solve the case with different parameters. Changing the temperature difference
is one way of affecting the instability of the system. Decreasing the tempereture differences the system
eventually becomes steady state and the convection rolls vanish alltogether. Increasing the temperature
difference may increase the number of convection rolls and eventually the system becomes fully chaotic.
Note that changing the temperature difference also affects to the time scale of the wake.
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Tutorial 7

Navier-Stokes equation – Turbulent
incompressible flow passing a step

Directory: FlowStepGUI
Solvers: FlowSolve,KESolver
Tools: ElmerGUI
Dimensions: 2D, Steady-state

Case definition
This tutorial is a natural contination of the tutorial 4 where the same case was solved with a smaller Reynolds
number. It is advicable to study that case before.

When Reynolds number increases the Navier-Stokes equations do not posses any steady-state solution.
Basically the solution can be averaged simulating the transient flow over time. However, the computational
cost of this approach is often very heavy particularly while at high Reynolds numbers the computational
mesh in direct numerical simulation needs to be very dense. Instead its customary to solve timeaveraged
equations. Unfortunately these equations include unknown correlations between quantities that need to
modeled in some way.

The workhorse of turbulence modeling is the k− ε model which is used in this tutorial. The k− ε model
is a two-equation model that introduces two additional variables – the turbulent kinetic energy k and the
turbulent dissipation ε which determines the scale of the turbulence.

The case under study is the canonical step flow of viscous fluid. A fluid, flowing past a step has the
density 1 kg/m3 and viscosity 1.0e − 4 kg/ms. The velocity profile at the inlet is defined by a parabolic
profile with mean velocity vx = 1.0 m/s and vy = 0.0 m/s. This way the Reynolds number will be 10000.
At the outlet only the vertical component is defined, vy = 0.0 m/s. At all other walls the no-slip boundary
condition, ~v = 0, is applied.

Also the new turbulent variables require boundary conditions. In the inflow the condition could reflect the
values for developed turbulent profile. Here we roughly estimate the turbulent kinetic energy and elongate the
distance before the step to have a fully developed turbulent profile. From the literature it is the the turbulent
intensity i.e. the kinetic energy of turbulence vs. the kinetic energy of mean flow scalas as 0.16Re−1/8.
For our current configuration a estimate for the turbulent kinetic energy is 0.00457. For the walls a no-slip
condition is applied which also set the values of the turbulent parameters accordingly. Also boundary layer
model could be used but here our mesh should be able to capture even the boundary phenomena quite well.

Solution procedure
The mesh is given in ElmerGrid format in file steplong.grd, load this file.

File
Open -> steplong.grd
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You should obtain your mesh and may check that it consists of 14584 nodes and of 14175 bilinear elements.

Model
Summary...

After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we
choose things related to the whole simulation. The steady-state simulation is carried out in 2-dimensional
cartesian coordinates, which are also the defaults. The coupled system converges unfortunately quite slowly
and hence we need to increase the number of maximum iterations.

Model
Setup

Simulation Type = Steady state
Coordinate system = Cartesian
Steady state max. iter = 100

In the equation section we choose the relevant equations and parameters related to their solution. In
this case the Navier-Stokes and k − ε equations are needed. We want to solve the Navier-Stokes and k − ε
equations iteratively using only one nonlinear iteration for optimal convergence of the coupled system. Some
relaxation is needed in order to achieve convergence at all. We also relax a little bit on the steady state
convergence tolerance. Initially the Navier-Stokes solver uses the more robust Picard iteration which may
be changed to Newton iteration after the iteration progresses. However, here we want to supress the use of
Newton lineariarization since it seems to cause problems with the k − ε equation.

