
ElmerSolver Manual

CSC – IT Center for Science

April 30, 2009

Copyrights

This document describes the generic features of Elmer, a finite element software for multiphysical problems.
The copyright of this document belongs to CSC – IT Center for Science, Finland, 1995–2009. Note that

even though the software is licensed under GPL this documentis not.
Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR PURPOSE. See
the GNU General Public License for more details.

CSC assumes no responsibility or liability on any errors or inaccuracies in Elmer program or docu-
mentation. Any kind of material damages or other indirect consequences resulting from any Elmer part,
documentation discrepancies and errors or non-anticipated program behavior are limited to the value of
appropriate products purchased from CSC.

This document is for informational use only. All information and specifications given have been care-
fully prepared by the best efforts of CSC, and are believed tobe true and accurate as of time publishing.
CSC reserves the right to modify Elmer and its documents without notice.

Additional software product copyrights included in Elmer
Copyright, and License:
UMFPACK Version 4.3, Jan. 16, 2004. Copyright (c) 2004 by Timothy A. Davis, University of Florida,

davis@cise.ufl.edu. All Rights Reserved.
UMFPACK License:
Your use or distribution of UMFPACK or any derivative code implies that you agree to this License.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTYEXPRESSED OR

IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program, provided that the Copyright, this License,

and the Availability of the original version is retained on all copies. User documentation of any code that
uses UMFPACK or any modified version of UMFPACK code must citethe Copyright, this License, the
Availability note, and "Used by permission." Permission tomodify the code and to distribute modified code
is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that
the code was modified is included. This software was developed with support from the National Science
Foundation, and is provided to you free of charge.

2

About ElmerSolver Manual

The ElmerSolver Manual is part of the documentation of Elmerfinite element software. ElmerSolver Man-
ual describes the Elmer Solver options common for all specific equation solvers. The different equations
solver options are described separately in Elmer Models Manual. The ElmerSolver Manual is best used as a
reference manual rather than a concise introduction to the matter.

The present manual corresponds to Elmer software version 6.0 for Windows NT and Unix platforms. Lat-
est documentations and program versions of Elmer are available (or links are provided) athttp://www.csc.fi/elmer .

3

Contents

1 Structure of the Solver Input File 6
1.1 Introduction 6
1.2 The sections of solver input file 6
1.3 Keyword syntax 9

2 Finite Element Utilities 13
2.1 Introduction 13
2.2 Theory 13

3 Solution Methods for Linear Systems 14
3.1 Introduction 14
3.2 Direct methods 14
3.3 Preconditioned iteration methods 15
3.4 Multilevel methods 16
3.5 Keywords related to linear system solvers 18
3.6 Implementation issues 22
Bibliography 23

4 Nonlinear System Options 25
4.1 Introduction 25
4.2 Keywords related to solution of nonlinear systems 25

5 Integration of time-dependent systems 28
5.1 Introduction 28
5.2 Time discretization strategies 28
5.3 Keywords related to time discretization 29
5.4 On the treatment of time derivatives in Elmer Solver code. 31

6 Solving eigenvalue problems 32
6.1 Introduction 32
6.2 Theory 32
6.3 Keywords related to eigenvalue problems 33
6.4 Constructing matrices M and D in Solver code 34

7 Adaptive Solution 36
7.1 Introduction 36
7.2 Theory 36
7.3 Keywords related to the adaptive solution 38
7.4 Implementing own error estimators 38

4

CONTENTS 5

8 Matrix manipulation utilities 41
8.1 Dirichlet conditions 41
8.2 Periodic conditions 41
8.3 Setting and computing nodal loads 42
8.4 Active and passive elements 42
8.5 Keywords for Matrix manipulation 42

9 Miscallenous options 44
9.1 Solver activation 44
9.2 Options for variable names 44

10 Compilation and Linking 45
10.1 Compiling the whole package 45
10.2 Compiling a user defined subroutine 45

11 Basic Programming 46
11.1 Introduction 46
11.2 Basic Elmer Functions and Structures 46
11.3 Writing a User Function 54
11.4 Writing a Solver 66
11.5 Compilation and Linking 77

A Format of mesh files 79
A.1 The format of header file 79
A.2 The format of node file 79
A.3 The format of element file 80
A.4 The format of boundary element file 80

B Format of result output files 81
B.1 Format versions 81
B.2 General structure 81
B.3 The positions file 84

C Format of ElmerPost Input File 85

D Basic element types 87

E Higher-order finite elements 90
E.1 Theory 90
E.2 Higher-order elements in Elmer 91
E.3 ElmerSolver services for higher-order elements 93
E.4 Higher-order elements 95
E.5 Line 95
E.6 Quadrilateral 96
E.7 Triangle 97
E.8 Brick 98
E.9 Tetrahedron 100
E.10 Pyramid 101
E.11 Wedge 103
Bibliography 105

c© CSC – IT Center for Science

Chapter 1

Structure of the Solver Input File

1.1 Introduction

Solving partial differential equation (PDE) models with the solver of Elmer requires that a precise description
of the problem is given using the so-called solver input file,briefly referred to as the sif file. This file contains
user-prepared input data which specify the location of meshfiles and control the selection of physical models,
material parameters, boundary conditions, initial conditions, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is described.We explain how the input data is organized into
different sections and describe the general keyword syntaxwhich is used in these sections to define the
values of various model parameters and to control the solution procedures.

In the case of simple problem setups the solver input file may be written automatically by the prepro-
cessor of Elmer software, so that knowing the solver input file format may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the user, however, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file is first illustrated by using simple examples, without
trying to explain all possibilities in an exhaustive manner. We then describe the keyword syntax in more
detail, showing also how model parameters whose values depend on solution fields can be created. The later
chapters of this manual, and Elmer Models Manual, which focuses on describing the PDE models Elmer
can handle, provide more detailed material on specific issues. Elmer Tutorial Manual also gives complete
examples of solver input files.

1.2 The sections of solver input file

The material of the solver input file is organized into different sections. Each section is generally started
with a row containing the name of the section, followed by a number of keyword commands, and ended with
a row containing the wordEnd. The names for starting new sections are

• Header

• Simulation

• Constants

• Body n

• Material n

• Body Force n

• Equation n

6

1. Structure of the Solver Input File 7

• Solver n

• Boundary Condition n

• Initial Condition n

Heren associated with the section name represents an integer identifier needed for distinguishing between
sections of the same type. A basic keyword command included in a section is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basically arranged without trying to explain all possi-
bilities in an exhaustive manner. The later chapters of thismanual and Elmer Models Manual provide more
detailed material on specific issues. Elmer Tutorial Manualalso gives complete examples of solver input
files.

Header section. The location of mesh files is usually given in the header section. Often this is also the
only declaration given in the header section. If the Elmer mesh files (see Appendix A) are located in the
directory ./1d, the header section may simply be

Header
Mesh DB "." "1d"

End

Note that separate equations can nevertheless be discretized using different meshes if the location of mesh
files is given in the solver section described below.

Simulation section. The simulation section is used for giving general information that is not specific
to a particular PDE model involved in the simulation. This information describes the coordinate system
used, indicates whether the problem is stationary or evolutionary, defines the file names for outputting, etc.
Without trying to describe many possibilities and the details of commands, we only give the following simple
example:

Simulation
Coordinate System = "Cartesian 1D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady State
Steady State Max Iterations = 1
Output Intervals(1) = 1
Post File = "1dheat.ep"
Output File = "1dheat.dat"

End

Constants section. The constants section is used for defining certain physical constants. For example the
gravity vector and the Stefan-Boltzmann constant may be defined using the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08

End

If the constants are not actually needed in the simulation, this section can also be left empty.

Body, material, body force and initial condition sections. The Elmer mesh files contain information on
how the computational region is divided into parts referredto as bodies. A body section associates each body
with an equation set, material properties, body forces, andinitial conditions by referring to definitions given
in a specified equation section, material section, body force section, and initial condition section. To manage
to do this, the different sections of the same type are distinguished by integer identifiers that are parts of the
section names. Note that the integer in the body section nameis an identifier for the body itself.

For example, one may define

c© CSC – IT Center for Science

1. Structure of the Solver Input File 8

Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2

End

Material properties, body forces, an equation set, and initial conditions are then defined in the material
section

Material 1
...

End

the body force section

Body Force 1
...

End

the equation section

Equation 1
...

End

and the initial condition section

Initial Condition 2
...

End

What material properties and body forces need to be specifieddepends on the mathematical models involved
in the simulation, and the initial condition section used for giving initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussion of these very model-dependent issues; after
reading this introductory chapter the reader should be ableto understand the related documentation given in
Elmer Models Manual, which focuses on describing the different mathematical models, while the contents
of equation section will be described next.

Equation and solver sections. Equation section provides us a way to associate each body with a set of
equation solvers. That is, if the set defined consists of morethan one equation solver, several physical
phenomena may be considered to occur simultaneously over the same region of space. Individual equation
solvers are actually defined in solver sections, the contents of an equation section being basically a list of
integer identifiers for finding the solver sections that define the solvers. The keyword commands given in the
solver sections then control the selection of physical models, linearization procedures of nonlinear models,
the selection of solution methods for resulting linear equations, convergence tolerances, etc.

For example, if only two solvers are needed, one may simply define a list of two solver identifiers

Equation 1
Active Solvers(2) = 1 2

End

Then the solver definitions are read from the solver sections

Solver 1
...

End

and

c© CSC – IT Center for Science

1. Structure of the Solver Input File 9

Solver 2
...

End

Finally, we give an example of solver definitions, without trying to explain the commands at this point:

Solver 1
Equation = "Poisson"
Variable = "Potential"
Variable DOFs = 1
Procedure = "Poisson" "PoissonSolver"
Linear System Solver = "Direct"
Steady State Convergence Tolerance = 1e-06

End

Boundary condition section. Boundary condition sections define the boundary conditionsfor the different
equations. The Elmer mesh files contain information on how the boundaries of the bodies are divided into
parts distinguished by their own boundary numbers. The keywordTarget Boundaries is used to list the
boundary numbers that form the domain for imposing the boundary condition. For example the declaration

Boundary Condition 1
Target Boundaries(2) = 1 2
...

End

means that the boundary condition definitions that follow concern the two parts having the boundary numbers
1 and 2.

We finally note that some commands, such as comments started with the symbol ! and MATC expres-
sions described below, may also be placed outside section definitions. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When this command is given, the solver outputs warning
messages if the input file contains keywords that are not listed in the file of known keywords. If new
keywords are introduced, misleading warning messages can be avoided by adding the new keywords to the
keyword fileSOLVER.KEYWORDS, located in the directory of the shared library files of ElmerSolver.

1.3 Keyword syntax

As already illustrated, a basic keyword command used in the solver input file is a statement which sets the
value of a solution parameter with the equal sign. Such a command in its full form also contains the data
type declaration; for example

Density = Real 1000.0

Valid data types generally are

• Real

• Integer

• Logical

• String

• File

c© CSC – IT Center for Science

1. Structure of the Solver Input File 10

If the keyword is listed in the keyword fileSOLVER.KEYWORDS, the data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of specified data type, with the array size
definition associated with the keyword. We recall our previous examples of the equation and boundary
condition sections, where we defined two lists of integers using the commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defined as

My Parameter Array(3,3) = Real 1 2 3 \
4 5 6 \
7 8 9

Defining parameters depending on field variables. Most solver parameters may depend on time, or on
the field variables defined in the current simulation run. Such dependencies can generally be created by
means of tabular data, MATC functions, or Fortran functions. MATC has the benefit of being an interpreted
language, making an additional compilation step with a compiler unnecessary.

Simple interpolating functions can be created by means of tabular data. The following example defines
the parameterDensity the value of which depends on the variableTemperature :

Density = Variable Temperature
Real

0 900
273 1000
300 1020
400 1000

End

This means that the value ofDensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. Elmer then uses linear interpolation to approximate the parameter for argument values
not given in the table. If the value of the independent variable is outside the data set, the first or the last
interpolating function which can be created from the tabulated values is used to extrapolate the value of the
parameter.

If the field variable has several independent components, such as the components of displacement vector,
the independent components may be used as arguments in a function definition. For example, if a three-
component field variable is defined in a solver section using the commands

Variable = "Displ"
Variable DOFs = 3

then the solver of Elmer knows, in addition to the three-component vectorDispl , three scalar fieldsDispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variables in parameter defini-
tions, and used in the definitions of initial and boundary conditions, etc.

More complicated functions can be defined using MATC language. Here the basic usage of MATC in
connection with the solver input file is illustrated; for an additional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000* (1-1.0e-4 * (tx-273))"

c© CSC – IT Center for Science

1. Structure of the Solver Input File 11

This means that the parameterDensity depends on the value ofTemperature as

ρ = ρ0(1 − β(T − T0)), (1.1)

with ρ0 = 1000, β = 10−4 andT0 = 273. Note that the value of the independent variable is known astx
in the MATC expression.

If the independent variable has more than one component, thevariabletx will contain all the compo-
nents in valuestx(0) ,tx(1) ,...,tx(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalar arguments; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC "..."

The values of the scalar fieldsTime andDispl 1 can then be referred in the associated MATC expression
by the namestx(0) andtx(1) , respectively.

In addition to using MATC functions, Fortran 90 functions may also be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, we may define

Density = Variable Temperature
Procedure "filename" "proc"

In this case the file "filename" should contain a shareable .so(Unix) or .dll (Windows) code for the user
function whose name is "proc". The call interface for the Fortran function is as follows

FUNCTION proc(Model, n, T) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 * (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all information about the model, and may be used to obtain field
variable values, node coordinates, etc. The argument n is the index of the node to be processed, and T is the
value of the independent variable at the node. The function should finally return the value of the dependent
variable.

The independent variable can also be composed of several independent components. We may thus define

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface should be a real array of three values, which give the
x,y and z coordinates of the current node.

Parameterized keyword commands. The solver input file also offers possibilities for creatingparameter-
ized commands that utilize MATC. In the solver input file an expression following the symbol $ is generally
interpreted to be in MATC language. If the solver input file contains the lines

$solvertype = "Iterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1
...
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $tol

c© CSC – IT Center for Science

1. Structure of the Solver Input File 12

...
End

Solver 2
...
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100 * tol
...

End

c© CSC – IT Center for Science

Chapter 2

Finite Element Utilities

2.1 Introduction

This section decribes Elmer Solver utilities related directly to Finite Element Method (FEM). Finite element
method is a common procedure to solve differential and integral equations numerically.

2.2 Theory

For higher-order finite elements see the separate chapter.

13

Chapter 3

Solution Methods for Linear Systems

3.1 Introduction

Discretization and linearization of a system of partial differential equations leads to linear systems

Ax = b, (3.1)

whereA andb are of ordersn × n andn × 1, respectively. A specific feature of the coefficient matrixA
resulting from the finite element discretization is that thematrix is sparse, i.e. only a few of the matrix entries
in each row differ from zero. In many applications the systemcan also have a very large ordern, so that the
chief part of the computation time in performing the simulation is typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large categories: direct methods and iterative methods.
Direct methods determine the solution of the linear system exactly up to a machine precision. They perform
in a robust manner leading to the solution after a predetermined number of floating-point operations. Never-
theless, the drawback of direct methods is that they are expensive in computation time and computer memory
requirements and therefore cannot be applied to the solution of linear systems of very large order. The ef-
ficient solution of large systems requires generally the useof iterative methods which work by generating
sequences of improving approximate solutions.

ElmerSolver provides access to both direct and iterative methods. The iterative methods available fall
into two main categories: preconditioned Krylov subspace methods and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may also beconstructed. Such methods may be very
efficient leading to a solution after a nearly optimal numberof operation counts.

The development of efficient solution methods for linear systems is still an active area of research, the
amount of literature on the topic being nowadays vast. The aim of the following discussion is to provide
the user the basic knowledge of the solution methods available in ElmerSolver. The detailed description of
methods is omitted. For a more comprehensive treatment the reader is referred to references mentioned.

3.2 Direct methods

A linear system may be solved in a robust way by using direct methods. There are two different options
for direct methods in ElmerSolver. The default method utilizes the well-known LAPACK collection of
subroutines for band matrices. In practice, this solution method can only be used for the solution of small
linear systems as the operation count for this method is of ordern3.

The other direct solver employs the UMFPACK routines to solve sparse linear systems [1]. UMFPACK
uses the Unsymmetric MultiFrontal method. In practice it may be the most efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solvers depends very much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miserably.

14

3. Solution Methods for Linear Systems 15

3.3 Preconditioned iteration methods

ElmerSolver contains a set of Krylov subspace methods for the iterative solution of linear systems. These
methods may be applied to the solution large linear systems but rapid convergence generally requires the use
of preconditioning.

3.3.1 Krylov subspace methods

The Krylov subspace methods available in ElmerSolver are

• Conjugate Gradient (CG)

• Conjugate Gradient Squared (CGS)

• Biconjugate Gradient Stabilized (BiCGStab)

• Transpose-Free Quasi-Minimal Residual (TFQMR)

• Generalized Minimal Residual (GMRES)

Both real and complex systems can be solved using these algorithms. For the detailed description of these
methods see [3] and [4].

A definite answer to the question which the best iteration method for a particular case is cannot be given.
In the following only some remarks on the applicability of the methods are made.

The CG method is an ideal solution algorithm for the cases where the coefficient matrixA is symmetric
and positive definite. The other methods may also be applied to the cases whereA is non-symmetric. It
is noted that the convergence of the CGS method may be irregular. The BiCGStab and TFQMR methods
are expected to give smoother convergence. The GMRES methodgenerates iterates satisfying an optimality
condition, but the computational work and computer memory requirements of the method increase as the
number of iterations grows. In practice one often has to use arestarted version of this method based on
restarting the iteration afterm iterations. The convergence of the method may however be considerably
slower than that of full GMRES. The choice ofm has to be controlled by the user. Unfortunately, general
guidelines for determining a reasonable value form cannot be given as this value is case-dependent.

3.3.2 Preconditioning strategies

The performance of iteration methods depends greatly on thespectrum of the coefficient matrixA. The rate
at which an iteration method converges can often be improvedby transforming the original system into an
equivalent one that has more favorable spectral properties. This transformation is called preconditioning and
a matrix which determines the transformation is called a preconditioner.

In ElmerSolver preconditioning is done by transforming (4.1) into the system

AM−1z = b, (3.2)

where the preconditionerM is an approximation toA andz is related to the solutionx by z = Mx. In
practice, the explicit construction of the inverseM−1 is not needed, since only a subroutine that for givenv
returns a solutionu to the system

Mu = v (3.3)

is required.
ElmerSolver provides several preconditioning strategies. These include Jacobi preconditioning and in-

complete factorization preconditioners. The preconditioning step (3.3) may even be defined in terms of some
iteration method for the system (3.3) withM = A. This possibility is considered in Section 3.4.3 below.

The Jacobi preconditioner is simply based on takingM to be the diagonal ofA. More sophisticated pre-
conditioners may be created by computing incomplete LU factorizations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approach gives the preconditioner matrixM in the form
M = LU whereL andU are lower and upper triangular with certain elements that arise in the factorization
process ignored.

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 16

There are several ways to choose a set of matrix positions that are allowed to be filled with nonzero
elements. ILU preconditioners of fill levelN referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whichA has nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step of Gaussian elimination is performed forA. ILU(2)
accepts fill in positions that are needed if the next step of Gaussian elimination is performed with ILU(1)
factorization, etc.

Another strategy is based on numerical tolerances. The resulting preconditioner is referred to as the ILUT
preconditioner. In the creation of this preconditioner Gaussian elimination is performed so that elements of
a given row of the LU factorization are obtained but only elements whose absolute value (scaled by the norm
of all values of the row) is over a given threshold value are accepted in the preconditioner matrix.

Obviously, the additional computation time that is spent increating the preconditioner matrix and solving
systems of the type (3.3) should be compensated by faster convergence. Finding an optimal ILU precondi-
tioner for a particular case may require the use of trial and error. Start with ILU(0) and try to increase the
fill level N . As N increases, more and more elements in the incomplete LU factorization of the coefficient
matrix are computed, so the preconditioner should in principle be better and the number of iterations needed
to obtain a solution should decrease. At the same time the memory usage grows rapidly and so does the time
spent in building the preconditioner matrix and in applyingthe preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing threshold value.

3.4 Multilevel methods

A class of iterative methods referred to as multilevel methods provides an efficient way to solve large linear
systems. For certain class of problems they perform nearly optimally, the operation count needed to obtain a
solution being nearly of ordern. Two different multilevel-method approaches are available in ElmerSolver,
namely the geometric multigrid (GMG) and algebraic multigrid (AMG).

3.4.1 Geometric multigrid

Given a meshT1 for the finite element discretization of problem the geometric multigrid method utilizes a
set of coarser meshesTk, k = 2, ..., N to solve the linear system arising from the discretization.One of the
fundamental ideas underlying the method is based on the ideaof coarse grid correction. That is, a coarser
grid is utilized to obtain an approximation to the error in the approximate solution of the linear system. The
recursive application of this strategy leads us to multigrid methods.

To utilize different meshes multigrid methods require the development of methods for transferring vec-
tors between fine and coarse meshes. Projection operators are used to transfer vectors from a fine meshTk

to a coarse meshTk+1 and will be denoted byIk+1
k , while interpolation operatorsIk

k+1 transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursive algorithm: GivenA, b and an initial guessy
for the solution of the systemAx = b seti = 1 and do the following steps

1. If i = N , then solve the systemAx = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithm for a given number of times to obtain a new
approximate solutiony.

3. Perform coarse grid correction by starting a new application of this algorithm withA = Ii+1
i AIi

i+1,
b = Ii+1

i (Ay − b), i = i + 1 and the initial guesse = 0.

4. Compute a new approximate solution by settingy = y + Ii
i+1e

5. Do post-smoothing by applying some iterative algorithm for a given number of times to obtain a new
approximate solutiony.

6. If the solution has not yet converged, go to point 2.

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 17

In ElmerSolver one may choose the Jacobi, CG or BiCGStab algorithm as the method for smoothing itera-
tions.

The full success of multigrid methods is based on the favorable combination of the properties of ba-
sic iteration methods and methods for transferring vectorsbetween meshes. The smoothing iterations give
rapid convergence for oscillatory solution components while coarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprehensive introduction to the geometric multigrid
method the reader is referred to [2].

3.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied because we do not have the luxury of having
a set of appropriate hierarchical meshes. The alternative is the algebraic multigrid (AMG) method which
uses only the matrixA to construct the projectors and the coarse level equations.AMG is best suited for
symmetric and positive semidefinite problems. For other types of problems the standard algorithm may fail.
For more information on AMG see reference [5].

The AMG method has two main phases. The set-up phase includesthe recursive selection of the coarser
levels and definition of the transfer and coarse-grid operators. The solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desired accuracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElmerSolver are not fully mature. They may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stüben algorithm

The coarsening is performed using a standard Ruge-Stüben coarsening algorithm. The possible connections
are defined by the entries in the matrixA. The variablei is strongly coupled to another variablej if

aij < −c− max |aik| or aij > c+ max |aik|, (3.4)

where0 < c− < 1 and0 < c+ < 1 are parameters. Typicallyc− ≈ 0.2 andc+ ≈ 0.5. Once the negative
(P−) and positive (P+) strong couplings have been determined the variables are divided into coarse (C) and
fine (F) variables using the standard coarsening scheme.

