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About this document

Elmer Models Manual is a part of the documentation of Elmer finite element software. It consists of inde-
pendent chapters describing different modules a.k.a. solvers which the main program (ElmerSolver) uses to
create a specific physical model, although some solvers take care of computational tasks which are not tied
up with the concept of physical model.

The structure of the manual reflects the modular architecture of the software which enables the addition
of new modules without making any changes to the main program. Each chapter typically has a separate
section for theory and keywords, and often some additional information is also given, for example about the
limitations of the model. The Elmer Models Manual is best used as a reference manual rather than a concise
introduction to the matter.

The present manual corresponds to Elmer software version 9.0. The latest documentation and program
versions of Elmer are available (or links are provided) at http://www.csc.fi/elmer.

Copyright information

The original copyright of this document belongs to CSC — IT Center for Science, Finland, 1995-2019. This
document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. Elmer software is distributed in the hope that it will be useful, but without
any warranty. See the GNU General Public License for more details.

Elmer includes a number of libraries licensed also under free licensing schemes compatible with the
GPL license. For their details see the copyright notices in the source files.

All information and specifications given in this document have been carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as of time writing. CSC assumes no responsibility or
liability on any errors or inaccuracies in Elmer software or documentation. CSC reserves the right to modify
Elmer software and documentation without notice.


http://creativecommons.org/licenses/by-nd/3.0/

Contents

Table of Contents 4
I Models of Fluid Mechanics and Transport Phenomena 8
1 Heat Equation 9
2 Navier-Stokes Equations 25
3 Advection-Diffusion Equation 35
4 Advection-Reaction Equation 41
5 Reynolds Equation for Thin Film Flow 45
IT Models of Solid Mechanics 51
6 Linear Elasticity 52
7 Finite Elasticity 60
8 Shell Equations of Classical Elasticity 67
9 Plate Equations of Linear Elasticity 78
10 One-dimensional Equations for Elastic Beams 84
11 Adding pointwise springs and masses 88
III Models of Acoustics 90
12 The Helmholtz Model 91
13 The Linearized Navier—Stokes Equations in the Frequency Domain 94
14 Wave Equation 103
15 Large-amplitude Wave Motion in Air 106
IV Models of Electromagnetism 109
16 Electrostatics 110



CONTENTS 5
17 Static Current Conduction 114
18 Computation of Magnetic Fields in 3D 117
19 Circuits and Dynamics Solver 131
20 Vectorial Helmholtz for Electromagnetic Waves 136
21 Electromagnetic Waves 144
22 Computation of Magnetic Fields in 2D 147
23 Magnetic Induction Equation 151
24 Reduced Dimensional Electrostatics 155
25 Poisson-Boltzmann Equation 159
26 Loss Estimation Using the Fourier Series 163
27 Coil Current Solver 168
V  Other Physical Models 173
28 Electrokinetics 174
29 Mixed Approximation of the Poisson equation 178
30 Block Preconditioning for the Steady State Navier-Stokes Equations 181
31 Rotational Form of the Incompressible Navier-Stokes Equations 187
VI Free Surfaces, Phase Change and Particle Dynamics 193
32 Level-Set Method 194
33 Kinematic Free Surface Equation with Limiters 200
34 Free Surface with Constant Flux 204
35 Transient Phase Change Solver 207
36 Steady State Phase Change Solver 211
37 Particle Dynamics 215
38 Semi-Lagrangian Advection Using Particle Tracking 223
39 Ordinary differential equation in moving mesh 227
VII Mesh Adaptation, Transformation and Analysis 229
40 Mesh Adaptation Solver 230
41 Nonphysical Mesh Adaptation Solver 233



CONTENTS 6
42 Rigid Mesh Transformation 235
43 Structured Mesh Mapper 238
44 Free surface with streamlines 241
45 Statistics of finite element mesh 243
VIII Derived Fields and Quantities 244
46 Streamline Computation 245
47 Flux Computation 248
48 Vorticity Computation 251
49 Divergence Computation 253
50 Scalar Potential Resulting to a Given Flux 255
51 Artificial Compressibility for FSI 257
52 Fluidic Force 263
53 Electrostatic force 265
54 System Reduction for Displacement Solvers 267
55 Filtering Time-Series Data 272
56 Data to field solver 275
57 Projection to plane 277
58 Structured projection to plane 279
59 Internal Cost Function Optimization 281
IX Saving Data and Results 284
60 Saving Scalar Values to a File 285
61 Saving data along lines to a file 291
62 Saving material parameters and boundary conditions 294
63 Result output in different formats 296
64 Saving data on uniform Cartesian grid 300
65 Isosurface extraction for reduced output 303
66 Coupling Elmer with OpenFOAM via file IO 305



CONTENTS 7
X Reading Data 308
67 Read fields from Gmsh results file 309
68 Reload Existing Simulation Results 310
69 Runtime Control of the Input Data 312
70 Reading NetCDF data into FE mesh 313
XI Experimental or Obsolete Solvers 316
71 Lithium-Ion Battery Model 317
72 Richards equation for variably saturated porous flow 326
73 Outlet Boundary Condition for Arterial Flow Simulations 330
74 BEM Solver for Poisson Equation 334
75 BEM Solver for Helmholtz Equation 337
76 Magnetoquasistatic approximation for axial symmetry 340
77 Linear Constraints 344
78 Density Functional Theory 346
79 Parallel I/O using HDFS library 350

Index

352



Part I

Models of Fluid Mechanics and
Transport Phenomena

CSC —IT Center for Science

(@) ey-nD___|]



Model 1

Heat Equation

Module name: HeatSolve,HeatSolveVec

Module subroutines: HeatSolver

Module authors: Juha Ruokolainen, Peter Riback, Matthias Zenker
Document authors: Juha Ruokolainen, Ville Savolainen, Peter Raback

1.1 Introduction

Heat equation results from the requirement of energy conservation. In addition the Fourier’s law is used to
model the heat conduction. The linearity of the equation may be ruined by temperature dependent thermal
conductivity, or by heat radiation.