Model
Equation

Name = Flow equations
Apply to Bodies = Body 1
Navier-Stokes

Active = on
Edit Solver Setting
Nonlinear System

Max. iterations = 1
Relaxation factor = 0.5
Newton after tolerance = 0.0

Steady state
Convergence tol. = 1.0e-4

K-Epsilon
Active = on
Edit Solver Setting

Nonlinear System
Max. iterations = 1
Relaxation factor = 0.5

Steady state
Convergence tol. = 1.0e-4

Add
OK

The Material section includes all the material parameters. They are divided to generic parameters which
are direct properties of the material without making any assumptions on the physical model, such as the
density. Other properties assume a physical law, such as viscosity. For the model parameters of the turbulent
equations we are happy with the defaults.

Model
Material

Name = Ideal
General
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Density = 1.0
Navier-Stokes

Viscosity = 1.0e-4
Viscosity Model = K-Epsilon

Apply to Bodies = Body 1
Add
OK

The current case does not have any body forces. To help in the convergence we make an rude intial
guess.

Model
Initial Condition

Name = Initial Guess
Navier-Stokes

Velocity 1 = 0.0
Velocity 2 = 0.0

K-Epsilon
Kinetic Energy = 0.00457
Kinetic Dissipation = 1.0e-4

When defining Boundary conditions it is possible to assign the to boundaries immediately, or to use
mouse selection to assign them later. In this case we have use the latter since we do not necessarily know
the numbering of boundaries by heart. There is a special boundary condition that takes care of the Boundary
conditions for the noslip walls for both the Navier-Stokes and k − ε equation. Additionally there are inlet
and outlet conditions. For the inlet click Enter to open an edit box for the Velocity 1 when typing in
the expression. which will be evaluated at run-time so that vx = 6(y − 1)(2− y).

Model
BoundaryCondition

Add
Name = Inlet
Navier-Stokes

Velocity 1 = Variable Coordinate 2; Real MATC ‘‘6*(tx-1)*(2-tx)’’
Velocity 2 = 0.0

K-Epsilon
Kinetic Energy = 0.00457
Kinetic Dissipation = 1.0e-4

Add
New

Name = Outlet
Navier-Stokes

Velocity 2 = 0.0
Add
New

Name = Walls
Navier-Stokes

Noslip Wall BC = on
Add

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
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Set boundary properties
Choose inlet -> set boundary condition Inlet
Choose outlet -> set boundary condition Outlet
Choose walls -> set boundary condition Walls

For the execution ElmerSolver needs the mesh files and the command file. We have now basically defined
all the information for ElmerGUI to write the command file. After writing it we may also visually inspect
the command file.

Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case. Create a suitable directory for the case if needed.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. The convergence
if far from monotonic but computation should terminate when sufficient convergence is reached after 30
iterations.

Results
When there are some results to view we may start the postprocessor. This time we use the internal VTK
based postprocessor for visualization. Also ElmerPost could be used.

Run
Postprocessor (VTK)

The results may be viewed using the postprocessor as shown in Figures 7.1 and 7.2. One may also
register specific values, for example the pressure difference is 0.302 Pa, the minimum horizontal and vertical
velocities are -0.213 m/s and -0.0834 m/s, respectively. One special result of interest is the point, on the
x-axis, at which the direction of the flow changes. In this case its position is about 5.1 m after the step.

Figure 7.1: Variables of the Navier-Stokes solver: absolute velocity on top and pressure on bottom
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Figure 7.2: Variables of the k − ε solver: kinetic energy on top and its dissipation on bottom
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Tutorial 8

Electrostatic equation – Computation of
fringe capacitance

Directory: FringeCapacitance
Solvers: StatElecSolver
Tools: ElmerGUI
Dimensions: 2D, Steady-state

Case definition
This case presents solving the Laplace equation for electric potential.

−∇ · ε∇φ = 0 ∈ Ω (8.1)

where the eletric potential φ is given at conducting surfaces. This is a standard type of equation with many
variants in physics, electrostatics being just one of them. From the solution one may calculate derived fields,
and capacitance which is obtained from the total electric energy

E =
1
2

∫
ε|∇φ|2 dΩ (8.2)

and the relation E = CU2/2.