The interpolation matrix may be constructed using theC/F -splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as they remain unchanged. The interpolation of fine
nodes starts from the fact the smooth errore must roughly satisfy the conditionAe = 0 or

aiiei +
∑

j 6=i

aijej = 0. (3.5)

By manipulation
aiiei + αi

∑

j∈C∩P
−

i

aijej + βi

∑

j∈C∩P
+

i

aijej = 0, (3.6)

where

αi =

∑

j∈P−

i
aij

∑

j∈C∩P
−

i
aij

and βi =

∑

j∈P+

i
aij

∑

j∈C∩P
+

i
aij

. (3.7)

The interpolation thus becomes

ei =
∑

j∈C∩Pi

wijej with wij =

{
−αiaij/aii, j ∈ P−

i ,
−βiaij/aii, j ∈ P+

i .
(3.8)

This is known asdirect interpolation. It may be modified by using also the strongF -nodes in the
interpolation. This means that in formula (3.5) the following elimination is made for eachj ∈ F ∩ Pi

ej → −
∑

k∈C∩Pj

ajkek/ajj . (3.9)

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 18

This is known asstandard interpolation. In practice it means that the number of nodes used in the interpo-
lation is increased. This may be important to the quality of the interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the smallest coefficients may be truncated if they
are small,i.e., wj < cw max |wk|, wherecw ≈ 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is essential in preventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration or cluster multigrid method. It is a variant of the
algebraic multigrid method. In this method the components are grouped and the coarse-level matrices are
created simply by summing up the corresponding rows and columns. In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for problems where it is difficult to generate an
optimal projection matrix. However, for simple problems itis usually beaten by the standard Ruge-Stüben
method.

3.4.3 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own but they can also be applied as preconditioners for
the Krylov subspace methods. This preconditioning approach corresponds to takingM = A in (3.3) and
performing an inaccurate solution of the resulting system using multilevel methods to obtainu. A rather
mild stopping criterion may be used in this connection. Preconditioning by multilevel methods may lead to
very efficient solution methods for large linear systems.

3.5 Keywords related to linear system solvers

The following keywords may be given in Solver section of the solver input file (.sif file).

Linear System Solver String
Using this keyword the type of linear system solver is selected. This keyword may take the following
values:

• Direct

• Iterative

• Multigrid

HereIterative andMultigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String
If the value of theLinear System Solver keyword is set to beDirect , one may choose a
band matrix solver with the valueBanded or a sparse matrix solver with the valueUmfpack . The
default isBanded .

Linear System Iterative Method String
If the value of theLinear System Solver keyword is set to beIterative , one should choose
a Krylov method by setting the value of this keyword to be one of the following alternatives:

• CG

• CGS

• BiCGStab

• TFQMR

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 19

• GMRES

See also theMG Smoother keyword.

Linear System GMRES Restart Integer [10]
The restart parameterm for the GMRES method may be given using this keyword.

Linear System Preconditioning String
A preconditioner for the Krylov methods may be declared by setting the value of this keyword to be
one of the following alternatives:

• None

• Diagonal

• ILUn , where the literaln may take values 0,1,...,9.

• ILUT

• Multigrid

See also theMG Preconditioning keyword.

Linear System ILUT Tolerance Real [0.0]
This keyword is used to define the value of the numerical tolerance for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]
This keyword is used to define a stopping criterion for the Krylov methods. The approximate solution
is considered to be accurate enough if the iterate satisfies

||Ax − b||
||b|| ≤ ε

whereε is the value of this keyword. See alsoMG Tolerance .

Linear System Max Iterations Integer [0]
This keyword is used to define the maximum number of the iterations the Krylov methods are permit-
ted to perform. If this limit is reached and the approximate solution does not satisfy the stopping crite-
rion, ElmerSolver either continues the run using the current approximate solution as the solution of the
system or aborts the run depending on the value ofLinear System Abort Not Converged
keyword. See alsoMG Max Iterations keyword.

Linear System Abort Not Converged Logical [True]
If the value of this keyword is set to beTrue , ElmerSolver aborts the run when the maximum number
of iterations the algorithm is permitted to perform is reached and the approximate solution does not
satisfy the stopping criterion. Otherwise the run will be continued using the current approximate
solution as the solution of the system (this may lead to troubles at later steps of computation).

Linear System Residual Output Integer [1]
By default the iterative algorithms display the value of the(scaled) residual after each iteration step.
Giving a valuen > 1 for this keyword may be used to display the residual only after every n iterations.
If the value 0 is given, the residual output is disabled.

Linear System Precondition Recompute Integer [1]
By default the ElmerSolver computes the preconditioner when a new application of iterative algorithm
is started. If the value of this keyword is set to ben, the preconditioner is computed only after
n successive subroutine calls for linear systems arising from same source. This may speed up the
solution procedure especially in cases where the coefficient matrix does not change much between
successive subroutine calls. On the other hand if the coefficient matrix has changed significantly, the
preconditioner may not be efficient anymore.

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 20

Optimize Bandwidth Logical [True]
If the value of this keyword is set to beTrue , the Cuthill-McKee bandwidth optimization scheme is
used to order the unknowns in such a way that band matrices canbe handled efficiently. The bandwidth
optimization is recommended when the direct solver or incomplete factorization preconditioners are
used.

The keywords beginning withMGare activated only if either theLinear System Solver orLinear
System Preconditioning keyword has the valueMultigrid . If a multigrid method is used as the
linear system solver, some keywords starting withMGmay be replaced by corresponding keywords starting
with phraseLinear System . It should be noted that in the case of a multigrid solver there are some
limitations to what values the keywords starting with the phraseLinear System may take, see below.

MG Levels Integer [1]
This keyword is used to define the number of levels for the multigrid method.

MG Equal Split Logical [False]
A hierarchy of meshes utilized by the multigrid method may begenerated automatically by setting
the value of this keyword to beTrue . The coarsest partitioning must be supplied by the user and is
declared in the usual way in the Header section of the solver input file. The other meshes are obtained
using an equal division of the coarser mesh. The solution of the problem will be sought for the finest
mesh.

MG Mesh Name File
A hierarchy of meshes utilized by the multigrid method may besupplied by the user. A base name of
the mesh directories is declared using this keyword. The names of mesh directories must be composed
of the base name appended with a level number such that if the base name ismgridmesh , the mesh
directories should have namesmgridmesh1 , mgridmesh2 , etc. The meshes are numbered starting
from the coarsest mesh. In addition, the finest mesh must be declared in the Header section of the
solver input file. It should be noted that theMG Equal Split keyword must be set to beFalse
to enable the use of user-supplied meshes.

MG Max Iterations Integer [0]
If a multigrid method is used as a preconditioner for the Krylov methods, the value of this keyword
defines the maximum number of iterations the multigrid method is allowed to perform to solve the
preconditioning equation (3.3). Usually one or two iterations are sufficient. If a multigrid method
is the linear system solver, the use of this keyword is similar to that of theLinear System Max
Iterations keyword.

MG Convergence Tolerance Real [0.0]
If a multigrid method is used as a preconditioner for the Krylov methods, this keyword defines the
solution accuracy for the preconditioning equation (3.3).This keyword is not usually needed if theMG
Max Iterations keyword has a small value. If a multigrid method is the linearsystem solver,
the use of this keyword is similar to that of theLinear System Convergence Tolerance
keyword.

MG Smoother String
This keyword defines the algorithm for pre- and post-smoothing. It may take one of the following
values:

• Jacobi

• CG

• BiCGStab

If the linear system solver is a multigrid method, theLinear System Iterative Method
keyword may be used instead of this keyword, but only the three algorithms mentioned here can be
applied.

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 21

MG Pre Smoothing Iterations Integer [0]
This keyword defines the number of pre-smoothing iterations.

MG Post Smoothing Iterations Integer [0]
This keyword defines the number of post-smoothing iterations.

MG Preconditioning String
This keyword declares the preconditioner for the algorithmwhich is used in smoothing iterations. It
may take one of the following values:

• None

• ILUn , where the literaln may take values 0,1,...,9.

• ILUT

Note that this keyword is not related to using multigrid method as a preconditioner. It is also noted
that preconditioning the smoothing algorithms does not seem to work well if a multigrid method is
used as a preconditioner for Krylov methods.

MG ILUT Tolearance Real [0.0]
This keyword defines the numerical tolerance for the ILUT preconditioner in connection with smooth-
ing iterations.

The keywords for the algebraic multigrid solver are in a large part the same as for the geometric multigrid.
There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer
This value gives a lower limit for the set of coarse nodes after which the recursive multilevel routine
is terminated. A proper value might be around 100.

MG Recompute Projector Logical
This flag may be used to enforce recomputation of the projector each time the algebraic multigrid
solver is called. The default isFalse as usually the same projector is appropriate for all computations.

MG Eliminate Dirichlet Logical
At the highest level the fixed nodes may all be set to be coarse since their value is not affected by the
lower levels. The default isTrue

MG Eliminate Dirichlet Limit Real
Gives the maximum fraction of non-diagonal entries for a Dirichlet node.

MG Smoother String
In addition to the selection for the GMG optionsor (symmetric over relaxation) is possible.

MG SOR Relax String
The relaxation factor for the SOR method. The default is 1.

MG Strong Connection Limit Real
The coefficientc− in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real
The coefficientc+ in the coarsening scheme. Default is 1.0.

MG Projection Limit Real
The coefficientcw in the truncation of the small weights. The default is 0.1.

MG Direct Interpolate Logical
Chooses between direct and standard interpolation. The default isFalse .

MG Direct Interpolate Limit Integer
The standard interpolation may also be applied to nodes withonly a small number of coarse connec-
tion. This gives the smallest number of nodes for which direct interpolation is used.

c© CSC – IT Center for Science

3. Solution Methods for Linear Systems 22

Finally, there are also some keywords related only to the clustering multigrid.

MG Cluster Size Integer
The desired choice of the cluster. Possible choices are 2,3,4,5,. . . and zero which corresponds to the
maximum cluster.

MG Cluster Alpha Real
In the clustering algorithm the coarse level matrix is not optimal for getting the correct convergence.
Tuning this value between 1 and 2 may give better performance.

MG Strong Connection Limit Real
This is used similarly as in the AMG method except it is related to positive and negative connections
alike.

MG Strong Connection Minimum Integer
If the number of strong connections with the given limit is smaller than this number then increase the
set of strong connection if available connections exist.

3.6 Implementation issues

3.6.1 The sparse matrix storage

To be efficient, iteration methods require that a matrix-vector product for sparse matrices is efficiently im-
plemented. A special storage scheme called the Compressed Row Storage (CRS) [3] is used in ElmerSolver
to store only those matrix coefficients that differ from zero.

The matrix structure is defined in moduleTypes as:

TYPE Matrix_t
...

INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)
INTEGER, POINTER :: Rows(:), Cols(:), Diag(:)

...
END TYPE Matrix_t

The matrix type has several additional fields, but the basic storage scheme can be implemented using the
fields shown. The arrayValues is used to store the nonzero elements of the coefficient matrix. The array
Cols contains the column numbers for the elements stored in the array Values , while the arrayRows
contains indices to elements that start new rows. In addition, Row(n+1) gives the number of nonzero
matrix elements + 1. The arrayDiag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the followingloop may be used

USE Types
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp):: val
INTEGER :: i, j, row, col

DO i=1, A % NumberOfRows
PRINT * , ’Diagonal element for row ’, i, ’ is ’, A % Values(A % Diag(i))
DO j=A % Rows(i), A % Rows(i+1)-1

row = i
col = A % Cols(j)
val = A % Values(j)
PRINT * , ’Matrix element at position: ’, row,col, ’ is ’, val

END DO
END DO

c© CSC – IT Center for Science

BIBLIOGRAPHY 23

3.6.2 Subroutine calls

Most of the functionality of the sparse linear system solverof the ElmerSolver is available by using the
function call

Norm = DefaultSolve().

The return valueNorm is a norm of the solution vector.
Sometimes it may be convenient to modify the linear system before solving it. A Fortran function which

performs this modification can be written by the user with thename of the function being declared in the
solver input file. For example, this technique may be used to define a user-supplied linear system solver.

If the name of the user-supplied Fortran function isproc and it can be found in the file having the name
Filename , the declaration

Before Linsolve File Filename proc

in the solver input file has the effect that the function will be called just before the default call of linear
system solver. The arguments the function can take are fixed and are declared as

FUNCTION proc(Model, Solver, A, b, x, n, DOFs, Norm) RESULT(stat)
USE SolverUtils
TYPE(Model_t) :: Model
TYPE(Solver_t) :: Solver
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp) :: b(:), x(:), Norm
INTEGER :: n, DOFs, stat
...

END FUNCTION proc

Here the Model structure contains the whole definition of theelmer run. The Solver structure contains
information for the equation solver from which this linear system originates. The coefficient matrixA is in
CRS format,b is the right-hand side vector, andx contains the previous solution. The argumentn is the
number of unknowns, andDOFsis the number of unknowns at a single node.

If the return value from this function is zero, the (possibly) modified linear system is solved after the
return. If the return value is 1, the linear system is assumedto be already solved and the vectorx should
contain the result. It is noted that the user-supplied Fortran function may also call the default linear equation
solver within the function, i.e. one may write the subroutine call

CALL SolveLinearSystem(A, b, x, Norm, DOFs, Solver)

HereA andb may be modified so that the linear system which is solved need not be same as the input system.
In a similar way the user may also supply a user-defined Fortran function which will be called just after

the solution of linear system. This is done using the declaration

After Linsolve File Filename proc

in the solver input file. The arguments of this function are the same as for a function in the context of
Before Linsolve keyword.

Bibliography

[1] Umfpack home page.http://www.cise.ufl.edu/research/sparse/umfpack/ .

[2] W.L. Briggs. A Multigrid Tutorial. SIAM, 1987.

[3] Richard Barrett et al.Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods. SIAM, 1993.

c© CSC – IT Center for Science

BIBLIOGRAPHY 24

[4] R.W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems.SIAM
J. Sci. Comput., 14:470–482, 1993.

[5] K. Stüben.Algebraic Multigrid (AMG): An introduction with applications. GMD – Forschungszentrum
Informationstechnik GmbH, 1999.

c© CSC – IT Center for Science

Chapter 4

Nonlinear System Options

4.1 Introduction

Numerical methods in linear algebra are usually intended for the solution of linear problems. However,
there are many problems which are not linear in nature. The nonlinearity may a intrinsic characteristics
of the equation, such as is the case with intertial forces in the Navier-Stokes equation. The nonlinerity
might also a result of nonlinear material parameters that depend on the solution. What ever the reason for
nonlinearity the equations in Elmer are always first linearized to the form

A(ui−1)ui = b(ui−1), (4.1)

wherei refers to the iteration cycle.
How the equations are linearized varies from solver toanother. For example, in the Navier-Stokes solver

there are tow different methods – the Picard linearization and the Newton linearization that may be used.
Also a hybrid scheme where the Picard type of scheme is switched to the Newton kind of scheme when
certain criteria are met is available. Therefore this section will not deal with the particular linearization
technique of different solver but tries to give some light tothe generic keywords that are available. Some
keywords may also be defined in the Models Manual related to particular solvers.

In multiphysical simulations there are also a number of keywords related to the solution of coupled sys-
tems. Basically one may may define how many times a system of equations is solved repeatedly at maximum
and how what are the convergence criteria of the individual solvers that must be met simulataneously.

4.2 Keywords related to solution of nonlinear systems

These keywords are located in the Solver section of each solver, if requited at all.

Nonlinear System Convergence Measure String
The change of solution between two consecutive iterations may be estimated by a number of different
measures which are envoked by valuesnorm , solution and residual . The default way of
checking for convergence is to test the change of norm

δ = 2 ∗ ||ui| − |ui−1||/(|ui| + |ui−1|). (4.2)

This measure is rather liberal since the norm of two solutions may be the same even though the
solutions would not. Therefore it is often desirable to lookat the norm of change,

δ = 2 ∗ |ui − ui−1|/(|ui| + |ui−1|). (4.3)

The third choice is to use a backward norm of the residual where the old solution is used with the new
matrix.

δ = |Axi−1 − b|/|b|. (4.4)

25

4. Nonlinear System Options 26

In the current implementation this norm lags one step behindand therefore always performs one extra
iteration.

Nonlinear System Norm Degree Integer
The choice of norms used in the evaluation of the convergencemeasures is not self evident. The
default is theL2 norm. This keyword may be used to replace this byLn norm where valuen = 0
corresponds to the infinity (i.e. maximum) norm.

Nonlinear System Norm Dofs Integer
For vector valued field variables by default all components are used in the computation of the norm.
However, sometimes it may be desirable only to use some of them. This keyword may be used to give
the number of components used in the evaluation. For example, in the Navier-Stokes equations the
norm is only taken in respect to the velocity components while pressure is omitted.

Nonlinear System Convergence Absolute Logical
This keyword may be used to enforce absolute convergence measures rather than relative. The default
is False .

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the norm
of the field variable between two consecutive iterations is small enoughδ < ε, whereε is the value
given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after anumber of Picard iterations have been
performed. If a given convergence tolerance between two iterations is met before the iteration count
is met, it will switch the iteration type instead. This applies only to some few solvers (as the Navier-
Stokes) where different linearization strategies are available.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if therelative change of the norm of the field
variable meets a tolerance criterion:

δ < ε,

whereε is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. Typical values
range between 0.3 and unity. If one must use smaller values for the relaxation factor some other
methods to boost up the convergence might be needed to improve the convergence. A factor above
unity might rarely speed up the convergence. Relaxed variable is defined as follows:

u
′

i = λui + (1 − λ)ui−1,

whereλ is the factor given with this keyword. The default value for the relaxation factor is unity.

Many of the keywords used to control theNonlinear System have a corresponding keyword for the
Steady State. Basically the operation is similar except thereference value for the current solutionui is the
last converged value of the nonlinear system before starting a new loosely coupled iteration cycle. Otherwise
the explanations given above are valid.

Steady State Convergence Measure String

Steady State Norm Degree Integer

Steady State Norm Dofs Integer

c© CSC – IT Center for Science

4. Nonlinear System Options 27

Steady State Convergence Tolerance Real

Steady State Relaxation Factor Real

Additionally these keywords are located in theSimulation section of the command file.

Steady State Max Iterations Integer
The maximum number of coupled system iterations. For steadystate analysis this means it litelarly,
for transient analysis this is the maximum number of iterations within each timestep.

Steady State Min Iterations Integer
Sometimes the coupling is such that nontrivial solutions are obtained only after some basic cycle
is repeated. Therefore the user may sometimes need to set also the minimum number of iterations.
Sometimes the steady state loop is also used in a dirty way to do some systematic procedures – for
example computing the capacitance matrix, or lumped elastic springs. Then this value may be set to
an a priori known constant value.

c© CSC – IT Center for Science

Chapter 5

Integration of time-dependent systems

5.1 Introduction

Solving time-dependent systems is becoming more and more common in various branches of computational
science, as the computer resources grow steadily. ElmerSolver may be adapted to solve such systems. The
first order time derivatives may be discretizated by using the following methods:

• the Crank-Nicolson method

• the Backward Differences Formulae (BDF) of several orders

In the case of the first order BDF scheme adaptive time-stepping strategy may also be used.
The second order time derivatives are approximated by either using the Bossak method or reformulating

the second order equations as equivalent systems of first order equations.

5.2 Time discretization strategies

Consider the numerical solution of the evolutionary field equation

∂φ

∂t
+ Kφ = f, (5.1)

where the differential operatorK does not involve differentiation with respect to timet andf is a given
function of spatial coordinates and time. The spatial discretization of (5.1) leads to the algebraic equations

M
∂Φ

∂t
+ KΦ = F, (5.2)

whereM , K andF result from the discretization of the identity operator, the operatorK andf , respectively.
The vectorΦ contains the values of the unknown fieldφ at nodes.

The applications of the first three BDF methods to discretizate the time derivative term in (5.2) yield the
following systems:

(
1

∆t
M + K

)

Φi+1 = F i+1 +
1

∆t
MΦi, (5.3)

(
1

∆t
M +

2

3
K

)

Φi+1 =
2

3
F i+1 +

1

∆t
M

(
4

3
Φi − 1

3
Φi−1

)

, (5.4)

(
1

∆t
M +

6

11
K

)

Φi+1 =
6

11
F i+1 +

1

∆t
M

(
18

11
Φi − 9

11
Φi−1 +

2

11
Φi−2

)

, (5.5)

where∆t is the time step andΦi is the solution at time stepi. Similarly,F i is the value ofF at time stepi.

28

5. Integration of time-dependent systems 29

All the BDF methods are implicit in time and stable. The accuracies of the methods increase along with
the increasing order. The starting values for the BDF schemes of ordern > 1 are computed using the BDF
schemes of order1, ..., n− 1 as starting procedures. It should be noted that the BDF discretizations of order
n > 3 do not allow the use of variable time-step size. Adaptive time-stepping strategy may also be used in
the case of the first order BDF scheme.

The adaptive time-stepping is accomplished by first solvingthe system using a trial time step and then
using two time steps the lengths of which equal to the half of that of the trial time step and comparing the
results. If the difference between the results is found to besufficiently small, the use of the trial time step is
accepted. Otherwise a new trial time step is defined by dividing the previous trial time step into two steps
of equal length and then the procedure is repeated. One may define one’s own criterion for determining
whether the use of the current time step is accepted. The default criterion is that the norms of the solutions
to each system of field equations do not differ more than the given threshold value.

The time discretization of the second order equation

M
∂2Φ

∂t2
+ B

∂Φ

∂t
+ KΦ = F (5.6)

using the Bossak method leads to the system
(

1 − α

β(∆t)2
M +

γ

β∆t
B + K

)

Φi+1 = F i+1 + M

(
1 − α

β(∆t)2
Φi +

γ

β∆t
V i +

(1 − α)

2β
Ai

)

+

B

(
γ

β∆t
Φi +

(
γ

β
− 1

)

V i +

(

1 − γ

2β

)

∆tAi

)

,

(5.7)

where

V i+1 = V i + ∆t
(
(1 − γ)Ai + γAi+1

)
,

Ai+1 =
1

β(∆t)2
(Φi+1 − Φi) − 1

β∆t
V i +

(

1 − 1

2β

)

Ai,

β =
1

4
(1 − α)2, γ =

1

2
− α.

(5.8)

In the following the matricesM andB are referred to as the mass and damping matrix, respectively.

5.3 Keywords related to time discretization

All the keywords related to the time discretization may be given in Simulation section of the solver input file
(.sif file). A number of keywords may also be given in Solver section, so that each system of field equations
may be discretizated using independently chosen time-stepping method. If keywords are not given in the
Solver section, the values of the keywords are taken to be those given in the Simulation section. It should
be noted that certain keywords such as those controlling thenumber of time steps, time-step sizes etc. may
only be given in the Simulation section.

Timestepping Method String
This keyword is used to declare the time discretization strategy for the first order equations. The value
of this keyword may be set to be either”BDF” or ”Crank-Nicolson” and may be given in either
Simulation section or Solver section of the solver input file.

BDF Order Integer
This keyword is used to define the order of the BDF method and may take values 1,...,5. This keyword
may be given in either Simulation section or Solver section of the solver input file.

Time Derivative Order Integer
If a second order equation is discretizated, this keyword must be given the value 2 in the Solver
section of the solver input file. It should be noted that the second order time derivatives are always
discretizated using the Bossak method.

c© CSC – IT Center for Science

5. Integration of time-dependent systems 30

Bossak Alpha Real [-0.05]
This keyword is used to define the value forα in the Bossak method used in the time discretization of
second order equations. This keyword may be given in either Simulation section or Solver section of
the solver input file.

Timestep Intervals Integer array
This keyword is used to define the number of time steps. It may be array-valued so that different
time-step lengths may be used for different time intervals of the entire simulation. For example, if one
wishes to take first 50 time steps and then to use a different time-step length for the following 100 time
steps, one may define

Timestep Intervals(2) = 50 100

and use theTimestep Sizes keyword to define time-step lengths for the two sets of time steps.

Timestep Sizes Real array
This keyword is used to define the length of time step. If the value of theTimestep Intervals
keyword is array-valued, the value of this keyword must alsobe an array of the same size. For example,
if one has defined

Timestep Intervals(2) = 50 100

the declaration

Timestep Sizes(2) = 0.1 1.0

sets the time-step length for the first 50 time steps to be 0.1 and for the remaining 100 time steps 1.0.