Note that there are two versions of the heat solver. The older one in module Heat Solve includes some
more physics while the newer one in module Heat SolveVec has been optimized for speed and also has
some new features.

1.2 Theory

1.2.1 Governing Equations

The incompressible heat equation is expressed as

e, (ZJF(@V)T) -V (WVT) =7 E 4 ph, (1)

where p is the density, ¢, the heat capacity at constant pressure, 7 the temperature, « the convection velocity,
k the heat conductivity and h is source of heat. The term 7 : € is the frictional viscous heating, which is
negligible in most cases. For Newtonian fluids, the viscous part of the stress tensor is

= iF, (1.2)

Rl

where € the linearized strain rate tensor.

Eq.1.1 applies also for solids, setting & = 0. For solids, conduction may be anisotropic and the conduc-
tivity a tensor.

For compressible fluids, the heat equation is written as

T _ _
PCy <aat—HTVT)—V-(kVT)z—pV-ﬁ—FT:a—i—pm (1.3)

where ¢, is the heat capacity at constant volume. The density needs to be calculated from the equation of
state, e.g., perfect gas law. More information is given in the chapter describing the Navier-Stokes equation.
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1. Heat Equation 10

The Elmer heat equation module is capable of simulation heat transfer by conduction, convection, and
diffuse gray radiation. Also a phase change model is included. Couplings to other modules include, convec-
tion by fluid flow, frictional heating (modules providing flow fields), and resistive heating (modules providing
magnetic and/or electric fields).

1.2.2 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving a deforming mesh the transient heat equation must be solved using Arbitrary Lagrangian-
Eulerian (ALE) frame of reference. Assume that the mesh velocity is ¢. Then the convective term yields

pey (T~ ) - V)T (1.4)

1.2.3 Phase Change Model

Elmer has an internal fixed grid phase change model. Modelling phase change is done by modifying the
definition of heat capacity according to whether a point in space is in solid or liquid phase or in a *'mushy’
region. The choice of heat capacity within the intervals is explained in detail below.

This type of algorithm is only applicable, when the phase change occurs within finite temperature inter-
val. If the modelled material is such that the phase change occurs within very sharp temperature interval,
this method might not be appropriate.

For the solidification phase change model Elmer uses, we need enthalpy. The enthalpy is defined to be

T 8f
H(T) = /0 <pcp + pLa)\> dA, (L.5)

where f(T') is the fraction of liquid material as a function of temperature, and L is the latent heat. The
enthalpy-temperature curve is used to compute an effective heat capacity, whereupon the equations become
identical to the heat equation. There are two ways of computing the effective heat capacity in Elmer:

OH
Cp,eff = ik (1.6)
and 1/2
VH - -VH
= —— . 1.
Cpoft (VT-VT) (1.7)

The former method is used only if the local temperature gradient is very small, while the latter is the preferred
method. In transient simulations a third method is used, given by
OH /ot

Cpeff = aT/ot” (1.8)

Note that for the current implementation of the heat equation heat capacity and enthalpy are additive. So
if heat capacity is present in the command file it should not be incorporated to enthalpy as an integral.

1.2.4 Additional Heat Sources

Frictional heating is calculated currently, for both incompressible and compressible fluids, by the heat source
hy = 2ug : &. (1.9)
In case there are currents in the media the also the the resistive heating may need to be considered. The

Joule heating is then given by
1 - —
hop = —=J - J. (1.10)
g

In the above equations, B and E are the magnetic and electric fields, respectively. The current density Jis
defined as

=

J=0o(E+i x B). (1.11)
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1. Heat Equation 11

In modeling biological tissue perfused with blood acting as heat sink an additional heat source term of
the Pennes’ Bioheat equation is needed. The term is

hy = cypyw(Ty, — T') (1.12)

where ¢ is the specific heat capacity, p; the density, and T} the temperature of the blood. The perfusion rate
w is the volume of blood flowing through a unit volume of tissue per second. This additional source term
is modeled so that the part including 7 is treated implicitly for better convergence. Even though the model
was written for the biological application in mind the additional heat source may find also other uses.

1.2.5 Boundary Conditions

For temperature one can apply boundary conditions and have either temperature or heat flux prescribed.
Dirichlet boundary condition (temperature is prescribed) reads as

T="T,. (1.13)

The value of T} can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient o and external temperature 7,4 may be written as
oT
- ka— (T — Teout). (1.14)
Both variables o and T, can be constant or functions of time, position or other variables. If the heat transfer
coefficient « is equal to zero, it means that the heat flux on a boundary is identically zero. The Neumann
boundary condition —k9T/On = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical
problems.
Heat flux can consist of idealized radiation whereupon
oT 4
— k% oe(T* = T2,). (1.15)
Above, o is the Stefan-Boltzmann constant and € the surface emissivity. The emissivity and the external
temperature can again be constant or functions of time, position, or other variables.
The heat equation is nonlinear when radiation is modelled. The nonlinear term in the boundary condition
(1.15) can be linearized as

T* — Ty = (T? + Toi T? + T2 T + T2 ) (T — Toxt), (1.16)

where 7 is the temperature from the previous iteration. Alternatively Newton’s linearization may be used.
The latter is usually converging faster but may have a smaller radius of convergence.
In many problems involving thermal radiation the geometry is such that the objects sees itself at least
partially. This involves the use of view factors
If the surface k is receiving radiation from other surfaces in the system, then the heat flux for the Gebhart
factors model is
Ty, 41

T ZleE TrA,), (1.17)

where the subscripts ¢ and k refer to surfaces ¢ and k, and the parameters A; and Ay, to the specific surface
areas. The factors G;; are Gebhart factors, and IV represents the total number of radiating surfaces present
in the system. The radiosity model computes the radiosity vectors .JJ which relate to the flux as

8Tk EkAk 4
—kp—=———(0T}, — J 1.18
kank (T —cr) (oTy, k) (1.18)

A “’radiator” is a pointlike source radiating energy, giving raise to flux

—k— Zpaz (1.19)
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1. Heat Equation 12

where P; is the power of the source and «; is vector of geometrical factors giving the portion of energy
incident on a given boundary element. The factors take into account the orientation of the boundary element
with respect to the sources and shadowing. Note that this type of source is not available in cylindrically
symmetric cases.