Figure 8.1: The geometry of the capacitor

The geometry studied is a 2D plate capacitor having the well known approximation for Capacitance
Capp = εrε0A/d. With the help of the simulation one may evaluate the fringe capacitance resulting from
the end effects of the capacitor geometry. The measuments of the capacitor are 10 × 1, and the distance
to ground is also 1. Defining the permittivity of vacuum to be ε0 = 1 the comparison to the analytical
approximation becomes trivial since then then Capp = 10.
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The derived fields in the StatElecSolver are computed by averaging the fields over elements – not using
the Galerkin method which would provide optimal accuracy. The fields may, however, be sufficient for
visualization purposes.

Figure 8.2: Computational mesh used in the simulation

Solution procedure
The definitions for the electrostatic equation are not loaded into ElmerGUI by default. Hence, one needs to
load these before starting the simulations.

File
Definitions

Append -> electrostatics.xml

The additional definitions should recide in the directory edf-extra within the distribution. Moving the
desired xml files to the edf-directory enables automatic loading of the definitions at start-up. By inspecting
the definitions in the Elmer Definitions File editor one may inspect that the new definitions
were really appended.

The mesh is given in ElmerGrid format in file disc.grd, load this file.

File
Open -> disc.grd

You should obtain your mesh and may check that it consists of 30484 nodes and of 30348 bilinear elements.
After we have the mesh we start to go through the Model menu from the top to bottom. In the Setup we

choose things related to the whole simulation such as file names, time stepping, constants etc. The steady-
state simulation is carried out in 2-dimensional cartesian coordinates. For convenience we also set ε equal
to one.

Model
Setup

Simulation Type = Steady state
Permittivity of Vacuum = 1.0

In the equation section we choose the relevant equations and parameters related to their solution. In this case
we’ll have only the electrostatics solver.

When defining Equations and Materials it is possible to assign the to bodies immediately, or to use
mouse selection to assign them later. In this case we have just one body and therefore its easier to assign the
Equation and Material to it directly.
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In the solver specific options we want to activate some flags that are needed to invoke the computation
of derived fields. For the linear system solvers we are happy to use the defaults. One may however, try out
different preconditioners (ILU1,. . . ) or direct Umfpack solver, for example.

Model
Equation

Name = Electrostatics
Apply to Bodies = 1
Electrostatics

Active = on
Edit Solver Settings
Solver specific options

Calculate Electric Field = True
Calculate Electric Energy = True

Add
OK

The Material section includes all the material parameters. In this case we only have the relative permittivity
which we set to one.

Model
Material

Electrostatics
Relative Permittivity = 1.0

Apply to Bodies = 1
Add
OK

We have two boundary conditions for the potential at the ground and at the capacitor. For other bound-
aries the do-nothing boundary results to zero flux over the boundary.

Model
BoundaryCondition

Name = Ground
Electrostatics

Potential = 0.0
Add
New

Name = Capacitor
Electrostatics

Potential = 1.0
Add

The conditions may also be assigned to boundaries in the Boundary condition menu, or by clicking
with the mouse. Here we use the latter approach as that spares us of the need to know the indexes of each
boundary.

Model
Set boundary properties

Choose Ground -> set boundary condition Ground
Choose Capacitor -> set boundary condition Capacitor

For the execution ElmerSolver needs the mesh files and the command file. We have know basically
defined all the information for ElmerGUI to write the command file. After writing it we may also visually
inspect the command file.
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Sif
Generate
Edit -> look how your command file came out

Before we can execute the solver we should save the files in a directory. The project includes all the files
needed to restart the case.

File
Save Project

After we have successfully saved the files we may start the solver

Run
Start solver

A convergence view automatically pops up showing relative changes of each iteration. The equation is
fully linear and hence only two iterations are needed – the second one just ensures that convergence of the
nonlinear level was really obtained. When the solution has finished we may start the postprocessor to view
some results.

Run
Start postprocessor

Results
From the output of the simulation one may see that the capacitance in this case was 13.70 compared to the
analytical estimate of 10. Hence the fringe capacitance in this case increases the capacitance by 37 %.

Figure 8.3: The electrostatic potential

Figure 8.4: The electrostatic energy density, a close-up
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