Timestep Function Real
Instead of using theTimestep Sizes keyword the length of time step may be defined by using
this keyword. The value of this keyword is evaluated at the beginning of each time step. A variable
time-step length may conveniently be defined using a MATC or Fortran function.

Output Intervals Integer array
This keyword is used to define the time-step interval for writing the results on disk. As in the case of
theTimestep Sizes keyword the size of the value of this keyword must be compatible with that
of the Timestep Intervals keyword. The value at a stepm is saved if for the corresponding
output intervalo mod(m-1,o)==0 . An exception is output interval equal to zero for which output is
not saved at all. However, the last step of the simulation is always saved.

Lumped Mass Matrix Logical [false]
The use of a lumped mass matrix may be activated by setting thevalue of this keyword to beTrue in
the Solver section of solver input file. The default lumping is defined by

M ′
ii = Mii

∑

i

∑

j Mij
∑

i Mii

. (5.9)

The keywords related to the adaptive time-stepping may onlybe given in the Simulation section of the
solver input file. When the adaptive time-stepping strategyis used, a set of trial time steps is defined using
the keywords introduced above. The adaptive procedure is executed for each of these trial steps. Note that
the adaptive time-stepping is possible only in the case of the first order BDF scheme.

Adaptive Timestepping Logical [false]
The value of this keyword must be set to beTrue if the adaptive time integration is to be used.

Adaptive Time Error Real
This keyword is used to define the threshold value for the criterion for determining whether the use of
the current time step is accepted.

c© CSC – IT Center for Science

5. Integration of time-dependent systems 31

Adaptive Error Measure Real
Using this keyword one may define one’s own measure for evaluating the difference between the
computed results. This measure and the threshold value, which is given using theAdaptive Time
Error keyword, may be used to define a user-defined criterion for determining whether the use of the
current time step is accepted. The value of theAdaptive Error Measure keyword is evaluated
twice for each trial time step. For the first time the value of the keyword is evaluated after the system
is solved using the trial time step. The second time is after the system is solved using two time steps
the lengths of which equal to the half of that of the trial timestep. The absolute value of the relative
difference between these two values is compared to the threshold value given by theAdaptive
Time Error keyword to determine whether the use of the current time stepis accepted. If several
systems of field equations are solved, all the solutions mustsatisfy the similar criterion. If this keyword
is not used, the default criterion is based on comparing the norms of the solution fields.

Adaptive Min Timestep Real
Using this keyword one can limit the subsequent division of the trial time steps by giving the minimum
time-step length which is allowed.

Adaptive Keep Smallest Integer [1]
By default the adaptive scheme tries to double the length of the time step after the acceptable time
step is found. If a valuen > 1 is given for this keyword, the adaptive scheme tries to increase the step
length after taking n steps which are at most as long as the step length accepted.

5.4 On the treatment of time derivatives in Elmer Solver code

In the following a number of issues that may be useful if one iswriting a code to solve one’s own application
are explained.

By default Elmer Solver does not generate or use global mass or damping matrices in the solution of
time-dependent systems. Mass and damping matrices need to be computed only element-wise, as the linear
system resulting from the time discretization, such as (5.3), is first formed element-wise and this local
contribution is later assembled to the global system. In thecase of the first order equation (5.2) the local
linear system may be formed by using the subroutine call

CALL Default1stOrderTime(M, K, F),

whereM is the element mass matrix,K is the element stiffness matrix andF is the element force vector. In
a similar manner, in the case of the second order equation (5.6) one may use the subroutine call

CALL Default2ndOrderTime(M, B, K, F),

whereB is the element damping matrix.
Note that these subroutines must also be called for the localmatrices and vectors that result from the

discretization of neumann and newton boundary conditions.If the boundary conditions do not contain any
time derivatives, theM andB matrices should be set to be zero before calling the above subroutines.

If the global mass matrix is required, it may be generated by using the subroutine call

CALL DefaultUpdateMass(M)

Similarly, the global damping matrix may be generated by using the subroutine call

CALL DefaultUpdateDamp(B).

Global mass (and possibly damping) matrices are required, for example, in the solution of eigenvalue prob-
lems. One may also implement one’s own time-stepping schemeat the global level using these matrices.

c© CSC – IT Center for Science

Chapter 6

Solving eigenvalue problems

6.1 Introduction

Eigenvalue problems form an important class of numerical problems, especially in the field of structural
analysis. Also some other application fields may have eigenvalue problems, such as those in density func-
tional theory. This manual, however, introduces eigenvalue computation in Elmer using terminology from
elasticity.

Several different eigenvalue problems can be formulated inelasticity. These include the “standard”
generalized eigenvalue problems, problems with geometricstiffness or with damping, as well as stability
(buckling) analysis. All of the aforementioned problems can be solved with Elmer. The eigenproblems can
be solved using direct, iterative or multigrid solution methods.

6.2 Theory

The steady-state equation for elastic deformation of solids may be written as

−∇ · τ = ~f, (6.1)

whereτ is the stress tensor. When considering eigen frequency analysis, the force term~f is replaced by the
inertia term,

−∇ · τ = ρ
∂2~d

∂t2
, (6.2)

whereρ is the density.
The displacement can now be assumed to oscillate harmonically with the eigen frequencyω in a form

defined by the eigenvector~d. Inserting this into the above equation yields

−∇ · τ(~d) = −ω2ρ~d, (6.3)

or in discretized form
Ku = −ω2Mu, (6.4)

whereK is the stiffness matrix,M is the mass matrix, andu is a vector containing the values of~d at
discretization points. The equation 6.4 is called the generalized eigenproblem.

Including the effects of pre-stresses into the eigenproblem is quite straightforward. Let us assume that
there is a given tension fieldσ in the solid. The tension is included by an extra term in the steady-state
equation

−∇ · τ −∇ · (σ∇u) = ~f. (6.5)

The pre-stress term includes a componentKG to the stiffness matrix of the problem and thus the eigenvalue
equation including pre-stresses is

(K + KG)u = −ω2Mu. (6.6)

32

6. Solving eigenvalue problems 33

The pre-stress in Elmer may be a known pre-tension, due to external loading or due to thermal stress,
for example. The stress tensor containing the pre-stressesσ is first computed by a steady-state analysis and
after that the eigenvalue problem is solved. It should be noted though that the eigenvalue problem in a pre-
stressed state is solved using first order linearization, which means that the eigenvalues are solved about the
non-displaced state. If the pre-loading influences large deformations the eigenvalues are not accurate.

The eigenvalue problem with pre-stresses may be used to study the stability of the system. Some initial
loading is defined and a pre-stress tensorσ is computed. This tensor is then multiplied by a test scalarλ. The
critical load for stability, or buckling, is found by setting the force on the right hand side of the equation 6.5
equal to zero. The problem then is to solveλ from

Ku = −λKGu, (6.7)

which again is formally an eigenvalue problem for the test parameter. The critical loading is found by
multiplying the given test load with the value ofλ. In other words, ifλ > 1 the loading is unstable.

6.2.1 Damped eigenvalue problem

Finally, let us consider the damped eigenproblem, also called quadratic eigenvalue problem. In this case
there is a force component proportional to the first time derivative of the displacement in addition to the
inertia term

−∇ · τ = −δ
∂ ~d

∂t
+ ρ

∂2~d

∂t2
, (6.8)

whereδ is a damping coefficient. The problem is transformed into a more suitable form for numerical

solution by using a new variable~v′ defined as~v′ = ∂~d
∂t

. This yields

−∇ · τ = −δ~v′ + ρ
∂~v′

∂t
. (6.9)

Working out the time derivatives and moving into the matrix form, the equation may be written as

Ku = −Dv + iωMv, (6.10)

or,

−iω

(
I 0
0 M

) (
u
v

)

=

(
0 I

−K −D

) (
u
v

)

, (6.11)

wherei is the imaginary unit,D is the damping matrix, andv a vector containing the values of~v′ at the
discretization points. Now the damped eigenproblem is transformed into a generalized eigenproblem for
complex eigenvalues.

Finally, to improve the numerical behavior of the damped eigenproblem, a scaling constants is intro-

duced into the definitions~v′ = s∂ ~d
∂t

. In the matrix equation 6.11 this influences only the identity matrix
blocksI to be replaced bysI. Good results for numerical calculations are found when

s = ||M ||∞ = max |Mi,j|. (6.12)

6.3 Keywords related to eigenvalue problems

An eigenvalue analysis in Elmer is set up just as the corresponding steady-state elasticity analysis. An
eigenvalue analysis is then defined by a few additional keywords in the Solver section of the sif file. The
solver in question can be linear elasticity solver called Stress Analysis, linear plate elasticity solver, or even
nonlinear elasticity solver, though the eigen analysis is,of course, linear.

Many of the standard equation solver keywords affect also the eigen analysis,e.g. the values given for
Linear System Solver and Linear System Iterative Method in case of an iterative solver. More information
about these settings is given in this Manual under the chapter concerning linear system solvers. The specific
keywords for eigen analysis are listed below

c© CSC – IT Center for Science

6. Solving eigenvalue problems 34

Eigen Analysis Logical
Instructs Elmer to use eigensystem solvers. Must be set to True in all eigenvalue problems.

Eigen System Values Integer
Determines the number of eigen values and eigen vectors computed.

Eigen System Select String
This keyword allows the user to select, which eigenvalues are computed. The allowable choices are

• Smallest Magnitude

• Largest Magnitude

• Smallest Real Part

• Largest Real Part

• Smallest Imag Part

• Largest Imag Part

Smallest magnitude is the default.

Eigen System Convergence Tolerance Real
The convergence tolerance for iterative eigensystem solver. The default is 100 times Linear System
Convergence Tolerance.

Eigen System Max Iterations Integer
The number of iterations for iterative eigensystem solver.The default is 300.

Eigen System Complex Logical
Should be given value True if the eigen system is complex,i.e. the system matrices are complex. Not
to be given in damped eigen value analysis.

Geometric Stiffness Logical
Defines geometric stiffness (pre-stress) to be taken into account in eigen analysis. This feature is only
available with linear bulk elasticity solver.

Stability Analysis Logical
Defines stability analysis. This feature is only available with linear bulk elasticity solver.

Eigen System Damped Logical
Defines a damped eigen analysis. Damped eigen analysis is available only when using iterative solver.

Eigen System Use Identity Logical

If True defines the relation displacement and its derivativeto bes~v′ = s∂~d
∂t

. The other possibility is to
useMv = iωMu. The default is True.

6.4 Constructing matrices M and D in Solver code

In eigen analysis the mass matrixM and the damping matrixD have to be separately constructed. Usually
in Elmer the different matrices are summed into a single matrix structure, since the final linear equation is
of the formAx = b, and there is no need for separate values of the mass matrix and the stiffness matrix.

The matrix is represented in Elmer using compressed row storage (CRS) format, as explained in chapter
about Linear system solvers. The matrix structure holds also vectors for the values of the mass and damping
matrices

TYPE Matrix_t
...

REAL(KIND=dp), POINTER :: MassValues(:), DampValues(:)
...

END TYPE Matrix_t

c© CSC – IT Center for Science

6. Solving eigenvalue problems 35

These arrays use the sameRows andCols tables than the normalValues array.
The mass and damping matrices are constructed elementwise in a similar manner as the stiffness matrix.

After each element the local contributions are updated to the equation matrices by the following subroutine
calls

CALL DefaultUpdateEquations(STIFF, FORCE)

IF (Solver % NOFEigenValues > 0) THEN
CALL DefaultUpdateMass(MASS)
CALL DefaultUpdateDamp(DAMP)

END IF

In this segment of code the variablesSTIFF , MASS, DAMPandFORCEstore the local values of the
stiffness matrix, the mass matrix, the damping matrix, and the right hand side of the equation, respectively.
The integerNOFEigenValues if the Solver data structure gives the number of eigen values requested.
Here it is used as an indicator of whether the mass and dampingmatrices need to be constructed.

The eigenvalues and eigenvectors are stored in the arraysSolver % Variable % EigenValues
andSolver % Variable % EigenVectors ,

TYPE Variable_t
...

COMPLEX(KIND=dp), POINTER :: EigenValues(:)
COMPLEX(KIND=dp), POINTER :: EigenVectors(:,:)

...
END TYPE Matrix_t

and the eigenvector corresponding to the eigenvaluei is found inSolver % Variable % EigenVectors(i,:) .

c© CSC – IT Center for Science

Chapter 7

Adaptive Solution

7.1 Introduction

A posteriori error analysis and adaptive mesh refinement arenowadays standard tools in finite element anal-
ysis when cracks, boundary layers, corner singularities, shock waves, and other irregularities are present.
A posteriori error indicators can be used to reveal flaws in finite element discretizations and well designed
adaptive mesh refinemenets can reduce the computational costs drastically.

7.2 Theory

Let us consider equilibrium equations of the form

−∇ · q = f in Ω, (7.1)

q · n = g on Γ, (7.2)

whereq is either a flux vector or a second order stress tensor,Ω is a computational domain,Γ is a boundary
part,f is an external source or body force,g is an external flux or traction andn is the unit outward normal
to the boundary.

Most symmetric steady state problems described in the modelmanual of Elmer [] fit in the above
framework of equilibrium equations. To fix ideas, suppose that q is the heat flux satisfying Fourier’s law
q = −k∇T , whereT is the temperature andk is the heat conductivity of the material. We could also think
of q as the stress tensor of linear elasticity. In this case Hooke’s law states thatq = E : ε, whereE is
the fourth order tensor of elastic coefficients,ε = symm(∇u) is the linearized strain tensor andu is the
displacement vector.

7.2.1 A posteriori estimate

Let us denote the finite element approximation ofq by qh and measure the errorq − qh as

ERROR =

√
∫

Ω

|q − qh|2 dΩ (7.3)

Our primary goal is to ensure the accuracy of the solution by imposing the condition

ERROR ≤ TOLERANCE (7.4)

whereTOLERANCE > 0 is an error tolerance prescribed by the user.
In practise, the goal must be replaced by a stronger condition

ESTIMATE ≤ TOLERANCE (7.5)

36

7. Adaptive Solution 37

whereESTIMATE is a computable functional (of all available data) satisfying

ERROR ≤ ESTIMATE (7.6)

Then, if (7.5) holds, (7.4) is satisfied and the quality of thenumerical solution is guaranteed.
In Elmer the a posteriori estimate (7.5) is computed from local residuals of the finite element solution as

a weighted sum over the elements,

ESTIMATE =

√
∑

E

η2
E , (7.7)

whereηE is the local error indicator for an individual elementE:

η2
E = αEh2

E

∫

E

∣
∣∇ · qh + f

∣
∣
2
dΩ

+ βE

∑

e in Ω

he

∫

e

∣
∣[[qh · ne]]e

∣
∣
2

dΓ (7.8)

+ γE

∑

e on Γ

he

∫

e

∣
∣qh · ne − g

∣
∣
2

dΓ

HereαE , βE , andγE , are local positive constants. The values of these constants depend, among other
things, on the problem to be solved, and must be estimated carefully case by case [].

The first sum in (7.8) is taken over all edgese of E inside the computational domain, the second sum is
taken over all edges on the boundary partΓ, [[·]]e is the jump in(·) acrosse, andne is a unit normal to the
edge.hE is the size of the element andhe is the size of the edge.

The first term on the right-hand-side of (7.8) measures the local residual of the finite element solution
with respect to the equilibrium equation (7.1). The second term measures the discontinuity in the numerical
flux insideΩ and the third term the residual with respect to the boundray condition (7.2).

7.2.2 Adaptivity

The secondary goal of our numerical computations is to find a solution satisfying (7.4) as efficienciently as
possible. A nearly optimal solution strategy is obtained byutilizing the property (here we need to impose
some minor restrictions onf andg, see [])

LOCAL ERROR ≥ ηE (7.9)

where

LOCAL ERROR =

√
∫

E

|q − qh|2 dΩ (7.10)

The estimate suggests that the error in the numerical solution should be reduced efficiently if the mesh is
refined locally where the indicatorsηE are large. Naturally, we can think of coarsening the mesh where the
values of the indicators are small.

The adaptive mesh refinement strategy of Elmer is based on thelocal estimate (7.9) and on the following
additional assumptions and heuristic optimality conditions:

• The local error behaves as
ηE = CEhpE

E (7.11)

for some constantsCE andpE .

• In the optimal mesh the error is uniformly distributed over the elements:

ηE = TOLERANCE/Nelements (7.12)

c© CSC – IT Center for Science

7. Adaptive Solution 38

The constantsCE andpE in (7.11) can be solved locally for each element if the local errors and the local
mesh sizes are known from at least two different solutions. The second rule (7.12) can then be applied to
extrapolate a new nearly optimal mesh density for the subsequent calculations.

The mesh refinements can be performed eiher by splitting the existing elements into smaller using the
so called RGB-refinement strategy described in [], or by permorming a complete remeshing of the computa-
tional domain using the built-in unstructured mesh generators that produce high quality Delaunay triangula-
tions. In the latter alternative not only mesh refinement is possible, but also local adaptive coarsening.

7.3 Keywords related to the adaptive solution

The adaptive solver of Elmer is activated and controlled by the following keywords in the Solver block of
the solver-input-file.

Adaptive Mesh Refinement Logical
If set to true, then after the solution of the linear system the program computes residual error indicators
for all active elements, estimates the global error, computes a new mesh density and refines the mesh
accordingly.

Adaptive Remesh Logical
If set to true, then a complete remeshing is performed after error estimation using the Mesh2D or
Mesh3D generators. The new mesh density is written in file “bgmesh”. If set to false, then the RGB-
splitting strategy for triangles is applied to perform the refinements.

Adaptive Save Mesh Logical
If set to true, the subsequent meshes are stored in directoriesRefinedMeshN , whereN is the number
of the adaptive iterate.

Adaptive Error Limit Real
Error tolerance for the adaptive solution.

Adaptive Min H Real
Imposes a restriction on the mesh size. Defualt is zero.

Adaptive Max H Real
Imposes a restriction on the mesh size. Default is infinite.

Adaptive Max Change Real
Controls the change in local mesh density between two subsequent adaptive iterates. Using this key-
word the user can restrict the refinement/coarsening to stabilize the adaptive solution process.

7.4 Implementing own error estimators

Suppose that we are given a subroutine calledMySolver for solving the Poisson equation, and we would
like to enhance the code by implementing an a posteriori error indicator for adaptive mesh refinement. The
first thing to do is to take the moduleAdaptive in use, an define the local error indicators as functions in
an intefrace block. The beginning of the subroutine should look like the following:

SUBROUTINE MySolver(Model,Solver,Timestep,TransientS imulation)
USE DefUtils
USE Adaptive

INTERFACE
FUNCTION InsideResidual(Model, Element, Mesh, &

Quant, Perm, Fnorm) RESULT(Indicator)
USE Types

c© CSC – IT Center for Science

7. Adaptive Solution 39

TYPE(Element_t), POINTER :: Element
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
INTEGER :: Perm(:)

END FUNCTION InsideResidual

FUNCTION EdgeResidual(Model, Edge, Mesh, &
Quant, Perm) RESULT(Indicator)

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator
INTEGER :: Perm(:)

END FUNCTION EdgeResidual

FUNCTION BoundaryResidual(Model, Edge, Mesh, &
Quant, Perm, Gnorm) RESULT(Indicator)

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Gnorm
INTEGER :: Perm(:)

END FUNCTION BoundaryResidual
END INTERFACE

After these fixed declarations we may proceed normally by defining the local variables, allocate memory
for local tables, integrate the stiffness matrix, set boundary conditions, and solve the problem. Error esti-
mation and adaptive mesh refinements are then performed by calling the subroutineRefineMesh , which
should appear in the code right after the functionDefaultSolve .

Norm = DefaultSolve()

IF (ListGetLogical(Solver % Values, ’Adaptive Mesh Refine ment’)) &
CALL RefineMesh(Model, Solver, Potential, Permutation, &

InsideResidual, EdgeResidual, BoundaryResidual)

The functionsInsideResidual , EdgeResidual andBoundaryResidual defined in the inter-
face block should finally be contained inMySolve , and return the values of the error indicators described
in the previous section.

As an example, suppose that we are using linear triangles or tetrahedra for solving the Poisson equation.
In this case it holds∇ · qh = 0 on each elementE, and the contribution of the firtst term in (7.1) is simply

InsideResidual= hE

√
∫

E

|f |2 dΩ (7.13)

The function that computes the value of the inside redisual could be written as follows.

FUNCTION InsideResidual(Model, Element, Mesh, &
Quant, Perm, Fnorm) RESULT(Indicator)

IMPLICIT NONE
TYPE(Model_t) :: Model

c© CSC – IT Center for Science

7. Adaptive Solution 40

INTEGER :: Perm(:)
REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
TYPE(Mesh_t), POINTER :: Mesh
TYPE(Element_t), POINTER :: Element

TYPE(GaussIntegrationPoints_t), TARGET :: IP
TYPE(ValueList_t), POINTER :: BodyForce
REAL(KIND=dp) :: f, hK, detJ, Basis(MAX_NODES), &

dBasisdx(MAX_NODES,3), ddBasisddx(MAX_NODES,3,3), &
Source(MAX_NODES)

LOGICAL :: stat
INTEGER :: n

Indicator = 0.0d0
Fnorm = 0.0d0
hK = element % hK

BodyForce => GetBodyForce(Element)
Source = GetReal(Element, ’Source’)

IP = GaussPoints(Element)
DO n = 1, IP % n

stat = ElementInfo(Element, Nodes, IP % u(n), IP % v(n), &
IP % w(n), detJ, Basis, dBasisdx, ddBasisddx, .FALSE.)

f = SUM(Source * Basis)
Fnorm = Fnorm + f ** 2 * detJ % IP % s(n)
Indicator = Indicator + f ** 2 * detJ * IP % s(n)

END DO

Fnorm = SQRT(Fnorm)
Indicator = hK * SQRT(Indicator)

END FUNCTION Inside Residual

For the boundary and edge residuals refer to the examplePoisson.f90 in the tutorial manual of Elmer.

c© CSC – IT Center for Science

Chapter 8

Matrix manipulation utilities

8.1 Dirichlet conditions

In finite element method there are two kinds of boundary conditions. The natural boundary condition that
may be set by only affecting the r.h.s. of the equation and theessential boundary conditions where also the
matrix needs to be tampered. The latter ones are also called Dirichlet boundary conditions. The natural
boundary conditions are often more problem specific so the user is directed to the Models Manual for more
details on them.

Technically the Dirichlet conditions in ElmerSolver are set through manipulating only the values in the
matrix rather than its structure. To be more specific, in setting the degree of freedom with indexi the i:th
row of the matrix is set zero, except for the diagonal which isset to be unity. When also the r.h.s. of the
equation is set to the desired value, the solution will satisfy the Dirichlet condition. The Dirichlet conditions
may be set to existing boundary elements. Additionally Dirichlet conditions may be set for set of nodes that
are created on-the-fly.

Usually the Dirichlet conditions are given at objects whichhave a lower dimension than the leading
dimension in the geometry, i.e. for 3D problems values are usually fixed only at 2D faces. However, it is
possible also to set the conditions for the bodies also. Thismay be particularly useful when the condition is
only conditional.

There is a handicap with this procedure which is that the symmetry of the original matrix will be lost.
This may affect the performance of linear system solvers. Toensure to symmetricity of the matrix equation
there are two remedies. Also the column may be zeroed and the known values may be subtracted from the
r.h.s. The second option is to eliminate all the rows and columns related to the known values. This reduces
the size of the matrix but of has an additional cost as a secondary matrix is created and the values are copied
into it.