One may also give an additional heat flux term as
oT
—k— =q. (1.20)
on

1.3 Keywords

Constants

Stefan Boltzmann Real
The value of the Stefan-Boltzmann constant needed for thermal radiation.

Simulation
The simulation section gives the case control data:

Simulation Type String
Heat equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta= 0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson, and
Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String [Heat Equation]
The name of the equation. If itis Heat Equation then an old logic will define the following
keyword.

Procedure File "HeatSolve" "HeatSolver"
The name of the procedure for the heat equation. This must be given as stated here.

Variable String [Temperature]
This may be of any name for temperature as long at it is used consistently elsewhere. The default
name is Temperature.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations is small enough

|T: = Tiall < el Tl

where € is the value given with this keyword.
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1. Heat Equation 13

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the it-
eration count is met, it will switch the iteration type instead. In the heat equation the Picard
iterations means that the radiation term is factorized to linear and third-power terms.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

IT: = Tiall < el Tl

where ¢ is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

T, = \T; + (1 — NTi-1,

where A is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

| T; — Tial| < €l|T3],

where ¢ is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the heat
equation with a convection term. If this flag is set to False RFB (Residual Free Bubble)
stabilization is used instead (unless the next flag Bubbles is set to False in a problem with
Cartesian coordinate system). If convection dominates stabilization must be used in order to
successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. Note that in this case, the results might easily be nonsensical.

Smart Heater Control After Tolerance Real
The smart heater control should not be activated before the solution has somewhat settled. By
default the smart heater control is set on when the Newtonian linearization is switched on for the
temperature equation. Sometimes it may be useful to have more stringent condition for turning
on the smart heater control and then this keyword may be used to give the tolerance.

Apply Limiter Logical
The generic soft limiters may be applied for the heat equation equation. They could for example,
account for the effects of phase change under circumstances where it may be assumed that the
temperature does not go over the phase change temperature. With this flag active the minimum
and maximum limiters are accounted.

Radiating sources (“radiators”) are activated using the following keywords (see also the "Boundary
Conditions” section). Also some of the view factor shadowing subdivision/accuracy keywords are
used when resolving the shadowing between the radiation sources and participating boundary surfaces.
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1. Heat Equation 14

Radiator Coordinates(n,3) Real
Activate n radiating sources by giving their coordinates in space.

Radiator Power Real
Give power of each of the radiating sources introduced with “Radiator Coordinates” -keyword.
This may be a vector also. However, if the powers have a functional dependence, on e.g. time,
rather use separate keyword Radiator Power i foreach point source.

Radiator Temperature Real
This keyword has only an effect when the spectral radiosity model is used! Otherwise the tem-
perature of the radiator does not have any effect. Also this may be a vector. However, if the
powers have a functional dependence, on e.g. time, rather use separate keyword Radiator
Temperature i for each point source.

Compute Radiator Factors Logical
Force computation of the radiator factors even if the factors have been previously computed and
stored to still existing file. One might want to set this flag when changing the computational
mesh, for example. Note that you should be able to recompute radiator factors also manually
before start of the simulation simply by invoking the binary Radiators. False is the default,
unless the factors don’t exist.

Update Radiator Factors Logical
The recomputation of the radiator factors is activated by setting the value of this flag to True.
Note that you should be able to recompute radiator factors also manually before start of the
simulation simply by invoking the binary Radiators. False is the default.

In some cases the geometry of the radiation boundaries change. This may require the recomputation
of the view factors. For that purpose also dynamic computation of the factors is enabled and it is
controlled by the keywords below. The view factors are also automatically computed if no view
factors can be loaded from files.

Update View Factors Logical
The recomputation of the view factors is activated by setting the value of this flag to True. Note
that you should be able to recompute view factors also manually before start of the simulation
simply by invoking the binary ViewFactors. False is the default.

Minimum View Factor Real
This keyword determines the cut-off value under which the view factors are omitted. Neglecting
small values will not only save memory but also will make the matrix used for solving the
Gebhart factors less dense. This consequently will enable more efficient sparse matrix strategies
in solving the Gebhart factors. The value for this parameter might be of the order 10e-8.

View Factors Geometry Tolerance Real
The view factors take a lot of time to compute. Therefore during the iteration a test is performed
to check whether the geometry has changed. If the relative maximum change in the coordinate
values is less than the value given by this parameter the view factors are not recomputed and the
old values are used.

View Factors Fixed After Iterations Integer
Sometimes the iteration changes the geometry of the radiation boundaries as an unwanted side-
effect. Then the geometry on the radiation boundary may be set fixed after some iterations. In
practice this is done by adding suitable Dirichlet conditions in the boundary conditions.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.

Viewfactor Symmetry x Logical
We may enforce view factors to be symmetric. The code for computing view factors creates the
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1. Heat Equation 15

full mesh internally but all other computations may then be done assuming symmetric geom-
etry. Also keywords Viewfactor Symmetry y and Viewfactor Symmetry z exist
correspondingly.

Viewfactor Divide Integer
For axisymmetric view factor computation gives the number of divisions for each element. The
default is 1.

Viewfactor Combine Elements Logical
There may be a significant amount of saved time if in the axisymmetric view factor computation
the elements that are aligned and share a common node are united. The shadowing loop will then
only be performed over these macroelements.