Sometimes the Dirichlet conditions should depend on other variables in a way which defined whether or
not to set the conditions at all. For example, the temperature at a boundary should be defined only if the flow
is inside the boundary. For outflow the definition of the temperature is not physically justified. For this kind
of purposes the user may give a condition that is a variable initself. If this variable is positive the Dirichlet
condition is applied,

8.2 Periodic conditions

Periodic BCs may be considered to be a special case of Dirichlet conditions where the fixed value is given as
linear combination of other unknown values. The periodic boundary conditions in Elmer are very flexible.
In fact they may even be antiperiodic.

41

8. Matrix manipulation utilities 42

8.3 Setting and computing nodal loads

Similarly to the Dirichlet values one may also set nodal loads i.e. entries for the r.h.s. of the matrix equation.
Generally there are good reasons to avoid the use of nodal loads as they are mesh dependent. There are,
however, some uses also for setting nodal loads. For example, in multiphysical couplings sometimes it may
be a good solution to transfer the forces directly in nodal form as this is the most accurate way to compute
the forces resulting from the discrete system.

It is possible to evaluate the nodal loads after the solutionis computed. This however, requires that the
original matrixA0 that has not been eliminated for Dirichlet conditions is saved. Then the the nodal forces
may be computed from

f = A0x − b. (8.1)

It should be noted that the nodal value is mesh dependent. Forheat equation it will be in Watts and for
electrostatic equation in Coulombs, for example.

8.4 Active and passive elements

In Elmer it is possible to define certain areas of the modeled geometry passive during the solution. This
feature allows also deactivating and reactivating of the elements. An element being passive means that its
contribution is not included into the global matrix equation. One could, for example, model two separate
bodies heated with different heating power, and connect them with a third structure only after suitable time
has elapsed. This all could be modeled within a single simulation.

The geometry of the whole system is meshed as usual, and the passive elements are only omitted from
the equations. The passive definition is done solverwise andelementwise. The former means that, eg.,
the temperature may be passive and the displacements activeat the same element. The passive property of
elements is defined with a real valued parameter with the nameconstructed from the name of the variable
followed byPassive in theBody Force section. When the parameter obtains a value greater than zero
the element is passive.

8.5 Keywords for Matrix manipulation

Solver solver id

Linear System Symmetric Logical True
Make the matrix symmetric by eliminating the known values from the r.h.s and zeroing the matrix
entries.

Before Linsolve "EliminateDirichlet" "EliminateDirichlet"
Creates a secondary matrix with a reduced size by eliminating Dirichlet conditions and passing
this to the linear system solver.

Calculate Loads Logical True
This keyword activates the computation of nodal loads. The resulting values will be saved to
variable which is derived from the primary variable by adding the suffixLoads to it.

Exported Variable i Varname Loads
One may reserve the space for the load variable also explicitely by using this keyword. This may
be needed if there is a dependency between variables that is needed before the load variable is
created.

Boundary Condition bc id

Target Boundaries(n) Integer
The set of boundaries for which the Dirichlet conditions will be applied on.

Target Nodes(n) Integer
Sets point conditions on-the-fly. These points refer to the obsolute indexing of the nodes.

c© CSC – IT Center for Science

8. Matrix manipulation utilities 43

Target Coordinates(n,DIM) Real
Ccoordinate values which are transformed into nodal indexes corresponding to the nearest nodes
at the time of first call. Target groups defined byTarget Boundaries , Target Nodes ,
andTarget Coordinates should not reside in the same boundary condition definition.

Varname Real
Each variable which has an equation that is solved for, may beset by giving its value at the
boundary conditions section. If the variables are not listed in the keyword listing the user shoul
also define the type which isReal .

Varname i Real
For multicomponent fields the Dirichlet condition may be setto each field separately.

Varname Condition Real
The Dirichlet condition related to the variable is set active only if the condition is positive.

Varname Load Real
Sets the goven value to the r.h.s. of the matrix equation related to the solution of the variable.
Note that this value is a nodal quantity. The nodal loads are given exactly as the Dirichlet
conditions except that a stringLoad is attached to the name of the variable.

The following keywords in the boundary condition section are used to control the periodic boundary
conditions.

Periodic BC Integer
This refers to the counterpart of the periodic boundary condition. This means that periodic
boundaries come in pairs, and for the other boundary you onlyneed to give pointer to.

Anti Periodic BC Integer
The system may be also antiperiodic i.e. the absolute value is the same but the sign is different.

Periodic BC Translate(3) Real
The periodic boundary is mapped to the other boundary by three different operations: translation,
rotatition and scaling. This generality is not usually needed and therefore default value is used.
For the translation vector the default is the vector that is obtained when moving in the normal
direction of the first boundary until the target boundary is hit. If this is not desired the user may
give another translation vector using this keyword.

Periodic BC Rotate(3) Real
By default no rotation is performed prior to the mapping of values. This keyword may be used
to give the angles of rotation.

Periodic BC Scale(3) Real
By default there is no scaling performed prior to the mappingof values. This keyword may be
used to give a scaling vector if this is desired.

Periodic BC Variable Logical True
The user should define the variables that are to be periodic innature. This is done by attaching
their names into logical expressions following the stringPeriodic BC .

Body Force body force id

Varname Real
The setting of Dirichlet conditions for the whole body follows the same logic as for the bound-
aries. When the body force is assigned to a body the values will be fixed as defined.

Varname Load Real
Sets the goven value to the r.h.s. of the matrix equation related to the solution of the variable.
Note that this value is a nodal quantity. The nodal loads are given exactly as the Dirichlet
conditions except that a stringLoad is attached to the name of the variable.

Varname Passive Real
If this variable obtains a positive value the element is set passive and assembled for. Note that it
is not possible to control components of vector valued variables separately.

c© CSC – IT Center for Science

Chapter 9

Miscallenous options

9.1 Solver activation

There is a large number of different ways how solvers need to be activated and deactivated. Mostly there
needs are related to different kinds of multiphysical coupling schemes. In the solver section one may give
the following keywords.

Exec Solver String
The options arenever, always, before timestep, after timestep, bofore all ,
after all, before saving, after saving . If nothing else is specified the solver is
called every time in its order of appearance. The saving instance refers to the one defined byOutput
Intervals and used to save the results.

Exec Interval Integer
This keyword gives an interval at which the solver is active.At other intervals the solver is not used.

9.2 Options for variable names

Sometimes one wants to give rename the components of the primary variable. This may be done in defining
the component names in the brackets, for example.

Variable = Flow[Velo:2 Pres:1]

Decleares that variableFlow consists ofVelo with two components andPres with one component. If the
number of components is 2 or 3 the variable will be treated as avector in the ElmerPost files.

If one does not require output for a given variable one may declear it with the-nooutput option e.g.

Variable = -nooutput Dummy

If one wants to decleare the number of dofs of the variable Onemay also use the-dofs option to define
the number of components in a variable e.g.

Variable = -dofs 3 Flow

These different options should not be fully mixed.

44

Chapter 10

Compilation and Linking

10.1 Compiling the whole package

For complete up-to-date compilation instructions look at the Elmer web pages athttp:www.csc.fielmer .
Elmer distribution comes in several different modules. Each of these may be compiled using the config-

ure script followed by a make command. Below is a possible compilation strategy in the Unix system.

#!/bin/sh -f
replace these with your compilers:
export CC=gcc
export CXX=g++
export FC=g95
export F77=g95

modules="matc umfpack mathlibs elmergrid meshgen2d eio hu titer fem"
for m in $modules; do

cd $m ; ./configure --prefix=/opt/elmer && make && make inst all && cd ..
done

10.2 Compiling a user defined subroutine

The elmerf90 command is provided to help compiling your own solvers, it isa wrapper script to the
compiler that was used to compile the elmer that is in thePATH.

elmerf90 -o MySolver MySolver.f90

In the MinGW system in Windows the suffix.dll should preferably be used

elmerf90 -o MySolver.dll MySolver.f90

After successful compilation, the filemysolver.dll is to be found in the local directory. In the
filename declaration of theProcedure -keyword in solver input file, the suffix.dll can be omitted

Solver 1
Procedure = "mysolver" "subroutineName"
...

End

45

Chapter 11

Basic Programming

11.1 Introduction

The Elmer distribution contains a large set of different solvers and also the possibility to declare dependence
of material properties or boundary conditions on certain variables (e.g., using the MATC language). Never-
theless, there always may occur certain physical problems that are too difficult to be handled via the solver
input file. Such problems can be coped by introducing new userfunctions or even complete new solvers.
Elmer is very flexible if certain models have to be added by theuser providing her/his own code.

This chapter shall provide a brief introduction to basic programming of user functions as well as solvers
that can be added to Elmer. This will be done by mainly using certain examples and explaining the program-
ming steps occurring in these.

The Elmer Solver source is written in the programming language Fortran 90. Since the Elmer Solver
binaries are compiled as shared objects, it is sufficient to just newly compile the code contributed by the user
as an executable of a shared object (.so in UNIX and .dll in Windows) that dynamically is linked to the
rest of the distribution. In order to provide Elmer with the needed information to be able to load an external
function or solver, the following entry in the solver input file (suffix .sif) has to be given:

Procedure "filename" "procedure"

Where the filefilename is the above mentioned executable that should contain the Fortran 90 subroutine
or functionprocedure . The file filename should reside in the same directory where the solver input
file is. Else, the relative or absolute path to that file shouldbe added in front of the entryfilename .

11.2 Basic Elmer Functions and Structures

In order to provide a better understanding for the followingmainly example-based explanation some of the
most often needed functions and routines provided by Elmer shall be discussed in this section. Most of these
routines and functions are defined in the Fortran 90 moduleDefUtils . It has to be included in the code
provided by the user giving the keyword

USE DefUtils

It is important to notice that – due to the nature of the FiniteElement Method – the basic data structure
in the Elmer Solver is the single element, rather than singlepoints. That simplifies data manipulation in
solver subroutines, but makes things a little bit more difficult if dealing with the coding of pointwise defined
boundary and initial condition as well as body forces and parameter functions. In the Elmer Solver the type
Element_t contains information on elements.

46

11. Basic Programming 47

11.2.1 How to Read Values from the Input File

In the Elmer Solver the entries of each section of the solver input file – such as material, body force and
initial condition – are accessed via pointer of the defined data typeValueList_t , further referred to as
“list”. A list provides access to all the information that has been passed to the Elmer Solver from the solver
input files, related to the specific section.

The principal connection between the solver input file and the access from a user function is depicted in
Fig. 11.1

 Variable = "MyVar"

Fortran 90 code (*.f90):

SUBROUTINE MySolver(Model,Solver,dt,Transient)

 LOGICAL :: Transient

 IMPLICIT NONE

 TYPE(Solver_t) :: Solver
 Type(Model_t) :: Model

 REAL(KIND=dp) :: dt

 !local variables
 TYPE(ValueList_t), POINTER :: listsol
 CHARACTER(LEN=MAX_NAME_LEN) :: varname

 varname = GetString(listsol,’Variable’,GotIt)
 !get keyword Variable

 listsol => GetSolverParams()
 !get list on Solver Section

 LOGICAL :: GotIt

 IF (.NOT.GotIt) THEN
 CALL FATAL(’MySolver’,’Variable not found’)
 END IF

END SUBROUTINE MySolver

...

Solver 1
 Equation = "Poisson"

 Linear System Solver = "Direct"
 Steady State Convergence Tolerance = 1e−06
End

solver input file (*.sif):

Header
 Mesh DB "." "mymesh"
End

Simulation
 Coordinate System = "Cartesian 2D"
 Coordinate Main (3) = 1 2 3

End

Body 1
 Equation = 1
 Body Force =1
End

Body Force 1
 Source = Real 1
End

Equation 1
 Active Solvers (1) = 1
End

Solver 1
 Equation = "MyEquation"

 Output Intervals(1) = 1
 Simulation Type = Steady State

 Steady State Max Iterations = 1

 Post File = "myresult.ep"
 Output File = "myresult.dat"

END
 Steady State Convergence Tolerance = 1E−06

 Procedure = "Poisson" "PoissonSolver"
 Variable DOFs = 1

End

 MyVar=0

Boundary Condition 1

 Linear System Solver = "Direct"

 Procedure = "File" "MySolver"
 Variable DOFs = 1

 Variable = "MyVar"

 Target Boundaries (4) = 1 2 3 4

 Variable = "MyVar"

Figure 11.1: Scheme of the access of structures in the solverinput file from a Fortran 90 user subroutine.
The example shows, how a string is read in from theSolver section.

How to Access Different Sections

The following table shows the definition of the functions defined in the moduleDefUtils to provide the
correct list for parameters and constants concerning the simulation and solvers

function corresponding section

GetSimulation() Simulation
GetConstants() Constants
GetSolverParams() Solver 1,...

For instance, the following source code lines provide access to the entries in the simulation section of the
solver input file

c© CSC – IT Center for Science

11. Basic Programming 48

! variable declaration for pointer on list
TYPE(ValueList_t), POINTER :: Simulation
...
! assign pointer to list
Simulation => GetSimulation()
...

Lists that provide information connected to a certain element are

function corresponding section

GetMaterial(Element, Found) Material 1,...
GetBodyForce(Element, Found) Bodyforce 1,...
GetEquation(Element, Found) Equation 1,...
GetBC(UElement) Boundary Condition 1,...

In the first three of these functions shown above the optionalvariableFound of type LOGICAL is set to
.TRUE. upon successful search in the solver input file. Hence, it canbe used for error handling. The argu-
mentsElement andUElement are of typeElement_t . If writing a solver, the current element is known
and hence can directly be passed to the functions listed above. Else, this argument may also be omitted.
However, Elmer Solver needs to have the information upon theelement in order to inquire the number of the
material/bodyforce/equation/boundary condition section from the solver input file. Hence, if this function
argument is dropped, Elmer Solver falls back to the structure CurrentModel % CurrentElement ,
which by the active solver has to be assigned to the address ofthe current element (see section 11.4).

The functions for input of different values from the solver input file need the assigned pointer to the
corresponding to the specific section.

Reading Constants from the Solver Input File

The following value types are defined for the solver input file:

Value in Input File Variable in Elmer Solver

Real Real(KIND=dp)
Integer INTEGER
Logical LOGICAL
String CHARACTER(LEN=MAX_NAME_LEN)

File CHARACTER(LEN=*)

The defined interface of such a function is

FUNCTION FunctionName(List, Name, Found) Result(x)
TYPE(ValueList_t), POINTER :: List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found

The arguments have the following purpose

List List from which the value has to be read. This pointer has to beobtained by one
of the previously introduced functions

Name The keyword in the particular section for the value
Found Optional boolean variable that contains the value.TRUE. upon successful read

in

The type of the returned of value,x , is depending on the function. The following functions are declared in
theDefUtils module:

• A value of typeREALis read in using the function

c© CSC – IT Center for Science

11. Basic Programming 49

REAL(KIND=dp) :: r
...
r = GetConstReal(List, Name, Found)

• A variable of typeINTEGERis read in using the function

INTEGER :: i
...
i = GetInteger(List, Name, Found)

• A string is read into a user function or solver by the following code line

CHARACTER(LEN=MAX_NAME_LEN) :: str
...
str = GetString(List, Name, Found)

It is important to note that these routines are only meant forreading in constant values. Consequently, these
values must not be dependent on other variables.

Reading Mesh-values from the Solver Input File

The previously introduced functionGetConstReal is defined for reading in a constant value of type
REAL(KIND=dp) . In the case if values have to be obtained for nodes of an element defined on the mesh
(e.g., an initial condition, a boundary condition or a material parameter), the following function has to be
used

FUNCTION GetReal(List, Name, Found, UElement) RESULT(x)
TYPE(ValueList_t), POINTER :: List
CHARACTER(LEN=*) :: Name
LOGICAL, OPTIONAL :: Found
TYPE(Element_t), OPTIONAL, TARGET :: UElement
REAL(KIND=dp) :: x(CurrentModel % CurrentElement % Type % N umberOfNodes)

The returned value,x , is a one-dimensional array of typeREAL(KIND=dp) with entries for every node of
the either given elementUElement or alternatively the default structureCurrentModel % CurrentElement .
For instance, reading in the material parameterViscosity from an already assigned pointer of type
ValueList_t for a given element,Element , is done by the following code lines

REAL(KIND=dp), ALLOCATABLE :: viscosity(:)
INTEGER :: NoNodes
TYPE(ValueList_t), POINTER :: Material
TYPE(Element_t), POINTER :: Element
LOGICAL :: Found
...
allocate viscosity , set pointers Material and Element
...
NoNodes = GetElementNOFNodes(Element)
...
viscosity(1:NoNodes) = GetReal(Material, ’Viscosity’, F ound, Element)

The user has to make sure that the array that later contains the nodal values is of sufficient size. This, for
instance, can be guaranteed by allocating it to the maximal occurring number of nodes for an element in the
model

ALLOCATE(viscosity(CurrentModel % MaxElementNodes))

c© CSC – IT Center for Science

11. Basic Programming 50

Physical Time as Argument of User Function

If a user function needs physical time as an input, it can be passed as an argument. For instance, if a boundary
condition for the normal component of the velocity would have the physical time as the input variable, the
function call in the solver input file then would look as follows (see section 11.3 for more details on user
functions)

Boundary Condition BCNo
Name = "time_dependent_outlet"
Target Boundaries = BoundaryNo
Normal-Tangential Velocity = True
Velocity 2 = 0.0
Velocity 1

Variable Time
Real Procedure " executable" "timeOutletCondition"

End
End

Here the entriesBCNo andBoundaryNo have to be replaced by the correct boundary condition and bound-
ary target number. The fileexecutable should contain the compiled user functiontimeOutletCondition .

11.2.2 How to Communicate with Structures Inside Elmer Solver

Often it is necessary to get information from inside the Elmer Solver, such as mesh coordinates or field
variables associated to another solver procedure. If writing a solver subroutine, all information of that kind
is accessible via the typeTYPE(Solver_t) :: Solver . In the case of a user function (boundary
condition, initial condition, material parameter), the default structureCurrentModel % Solver has to
be used.

Inquiring Information on the Element

As mentioned earlier, most of the pre-defined functions and subroutines inside Elmer Solver apply on the
whole element rather than on single nodes. Information on elements can be accessed via the pre-defined
typeElement_t . We list the functions/subroutines for the mostly needed purposes:

• Setting the active element (bulk):

TYPE(Element_t), POINTER :: Element
Type(Solver_t), Target :: Solver
INTEGER :: ElementNumber
...
Element => GetActiveElement(ElementNumber)

The argumentSolver is optional. If it is not given,CurrentModel % Solver is used. This
function also automatically sets the pointerCurrentModel % CurrentElement to the element
with the given element numberElementNumber . This is important if sub-sequentially called func-
tions rely on this default value to be set.

The total number of active bulk elements for a specific solveris to be inquired using the valueSolver
% NumberOfActiveElements .

• Setting the active element (boundary):

TYPE(Element_t), POINTER :: BoundaryElement
INTEGER :: ElementNumber
...
BoundaryElement => GetBoundaryElement(ElementNumber)

c© CSC – IT Center for Science

11. Basic Programming 51

This routine also sets the structureCurrentModel % CurrentElement to the boundary ele-
ment.

In contrary to the domain (i.e., bulk) it is a priory not knownwhich boundary element is part of a
boundary condition of a specific solver. This information may be obtained using the function

Type(Element_) :: BoundaryElement
LOGICAL :: IsActiveBoundary
...
IsActiveBoundary = BoundaryElement(BoundaryElement,So lver)

where both arguments are optional. If they are omitted, Elmer Solver takes the valuesCurrentModel
% CurrentElement andCurrentModel % Solver , respectively. The boundary element num-
ber,ElementNumber may vary between 1 and the maximum value

Solver % Mesh % NumberOfBoundaryElements

• Inquire number of nodes in an element:

INTEGER :: N
TYPE(Element_t) :: Element
...
N = GetElementNOFNodes(Element)

The argumentElement is optional. The default value isCurrentModel % CurrentElement

• Get nodal coordinates for element:

TYPE(Nodes_t) :: ElementNodes
TYPE(Element_t) :: Element
TYPE(Solver_t) :: Solver
...
CALL GetElementNodes(ElementNodes, Element, Solver)

The argumentsElement andSolver are optional. The default values areCurrentModel %
CurrentElement andCurrentModel % Solver , respectively. The argumentElementNodes
is of the pre-defined typeNodes_t . The different components of the coordinates for the i-th node
can be accessed by

REAL(KIND=dp) :: Xcoord, Ycoord, Zcoord
...
Xcoord = ElementNodes % x(i)
Ycoord = ElementNodes % y(i)
Zcoord = ElementNodes % z(i)

They correspond to the axes of the defined coordinate system in the solver input file.

• Get local coordinates of thei -th node for assigned element:

REAL(KIND=dp) :: U, V, W
TYPE(Element_t), POINTER :: Element
INTEGER :: i
...
U = Element % Type % NodeU(i)
V = Element % Type % NodeV(i)
W = Element % Type % NodeW(i)

c© CSC – IT Center for Science

11. Basic Programming 52

Local coordinates are corresponding to the position insidethe prototype element that is used inside
the Elmer Solver. They are important if parameter values have to be obtained by summation over the
basis functions.

• Get normal vector at thei -th node of the assigned boundary element:

REAL(KIND=dp) :: U, V, Normal(3)
TYPE(Element_t), POINTER :: BoundaryElement
LOGICAL :: CheckDirection
...
U = BoundaryElement % Type % NodeU(i)
V = BoundaryElement % Type % NodeV(i)
Normal = NormalVector(BoundaryElement, Nodes, U, V, Check Direction)

The function needs the boundary element as well as the local coordinates of the point, where the sur-
face (edge) normal shall be evaluated. The optional last argument,CheckDirection , is a boolean
variable. If set to.TRUE. , the direction of the normal is set correctly to the rules given in section
11.3.2. The surface normal is returned in model coordinatesand is of unity length.

Inquiring Nodal Values of Field Variables

Nodal values for an element of a scalar variables are read by the subroutine

SUBROUTINE GetScalarLocalSolution(x,name,UElement,US olver)
REAL(KIND=dp) :: x(:)
CHARACTER(LEN=*), OPTIONAL :: name
TYPE(Solver_t) , OPTIONAL, TARGET :: USolver
TYPE(Element_t), OPTIONAL, TARGET :: UElement

The returned value is an array containing the nodal values ofthe variablename. If this variable name is not
provided, it is assumed that the corresponding solverUSolver has only one variable with a single degree
of freedom. If the optional parametersUSolver andUElement are not provided, then the default values
CurrentModel % Solver andCurrentModel % CurrentElement , respectively, are used.

For instance, the following code lines read in the nodal element values for the variableTemperature
(from the heat solver)

REAL(KIND=dp), ALLOCATABLE :: localTemp(:)
ALLOCATE(localTemp(CurrentModel % MaxElementNodes))
...
CALL GetScalarLocalSolution(localTemp, ’Temperature’)

In the case of a vector field variable, the analog function
GetVectorLocalSolution has to be used. For instance, if the user wants to read in the local velocity
of an deforming mesh (from the MeshSolver), the following syntax has to be applied

REAL(KIND=dp) , ALLOCATABLE :: localMeshVelocity(:,:)
ALLOCATE(localMeshVelocity(3,Solver % Mesh % MaxElement Nodes)
...
CALL GetVectorLocalSolution(MeshVelocity, ’Mesh Veloci ty’)

Inquiring Values of Field Variables for the Whole Mesh

Sometimes, the user also would like to have values for a field variable of the complete domain accessible.
This is done by assigning a pointer to the variable using the functionVariableGet

VariablePointer => VariableGet(Solver % Mesh % Variables, ’ Variable’)

The argumentVariable has to be replaced by the variable name. The returned pointeris of typeVariable_t .
This type contains the following components

c© CSC – IT Center for Science

11. Basic Programming 53

component purpose

INTEGER, POINTER :: Perm(:) Contains permutations for the variable. Since
Elmer Solver tries to optimize the matrix struc-
ture, the numbering of the nodal values of the
variable usually does not coincide with the num-
bering of the mesh-nodes. The is used to identify
the mesh-node for a variable-entry. Hence, the
field VariablePointer % Perm(i) con-
tains the nodal number of thei -th value of the
field variableVariable.

INTEGER :: DOFs Contains the amount of vector components of the
variable.DOFsis 1 in case of a scalar, 2 or 3 in
case of a two- or three-dimensional vector field.

REAL(KIND=dp), POINTER ::
Values(:)

contains the values of the field variable

For instance, in order to get access to the temperature field (similar as in the example above), the following
code lines may be used

TYPE(Variable_t), POINTER :: TempVar
INTEGER, POINTER :: TempPerm(:)
REAL(KIND=dp), POINTER :: Temperature(:)
INTEGER :: ElmentNo, N
REAL(KIND=dp), ALLOCATABLE :: localTemp(:)
ALLOCATE(localTemp(CurrentModel % MaxElementNodes))
TYPE(Element_t), POINTER :: Element
...
TempVar => VariableGet(Solver % Mesh % Variables, ’Tempera ture’)
IF (ASSOCIATED(TempVar)) THEN

TempPerm => TempVar % Perm
Temperature => TempVar % Values

!!!! stop if temperature field has not been found !!!!
ELSE IF

CALL Fatal(’MyOwnSolver’, ’No variable Temperature found ’)
END IF
...
DO ElementNo = 1,Solver % NumberOfActiveElements

Element => GetActiveElement(ElementNo)
N = GetElementNOFNodes()
NodeIndexes => Element % NodeIndexes
localTemp(1:N) = Temperature(TempPerm(Element % NodeInd exes))

END DO

It is recommended to check whether the pointer to the variable has been assigned correctly. In our little
example the call of the routineFatal would stop the simulation run if the assessment would lead toa
negative result.

Inquiring the Current Time

In certain situations in transient simulations the physical time might be needed in a user function. In Elmer
Solver the physical time is treated as a variable and hence has to be read in using the typeVariable_t

TYPE(Variable_t), POINTER :: TimeVar
Real(KIND=dp) :: Time
...
TimeVar => VariableGet(Solver % Mesh % Variables, ’Time’)
Time = TimeVar % Values(1)

c© CSC – IT Center for Science

11. Basic Programming 54

How to Post Messages

IncludingPRINT or WRITEstatements to stdio in numeric-codes can lead excessive output (large number
of iterations and/or large model sizes) and consequently toa reduction in performance. It is recommended
to use stdio-output routines provided by Elmer Solver, for which to a certain extend the amount of output
can be controlled via the solver input file. The three pre-defined subroutines for output of messages are:

• Info is used for displaying messages (e.g., upon convergence) onthe screen. The syntax is

CALL Info(’FunctionName’,’The displayed message’, level =levelnumber)

The first string shall indicate which function the displayedmessage comes from. The second entry is
a string that contains the message itself. The integer valuelevelnumber indicates the importance
of the message, starting from 1 (most important). The maximum level of messages being displayed
can be determined in the simulation section of the solver input file

max output level = 3

• Warn is used for displaying warnings. Warnings are always displayed and should be used if conditions
in the code occur that might lead to possible errors

CALL Warn(’FunctionName’,’The displayed warning’)

• Fatal is used to terminate the simulation displaying a message. Consequently, it is used in conditions
in the code where a continuation of the computation is impossible

CALL Fatal(’FunctionName’,’The displayed error message’)

Of course the strings do not have to be hard-coded but can be composed during run-time, using theWRITE
command. The string variableMessage is provided for that purpose

WRITE(Message, formatstring) list, of, variables
CALL Info(’FunctionName’,Message, level=3)

The format-string has to be set according to the list of variables.

11.3 Writing a User Function

User functions can be used to provide a pointwise (not element wise!) value for a certain property. They are
used for setting values of material properties inside the domain and/or to set values for certain variables on
boundary conditions at the domain boundary.

The defined interface for a user function looks as follows

FUNCTION myfunction(model, n, var) RESULT(result)
USE DefUtils
IMPLICIT None
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: var, result

... contents of the function
leading to a value for variable result ...

END FUNCTION myfunction

c© CSC – IT Center for Science

11. Basic Programming 55

The function returns the valueresult . If this is supposed to be a nodal value of a material propertyor a
variable condition, the variable type in Elmer has to be realdouble precision, hence,REAL(KIND=dp) .
The first argument passed to the function,model , is of the declared typeModel_t . It is basically the
interface to all information accessible at runtime, such asvariable values, mesh coordinates and boundary
conditions.
The second argument,n, is the integer number of the node for which the function - i.e., the valueresult -
is is evaluated. Through the last argument,var , a value of an input variable on which the result depends is
passed to the function. In the solver input file this variableis indicated using theVariable -keyword. For
instance (see examples later in this chapter), if the user wants to provide the function above with the result
being the density which – in this particular case – depends onthe temperature, the syntax looks as follows

Density = Variable Temperature
Procedure "filename" "myfunction"

Mind that there always has to bean input variable to be given using this keyword. In the case that there is
no need for an input, this may occur as a dummy argument in the function.

11.3.1 User Functions for Domain Properties

In the following we will give an outline of the main issues concerning the preparation of a user function for
a domain property. This might be of use if a material parameter (from material section of the solver input
file), an initial condition (from solver input file initial condition section) or a body force (from solver input
file body force section) of somewhat higher complexity has tobe defined for the domain.

Some basic aspects concerning the syntax of such functions shall be explained by the following exam-
ples:

Example: Viscosity as a Function of Temperature

This example demonstrates the following topics:

• definition of a material property dependent on one input variable

• how to read in a value from the material section of the solver input file

We want to implement the following relation for the dynamic viscosity,µ, of a fluid

µ(T) = µ293K exp

[

C ·
(

293

T
− 1

)]

(11.1)

whereT is the temperature. The parametersµ293K (i.e., the reference viscosity at 293 Kelvin) andC have to
be read into our function from the material section of the solver input file. Thus, the material section looks
as follows:

! Material section (ethanol)
! --------------------------
Material 1

...
Viscosity = Variable Temperature
Procedure "fluidproperties" "getViscosity"
...
Reference Viscosity = Real 1.2E-03
Parameter C = Real 5.72
...

End

The valuesµ293K = 1.2 · 10−3 and C = 5.72 are the numerical values of the parameter occurring in
(11.1) for pure ethanol. The executable containing the function namedgetViscosity will be called
fluidproperties . The header – including the variable declaration – of the function then reads as
follows:

c© CSC – IT Center for Science

11. Basic Programming 56

!-- ---
! material property function for ELMER:
! dynamic fluid viscosity as a function of temperature
!-- ---
FUNCTION getViscosity(model, n, temp) RESULT(visc)

! modules needed
USE DefUtils

IMPLICIT None

! variables in function header
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: temp, visc

! variables needed inside function
REAL(KIND=dp) :: refVisc, C
Logical :: GotIt
TYPE(ValueList_t), POINTER :: material

In order to get the pointer to the correct material-list, we use the functionGetMaterial

! get pointer on list for material
material => GetMaterial()
IF (.NOT. ASSOCIATED(material)) THEN

CALL Fatal(’getViscosity’, ’No material found’)
END IF

We immediately check, whether the pointer assignment was successful. In the case of the NULL-pointer
being returned, the pre-defined procedureFatal will stop the simulation and stdio will display the the
message:(getViscosity): No material-id found
The next step is to read in the numerical values for the parameter:

! read in reference viscosity
refvisc = GetConstReal(material, ’Reference Viscosity’, GotIt)
IF(.NOT. GotIt) THEN

CALL Fatal(’getViscosity’, ’Reference Viscosity not foun d’)
END IF

! read in parameter C
C = GetConstReal(material, ’Parameter C’, GotIt)
IF(.NOT. GotIt) THEN

CALL Fatal(’getViscosity’, ’Parameter C not found’)
END IF

The variableGotIt contains the state of success of the input. In the case of unsuccessful read-in (i.e., the
variableGotIt shows the value.FALSE.), the simulation will be stopped by the routineFatal .
Finally, after a check upon the absolute temperature being larger than zero, the viscosity is computed ac-
cording to equation (11.1)

! compute viscosity
IF (temp <= 0.0D00) THEN ! check for physical reasonable temp erature

CALL Warn(’getViscosity’, ’Negative absolute temperatur e.’)
CALL Warn(’getViscosity’, ’Using viscosity reference val ue’)
visc = refVisc(1)

ELSE

c© CSC – IT Center for Science

11. Basic Programming 57

visc = refVisc * EXP(C * (2.93D02/temp - 1.0D00))
END IF

END FUNCTION getViscosity

In the case of negative absolute temperature, the referencevalue will be returned. The pre-defined routine
Warn will display a specific warning on stdio.

Example: Body Force as a Function of Space

For the use as body force for the solver presented in 11.4 (i.e. heat source distribution for heat conduction
equation), we want to write a function that provides a scalarin the domain as a function of space. This
example demonstrates the following topics:

• definition of a scalar in the domain as function of space in twodimensions

• how to inquire the dimension of the problem

We want to implement the following two-dimensional spatialdistribution for the scalarh:

h(x, y) = − cos(2 π x) · sin(2 π y), x, y ∈ [0, 1] (11.2)

wherex corresponds toCoordinate 1 andy to Coordinate 2 of the solver input file.
Since the function given in (11.2) is dependent on two input variables, the single argument that is able to

be passed to the function is not sufficient. Hence it will justbe used as dummy argument. Consequently, the
user can provide any (existing!) variable as argument in thesolver input file. The header reads as follows

!-- ---
! body force function for ELMER:
! scalar load as function of coordinates x and y
! -cos(2 * pi * x) * sin(2 * pi * y)
!-- ---
FUNCTION getLoad(model, n, dummyArgument) RESULT(load)

! modules needed
USE DefUtils

IMPLICIT None

! variables in function header
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: dummyArgument, load

! variables needed inside function
INTEGER :: DIM
REAL(KIND=dp) :: x, y
Logical :: FirstVisited = .TRUE.

! remember these variables
SAVE DIM, FirstVisited

Further we want to check whether the problem is two-dimensional and hence suitable for our function.
This is done only the first time the function is called, since -hopefully - the dimension of the prob-
lem does not change during all the following calls. The function returning the problem dimension is
CoordinateSystemDimension()

! things done only the first time the function is visited
IF (FirstVisited) THEN

c© CSC – IT Center for Science

11. Basic Programming 58

! check whether we are dealing with a 2d model
DIM = CoordinateSystemDimension()
IF (DIM /= 2) THEN

CALL FATAL(’getLoad’, ’Dimension of model has to be 2d’)
END IF
FirstVisited = .FALSE.

END IF

The next step to inquire the coordinates of the current pointthe function is evaluated for. The structure
model contains that information

! get the local coordinates of the point
x = model % Nodes % x(n)
y = model % Nodes % y(n)

Finally, the result is computed

! compute load
load = -COS(2.0D00 * PI * x) * SIN(2.0D00 * PI * y)

END FUNCTION getLoad

Figure 11.2 shows the result of a simulation using the solverdefined in section 11.4 together with the function
getLoad as body force. The entry in the body force section of the solver input file reads as follows:

Figure 11.2: Result obtained with the routinegetLoad as body force input for the heat conduction solver
presented in 11.4. Thez-coordinate is set proportional to the result obtained in thex-y plane.

Body Force 1
Heat Source

Variable Temp !just a dummy argument

c© CSC – IT Center for Science

11. Basic Programming 59

Real Procedure "load" "getLoad"
End

where the shared object file has been given the nameload . All boundaries are set to adiabatic boundary
condition, i.e.,∇T ·~n = 0. This is possible if – and only if – the integral over the load vector over the whole
domain balances to zero, like in our case. Since no Dirichtlet condition is set, the result is not unique and
contains an undetermined offsetT0.

11.3.2 User Functions for Boundary Conditions

As for the user functions for bulk properties presented in section 11.3.1, the function for a boundary property
is evaluated pointwise. Hence, the identical function interface is used. The major difference between bulk
elements and elements on boundaries are, that the latter canbe associated to more than one body. That is
the case on boundaries between bodies. This is important in such cases where the boundary condition is
dependent on properties inside a specific body to which the boundary is attached. Possible configurations of
boundaries are depicted in Fig. 11.3.

bulk bulk

b) body−body boundary (interface)a) outside boundary

corner point

other body
outside

Figure 11.3: Possible constellations for boundaries and the normal vectors,~n at element nodes. Mind, that
for a body-body interface (case b) the default orientation of the surface normal may vary from element to
element. At boundary points that have a discontinuous first derivative of the surface (i.e. at corners and
edges), the evaluation of the normal at the same point for twoadjacent boundary elements leads to different
surface normals. Parent elements of boundary elements for the specific body are marked as filled.

If the keyword for checking the directions in the functionNormalVector (see section 11.2.2) is set to
.TRUE. , the following rules apply:

• In the case of an outside boundary the surface normal,~n, is always pointing outwards of the body.

• By default on a body-body boundary, the orientation is such that the normal always is pointing towards
the body with lower density,%, which is evaluated by comparison of the values given for thekeyword
Density in the corresponding material sections of the adjacent bodies.

In certain cases, if densities on both sides are either equalor varying functions of other variables, this may
lead to a varying orientation of the surface. This effect andthe effect of different directions of surface
normal for the same point at surface corners and edges is depicted in Fig. 11.3. Whereas the latter effect can
only be dealt with by either producing smooth surfaces or averaging surface normals, the first problem can

c© CSC – IT Center for Science

11. Basic Programming 60

be overcome by providing the keywordNormal Target Body in the solver input file. This keyword
defines the direction of the surface normals for the pre-defined subroutineNormalVector . For instance,
the following sequence fixes the surface normal at boundary condition number 1 to point into body number
2

Boundary Condition 1
Target Boundaries = 1
Normal Target Body = Integer 2

...
End

Example: Idealized Radiation Law for External Heat Transfer

As an illustrative example we want to show how to implement a very idealized radiation boundary condition
for heat transfer. This example explains:

• how to identify the type of boundary according to Fig. 11.3

• how to get material parameters from domain parent elements of the boundary element

• how to identify the local node number in an elment

• how to inquire boundary normals

The net flux into the body at such a boundary shall be approximated by

qn = ε qext − εσ ·
(
T 4 − T 4

ext

)
, (11.3a)

whereText is the external temperature,σ stands for the Stefan-Boltzmann constant andε is the emissivity.
The external heat flux shall be defined as

qext =

{

−I~s · ~n, ~s · ~n < 0,

0, else,
(11.3b)

whereI is the intensity and~s the direction of the incoming radiation vector. The surfacenormal,~n, is
assumed to point outwards the body surface.

Since we are planning to use this boundary condition in connection with the solver presented in section
11.4.2, we have to provide the load vectorl = qn/(cp %) occurring in the force vector of (11.7). This means
that we have to inquire the material parameterscp and% for the parent element from the material section of
the adjacent body.

The header of the function reads as

!-- ---
! boundary condition function for ELMER:
! simplified radiation BC
!-- ---
FUNCTION simpleRadiation(model, n, temp) RESULT(load)

! modules needed
USE DefUtils

IMPLICIT None

! variables in function header
TYPE(Model_t) :: model
INTEGER :: n
REAL(KIND=dp) :: temp, load

! variables needed inside function

c© CSC – IT Center for Science

11. Basic Programming 61

REAL(KIND=dp), ALLOCATABLE :: Density(:), HeatCapacity(:), ExtTemp(:)
REAL(KIND=dp), POINTER :: Work(:,:)
REAL(KIND=dp) :: radvec(3), Normal(3), NormDir, U, V,&

Emissivity, normalabsorbtion, emission, StefanBoltzman n
INTEGER :: DIM, other_body_id, nboundary, nparent,&

BoundaryElementNode, ParentElementNode, istat
Logical :: GotIt, FirstTime=.TRUE., Absorption = .TRUE.
TYPE(ValueList_t), POINTER :: ParentMaterial, BC
TYPE(Element_t), POINTER :: BoundaryElement, ParentElem ent
TYPE(Nodes_t) :: ElementNodes

SAVE FirstTime, Density, HeatCapacity, ExtTemp
!-- ---------------------

The boundary element and the pointer to the list of the corresponding Boundary Condition-entry in the solver
input file are assigned

! -----------------------
! get element information
! -----------------------

BoundaryElement => CurrentModel % CurrentElement
IF (.NOT. ASSOCIATED(BoundaryElement)) THEN

CALL FATAL(’simpleRadiation’,’No boundary element found ’)
END IF

BC => GetBC()
IF (.NOT. ASSOCIATED(BC)) THEN

CALL FATAL(’simpleRadiation’,’No boundary condition fou nd’)
END IF

Thereafter, a case distinction between the two possible constellations in Fig. 11.3 (i.e.,outside or body-body
boundary). A outside boundary is indicated by the value -1 ofBoundaryElement % BoundaryInfo
% outbody . In the case of a boundary-boundary interface the surface normal is supposed to point out-
wards. I.e., the body hosting the parent element is taken theone for whichParentElement % BodyId
does not coincide withBoundaryElement % BoundaryInfo % outbody

other_body_id = BoundaryElement % BoundaryInfo % outbody
! only one body in simulation
! ---------------------------
IF (other_body_id < 1) THEN

ParentElement => BoundaryElement % BoundaryInfo % Right
IF (.NOT. ASSOCIATED(ParentElement))&

ParentElement => BoundaryElement % BoundaryInfo % Left
! we are dealing with a body-body boundary
! and assume that the normal is pointing outwards
! ---
ELSE

ParentElement => BoundaryElement % BoundaryInfo % Right
IF (ParentElement % BodyId == other_body_id)&

ParentElement => BoundaryElement % BoundaryInfo % Left
END IF

! just to be on the save side, check again
! --
IF (.NOT. ASSOCIATED(ParentElement)) THEN

WRITE(Message, *)&

c© CSC – IT Center for Science

11. Basic Programming 62

’No parent element found for boundary element no. ’, n
CALL FATAL(’simpleRadiation’,Message)

END IF

After that procedure the pointerParentElement is set on the adjacent element of the boundary element
inside the body for which the radiation boundary condition is evaluated.

We further need the total number of nodes in the boundary element and the parent element given by
nboundary andnparent , respectively. Also the corresponding number of the boundary node number,n,
in the parent element,ParentElementNode , as well as in the boundary element itself,BoundaryElementNode ,
is evaluated. At the end of this code sequence, the routineGetElementNodes sets the information on the
nodes of the boundary element

! get the corresponding node in the elements
! --
nboundary = GetElementNOFNodes(BoundaryElement)
DO BoundaryElementNode=1,nboundary

IF (n == BoundaryElement % NodeIndexes(BoundaryElementNo de)) EXIT
END DO
nparent = GetElementNOFNodes(ParentElement)
DO ParentElementNode=1,nboundary

IF (n == ParentElement % NodeIndexes(ParentElementNode)) EXIT
END DO

! get element nodes
! -----------------
CALL GetElementNodes(ElementNodes, BoundaryElement)

The needed space for reading material parameter fro the parent element as well as boundary condition
parameters for the boundary element is allocated. In the case of the function being re-visited, we first do a
deallocation, since the values ofnboundary or nparent may change from element to element (hybrid
mesh)

! -----------
! Allocations
! -----------

IF (.NOT.FirstTime) THEN
DEALLOCATE(Density, HeatCapacity, ExtTemp)

ELSE
FirstTime = .FALSE.

END IF
ALLOCATE(Density(nparent), HeatCapacity(nparent),&

ExtTemp(nboundary), stat=istat)
IF (istat /= 0) CALL FATAL(’simpleRadiation’, ’Allocation s failed’)

The following code lines read the values for the parameters associated with the boundary element and the
Stefan-Boltzmann constant from the solver input file

! --------------------------------------
! get parameters from constants section
! and boundary condition section
! --------------------------------------

DIM = CoordinateSystemDimension()
StefanBoltzmann = ListGetConstReal(Model % Constants, &

’Stefan Boltzmann’,GotIt)
IF (.NOT. GotIt) THEN ! default value in SI units

StefanBoltzmann = 5.6704D-08
END IF

c© CSC – IT Center for Science

11. Basic Programming 63

Emissivity = GetConstReal(BC,’Emissivity’,GotIt)
IF ((.NOT. GotIt) .OR. &

((Emissivity < 0.0d0) .OR. (Emissivity > 1.0d0))) THEN
load = 0.0d00
CALL WARN(’simpleRadiation’,’No Emissivity found.’)
RETURN ! no flux without or with unphysical emissivity

END IF

ExtTemp(1:nboundary) = GetReal(BC,’External Temperatur e’,GotIt)
IF (.NOT.GotIt) THEN

WRITE (Message, *) ’No external temperature defined at point no. ’, n
CALL Warn(’simpleRadiation’, Message)
ExtTemp(1::nboundary)= temp

END IF

Work => ListGetConstRealArray(BC,’Radiation Vector’,Go tIt)
IF (GotIt) THEN

radvec = 0.0D00
NormDir = SQRT(SUM(Work(1:DIM,1) * Work(1:DIM,1)))
IF (NormDir /= 0.0d00) THEN

radvec(1:DIM) = Work(1:DIM,1) * Work(4,1)/NormDir
ELSE ! no radiation for weird radiation vector

Absorption = .FALSE.
END IF

ELSE ! no absorption without radiation vector
Absorption = .FALSE.

END IF

If absorption of an incoming radiation vector has to be computed, the surface normal has to be inquired

! ---------------------------------
! get surface normals (if needed)
! ---------------------------------

IF (Absorption) THEN
U = BoundaryElement % Type % NodeU(BoundaryElementNode)
V = BoundaryElement % Type % NodeV(BoundaryElementNode)
Normal = NormalVector(BoundaryElement, ElementNodes, U, V, .TRUE.)

END IF

Thereafter, the needed material parameters are read from the material section of the solver input file that
associated with the body for which the radiation boundary condition is computed

! ---
! get material parameters from parent element
! ---

ParentMaterial => GetMaterial(ParentElement)
! next line is needed, if the consequently read
! parameters are themselves user functions
! ---
CurrentModel % CurrentElement => ParentElement
Density(1:nparent) = GetReal(ParentMaterial, ’Density’ , GotIt)
IF (.NOT.GotIt) Density(1:nparent) = 1.0d00
HeatCapacity(1:nparent) = GetReal(ParentMaterial, ’Hea t Capacity’, GotIt)
IF (.NOT.GotIt) HeatCapacity(1:nparent) = 1.0d00

! put default pointer back to where it belongs

c© CSC – IT Center for Science

11. Basic Programming 64

! --
CurrentModel % CurrentElement => BoundaryElement

Since these material parameters themselves may be given in form of user functions, the default pointer
CurrentModel % CurrentElement has to be set to the parent element upon call of the function
GetReal .

Finally the two parts of the total normal heat flux are evaluated. The external load is obtained by dividing
this Laue by the inquired values forDensity andHeatCapacity .