Viewfactor Number Of Rays Integer
In 2D and 3D cases the shadowing is resolved by casting rays between elements. This is the
number of rays sent between elements when computing view factors. It is also used for “’radi-
ators” when resolving shadowing between boundary elements and the radiating sources. The
default is 1.

Viewfactor Area Tolerance Real
In 2D and 3D cases the shadowing is resolved by casting rays between elements. This setting
gives a size of the boundary patch, which is not to be divided into smaller pieces even if shad-
owing is undetermined for the patch (the number of hits is larger than zero or fewer than number
of rays). If the area tolerance is used stop the recursive division, the viewfactor is multiplied by
hits/maxrays. This keyword is also used for “radiators” when resolving shadowing between
boundary elements and the radiating sources. The default is 1.

Viewfactor Factor Tolerance Real
In 2D and 3D cases the shadowing is resolved by casting rays between elements. This setting
gives the maximum of the computed factor which is accepted for a boundary patch even if shad-
owing is undetermined for the patch (the number of hits is larger than zero or fewer than number
of rays). shadowing between boundary elements and the radiating sources. The default is 1.

For radiation problems we may use either Gebhart factors or radiosity model. Gebhart factors
results to better convergence of the nonlinear system but comes with a higher computational cost
than the radiosity model. By default Gebhart factors are computed only once. They may however be
updated if the emissivity is a function of temperature. Also there are some other keywords to control
their computation.

Update Gebhart Factors Logical
If the emissivities depend on the solution the Gebhart factors may need to be recomputed. This
is activated by setting giving this flag value True. False is the default. Gebhart factors are
computed fully internally in ElmerSolver.

Minimum Gebhart Factor Real
The Gebhart factors make part of matrix dense. By neglecting the smallest Gebhart factors the
matrix structure for the heat equation may become significantly sparser and thus the solution
time may drop. The value for this parameter might also be of the order 10e-8.

Implicit Gebhart Factor Fraction Real
In computing heat transfer problems with radiation in an implicit manner the matrix structure
becomes partially filled. This affects the performance of the linear equation solvers and also
increases the memory requirements. On the other hand explicit treatment of radiation slows
down the convergence significantly. This keyword allows that the largest Gebhart factors are
treated in an implicit manner whereas the smallest are treated explicitly. The value should lie in
between zero (fully explicit) and one (fully implicit).

Matrix Topology Fixed Logical
If the Gebhart factors change the matrix structure of the heat equation may also have to be
changed unless this flag is set to False. Then all factors that do not combine with the matrix
structure are omitted.
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1. Heat Equation 16

Gebhart Factors Fixed After Iterations Integer
Sometimes the emissivity depends on temperature but recomputing it every time may be costly.
By this keyword the recomputation may be limited to the given number of visits to the heat
equation solver.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.

Gebhart Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of Gebhart factors is omitted. The temperature dependence of emissivity is typically
not so strong that small temperature changes would result to a need to recompute the Gebhart
factors as well.

The other model for considering radiation is to use radiosity vectors. These do not mess with the
matrix structure and thereby enable the use of all linear solver strategies, usually with good success.
There is also a spectral version available. Hence the radiosity models should often be the method of
choice.

Radiosity Model TLogical
Use radiosity model instead the default one based on Gebhart factors.

Spectral Model Logical
Spectral model is a variation of the radiosity model where heat radiation to different tempera-
ture intervals are treated separately. If this flag is set to True, the radiosity model is activated
automatically.

Spectral Dt Real
This is a parameter related to the spectral radiation model. It describes the width of temperature
intervals. There is a cost of adding more intervals so probably an value of, say 20 X, could be
suitable. It is desirable that within the interval the emissivity is not changing too much.

Both the Gebhart factors and the radiosity model require solution of linear systems. For Gebhart
factors the number of linear systems is the same as number of radiating surface elements. These
remain constant for the whole simulation unless the relevant part of the geometry changes and an
update of the factors is needed. For constant-emissivity radiosity, the number of linear systems is
one for each nonlinear iteration (two when using Newton linearization), while for the spectral model
the number of linear systems per nonlinear iteration is the same as the number of active temperature
intervals, i.e. typically some tens.

Because these linear systems are solved often more times than the linear system related to the heat
equation it is often important to optimize the speed of these computations. This is especially true
when using the Gebhart factors model, where an matrix inverse is computed by solving the same linear
system n times — direct solver, such as MUMPS or UMFPACK, is often faster than the iterative
solvers, as the LU-decomposition can be saved and reused. For the radiosity (and spectral) model
iterative solvers should remain faster. Most linear system keywords can basically be used here. Here
are just few ones explained.

radiation: Linear System Keyword
Sometimes the default routines for computing Gebhart factors are not suitable. For that purposes
the user may specify any linear system strategy using namespace radiation: and the standard
linear system keywords. The solver instance is created on the fly and the keywords are passed to
it without the suffix.

radiation: Linear System Solver String
If the radiation factors are solved from a sparse matrix equation also the type of solver may be
selected. Often the iterative strategies (as opposed to direct solvers) provided better speed with
lower memory consumption. This keyword may be used to choose between iterative or direct
solvers.
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1. Heat Equation 17

radiation: Linear System Symmetric True
Makes the computation of Gebhart factors symmetric. This can only be done if all emissivities
are less than one. When the system is symmetric, there are more economical linear solvers
available.

radiation: Linear System Positive Definite True
If the linear system is made symmetric, it is also positive definite. Also this may be used by
some linear solvers for better efficiency.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Heat Equation Logical
If set to True, solve the heat equation.

Convection String
The type of convection to be used in the heat equation, one of: None, Computed, Constant.