!------------------------------------
! compute flux and subsequently load
!-----------------------------------

IF (Absorption) THEN
normalabsorbtion = -1.0D00 & ! since normal pointing outwar ds

* Emissivity * DOT_PRODUCT(Normal,radvec)
IF (normalabsorbtion < 0.0d0) &

normalabsorbtion = 0.0d00
ELSE

normalabsorbtion = 0.0d00
END IF

emission = StefanBoltzmann * Emissivity * &
(temp ** 4 - ExtTemp(BoundaryElementNode) ** 4) &
/ (HeatCapacity(ParentElementNode) * Density(ParentElementNode))

load = normalabsorbtion + emission

END FUNCTION simpleRadiation

Figure 11.4 shows the result of the heat conduction solver presented in section 11.4 in combination with
the functionsimpleRadiation as boundary condition on two oppositely directed boundaries (boundary
condition no. 1). Since the radiation vector is aligned withthex-direction and hence perpendicular with
respect to these two boundaries, the absorption part vanishes for one of these boundaries. For the sake of
simplicity, the material parameters%, cp andk have been set to unity. The corresponding entries of the solver
input file for the boundary conditions of the case shown in Fig. 11.4 are:

Boundary Condition 1
Target Boundaries(2) = 1 2
Boundary Type = String "Heat Flux"
External Load

Variable Temp
Real Procedure "radiation_flux.exe" "simpleRadiation"

External Temperature = Real -20.0E00
Radiation Vector(4) = Real -1.0E00 0.0E00 0.0E00 1.0E01
Emissivity = Real 0.5

End

Boundary Condition 2
Target Boundaries = 3
Boundary Type = String "Given Temperature"
Temp = Real 0

End

Boundary Condition 3
Target Boundaries = 4
Boundary Type = String "Adiabatic"

End

c© CSC – IT Center for Science

11. Basic Programming 65

Figure 11.4: Result of the heat conduction solver applying the simplified radiation boundary condition
described in this section. The coordinate directions as well as the number of the corresponding boundary
condition section are shown. The latter can be compared to the solver input file entries shown in this section.

c© CSC – IT Center for Science

11. Basic Programming 66

11.4 Writing a Solver

In Elmer an additional solver may be provided by dynamicallylinked subroutines. The pre-defined interface
of a solver subroutine is

SUBROUTINE mysolver(Model,Solver,dt,TransientSimulat ion)
TYPE(Model_t) :: Model
TYPE(Solver_t) :: Solver
REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation

The first argument,Model , is the same structure also passed to a user function (see section 11.3). The
second argument,Solver , is of typeSolver_t and contains all information upon options set for this
particular solver. The timestep size,dt , and a boolean variable,TransientSimulation , indicating
whether the solver is to be run as a part of a transient (value.TRUE.) or steady state (value .FALSE.)
simulation are further arguments of the solver subroutine.

11.4.1 Structure of a Solver

The well known structure of a linearized partial differential equation (PDE) for the scalarT in the variational
formulation is

Mi j

∂Tj

∂t
+ Ai jTj = Fi, (11.4)

with the mass matrix,Mi j , the stiffness matrix,Ai j and the force vector,Fi.
Time-stepping and the coupled solver iteration – i.e., the steady state or time level iteration of several

solvers of the simulation – is taken care of by the main part ofthe Elmer Solver. The task of the user
supplying a user defined solver subroutine is to linearize aneventually nonlinear PDE and to supply the
Elmer Solver with the element-wise components for the matrices as well as the force vector.

This leads to a principle structure of a user defined solver subroutine as it is depicted in Fig. 11.5. We
further will explain the construction of a user solver subroutine by discussing an example case.

11.4.2 Example: Heat Conduction Equation

In order to provide a simple example, we want to explain how the solution of the purely convective heat
transport equation is implemented in Elmer. This example explains:

• reading solver parameters from the solver input file

• assembly of the local element matrix components for the domain and a von Neumann condition includ-
ing explanation of the most important Elmer Solver routinesneeded for linear system matrix assembly
and solution

• how to deal with non-linear and transient PDE’s

• how to implement Dirichlet boundary conditions

For constant density,%, and heat capacity,cp this equation may be written as

∂T

∂t
−∇ · (k

cp %
∇T) =

h

cp %
, (11.5)

whereT stands for the temperature,k for the heat conductivity andh is the heat source.
The variational formulation of (11.5) reads after partial integration of the conduction term and application

of Green’s theorem
∫

V

∂T

∂t
γi dV +

∫

V

k

cp %
∇T · ∇γi dV =

∫

V

h

cp %
γi dV +

∮

∂V

1

cp %
(k∇T) · ~n
︸ ︷︷ ︸

=qn

γi dA, (11.6)

c© CSC – IT Center for Science

11. Basic Programming 67

subroutine inside
the solver routine

subroutine inside
the solver routine

often provided as

often provided as

ElmerSolver Main

until last timestep

relative change of norms < Steady State Tolerance

Timestepping loop

User Subroutine

Steady state iteration (coupled system)

Initialization

Nonlinear iteration loop

relative change of norms < Nonlinear Tolerance

Domain element loop

Matrix assembly for domain element

until last bulk element

Boundary element loop

Matrix assembly for von Neumann and
Newton conditions at boundary element

until last boundary element

set Dirichlet boundary conditions

solve the system

 or
nonlinear max. iterations exceeded

Figure 11.5: Flowchart of a user defined solver subroutine within Elmer Solver. The grey underlayed area
indicates the tasks of a simulation that are provided by Elmer, whereas the white area contains the flowchart
for the source code of the user subroutine. Arrows pointing into this field indicate needed subroutine/function
calls to Elmer Solver.

c© CSC – IT Center for Science

11. Basic Programming 68

whereγi is the basis-function,V and∂V is the element volume and its enclosing surface, respectively. The
surface normal of∂V is denoted by~n. According to the Galerkin method, the variable is given asT = Tjγj ,
with the sum taken over the indexj. Comparing with (11.4) leads to the matrices and vectors

Mi j =

∫

V

γjγi dV,

Ai j =

∫

V

k

cp %
∇γj · ∇γi dV,

Fi =

∫

V

h

cp %
∇γi dV +

∮

∂V

qn

cp %
︸︷︷︸

=l

γi dA.

(11.7)

Although the external heat flux perpendicular to the surfacenormal, qn(T), in general is a function of
the temperature we want to keep it formal as being prescribed. Hence, only a contribution in the force
vector occurs in our formulation. Mind, that a linear or linearized expression ofqn(T) directly could give a
contribution to the stiffness matrix at the entries corresponding to boundary nodes. In our approach, even in
the case of a linear dependencyqn(T) ∝ T we have to iterate the solution because of our treatment of the
boundary condition.

The header contains the declaration needed variables – we tried to give them self explaining identi-
fiers. Furthermore, allocations of the needed field arrays are done for the first time the subroutine is visited
(checked by the boolean variableAllocationsDone). The variable names of these arrays then have to
be included in theSAVE-statement at the end of the variable declaration block.

SUBROUTINE MyHeatSolver(Model,Solver,dt,TransientSim ulation)

USE DefUtils

IMPLICIT NONE
!-- --------------

TYPE(Solver_t) :: Solver
TYPE(Model_t) :: Model

REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation

!-- --------------
! Local variables
!-- --------------

TYPE(Element_t),POINTER :: Element

LOGICAL :: AllocationsDone = .FALSE., Found, Converged

INTEGER :: n, t, istat, other_body_id, iter, NonlinearIter
REAL(KIND=dp) :: Norm, PrevNorm=0.0d00, NonlinearTol, Re lativeChange

TYPE(ValueList_t), POINTER :: BodyForce, Material, BC, So lverParams
REAL(KIND=dp), ALLOCATABLE :: MASS(:,:), STIFF(:,:), LOA D(:), FORCE(:)
REAL(KIND=dp), ALLOCATABLE :: HeatCapacity(:), HeatCond uctivity(:),&

Density(:), ExternalTemp(:), TransferCoeff(:), HeatFlu x(:)

CHARACTER(LEN=MAX_NAME_LEN) :: BoundaryType

SAVE MASS, STIFF, LOAD, FORCE,&
HeatCapacity, HeatConductivity,&
Density, ExternalTemp, TransferCoeff, HeatFlux, &

c© CSC – IT Center for Science

11. Basic Programming 69

AllocationsDone, PrevNorm
!-- --------------

!Allocate some permanent storage, this is done first time on ly:
!-- ------------
IF (.NOT. AllocationsDone) THEN

N = Solver % Mesh % MaxElementNodes !big enough for elemental arrays
ALLOCATE(FORCE(N), LOAD(N), MASS(N,N), STIFF(N,N), STAT =istat)
IF (istat /= 0) THEN

CALL Fatal(’MyHeatSolve’,&
’Memory allocation error for matrix/vectors.’)

END IF
ALLOCATE(HeatCapacity(N), HeatConductivity(N), Densit y(N),&

ExternalTemp(N), TransferCoeff(N), HeatFlux(N), STAT=i stat)
IF (istat /= 0) THEN

CALL Fatal(’MyHeatSolve’,&
’Memory allocation error for parameter arrays.’)

END IF
AllocationsDone = .TRUE.

END IF

In the next step, information on the nonlinear iteration is being read from the solver section of the solver
input file

!Read in solver parameters
!-------------------------
SolverParams => GetSolverParams()
IF (.NOT. ASSOCIATED(SolverParams))&

CALL FATAL(’MyHeatSolve’,’No Solver section found’)
NonlinearIter = GetInteger(SolverParams, &

’Nonlinear System Max Iterations’, Found)
IF (.NOT.Found) NonlinearIter = 1
NonlinearTol = GetConstReal(SolverParams, &

’Nonlinear System Convergence Tolerance’, Found)
IF (.NOT.Found) NonlinearTol = 1.0D-03

Therafter, the nonlinear iteration loop (outermost loop ofthe white underlayed area in Fig. 11.5) is started
and the linear system solver is initialized (routineDefaultInitialize)

!-- --------------
! Nonlinear iteration loop
!-- --------------

DO iter=1,NonlinearIter
Converged = .FALSE.
WRITE(Message,’(A,I5,A,I5)’) ’Nonlinear iteration no.’ ,iter,&

’ of max. ’, NonlinearIter
CALL INFO(’MyHeatSolve’,Message,level=1)

!Initialize the system and do the assembly:
!--
CALL DefaultInitialize()

The next loop is over all elements in the simulation domain our solver has been assigned to (Solver %
NumberOfActiveElements). The functionGetActiveElement inquires the element associated
with the element numbert . This call at the same time also sets the default pointerCurrentModel %
CurrentElement to that particular element, which is important if subsequently called functions rely on

c© CSC – IT Center for Science

11. Basic Programming 70

this pointer to be set correctly (see section 11.3). After inquiring the number of nodes the nodal material pa-
rameter valuescp →HeatCapacity(1:n) ,k →HeatConductivity(1:n) and% →Density(1:n)
are read in. If one of these parameters is not found (i.e.,Found == .FALSE.), a default value of 1 will
be set in order to avoid division by zero.

!-- --------------
! Assembly for the domain
!-- --------------

DO t=1,Solver % NumberOfActiveElements

! get element info
!-----------------
Element => GetActiveElement(t)
n = GetElementNOFNodes()

! get material parameters
! ----------------------
Material => GetMaterial()
IF (.NOT. ASSOCIATED(Material)) THEN

WRITE(Message,’(A,I5,A)’) &
’No material for bulk element no. ’,t,’ found.’

CALL FATAL(’MyHeatSolve’,Message)
END IF
HeatCapacity(1:n) = GetReal(Material, ’Heat Capacity’, F ound)
IF (.NOT. Found) HeatCapacity(1:n) = 1.0D00
HeatConductivity(1:n) = &

GetReal(Material, ’Heat Conductivity’, Found)
IF (.NOT. Found) HeatCapacity(1:n) = 1.0D00
Density(1:n) = GetReal(Material, ’Density’, Found)
IF (.NOT. Found) Density(1:n) = 1.0D00

In order to call the subroutine taking care of the composition of the element matrices and force vector
(subroutineLocalMatrix), the load vector – in our case the heat source,h → LOAD(1:n) – has to
be read from the body section of the solver input file. In the case of a transient simulation (indicated by
TransientSimulation == .TRUE.) the first order time discretization is accounted for using the
subroutineDefault1stOrderTime . Mind, that also higher order time discretization routineswould be
at hand. The local matrix is added to the global coefficient matrix of Elmer Solver calling the subroutine
DefaultUpdateEquations

!Get load for force vector
!-------------------------
LOAD = 0.0d0
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

LOAD(1:n) = GetReal(BodyForce, ’Heat Source’, Found)

!Get element local matrix and rhs vector:
!--
CALL LocalMatrix(MASS, STIFF, FORCE, LOAD, Element, n,&

HeatCapacity, HeatConductivity, Density, TransientSimu lation)

!Update global matrix and rhs vector from local matrix & vect or:
!-- -------------
IF (TransientSimulation) THEN

CALL Default1stOrderTime(MASS,STIFF,FORCE)
END IF

c© CSC – IT Center for Science

11. Basic Programming 71

CALL DefaultUpdateEquations(STIFF, FORCE)

!-- --------------
END DO ! end Assembly for the domain

!-- --------------

After the bulk elements, the contribution to the coefficientmatrix and the force vector from a von Neu-
mann type of boundary condition has to be taken into account.To this end, we are looping over all bound-
ary elements. Their total number is given bySolver % Mesh % NumberOfBoundaryElements .
The routineActiveBoundaryElement checks whether the previously inquired element is part of a
boundary condition that has been assigned to our solver. If the value 1 is returned from the function
GetElementFamily – i.e. we are dealing with boundary element given at a point element – the ele-
ment also will be skipped, since von Neumann conditions cannot be set on such elements. Finally, the
list-pointer to the associated boundary condition section(GetBC) is set and the local matrices and vectors
are initiated to zero.

!-- --------------
! assembly of von Neumann boundary conditions
!-- --------------

DO t=1, Solver % Mesh % NumberOfBoundaryElements

! get element and BC info
! -----------------------
Element => GetBoundaryElement(t)
IF (.NOT.ActiveBoundaryElement()) CYCLE
n = GetElementNOFNodes()
! no evaluation of von Neumann BC’s on points
IF (GetElementFamily() == 1) CYCLE
BC => GetBC()

FORCE = 0.0d00
MASS = 0.0d00
STIFF = 0.0d00

Since we have to define between different types of boundary conditions, we inquire the contents of a keyword
Boundary Type from the solver input file. If this string is equal to’heat flux’ , the variable with the
name’External Load’ will be read in from the boundary condition listBC. Thereafter, the contribution
to the force vector will be computed by the internal subroutineBoundaryCondition (see later in this
code). Mind, that the external load is not the given heat flux,qn, but its value divided by the heat capacity
and the density,l = qn/(cp %). This has to be taken care of if a numerical value or even a userfunction
is provided in the solver input file (see section 11.3.2). In the case of no boundary type being found or
an unknown string being detected, the natural boundary condition, zero flux perpendicular to the surface,
will be assumed. This is equivalent to the’adiabatic’ boundary condition. In the case of’given
temperature’ the natural boundary condition will be altered by the matrixmanipulation arising from
the Dirichlet boundary condition (see later in this code).

! check type of boundary and set BC accordingly
!--
BoundaryType = GetString(BC,’Boundary Type’,Found)
IF (.NOT. Found) CYCLE
! natural boundary condition
IF ((BoundaryType == ’adiabatic’)&

.OR. (BoundaryType == ’given temperature’)) THEN
CYCLE
! external heat flux

ELSE IF(BoundaryType == ’heat flux’) THEN

c© CSC – IT Center for Science

11. Basic Programming 72

! get external load; mind that this is the heat flux
! divided by the density and heat capacity
LOAD(1:n) = LOAD(1:n) + GetReal(BC,’External Load’, Found)
! do the assembly of the force vector
CALL BoundaryCondition(LOAD, FORCE, Element, n)

ELSE
WRITE(Message,’(A,I3,A)’)&

’No boundary condition given for BC no. ’,GetBCId(),&
’. Setting it to adiabatic.’

CALL WARN(’MyHeatSolve’,Message)
CYCLE

END IF

The boundary element loop is closed after the component system matrix and vector are updated for the
current boundary element.

IF (TransientSimulation) THEN
MASS = 0.d0
CALL Default1stOrderTime(MASS, STIFF, FORCE)

END IF

CALL DefaultUpdateEquations(STIFF, FORCE)
!-- --------------

END DO ! end of assembly of von Neumann boundary conditions
!-- --------------

Before setting the Dirichlet conditions (i.e., given boundary temperatureT) using the subroutineDefaultDirichletBCs()
it is important to finish the element-wise assembly of the Elmer Solver system matrix callingDefaultFinishAssembly

CALL DefaultFinishAssembly()

! call Elmer Solver routine for Dirichlet BCs
! --
CALL DefaultDirichletBCs()

The system is solved by the function callDefaultSolve , which returns the norm,Nn of the solution
vectorTj for then-th nonlinear iteration step. This is needed in order to inquire the change of the solution
between two steps. If the relative norm

R = 2
|Nn−1 − Nn|
Nn−1 + Nn

,

is smaller than the given toleranceNonlinear System Tolerance of the solver section, then the
nonlinear iteration is taken to be converged.

! Solve the system
! ----------------
Norm = DefaultSolve()

! compute relative change of norm
! -------------------------------
IF (PrevNorm + Norm /= 0.0d0) THEN

RelativeChange = 2.0d0 * ABS(PrevNorm-Norm) / (PrevNorm + Norm)
ELSE

RelativeChange = 0.0d0
END IF

c© CSC – IT Center for Science

11. Basic Programming 73

WRITE(Message, *) ’Result Norm : ’,Norm
CALL Info(’MyHeatSolve’, Message, Level=4)
WRITE(Message, *) ’Relative Change : ’,RelativeChange
CALL Info(’MyHeatSolve’, Message, Level=4)

! do we have to do another round?
! -------------------------------
IF (RelativeChange < NonlinearTol) THEN ! NO

Converged = .TRUE.
EXIT

ELSE ! YES
PrevNorm = Norm

END IF
!-- --------------

END DO ! of the nonlinear iteration
!-- --------------

After leaving the nonlinear iteration loop the status of convergence shall be displayed on stdio

! has non-linear solution converged?
! ----------------------------------
IF ((.NOT.Converged) .AND. (NonlinearIter > 1)) THEN

WRITE(Message, *) ’Nonlinear solution has not converged’,&
’Relative Change=’,RelativeChange,’>’,NonlinearTol

CALL Warn(’MyHeatSolve’, Message)
ELSE

WRITE(Message, *) ’Nonlinear solution has converged after ’,&
iter,’ steps.’

CALL Info(’MyHeatSolve’,Message,Level=1)
END IF

In the code lines given above, the user could exchange the routineWarn by Fatal if the simulation should
stop upon failed nonlinear iteration convergence.
Further we have to include the needed local subroutines using the Fortran 90 command

!-- --------------
! internal subroutines of MyHeatSolver
!-- --------------
CONTAINS

The subroutineLocalMatrix composes the local matrices and vectors for a bulk element. The header
with the variable declaration reads as follows

!-- --------------
SUBROUTINE LocalMatrix(MASS, STIFF, FORCE, LOAD, Element , n, &

HeatCapacity, HeatConductivity, Density, TransientSimu lation)
IMPLICIT NONE

!-- --------------
REAL(KIND=dp), DIMENSION(:,:) :: MASS, STIFF
REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD, &

HeatCapacity, HeatConductivity, Density
INTEGER :: n
TYPE(Element_t), POINTER :: Element
LOGICAL :: TransientSimulation

!-- --------------
REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n, 3,3)

c© CSC – IT Center for Science

11. Basic Programming 74

REAL(KIND=dp) :: detJ, LoadAtIP,&
LocalHeatCapacity, LocalHeatConductivity, LocalDensit y

LOGICAL :: Stat
INTEGER :: t,i,j,DIM
TYPE(GaussIntegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes
SAVE Nodes

For the sake of simplicity we use the same identifiers as in thesolver subroutine for the variables in the
argument list.

The next step is to inquire the dimension of the coordinate system. Thereafter, we get the nodes of the
element using the already introduced functionGetElementNodes . Since the values inCurrentModel
% CurrentElement andCurrentModel % Solver have been set, no additional arguments to the
variableNodes have to be set. After we have initialized the local matrix andvector components to zero, the
information upon the Gauss-points needed for integration is inquired by the functionGaussPoints . They
returned variableIP is of typeGaussIntegrationPoints_t .

DIM = CoordinateSystemDimension()

CALL GetElementNodes(Nodes)

STIFF = 0.0d0
FORCE = 0.0d0
MASS = 0.0d0

!Numerical integration:
!----------------------
IP = GaussPoints(Element)

The integration over the element is done by summing over all Gauss-points (from 1 toNIP → IP % n.
The square root of the determinant of the element coordinatesystem metric tensor

√

det(JT · J) →DetJ
as well as the local basis functions,γi → Basis , their derivatives,∇γi → dBasisdx , are evaluated
for every Gauss-point using the functionElementInfo . The variableddBasisddx is just passed as a
dummy argument, since the last argument,getSecondDerivatives is set to.FALSE. . The pointer to
the element,Element , and its nodes,Nodes and the local variables of the Gauss-pointsIP % U(t) , IP
% V(t) andIP % W(t) , are needed as input.

!-- --------------
! Loop over Gauss-points (element Integration)
!-- --------------

DO t=1,IP % n
!Basis function values & derivatives at the integration poi nt:
!-- -----------
getSecondDerivatives = .FALSE.
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx, ddBasisddx, &
getSecondDerivatives)

Thereafter, the material parameters at the Gauss-points are evaluated, using the basis function. For instance,
the local density,%|IP → LocalDensity at the Gauss-point is evaluated as follows:

%|IP = %i γi|IP,

with the sum taken over the nodal indexi. The load vectorh/(% cp)|IP → LoadAtIP is evaluated in a
similar way.

c© CSC – IT Center for Science

11. Basic Programming 75

!Material parameters at integration point:
!--
LocalHeatCapacity = SUM(HeatCapacity(1:n) * Basis(1:n))
LocalHeatConductivity = SUM(HeatConductivity(1:n) * Basis(1:n))
LocalDensity = SUM(Density(1:n) * Basis(1:n))
!The source term at the integration point:
!---
LoadAtIP = SUM(Basis(1:n) * LOAD(1:n)) &

/(LocalHeatCapacity * LocalDensity)

The force vector is obtained by the integral over the element, which is approximated by the sum over all
Gauss-point contributions

Fj =

∫

V

h

% cp

γj DV ≈
NIP∑

t=1

(√
ds2

√

det(JT · J)
h

% cp

γj

)

|IP.

The model coordinate system metric
√

ds2 → IP % s(t) as well as the previously inquired element
coordinate system metric

√

det(JT · J) → DetJ have to be taken into account.
The matrix components are evaluated in complete analogy to the force vector

Mi j =

∫

V

γjγi dV ≈
NIP∑

t=1

(√
ds2

√

det(JT · J)γjγi

)

|IP,

Ai j =

∫

V

k

cp %
∇γj · ∇γi dV ≈

NIP∑

t=1

[√
ds2

√

det(JT · J)
k

cp %
(∇γj · ∇γi)

]

|IP,

where the dot product of the first derivatives of the basis function is implemented using the expression
∇γj · ∇γi → SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))

!-- --------------
! Loop over j-components of matrices and over force vector
!-- --------------

DO j=1,n
FORCE(j) = FORCE(j) + IP % s(t) * DetJ * LoadAtIP * Basis(j)

!-- --------------
! Loop over i-components of matrices
!-- --------------

DO i=1,n
!The mass matrix, if needed
!--------------------------
IF (TransientSimulation) THEN

MASS(i,j) = MASS(i,j)+ IP % s(t) * DetJ * &
Basis(i) * Basis(j)

END IF

!Finally, the stiffness matrix:
!------------------------------
STIFF(i,j) = STIFF(i,j) &

+ IP % s(t) * DetJ * LocalHeatConductivity &

* SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))&
/(LocalDensity * LocalHeatCapacity)

!-- --------------
END DO ! end Loop over i-components of matrices

!-- --------------

c© CSC – IT Center for Science

11. Basic Programming 76

END DO ! end Loop over j-components of matrices and vector
!-- --------------

END DO ! end Loop over Gauss-points (element Integration)
!-- --------------

END SUBROUTINE LocalMatrix
!-- --------------

The last two statements in the code sequence given above close the loop over the Gauss-points and provide
the end statement of the local subroutineLocalMatrix .
The subroutineBoundaryCondition evaluates the contribution to the force vector at the boundary ele-
ments with given external loadl = qn/(cp %) → LOAD

Fj =

∮

∂V

l dV ≈
NIP∑

t=1

(√
ds2

√

det(JT · J)l

)

|IP.

Since this is implemented in complete analogy to the assembly of the force vector in the previously discussed
subroutineLocalMatrix , a detailed explanation can be omitted

!-- --------------
SUBROUTINE BoundaryCondition(LOAD, FORCE, Element, n)

IMPLICIT NONE
!-- --------------

REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD
INTEGER :: n
TYPE(Element_t), POINTER :: Element

!-- --------------
REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n, 3,3)
REAL(KIND=dp) :: detJ, LoadAtIP,&

LocalHeatCapacity, LocalDensity
LOGICAL :: stat, getSecondDerivatives
INTEGER :: t,j
TYPE(GaussIntegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes
SAVE Nodes

!-- --------------

CALL GetElementNodes(Nodes)

FORCE = 0.0d0

!Numerical integration:
!----------------------
IP = GaussPoints(Element)

!-- ---------------
! Loop over Gauss-points (boundary element Integration)
!-- ---------------

DO t=1,IP % n
!Basis function values & derivatives at the integration poi nt:
!-- -----------
getSecondDerivatives = .FALSE.
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx, ddBasisddx, &
getSecondDerivatives)

!The source term at the integration point:

c© CSC – IT Center for Science

11. Basic Programming 77

!---
LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

!-- ---------------
! Loop over j-components of matrices and over force vector
!-- ---------------

DO j=1,n
FORCE(j) = FORCE(j) + IP % s(t) * DetJ * LoadAtIP * Basis(j)

END DO
END DO

!-- --------------
END SUBROUTINE BoundaryCondition

!-- --------------

The Fortran 90 file is completed providing the end statement for the user solver subroutineMyHeatSolver .

!-- --------------
END SUBROUTINE MyHeatSolver
!-- --------------

11.5 Compilation and Linking

As already mentioned, the Elmer Solver is written in Fortran90. The modularity of Elmer implies the use
of modules, which are included by the commandUSEin the header of the user functions.

Since these modules are binaries, they in general are incompatible between different compilers on the
same platform. This is not an issue on commercial UNIX platforms, such as IRIX (Silicon Graphics) and
TRU64 (Alpha Compaq/HP), where the compilers normally are vendor specific. But on Linux as well as
Windows, there is more than one Fortran 90 compiler available - for instance the Absoft and Intel compilers
on Linux. Hence, if the user wants to include dynamically linked code, it is essential that the same compiler
the Elmer Solver source has been compiled with is also used for compilation of the user function.

Let the directory of the installation tree of Elmer be referred to by the system variableELMER_HOME
(e.g. /usr/local/ELMER3.0 on Unix/Linux-systems orC:\Programs\ELMER3.0 on Windows).
The modules that are needed for the compilation are to be found in the subdirectoryinclude of the
ELMER_HOME-tree –$ELMER_HOME/include on Unix/Linux systems. The libraries needed for link-
ing are stored in the subdirectorylib of theELMER_HOME-tree. Mind, that on Unix/Linux platforms the
filename as well as the path are case-sensitive.

11.5.1 IRIX

On an Silicon Graphics IRIX system the subroutine or function in the filemysolver.f90 is compiled by
the command

f90 -I$ELMER_HOME/include mysolver.f90 -o mysolver -shar ed

No additional libraries have to be linked to the shared object. The binary in our example is calledmysolver .

11.5.2 TRU64

The same syntax as for the IRIX compiler applies also to the Compaq Fortran 90 compiler

f90 -I$ELMER_HOME/include mysolver.f90 -o mysolver -shar ed

11.5.3 Linux (Intel Fortran)

The 32-bit Linux version of Elmer Solver has been compiled using the Intel Fortran compiler (see de-
tails underhttp://www.intel.com/software/products/compilers/fl in/). The compiler
call is ifc . From the compiler side in order to obtain a working executable the librarylibimf.so has

c© CSC – IT Center for Science

11. Basic Programming 78

to be linked. If the variableIFC_HOMEcontains the path to the installation directory of the compiler
(e.g.,IFC_HOME = /opt/intel/compiler70 for version 7.0), this library is then to be found under
$IFC_HOME/libimf.so .

On an Intel Pentium IV using RedHat Linux version 9 the following line (given in one line at the com-
mand prompt) compiles the user filemysolver.f90 containing the Fortran 90 code for a user subroutine
or user function and links it to the Elmer Solver library,$ELMER_HOME/lib/libSolver.so , and the
earlier mentioned compiler specific library. The final executable is stored in the filemysolver :

ifc -xW -tpp7 -vec_report0 -w -O -I$ELMER_HOME/include -o m ysolver
mysolver.f90 -shared -L/$ELMER_HOME/lib -L$IFC_HOME/ia 32/lib
-lSolver -limf

The options-xW and-tpp7 are for special optimization of the code for the Pentium IV architecture and
have to be replaced or omitted if compiling on another hardware platform. -w switches off warnings and
-O sets the lowest level of compiler optimization – higher orders usually tend to cause problems and should
be used with care. The-I indicates the include directory for modules, whereas the directories after the-L
contain the libraries that are linked to the compiled object. Mind, that these library-paths always have to
be added at the very end of the command line. The-shared option takes care that dynamically linked
libraries are used.

11.5.4 Windows

The Windows version of Elmer Solver has been compiled using the DECWindows Fortran compiler. The
subroutinemysolver.f90 is compiled from the command line entering

f90 -I%ELMER_HOME%\include -dll mysolver.f90 %ELMER_HOM E%\Solver.lib

It is important that the keywordDLLEXPORTfollowed by the name of the subroutine is inserted immediately
after the interface of the subroutine. In the case of the example given in 11.4.2, this would look as follows

SUBROUTINE MyHeatSolver(Model,Solver,dt,TransientSim ulation)
DLLEXPORT MyHeatSolver
...

After successful compilation, the filemysolver.dll is to be found in the local directory. In the filename
declaration of theProcedure -keyword in solver input file, the suffix.dll can be omitted

Solver 1
Procedure = "mysolver" "subroutineName"
...

End

c© CSC – IT Center for Science

Appendix A

Format of mesh files

In this appendix the format of ElmerSolver mesh files is desribed. The mesh data are arranged into four sepa-
rate files:mesh.header , mesh.nodes , mesh.elements , andmesh.boundary . Here the contents
of these files will be described.

In the mesh files numeric codes are used for distinguishing different element types. For the element type
codes and the node numbering order of the elements see also appendix D.

A.1 The format of header file

The header filemesh.header tells how many nodes and elements are present in the mesh. Thelines of
this file are organized as

nodes elements boundary-elements
nof_types
type-code nof_elements
type-code nof_elements
...

In the first line the numbers of nodes, elements, and boundaryelements are given, while the count in the
second line is the number of different element types used in the mesh. The lines which follow give the
numbers of elements as sorted into different element types.

For example, the following header file

300 261 76
2
404 261
202 76

tells us that the mesh is composed of 300 nodes, 261 elements,and 76 boundary elements. Two different
element types are used in the mesh: there are 261 elements of type code 404 (bilinear quadrilateral) and 76
elements of type code 202 (linear line element).

A.2 The format of node file

The file mesh.nodes contains node data so that each line defines one node. Each line starts with two
integers followed by three real numbers:

n1 p x y z
n2 p x y z

...
nn p x y z

79

A. Format of mesh files 80

The first integer is the identification number for the node. The second integer is a partition index for parallel
execution and is not usually referenced by the solver in the case of sequential runs. If the partition index is
not of particular use, it may be set to be -1 (or 1). The real numbers are the spatial coordinates of the node.
Three coordinates should always be given, even if the simulation was done in 1D or 2D. It is also noted that
the nodes may be listed in any order.

A.3 The format of element file

Themesh.elements file contains element data arranged as

e1 body type n1 ... nn
e2 body type n1 ... nn
...
en body type n1 ... nn

Each line starts with an integer which is used for identifying the element. The integerbody defines the
material body which this element is part of. Then the elementtype code and element nodes are listed. For
example, the element file might start with the following lines:

1 1 404 1 2 32 31
2 1 404 2 3 33 32
3 1 404 3 4 34 33
4 1 404 4 5 35 34
...

A.4 The format of boundary element file

The elements that form the boundary are listed in the filemesh.boundary . This file is similar to the
mesh.elements file and is organized as

e1 bndry p1 p2 type n1 ... nn
e2 bndry p1 p2 type n1 ... nn
...
en bndry p1 p2 type n1 ... nn

The first integer is again the identification number of the boundary element. Next the identification number
of the part of the boundary where this element is located is given. Whether the boundary element can be
represented as the side of a parent element defined in the filemesh.elements is indicated using the two
parent element numbersp1 andp2 . If the boundary element is located on an outer boundary of the body,
it has only one parent element and either of these two integers may be set to be zero. It is also possible that
both parent element numbers are zeros. Finally the element type code and element nodes are listed.

c© CSC – IT Center for Science

Appendix B

Format of result output files

B.1 Format versions

Result files can be written as either ASCII text or in binary. This is controlled by the parameter

Binary output = logical true|false

in the ’Simulation’ section of the .sif file. Default isfalse .
The format of the file is recorded on it’s first line;1 it’s either

BINARY v.e

or

ASCII v

The v at denotes the version number of the format, and thee in the binary format denotes an endianess-
marker; eitherL for little endian orB for big endian.

ElmerSolver can read files of older format versions for restarting, but all new files are written in the
newest formats. The current formats documented here are ASCII version 1 and BINARY version 2.

B.2 General structure

Both binary and ASCII files have the following general structure. In the binary files, the header is separated
from the rest by a null byte. The ASCII format has no such separator.

[File format version line]
[Header]
[<null byte> (binary only)]
[timestep 1]
[timestep 2]
[timestep 3]

.

.

.
[timestep n]

1except for old ASCII files, that lack the format version line,and start with ”!File started at: ”

81

B. Format of result output files 82

B.2.1 The header

The header looks the same for both binary and ASCII (ans is written in ASCII also for binary files):

!File started at: date time
Degrees of freedom:
variable 1 n1 :fs
variable 2 n2 :fs
variable 3 n3 :fs

.

.

.
Total DOFs: nTotDOFs

Number Of Nodes: nNodes

Note that in the list of variables, vectors appear both as vectors (DOF > 1) and separate components (DOF =
1).

B.2.2 Timesteps

For each time step, the time and the values of the variables are stored. For vector variables, the components
are stored as separate variables, typically namedvarname 1, varname 2, etc.

If the parameter

Omit unchanged variables in output = logical true|false

in the ’Simulation’ section of the .sif file is set totrue , only variables whose values has changes since last
time are saved. Default isfalse

For the binary format, the following type specifiers are usedin this document:

<s(str) > Null terminated string of characters.
<i(i4) > 4 byte integer.
<j(i8) > 8 byte integer.
<x(dbl) > 8 byte floating point number.

For this part of the file, the general structure of binary and ASCII files are essantially the same, with just
some minor differences:

c© CSC – IT Center for Science

B. Format of result output files 83

ASCII Binary
Time: ns nt t <Time: (str) ><ns(i4) ><nt(i4) ><t(dbl) >
Variablename_1 <Variablename_1(str) >
[Permutation table p1] [Permutation table p1]
...

...
Variable 1’s values
∀ i s.t.p1(i) > 0.

Var1(p1(i)) <Var1(p1(i))(dbl) >
...

...
Variablename_2 <Variablename_2(str) >
[Permutation table p2] [Permutation table p2]
...

...
Variable 2’s values
∀ i s.t.p2(i) > 0.

Var2(p2(i)) <Var2(p2(i))(dbl) >
...

...
Variablename_3 <Variablename_3(str) >
[Permutation table p3] [Permutation table p3]
...

...
...

...
Variable 3’s values
∀ i s.t.p3(i) > 0.

Var3(p3(i)) <Var3(p3(i))(dbl) >
...

...

nt= time step number,ns= saved time steps number,t= time.

The permutation tables

The permutation tables can be stored in three different ways:

1. As an explicit table:

ASCII Binary
Perm: size np <size(i4) ><np(i4) >
...

... Permutation indexesi
and valuesp(i)
∀ i s.t.p(i) > 0.

i p(i) <i(i4) ><p(i)(i4) >
...

...

size = total size of the permutation table (> 0), andnp = number of positive values in the table.

2. If the permutation table is the same as for the previous variable, there’s no need to store it again. This
case is written as

ASCII Binary
Perm: use previous <−1(i4) ><Pos(i8) >

Pos in the binary format is the position in bytes of the previous table.

3. No permutation table; corresponds to the case

size = np = nNodes , andp(i) = i ∀ i.

This case is stored as

ASCII Binary
Perm: NULL <0(i4) >

c© CSC – IT Center for Science

B. Format of result output files 84

B.3 The positions file

For binary format, a positions file named ’outputfile.pos’ will be created. It contains the positions (in bytes)
of the timesteps and variables in the result file, expressed as 8 byte integers. It has the following format
(nVar = number of variables):

<Endianess-marker(char) >
<nVar (i4) >
<varname 1(str) >
<varname 2(str) >
...
<varname nVar(str) >
<Pos. for Timestep 1(i8) >
<Pos. for variable 1(i8) >
<Pos. for variable 2(i8) >
...
<Pos. for variablenVar (i8) >
<Pos. for Timestep 2(i8) >
<Pos. for variable 1(i8) >
<Pos. for variable 2(i8) >
...
<Pos. for variablenVar (i8) >
<Pos. for Timestep 3(i8) >
<Pos. for variable 1(i8) >
<Pos. for variable 2(i8) >
...
<Pos. for variablenVar (i8) >
...

Note: Positions are saved forall variables for every time step; even if an unchanged variableisn’t saved
to the result file for a time step, it will still have a positionin the .pos file (i.e. the position of where it was
saved last time). Because of this all timesteps has the same size of(nVar +1)×8 bytes. Finding the position
of then:th variable of them:th time step is therefore easy; it’s found at the

(size-of-header+ ((nVar + 1) × (m − 1) + n) × 8) : th

byte in the positions file.

c© CSC – IT Center for Science

Appendix C

Format of ElmerPost Input File

The lines of ElmerPost input file are organized as

nn ne nf nt scalar: name vector: name ...
x0 y0 z0
... ! nn rows of node coordinates (x,y,z)
xn yn zn
group-name element-type i0 ... in
... ! group data and element decriptions
group-name element-type i0 ... in
#time 1 timestep1 time1
vx vy vz p ...
... ! nn rows
vx vy vz p ...
#time 2 timestep2 time2
vx vy vz p
... ! nn rows
vx vy vz p ...

....
#time n timestepn timen
vx vy vz p ...
... ! nn rows
vx vy vz p ...

The header

The file starts with the header line which contains the following information:

• nn : the total number of nodes

• ne : the total number of the elements including boundary elements

• nf : the total number of degrees of freedom, i.e. the total number of scalar unknowns in the model

• nt : the number of time steps for which solution data is stored

• scalar: name vector: name ... : the list which pairs variable names with their types.

The mesh and group data

After the header the node coordinates are given, each coordinate triplet on its own row. Three coordinates
shoud be given even if the model was two-dimensional.

85

C. Format of ElmerPost Input File 86

Group data consist of the following information:

• group-name : the name of the element group (having the same material, body etc.)

• element-type : the numeric code giving the element type; see also AppendixD.

• The numbersi0 ... in are the indeces of the element nodes. The nodes are referenced using the
row indeces of the node coordinate array at the beginning of the file The first node in the array has the
index zero.

It is noted that there is also another level of element grouping that can be employed as follows

#group group1
element-definitions

...
#group group2

element-definitions
...

#endgroup group2
element-definitions

...
#endgroup group1

The number of element groups is not restricted in any way.

The solution data

For each timestep the following solution data is written:

• #time n t time : n is the order number of the solution data set,t is the simulation timestep
number, andtime is the current simulation time.

• The nextnn rows give the node values of the degrees of freedom. The values are listed in the same
order as given in the header with the keywordsscalar: andvector:

An example file

Here a very simple example file is given. There is only one element, three nodes, one variable, and the
solution data are given for a single timestep:

3 1 1 1 scalar: Temperature
0 0 0
1 0 0
0 1 0
#group all
body1 303 0 1 2
#endgroup all
#time 1 1 0
1
2
3

c© CSC – IT Center for Science

Appendix D

Basic element types

The basic element types which ElmerSolver can handle are thelinear and quadratic elements in one, two,
and three dimensions:

• linear (element type code 202) and quadratic (203) elementsin one dimension

• linear (303) and quadratic (306) triangles with three and six nodes, respectively; see Figure D.1

u

v

1 2

3

u

v

1 2

3

4

56

Figure D.1: The linear (303) and quadratic (306) triangularelements.

• bilinear (404) and quadratic (408,409) quadrilaterals with four, eight, and nine nodes, respectively;
see Figure D.2

• linear (504) and quadratic (510) tetrahedrons with four andten nodes, respectively; see Figure D.3

• trilinear (808) and quadratic (820,827) bricks with 8, 20, and 27 nodal points, respectively; see Fig-
ure D.4.

87

D. Basic element types 88

u

v

(0,0)

1 2

34

u

v

(0,0)
(−1,0) (1,0)

(0,−1)

(0,1)

1 2

34

5

6

7

8

Figure D.2: The four-node (404) and eight-node (408) quadrilateral elements.

u

w

v

1 2

4

3

u

w

v

1 2

4

3

5

98

7 6

10

Figure D.3: The linear (504) and quadratic (510) tetrahedron elements.

c© CSC – IT Center for Science

D. Basic element types 89

u

w

v

(0,0,0)

1

2

6

5

4

3

7

8

u

w

v

1

2

6

5

4

3

7

8

9

14

17

13

12

10

18

20

11

15

19

16

Figure D.4: The 8-node (808) and 20-node (820) brick elements.

c© CSC – IT Center for Science

Appendix E

Higher-order finite elements

E.1 Theory

Higher-order finite elements are elements for which the degree of basis functions is higher than1. They
differ from usual Lagrange -type elements in a sense that in addition to nodal basis functions there exists
basis functions, which are associated with edges, faces andinteriors of elements.

• Size modesget their values along some edge of element. They vanish towards other edges and all
nodal points of element. Side modes are defined for all 2d and 3d elements.

• Face modesget their values along some face of element. They vanish towards other faces and all
edges and nodal points of element. Face modes are only definedfor 3d elements.

• Internal modes get their values inside element and vanish towards elementsfaces, edges and nodal
points. They are defined for all 1d, 2d and 3d elements.

Higher-order elements are usually also calledp -elements. Properties for goodp-elements include com-
putational efficiency, at least partial orthogonality and hierarchy of basis functions. With hierarchy we mean
that if basis for some element of some given degreep is Bp for p + 1 it holds thatBp ⊂ Bp+1. Orthogonal
properties of basis functions ensure, that condition number of the global stiffness matrix does not increase as
dramatically as for nodal (Lagrange) elements of higher order. This ensures good numerical stability. Some
good references to higher-order finite elements in literature are [3] by Szabo and Babuska and [4] by Solin
et al.

The usual element interpolant, now denoted asuh,p, is for p elements the sum of nodal, edge, face and
bubble interpolants

uh,p = uv
h,p + ue

h,p + uf
h,p + ub

h,p (E.1)

whereuv
h,p is nodal interpolant as defined before andue

h,p edge,uf
h,p face andub

h,p bubble interpolants. Let
ne be the number of edges andnf number of faces in an element. Edge and face interpolants aredefined as

ue
h,p =

ne∑

i=1

uei

h,p

uf
h,p =

nf∑

i=1

ufi

h,p

Contribution of onep -element to global system is equivalent to that ofh-element. Naturally for higher-
order elements the number of local stiffness matrix elements to contribute to global system is greater, because
of the larger number of basis functions.

Generally usingp -elements yields a better approximation than using normal linear elements. In fact,
convergence forp elements is exponential when there are no singularities inside or on the boundary of the

90

E. Higher-order finite elements 91

solution domain. When there are singular points inside the domain convergence is algebraic. If singular
point is a nodal point convergence is twice that ofh-method, otherwise it is equal to theh-method.

E.2 Higher-order elements in Elmer

Elements implemented in Elmer follow the ones presented in [3]. Now let us define some orthogonal poly-
nomials based on Legendre polynomialsPi(x), i ≥ 0. So called lobatto shape functionsφk are defined
as

φk(ξ) =

√

1

2(2k − 1)
(Pk(ξ) − Pk−2(ξ)), k = 2, 3, . . . (E.2)

wherePk are Legendre polynomials. Functionφ has two of its roots at±1, so now define another function,
ϕi as

ϕk(ξ) =
4φk(ξ)

1 − ξ2
, k = 2, . . . , p (E.3)

Functionsφi and ϕi are used to define higher order elements. Different element shapes and their their
basis functions are defined in appendix E.4. Pyramidal element used in Elmer is based loosely to Devloos
representation in [2].

In Elmer elements with varying polynomial degreep may be used in the same mesh. It is also possible
to combine elements of different types in the same mesh, as defined basis functions for edges and faces
for different element types are compatible with one another. Pyramidal and wedge higher-order elements
to connect tetrahedral and brick elements are also supported. To achieve best possible converge the use of
pyramidal elements in a mesh should be kept to a minimum. Global continuity of higher order finite element
space used is enforced by the solver, when methodElementInfo is used for obtaining basis functions
values for elements.

To combine elements of varying degree in mesh maximum rule isused. Thus if two or more elements
share an edge and have differing polynomial degrees, maximum of edge’s degrees is choosed as degree of
global edge.

To declare polynomial degree greater than one to an element,element definition inmesh.elements
-file needs to be changed. Forp -elements, element definition syntax is

Te[ppe]

whereTe = {202, 303, 404, 504, 605, 706, 808} is the element type andpe ≥ 1 polynomial degree of
element. Settingpe = 0 equals using normal linear basis defined in Elmer. For example, a triangle with
polymial degree4 could be defined in mesh.elements file as follows

303p4

The actual number of degrees of freedom for edges, faces or bubbles of element types is defined by
element polynomial degreep. Each degree of freedom in element is associated with some basis function.
The following table gives the number of degrees of freedom for elements used in Elmer.

c© CSC – IT Center for Science

E. Higher-order finite elements 92

Element Nodes Edges Faces Bubbles

Line 2 - - p − 1

Quadrilateral 4 4(p − 1) - (p−2)(p−3)
2

Triangle 3 3(p − 1) - (p−1)(p−2)
2

Brick 8 12(p− 1) 3(p − 2)(p − 3) (p−3)(p−4)(p−5)
6

Tetrahedron 4 6(p − 1) 2(p − 1)(p − 2) (p−1)(p−2)(p−3)
6

Wedge 6 9(p − 1) - (p−2)(p−3)(p−4)
6

(quad. face) - - 3(p−2)(p−3)
2 -

(triang. face) - - (p − 1)(p − 2) -

Pyramidi 5 8(p − 1) - (p−1)(p−2)(p−3)
6

(quad. face) - - (p−2)(p−3)
2 -

(triang. face) - - 2(p − 1)(p − 2) -

It is worth noting, however, that used Solver (HeatSolve, StressSolve, etc.) used must be modified to
support elements of higher degree. Usually this only consists of making local stiffness matrix and force
vector larger.

A p-element passed to Elmer gaussian point generatorGaussPoints defined in moduleIntegration
returns enough integration points to integrate worst case product of two element basis functions. Here worst
case is integration over two basis functions for whichpm = max{pe, pf , pb}. As gaussian quadrature is
accurate to degreep = 2n − 1, wheren is the number of points used, number of points for each element is
calculated from

n =
2pm + 1

2
(E.4)

and rounded up to nearest integer. To get the final number of points for multiple integrals,n is raised to the
power of element dimension. If integral includes a non-constant factor, i.e

∫

K
αφiφj whereα is a function

of degreek, numerical integration is not accurate and number of integration points needs to be set manually.
Now minimum number of gaussian points to integrate element accurately becomes

n =
min {2pm + k, 3pm} + 1

2
(E.5)

which may again be rounded up to nearest integer and raised topower of element dimension to get the actual
number of integration points.