Phase Change Model String
One of: None, Spatial 1, Spatial 2 and Temporal. Note that when solidification
is modelled, the enthalpy-temperature- and viscosity-temperature-curves must be defined in the
material section.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keywords are recognized by the base solver:

Heat Source Real
A heat source h for the heat equation may be given with this keyword. Note that by default the
heating is given per unit mass, not unit volume.

Friction Heat Logical
Currently redundant keyword, the frictional heating h is automatically added.

Joule Heat Logical
If set True, triggers use of the electromagnetic heating. This keywords accounts for the heating
of many different solvers; electrostatics, magnetostatics, and induction equation.

Smart Heater Control TLogical
Sometimes the predescribed heat source does not lead to the desired temperature. Often the
temperature is controlled by a feedback and therefore a similar heater control in the simulation
may give more realistic results. This flag makes sets the smart heater control on for the given
body force.

Integral Heat Source Real
This keyword activates a normalization of the Heat Source so that the integral heating power
is the desired objective.

Temperature Lower Limit Real
The lower limit for temperature that is enforced iteratively when the soft limiters are applied.

Temperature Upper Limit Real

The upper limit for temperature that is enforced iteratively when the soft limiters are applied.

There are four optional keywords related to the Pennes’ Bioheat equation term that model the perfusion
process.

Perfusion Rate Real
The rate of the perfusion w. Activates the perfusion process.

Perfusion Reference Temperature Real
Temperature T3, of the perfusion fluid.

Perfusion Density Real
Density py, of the perfusion fluid.
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1. Heat Equation 18

Perfusion Heat Capacity Real
Heat capacity c¢;, of the perfusion fluid.

Initial Condition ic id
The initial condition section may be used to set initial values for temperature.

Temperature Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when heat equation is solved.

Density Real
The value of density is given with this keyword. The value may be constant, or variable. For the
compressible flow, the density is computed internally, and this keyword has no effect.

Enthalpy Real
Note that, when using the solidification modelling, an enthalpy-temperature curve must be given.
The enthalpy is derived with respect to temperature to get the value of the effective heat capacity.
Viscosity Real
Viscosity is needed if viscous heating is taken into account. When using the solidification mod-

elling, a viscosity-temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the velocity to zero.

Heat Capacity Real
The value of heat capacity in constant pressure ¢, is given with this keyword. The value may
be constant, or variable. For the phase change model, this value is modified according to rules
given in the theory section.

Heat Conductivity Real
The value of heat conductivity & is given with this keyword. The value may be a constant or
variable.

Convection Velocity i Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Compressibility Model Real
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter there may be mechanical work
performed by the heating. Then also the settings Reference Pressure and Specific
Heat Ratio mustalso be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found in the radiating boundary only then will it be looked at the material properties of the
parent elements. Often locating the emissivity here makes the case definition more simple.

Transmissivity Real
For the diffuse gray radiation model also transmissivity of the surface may be provided. It gives
the part of the energy that is lost as it passes through the wall. By default transmissivity is zero.

Absorptivity Real

For radiosity models we may use different model for emissivity and absorptivity. Otherwise
absorptivity is assumed to be the same as emissivity.
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Radiator Absorptivity Real
Radiators may have a different spectra not compatible with the theory of black body radiation.
Then the temperature of the radiator does not result to the same absorptivity as temperature of a
black body object. This keywords enables the user to give different absorptivity for the radiator
spectra when using the spectral model.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. In
heat equation we may set the temperature directly by Dirichlet boundary conditions or use different
flux conditions for the temperature. The natural boundary condition of heat equation is zero flux
condition.

Temperature Real

Heat Flux BC Logical
Must be set to True, if heat flux boundary condition is present.

Heat Flux Real
A user defined heat flux term.

Heat Transfer Coefficient Real
Defines the parameter « in the heat flux boundary condition of the type

oT
_kain = a(T — Tea:t)~
External Temperature Real
Defines the variable for ambient temperature 7, in the previous equation.

Radiation String
The type of radiation model for this boundary, one of: None, Idealized, Diffuse Gray.

Radiation Boundary Integer
If there are many closures with radiation boundary conditions that do not see each other the
view factors may be computed separately. This keyword is used to group the boundaries to
independent sets. The default is one.

Radiation Boundary Open Logical
The closures may be partially open. Then no normalization of the view factors is enforced. The
missing part of the radiation angle is assumed to be ideal radiation. Therefore if this option is
enforced also the parameter External Temperature must be given.

Radiation External Temperature Real
In case the external temperature related to the heat transfer coefficient is different than that related
to the radiation they cannot be given with the same keyword. For this purpose an alternative
keyword is provided for radiation problems. This is used instead if it is present.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found here it will be searched at the parent elements.

Transmissivity Real
If the transmissivity is not found here it will be searched at the parent elements.

Radiator BC Logical
This boundary is getting radiated by “radiators”. The surface normal is determined similarly to
diffuse gray radiation model (see "Radiation Target Body” -keyword). Default 1 “False”.

Radiation Target Body Integer
This flag may be used to set the direction of the outward pointing normal. This is used when
computing view factors. If the value of emissivity is given in the Material section, then
the normal is assumed to point outwards from the material having the property. If the value
of emissivity is given in the Boundary Condition section, then the direction of normal is
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ambiguous. This keyword may then be used to give the direction of the normal by specifying the
material to which the normal points to. Value -1 means that the normal is pointing outwards to
non-existing material (this is also the default). Hence, this keyword should be given on internal
ambiguous boundaries or on external boundaries where we are radiating into the domain.

Smart Heater Boundary Logical
If the smart heater is activated the point for monitoring the temperature is the point with max-
imum z-coordinate on the boundary where this keyword is set True. Alternatively the logical
variable Phase Change is looked for.

Smart Heater Temperature Real
The desired temperature for the smart heater system is set by this keyword. Alternatively the real
variable Melting Point may be used.
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Appendix: Internal Radiation Boundary Conditions

We describe the internal radiation boundary condition in this appendix. These are boundary boundary
condition where the body sees itself and the conditions becomes much more complicated than with interac-
tion of ideal space.