E.2.1 Boundary conditions

Boundary elements (elements, which lie on a boundary of a computational domain) obey the parity of their
parent element. Basis for elements on boundary is defined so that it represents a projection from high to
low dimension in element space. Thus it is possible to integrate along the boundary of the computational
domain and use values obtained to set Neumann boundary conditions, for example. Treatment of Neumann
and Newtonian is analogous to classical cases presented in many finite element method textbooks, except
for the greater number of basis functions to set.

In Elmer, Newtonial and Neumann boundary conditions are setby integrating over element boundaries
and contributing these integrals to global system. For higher order elements this procedure may also be
used, because higher order functions of boundary elements are given the direction of their parent. Thus
values returned for boundary element are equal to values of their parent elements higher order functions on
element boundary. Indexes for contribution to global system may be acquired from procedure defined in
moduleDefUtils

getBoundaryIndexes(Mesh, Element, Parent, Indexes, indS ize)

which returns global indexes of contribution for boundary elementElement to given vectorIndexes ,
given the finite element meshMesh and parent elementParent of boundary element. Also the size of
created index vector is returned toindSize .

c© CSC – IT Center for Science

E. Higher-order finite elements 93

Nonhomogeneous Dirichlet type boundary conditions, e.g.u = g, on∂T are more difficult to handle for
higher order elements. Even though the nodal values are known, the coefficients of higher order functions
are linear combinations over whole element boundary and thus it cannot be set as a nodal value.

SubroutineDefaultDirichletBCs solves unknown coefficients of higher order functions by min-
imizing boundary problem energy. Problem given is then equivalent to that of standard fem, except that
integrals and functions are calculated along boundary of the computational domain. Generally, from a solver
user point of view, Dirichlet boundary conditions need no extra actions compared to the use of normal
elements.

E.2.2 Some practical aspects

Typical singular points in the solution are points where boundary condition or material parameters change
abruptly or vertex type singularities (such as the inner node of a l-shaped beam or a crack tip). In these cases
convergence of thep-method is twice that ofh-method.

However, it is much more expensive computationally to use high polynomial degree than use many
elements of low degree. Therefore, if possible, mesh shouldbe designed in a way that near nodal singularities
small low degree (p = 1) elements were used. In other parts of the solution domain, where the solution
is smoother, large elements with high polynomial degree areadviced. As Elmer is nothp-adaptive, and
element polynomial degree is not modified by the solver, meshdesign issues must be taken into account for
computational efficiency.

It is well known that for linear problems it is possible reduce the size of the global problem by leaving out
all bubble functions. This procedure is often called condensation. In Elmer condensation for local stiffness
matrix may be done (and is adviced to be done) for linear systems which do not need stabilization. Con-
densation is done by routineCondensateP located in moduleSolverUtils . More precisely routine is
expressed as

CondensateP(N, Nb, K, F, F1)

whereN is the number of all nodal, edge and face degrees of freedom,Nb the number of internal degrees of
freedom,K local stiffness matrix,F local force vector andF1 optional second force vector.

E.3 ElmerSolver services for higher-order elements

This section describes some of the services related top elements, which are included in different parts of the
Solver.

E.3.1 Properties ofp element

For determiningp element properties there are several utilities. First of all it is possible to check if some
element is ap element by checking elementsisPElement flag. If flag is set to true, element is ap-element.
Functions

isPTriangle(Element)
isPTetra(Element)
isPPyramid(Element)
isPWedge(Element)

check if given element isp type triangle, tetrahedron, pyramid or wedge. They are implemented because
usedp reference triangles, tetrahedrals, pyramids and wedges are different than those defined for Lagrange
type elements. For determining maximum degrees of element edges or faces, routines

getEdgeP(Element, Mesh)
getFaceP(Element, Mesh)

return the maximum polynomial degree of elements edges or faces, when givenElement and finite element
meshMesh.

c© CSC – IT Center for Science

E. Higher-order finite elements 94

E.3.2 Fields related top elements

In moduleTypes , typeElement_t has followingp element related fields

INTEGER :: TetraType
LOGICAL :: isPElement
LOGICAL :: isEdge
INTEGER :: localNumber
INTEGER :: GaussPoints

Tetratype defines type of tetrahedralp element. For nontetrahedral elementsTetratype=0 , for
tetrahedral elementsTetratype= {1, 2}.

isPElement defines if an element is of higher-order.isPElement=.TRUE. for p-elements,.FALSE.
otherwise.

isEdge defines if an element is edge element for some higher entity, i.e. edge or face of a 2d or 3d
element. IfisEdge=.TRUE. element is an edge,.FALSE. otherwise.

localNumber defines the local number of boundary elements, that is which local edge or face number
boundary element has in respect to its’ parent element.

GaussPoints defines the number of gauss points for element. Value is calculated fromn = (2pm+1
2)d,

whered is element dimension andpm element maximum polynomial degree.n is rounded up to nearest inte-
ger. VariableGaussPoints has enough quadrature points to integrate function of degree2pm accurately.

When modifying local solver to support higher order elements, the maximum size for some element
stiffness matrix or force vector may be obtained from mesh variableMaxElementDOFs . This variable is
set by the mesh read-in process to the maximum degrees of freedom for single element in mesh.

E.3.3 Higher order basis and element mappings

Basis for higher order elements is defined in modulePElementBase . Module contains also definitions
for φ andϕ -functions and Legendre polynomials. These definitions have been generated to implicit form
with symbolic programMaple [1] up topmax ≤ 20. This mean that no recursion is needed for generation of
values of Legendre polynomials or other lower level components based on them, if usedp < pmax.

Generally higher order basis functions take as their arguments the point in which to calculate function
value and indexingi,m(i, j) or m(i, j, k) depending on the function type. All edge functions take in addition
to these parameters a special optional flag, namelyinvertEdge , which defines if direction of edge basis
function needs to be inverted. In Elmer all edges are globally traversed from smaller to higher node. That is,
let A andB be global node numbers of edges. The varying parameter of edge function then varies between
[−1, 1] from A → B globalle. Inversion is then used for enforcing global continuity of edge basis functions
which are not properly aligned. Edge rule is presented in figure E.3.3

BA

Figure E.1: Global direction of edge. For global node indexesA < B

Most of the face functions take as their optional argument the local numbering based on which face
functions are formed. This local direction is formed according to global numbers of face nodes. There are
rules for triangular and square faces. LetA, B, C be global nodes of a triangular face. Globally face is
aligned so thatA < B < C. For square facesA = min{vi} wherevi are global nodes of square face and
B, C are nodes next to nodeA on face. Square face is aligned by ruleA < B < C for these nodes. These
rules are presented in figure E.3.3.

Tetrahedral element is an exception to the above interface rules, i.e. edge and face functions of tetrahedral
elements take type of tetrahedral element as their optionalargument. This is due to fact that it is possible
to reduce any tetrahedral element to one of the two referencetetrahedral elements for which all edges and
faces are defined so that their local orientation matches global orientation. This means, that for tetrahedral

c© CSC – IT Center for Science

E. Higher-order finite elements 95

B

C

AA B

C D

Figure E.2: Global direction of triangular and quadrilateral faces. For global node indexesA < B < C; A
has lowest index among indexes of face.

elements, global continuity does not need to be enforced, ifproper reduction to one of the two reference
elements has been made.

Mappings from element nodal numbers to differentp element edges or faces are defined in module
PElementMaps . Mappings generally define which nodes of element belong to certain local edge or face
of elements. Mappings to elements edges, faces and from faces to local edge numbers may be obtained from
routinesGetElementEdgeMap ,GetElementFaceMap andGetElementFaceEdgeMap . Mappings
may also be accessed by via methodsget TePeMap, whereTe is element name andPe = {Edge,Face} is
part of element to get map for. RoutinegetElementBoundaryMap returns mappings for element bound-
aries depending on element type.

For example, to get global nodes for brick face number4, one would use the followingFortran90
code

map(1:4) = getBrickFaceMap(4)
nodes(1:4) = Element % NodeIndexes(map)

E.4 Higher-order elements

Let λ1, λ2, λ3 ∈ {±ξ,±η,±ζ} and additionally
⋂

i λi = φ.

E.5 Line

ξ

−1 1

21

Figure E.3: Line element

E.5.1 Nodal basis

L1 =
1 − ξ

2

L2 =
1 + ξ

2

c© CSC – IT Center for Science

E. Higher-order finite elements 96

E.5.2 Bubble basis

L
(0)
i = φi(ξ), i = 2, . . . , p

E.6 Quadrilateral

−1

−1

1

1

v2

v3v4

v1

ξ

η

Figure E.4: Quadrilateral element

E.6.1 Nodal basis

N1 =
1

4
(1 − ξ)(1 − η)

N2 =
1

4
(1 + ξ)(1 − η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η)

E.6.2 Edge basis

N
(1,2)
i =

1

2
(1 − η)φi(ξ), i = 2, . . . , p

N
(2,3)
i =

1

2
(1 + ξ)φi(η), i = 2, . . . , p

N
(4,3)
i =

1

2
(1 + η)φi(ξ), i = 2, . . . , p

N
(1,4)
i =

1

2
(1 − ξ)φi(η), i = 2, . . . , p

E.6.3 Bubble basis

N
(0)
m(i,j) = φi(ξ)φj(η)

wherei, j ≥ 2, i + j = 4, . . . , p

c© CSC – IT Center for Science

E. Higher-order finite elements 97

E.7 Triangle

−1 1
0

ξ

v3

η
√

3

v2v1

Figure E.5: Triangle element

E.7.1 Nodal basis

L1 =
1

2
(1 − ξ − 1√

3
η)

L2 =
1

2
(1 + ξ − 1√

3
η)

L3 =
η√
3

E.7.2 Edge basis

N
(1,2)
i = L1L2ϕi(L2 − L1), i = 2, . . . , p

N
(2,3)
i = L2L3ϕi(L3 − L2), i = 2, . . . , p

N
(3,1)
i = L3L1ϕi(L1 − L3), i = 2, . . . , p

E.7.3 Bubble basis

N
(0)
m(j,n) = L1L2L3P1(L2 − L1)

jP1(2L3 − 1)n

wherej, n = 0, . . . , i − 3, j + n = i − 3, i = 3, . . . , p

c© CSC – IT Center for Science

E. Higher-order finite elements 98

v2

v3

v7v8

v4

v6

v1

v5

ξ

ζ

η

Figure E.6: Brick element

E.8 Brick

E.8.1 Nodal basis

N1 =
1

8
(1 − ξ)(1 − η)(1 − ζ)

N2 =
1

8
(1 + ξ)(1 − η)(1 − ζ)

N3 =
1

8
(1 + ξ)(1 + η)(1 − ζ)

N4 =
1

8
(1 − ξ)(1 + η)(1 − ζ)

N5 =
1

8
(1 − ξ)(1 − η)(1 + ζ)

N6 =
1

8
(1 + ξ)(1 − η)(1 + ζ)

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N8 =
1

8
(1 − ξ)(1 + η)(1 + ζ)

c© CSC – IT Center for Science

E. Higher-order finite elements 99

E.8.2 Edge basis

N1,2
i−1 =

1

4
φi(ξ)(1 − η)(1 − ζ)

N2,3
i−1 =

1

4
φi(η)(1 + ξ)(1 − ζ)

N4,3
i−1 =

1

4
φi(ξ)(1 + η)(1 − ζ)

N1,4
i−1 =

1

4
φi(η)(1 − ξ)(1 − ζ)

N1,5
i−1 =

1

4
φi(ζ)(1 − ξ)(1 − η)

N2,6
i−1 =

1

4
φi(ζ)(1 + ξ)(1 − η)

N3,7
i−1 =

1

4
φi(ζ)(1 + ξ)(1 + η)

N4,8
i−1 =

1

4
φi(ζ)(1 − ξ)(1 + η)

N5,6
i−1 =

1

4
φi(ξ)(1 − η)(1 + ζ)

N6,7
i−1 =

1

4
φi(η)(1 + ξ)(1 + ζ)

N8,7
i−1 =

1

4
φi(ξ)(1 + η)(1 + ζ)

N5,8
i−1 =

1

4
φi(η)(1 − ξ)(1 + ζ)

E.8.3 Face basis

N
(1,2,5,6)
m(i,j) =

1

2
(1 − η)φi(ξ)φj(ζ)

N
(1,2,4,3)
m(i,j) =

1

2
(1 − ζ)φi(ξ)φj(η)

N
(1,4,5,8)
m(i,j) =

1

2
(1 − ξ)φi(η)φj(ζ)

N
(4,3,8,7)
m(i,j) =

1

2
(1 + η)φi(ξ)φj(ζ)

N
(5,6,8,7)
m(i,j) =

1

2
(1 + ζ)φi(ξ)φj(η)

N
(2,3,6,7)
m(i,j) =

1

2
(1 + ξ)φi(η)φj(ζ)

wherei, j = 2, 3, . . . , p − 2, i + j = 4, 5, . . . , p

E.8.4 Bubble basis

N
(0)
m(i,j,k) = φi(ξ)φj(η)φk(ζ)

wherei, j, k = 2, 3, . . . , p − 4, i + j + k = 6, 7, . . . , p

c© CSC – IT Center for Science

E. Higher-order finite elements 100

v1

v4

v3

v2

ζ

ξ

η

ζ

ξ

η

v1

v4

v3

v2

Figure E.7: Tetrahedral elements of types 1 and 2

E.9 Tetrahedron

E.9.1 Nodal basis

L1 =
1

2
(1 − ξ − 1√

3
η − 1√

6
ζ)

L2 =
1

2
(1 + ξ − 1√

3
η − 1√

6
ζ)

L3 =

√
3

3
(η − 1√

8
ζ)

L4 =

√

3

8
ζ

E.9.2 Edge basis

Type 1

N
(1,2)
i−1 = L1L2ϕi(L2 − L1), i = 2, . . . , p

N
(1,3)
i−1 = L1L3ϕi(L3 − L1), i = 2, . . . , p

N
(1,4)
i−1 = L1L4ϕi(L4 − L1), i = 2, . . . , p

N
(2,3)
i−1 = L2L3ϕi(L3 − L2), i = 2, . . . , p

N
(2,4)
i−1 = L2L4ϕi(L4 − L2), i = 2, . . . , p

N
(3,4)
i−1 = L3L4ϕi(L4 − L3), i = 2, . . . , p

Type 2

N
(3,2)
i−1 = L3L2ϕi(L2 − L3), i = 2, . . . , p

Edges(1, 2),(1, 3),(1, 4),(2, 4) ja (3, 4) according to type 1.

E.9.3 Face basis

Type 1

c© CSC – IT Center for Science

E. Higher-order finite elements 101

N
(1,2,3)
m(i,j) = L1L2L3Pi(L2 − L1)Pj(2L3 − 1)

N
(1,2,4)
m(i,j) = L1L2L4Pi(L2 − L1)Pj(2L4 − 1)

N
(1,3,4)
m(i,j) = L1L4L3Pi(L3 − L1)Pj(2L4 − 1)

N
(2,3,4)
m(i,j) = L2L3L4Pi(L3 − L2)Pj(2L4 − 1)

Type 2

N
(1,3,2)
m(i,j) = L1L3L2Pi(L3 − L1)Pj(2L2 − 1)

N
(3,2,4)
m(i,j) = L3L2L4Pi(L2 − L3)Pj(2L4 − 1)

wherei, j = 0, 1, 2, . . . , p− 3, i+ j = 0, 1, . . . , p− 3. Faces(1, 2, 4) and(1, 3, 4) defined according to type
1.

E.9.4 Bubble basis

N
(0)
m(i,j,k) = L1L2L3L4Pi(L2 − L1)Pj(2L3 − 1)Pk(2L4 − 1)

wherei, j, k = 0, 1, . . . , p − 4, i + j + k = 0, 1, . . . , p − 4

E.10 Pyramid

ξ

η

ζ

v1 v2

v5

v3v4

Figure E.8: Pyramidal element

c© CSC – IT Center for Science

E. Higher-order finite elements 102

E.10.1 Nodal basis

T0(c, t) =
(1 − t√

2
) − c

2(1 − t√
2
)

T1(c, t) =
(1 − t√

2
) + c

2(1 − t√
2
)

P1 = T0(ξ, ζ)T0(η, ζ)(1 − ζ√
2
)

P2 = T1(ξ, ζ)T0(η, ζ)(1 − ζ√
2
)

P3 = T1(ξ, ζ)T1(η, ζ)(1 − ζ√
2
)

P4 = T0(ξ, ζ)T1(η, ζ)(1 − ζ√
2
)

P5 =
1√
2
ζ

E.10.2 Edge basis

P
(1,2)
i−1 = P1(ξ, η, ζ)P2(ξ, η, ζ)ϕi(ξ)

P
(2,3)
i−1 = P2(ξ, η, ζ)P3(ξ, η, ζ)ϕi(η)

P
(4,3)
i−1 = P4(ξ, η, ζ)P3(ξ, η, ζ)ϕi(ξ)

P
(1,4)
i−1 = P1(ξ, η, ζ)P4(ξ, η, ζ)ϕi(η)

P
(1,5)
i−1 = P1(ξ, η, ζ)P5(ξ, η, ζ)ϕi(

ξ

2
+

η

2
+

ζ√
2
)

P
(2,5)
i−1 = P2(ξ, η, ζ)P5(ξ, η, ζ)ϕi(−

ξ

2
+

η

2
+

ζ√
2
)

P
(3,5)
i−1 = P3(ξ, η, ζ)P5(ξ, η, ζ)ϕi(−

ξ

2
− η

2
+

ζ√
2
)

P
(4,5)
i−1 = P4(ξ, η, ζ)P5(ξ, η, ζ)ϕi(

ξ

2
− η

2
+

ζ√
2
)

E.10.3 Face basis

Square face

P
(1,2,3,4)
m(i,j) = P1(ξ, η, ζ)P3(ξ, η, ζ)ϕi(ξ)ϕj(η)

wherei, j = 2, . . . , p − 2, i + j = 4, . . . , p.
Triangular faces

P
(1,2,5)
m(i,j) = P1(ξ, η, ζ)P2(ξ, η, ζ)P5(ξ, η, ζ)Pi(P2(ξ, η, ζ) − P1(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(2,3,5)
m(i,j) = P2(ξ, η, ζ)P3(ξ, η, ζ)P5(ξ, η, ζ)Pi(P3(ξ, η, ζ) − P2(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(3,4,5)
m(i,j) = P3(ξ, η, ζ)P4(ξ, η, ζ)P5(ξ, η, ζ)Pi(P4(ξ, η, ζ) − P3(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(4,1,5)
m(i,j) = P4(ξ, η, ζ)P1(ξ, η, ζ)P5(ξ, η, ζ)Pi(P1(ξ, η, ζ) − P4(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

c© CSC – IT Center for Science

E. Higher-order finite elements 103

wherei, j = 0, . . . , p − 3, i + j = 0, . . . , p − 3 andPi, Pj Legendre polynomials.

E.10.4 Bubble basis

P
(0)
m(i,j,k) = P1(ξ, η, ζ)P3(ξ, η, ζ)P5(ξ, η, ζ)Pi(

ξ

1 − ζ√
2

)Pj(
η

1 − ζ√
2

)Pk(
ζ√
2
)

wherei, j, k = 0, . . . , p − 4, i + j + k = 0. . . . , p − 4 andPi, Pj , Pk Legendre polynomials

E.11 Wedge

ζ

ξ

η

v2

v5

v1

v4

v6

v3

Figure E.9: Wedge element

E.11.1 Nodal basis

L1 =
1

2
(1 − ξ − 1√

3
η)

L2 =
1

2
(1 + ξ − 1√

3
η)

L3 =

√
3

3
η

c© CSC – IT Center for Science

E. Higher-order finite elements 104

H1 =
1

2
L1(1 − ζ)

H2 =
1

2
L2(1 − ζ)

H3 =
1

2
L3(1 − ζ)

H4 =
1

2
L1(1 + ζ)

H5 =
1

2
L2(1 + ζ)

H6 =
1

2
L3(1 + ζ)

E.11.2 Edge basis

H
(1,2)
i−1 =

1

2
L1L2ϕi(L2 − L1)(1 − ζ)

H
(2,3)
i−1 =

1

2
L2L3ϕi(L3 − L2)(1 − ζ)

H
(3,1)
i−1 =

1

2
L3L1ϕi(L1 − L3)(1 − ζ)

H
(4,5)
i−1 =

1

2
L4L5ϕi(L5 − L4)(1 + ζ)

H
(5,6)
i−1 =

1

2
L5L6ϕi(L6 − L5)(1 + ζ)

H
(6,4)
i−1 =

1

2
L6L4ϕi(L4 − L6)(1 + ζ)

H
(1,4)
i−1 = L1φi(ζ)

H
(2,5)
i−1 = L2φi(ζ)

H
(3,6)
i−1 = L3φi(ζ)

E.11.3 Face basis

Triangular faces

H
(1,2,3)
m(i,j) =

1

2
(1 − ζ)Pi(L2 − L1)Pj(2L3 − 1)L1L2L3

H
(4,5,6)
m(i,j) =

1

2
(1 + ζ)Pi(L2 − L1)Pj(2L3 − 1)L1L2L3

wherei, j = 0, 1, . . . , p − 3, i + j = 0, 1, . . . , p − 3 andPi, Pj Legendre polynomials.
Square faces

H
(1,2,5,4)
m(i,j) = ϕi(L2 − L1)φj(ζ)L1L2

H
(2,3,6,5)
m(i,j) = ϕi(L3 − L2)φj(ζ)L2L3

H
(3,1,4,6)
m(i,j) = ϕi(L1 − L3)φj(ζ)L3L1

wherei, j = 2, . . . , p − 2, i + j = 4, . . . , p.

c© CSC – IT Center for Science

BIBLIOGRAPHY 105

E.11.4 Bubble basis

H
(0)
m(i,j,k) = φk(ζ)L1L2L3Pi(L2 − L1)Pj(2L3 − 1)

wherei, j = 0, . . . , p − 5, k = 2, . . . , p − 3, i + j + k = 2, . . . , p − 3.

Bibliography

[1] Maplesoft home page.http://www.maplesoft.com/ .

[2] P.R.B. Devloo. On the definition of high Available online:
http://www.fec.unicamp.br/ phil/downloads/shape.zip .

[3] B. Szabo and I. Babuska.Finite Element Analysis. John Wiley & Sons Ltd., 1991.

[4] P. Šolin et al.Higher-Order Finite Element Methods. Chapman & Hall / CRC, 2004.

c© CSC – IT Center for Science

Index

-dofs, 42
-nooutput, 42

algebraic multigrid, 15

Backward Differences Formulae, 26
bandwidth optimization, 19
BDF, 26
BiCGstab, biconjugate gradient stabilized, 17
Binary output, 79
Body, 5
Body Force, 5
Boundary Condition, 6

CG, conjugate gradient, 17
CGS, conjugate gradient squared, 17
compilation instructions, 43
component name, 42
Compressed Row Storage, 21
Constants, 5
Convergence Tolerance, 24
Crank-Nicolson method, 26

Direct methods, 13
direct solver, 17
Dirichlet conditions, 39

Eigenvalue problems, 30
ElmerPost input file, 83
ElmerSolver mesh file, 77
Equation, 5
error indicator, 34

geometric multigrid, 15
GMRES, generalized minimal residual, 18

Header, 5

ILU preconditioners, 15
ILU, incomplete LU-decomposition, 18
Initial Condition, 6
iterative solver, 17

keyword syntax, 8
Krylov methods, 17
Krylov subspace methods, 14

LAPACK, 13

MATC, 9
parameterized keyword commands, 10

Material, 5
mesh refinement, 34
multigrid solver, 17

Relaxation Factor, 24

Simulation, 5
Solver, 6
solver input file, 5

section names, 5

Timestepping Method, 27

UMFPACK, 13
umfpack, 17

106