Diffuse Gray Radiation Boundary Conditions using Gebhart Factors

On outer boundaries of a solid or liquid body, where the temperature is not fixed, the heat flux must be
specified 5
T

K o q. (1.21)
The flux ¢ may depend on temperatures of other boundaries of the system, if radiative exchange of heat is
present. The model used here is the diffuse gray radiation model, which means that a surface radiates energy
to every direction with equal intensity, and that the intensity is also independent of the wavelength of the
radiation. Using these assumptions we may write the heat flux for a given point on a surface, resulting from
the radiation, as

JET) = o (5(9?)T4(:E') - / el f)T4(g7)dAy> . (122)

where o is the Stefan-Boltzmann constant, (%) is surface emissivity, and the integral is over all the surfaces
of the model. The function G is the so called Gebhart factor. The Gebhart factor may be computed using the
equation

G(3.3) - [ F@.9)(1 - ()G 7)dAz = F(7.2)e(a). (1.23)
where the function F' is defined as follows

(@) = 008 (1.24)
wr
The angles are between the normals of the surfaces and the line connecting the points and H;; the visibility.
The function F' is the so called view factor.
In practice, the surfaces of the model are divided to, say, total of IV finite parts, the boundary elements.
This discretization is then used to compute the view factors and the Gebhart factor for these parts. The
Gebhart factors may be computed from the equation

G=FI—-(I-EF)'E, (1.25)

where F' is the view fa tor matrix, and E a diagonal matrix of surface emissivities. Writing the discrete
version of the boundary condition we get

T}, 1 Y
— Kp— = T} — GireiTAA; | . 1.26
Kkank 06k< k Ak€k21: keiti ) ( )

This equation is still nonlinear, and has to be linearized in order to solve the equation on a computer. To
illustrate the point here, we will first show how to linearize the idealized radiation boundary condition instead
of the diffuse gray radiation boundary condition. The idealized boundary condition reads

or

—ho = oe(T* = T2,). (1.27)
n
We may write this somewhat differently as in
or 3 2 2 3
- KZ% = O'E(T + T Text + TTewt + TeJ,t)(T — Te:ct)- (128)

If we now take T' = T, the temperature from the previous iteration, in first of the product terms, we have
an expression linear in T. This is somewhat strange linearization, not quite a Newton method, but effective
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in being more insensitive to the initial guess of the temperature field than the Newton method, while still
having a much better convergence rate than the fixed point method. The Newton linearization is also easy
to produce by writing down the Taylor series expansion of the equation around 7" and retaining only the
constant terms and the terms linear in 7":
- n‘g—: =0e(dT3T - 3T* - T2,). (1.29)

This linearization has a better convergence rate than the previous one, but with the expense of being more
sensitive to the initial guess. These two linearizations may be used in succession, first taking a few steps
with the former linearization, and then switch to the latter when the convergence is on the way.

The linearization of the diffuse gray radiation boundary condition is very similar. We may, for example,
use the temperatures from the previous iteration to compute an “external” temperature

1
T ~ > Gusi T A; (1.30)
k

and use either of the previous equations. The convergence rates of these methods are of first order, and
usually they are used only to provide an initial guess for the full Newton iteration. The full Newton method
may be written as

N

T,

— nk@ = oep [AT3T — 3T — § Gunei(ATT; — 3TH A | (1.31)
8nk 1

The Gebhart factors computed in the way presented here are assumed to be constant within elements, while
the temperatures from the previous iteration are known at the element nodal points. Terms of type oG, 1}
are to be integrated over the element ¢. This is done by a one point integration rule and requires values of the
powers of the temperature held at the element center. To conserve the heat flux, the powers of the temperature
held will first have to be computed on nodal points, and only after that interpolated to the element center,
rather than first interpolating the temperatures and computing the powers afterwards.

Diffuse Radiation Boundary Condition Using Radiosity

When the radiation heat transfer among the surface elements depends on the spectral properties of the ma-
terials the Gebhart factor approach becomes cumbersome. Also, otherwise the Gebhart factors suffer from
huge computational cost as each row in Gebhart factor computation requires solution of a linear system
where all the surface elements participate.

An alternative approach is to use a concept called “radiosity” which is the total radiative power leaving
the surface. For our purposes we rather end up with “irradiance” i.e. the radiation coming to the surface but
the literature is more developed to treat radiosity and hence we use that too here. We follow the Ch. 5 in [1].

Let us study the energy balance for a boundary element :. The emissive power is assumed to be M;, the
incoming irradiance E; then radiosity J; is defined as

Ji=M; +r;E; (1.32)

Assuming that material parameters €;, o;; and r; are constant radiosity vector J may be solved from a
linear system (equation (5.166) in the reference with r; = 1 — ¢;)

N
Z[ém - TiFij}Jj = 6@0’7;4. (133)
J

or for our purposes in more convenient matrix form

(rF —1)J = —eoT". (1.34)

CSC —IT Center for Science (cc



1. Heat Equation 23

After solution of radiosity J we could compute irradiance from E = F'J and absorbed flux from aF'J
which after some manipulation yields
ex

T 1.35
11—« +1—aJ ( )

Ga = O
where we have defined the reflectivity using absorptivity, 7 = 1 — a. The emitted power is still
ge = —oeT? (1.36)

Splitting the fluxes into two is convenient since ¢, is the standard radiative flux to open space depending
only on the surface temperature while g, is the absorbed radiation that may depend on the spectral nature of
the radiation.

To boost convergence we also compute approximate estimate for dg, /dT that is used for Newton’s lin-
earization. The linearization only depends on the temperature of the element itself and hence the convergence
rate of the nonlinear system is on par with the Gebhart factor method.

Radiosity for Non-Gray Boundaries

When the emissivity and absorptivity depend on temperature we need to leave the condition of grayness i.e.
that different photons interact in the same manner. The different wavelengths could be treated separately.
However, here we assume that each radiating surface emits black body radiation associated to its own tem-

perature. Also, we split the temperature into discrete temperatures 7, = kAT, k = 1,2, 3, .. .. Each source
is then weighted by
g, (T) = max (0,1 — abs(T/AT — k)). (1.37)
Now we sum up the contribution to ¢, one temperature at a time,
[r(Ti)F — 1] Jy, = —qi(T)eaT™. (1.38)
and
e o
0= T T J 1.39
q zk:[ng( Jor T + 7= (1.39)

In summation of the contribution of different temperatures the parameters o and € must be evaluated at the
temperature of the interval.

Computing the View Factors in 3D

A view factor between two surface patches (boundary elements) of a geometrical model (mesh) is defined as

1 COSP; o
Fij=— H,;;jdA;dA;, 1.40
J Ai/Ai/AjCOS%WT 3 a4 (1.40)

where A; and A; are the areas of the patches ¢ and j respectively, ¢; and ¢; the angles between the normals
of the surfaces at given points and the line connecting the points and r the distance between the two points.
The most problematic thing about the definition of the view factor integral is the evaluation of the visibility
function H;;. The value of the function H;; is one, if there are no obstacles between the two points, and
zero otherwise. The view factors are computed for every pair of surface patches in the model, so that we
eventually geta N x N matrix F'.
Noting that
AiFy; = AjFy (1.41)

allows only one half of the factors to be actually computed (or alternatively using the redundant information
to make the view factor computation more accurate).

In three dimensional cases, the method the Elmer view factor computation program uses to evaluate the
integral 1.40 is direct numerical integration combined with an adaptive subdivision procedure, where the
elements are subdivided to smaller and smaller pieces, until user specified criteria are fulfilled. An area
weighted average of the factors of the parts of the subdivided patches is then computed. The subdivision of
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patches is stored in hierarchical storage, so that it doesn’t have to be repeated for every pair of patches. This
subdivision is also used by the ray tracer, which is used for computing the visibility function.

First of the criteria to terminate the integration subdivision procedure is fulfilled when the areas of the
subdivided elements are small enough. This criterion prevents the subdivision to continue forever in areas
where the integrand is actually discontinuous (any sharp corner, for example). The second criterion to
terminate the subdivision is fulfilled when the view factors themselves have become small enough. This
criterion prevents unnecessary subdivision of areas which are either far away from each other or oriented so
that the projections of their areas to each other are small.

The function H;; is evaluated by sending a number of rays from one of the patches to another, and check-
ing whether they hit some other patch of the model before hitting the target. This is potentially a very time
consuming task, as in the worst case, for every pair of boundary elements, all the other boundary elements
of the model must be checked for obstructing the view between the pair. The ray tracer module is designed
to reduce the time spent in computing the intersections, by making a hierarchical volume subdivision of the
model volume and assigning each element of the model to some of these subdivided volumes in a fixed hier-
archy level. The ray tracer is then able to check whether the ray will hit the bounding boxes of the volumes,
then the second level of bounding boxes, etc. before eventually going through the elements assigned to a
volume in the last hierarchy level. There might be only a couple of elements assigned to that volume.

When the visibility between two surface patches is in doubt (some of the rays are obstructed, some not)
an additional subdivision cycle is made. When the subdivision is eventually terminated, H;; is computed as
H;; =1 — ny/n where ny is the number of the rays blocked and n the total number of rays sent.

Normalizing the View Factors

The view factors computed by, for example, the kind of procedure described in the previous section, are only
approximate. For the radiative exchange of heat in finite element computations, it is sometimes important to
guarantee that energy is conserved. The energy conservation requires, that in a closed system

N
ZFM =1. (1.42)
J

Together with the symmetry equation this condition may be used to normalize the factors so that energy will
be conserved. Note that this condition only holds for fully closed surfaces.
Lets begin with defining a symmetric matrix

1
This matrix we can relatively easily scale so that the row sums (and as we should preserve the symmetry, also

column sums) of the matrix are equal to corresponding surface patch areas, by solving a set of equations:

N
> did;Sij=A;, i=1,...,N. (1.44)

J

where the d;:s are scale factors. The equation set is quadratic in d;:s and may be solved by Newton iteration.
The resulting linear system is diagonally dominant and very stable, so there should be no problems in solving
the equation. After the scaling is known we may compute the normalized factors by

Fij = did;Si; /A (1.45)
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Navier-Stokes Equations

Module name: FlowSolve

Module subroutines: FlowSolver

Module authors: Juha Ruokolainen

Document authors: Juha Ruokolainen, Peter Rdback

2.1 Introduction

In solid and liquid materials heat transfer and viscous fluid flow are governed by heat and Navier-Stokes
equations, which can be derived from the basic principles of conservation of mass, momentum and energy.
Fluid can be either Newtonian or non-Newtonian. In the latter case the consideration in Elmer is limited to
purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer and stresses in elastic
material applied in Elmer. Also the most usual boundary conditions applied in computations are described.

2.2 Theory

The momentum and continuity equations can be written as

ou . -z
p(at—l—(u-V)u)—wa—p, (2.1)
and
ap . _
<at+(u.v>p) (V@) =0, 22)

where @ is the stress tensor. For Newtonian fluids

2

7 = 2F — (V@) — oI, 2.3)

~l

where p is the viscosity, p is the pressure, I the unit tensor and Z the linearized strain rate tensor, i.e.

1 (Ou; | Ouy

The density of an ideal gas depends on the pressure and temperature through the equation of state

p

p:
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2. Navier-Stokes Equations 26

where R is the gas constant:

R= 5 Cp- (2.6)
The specific heat ratio -y is defined as
C
7=2, @.7)
Cy

where ¢, and ¢, are the heat capacities in constant pressure and volume, respectively. The value of v depends
solely on the internal molecular properties of the gas.
An incompressible flow is characterized by the condition p=constant, from which it follows that

V.-u=0. (2.8)
Enforcing the constraint (2.8) in (2.1), (2.2) and (2.3), the equations reduce to the Navier-Stokes equations

) (3“ (@ vw) V@B 4V = of 2.9)

ot
Vi = 0. (2.10)

Compressible flows are modelled by the equations (2.1)-(2.7). Then, it is possible to replace the state equa-
tion (2.5) by
1
p= 3P (2.11)

where ¢ = ¢(p, T, .. .) is the speed of sound. The equation (2.11) can be used with liquid materials as well.

Most commonly the term p f represents a force due to gravity, in which case the vector f is the gravita-
tional acceleration. It can also represent, for instance, the Lorentz force when magnetohydrodynamic effects
are present.

For isothermal flows the equations (2.9) and (2.10) describe the system in full. For thermal flows also
the heat equation needs to be solved.

For thermal incompressible fluid flows we assume that the Boussinesq approximation is valid. This
means that the density of the fluid is constant except in the body force term where the density depends
linearly on temperature through the equation

p=po(l—B(T —Tp)), (2.12)

where £ is the volume expansion coefficient and the subscript O refers to a reference state. Assuming that
the gravitational acceleration g is the only external force, then the force pog(1 — 5(T — Tp)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof convection or natural convection.

One can choose between transient and steady state analysis. In transient analysis one has to set, besides
boundary conditions, also initial values for the unknown variables.

2.2.1 Boundary Conditions

For the Navier-Stokes equation one can apply boundary conditions for velocity components or the tangential
or normal stresses may be defined.
In 2D or axisymmetric cases the Dirichlet boundary condition for velocity component w; is simply

w; = ul. (2.13)

?

A value uf can be constant or a function of time, position or other variables. In cylindrical cases the Dirichlet
boundary condition for angular velocity u? is

u = w, (2.14)

where w is the rotation rate.
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In axisymmetric geometries one has to set u,, = 0 and Ju, /Or = 0 on the symmetry axis.
If there is no flow across the surface, then

i-i=0 (2.15)

where 77 is the outward unit normal to the boundary.
Surface stresses can be divided into normal and tangential stresses. Normal stress is usually written in
the form
~

n= = — Da 2.16
o A (2.16)

where 7 is the surface tension coefficient, R the mean curvature and p, the atmospheric (or external) pres-
sure. Tangential stress has the form
d. =V, 2.17)

where V is the surface gradient operator.

The coefficient y is a thermophysical property depending on the temperature. Temperature differences
on the surface influence the transport of momentum and heat near the surface. This phenomenon is called
Marangoni convection or thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

v =1 —=HT - 1Tp)), (2.18)

where ¥ is the temperature coefficient of the surface tension and the subscript 0 refers to a reference state.
If a Boussinesq hypothesis is made, i.e., the surface tension coefficient is constant except in (2.17) due to
(2.18), the boundary condition for tangential stress becomes

Gy = 97V, T. (2.19)

In equation (2.16) it holds then that v = ~y. The linear temperature dependence of the surface tension
coefficient is naturally only one way to present the dependence. In fact, the coefficient v can be any user
defined function in Elmer. One may also give the force vector on a boundary directly as in

Fi=4. (2.20)

2.2.2 Linearization

As is well known, the convective transport term of the Navier-Stokes equations and the heat equation is a
source of both physical and numerical instability. The numerical instability must be compensated somehow
in order to solve the equations on a computer. For this reason the so called stabilized finite element method
([2],[1]) is used in Elmer to discretize these equations.

The convection term of the Navier-Stokes equations is nonlinear and has to be linearized for computer
solution. There are two linearizations of the convection term in Elmer:

—

(@ V)i~ U-V)i (2.21)

and
(@-V)ir (U-V)i+ (@ - VU—U-V)U, (2.22)

where U1 is the velocity vector from the previous iteration. The first of the methods is called Picard iteration
or the method of the fixed point, while the latter is called Newton iteration. The convergence rate of the
Picard iteration is of first order, and the convergence might at times be very slow. The convergence rate of
the Newton method is of second order, but to successfully use this method, a good initial guess for velocity
and pressure fields is required. The solution to this problem is to first take a couple of Picard iterations, and
switch to Newton iteration after the convergence has begun.
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2.2.3 Arbitrary Lagrangian-Eulerian (ALE) coordinates

For problems involving deformations the transient Navier-Stokes equation must be solved using Arbitrary
Lagrangian-Eulerian (ALE) frame of reference. Assume that the mesh velocity during the nonlinear iteration
is ¢. Then the convective term yields

(G—2d)-V)ir (U-2)- V)i (2.23)

This results naturally to Picard iteration. For Newton iteration the additional two terms remains the same
since the mesh velocities in there cancel each other.

2.2.4 Non-Newtonian Material Models

There are several non-Newtonian material models. All are functions of the strainrate . The simple power
law model has a problematic behavior at low shear rates. The more complicated models provide a smooth
transition from low to high shearrates.

Power law
A
p=" T (2.24)
Y 1Y <o
where 7., is constant, g is the critical shear rate, and n is the viscosity exponent.
Carreau-Yasuda o
= 1o +An(1+(ch)") ¥, (2.25)

where 7)o is the high shearrate viscosity v — oo provided that n < 1. For shearrates approaching zero the
viscosity is 179 = 1o + An. An is thus the maximum viscosity difference between low and high shearrate.
This model recovers the plain Carreau model when the Yasuda exponent y = 2.

Cross A
n
M=o 7 e (2.26)
where again 1), is the high shearrate viscosity.
Powell-Eyring
asinh(c)
0= Too + Ancéw- (2.27)

All the viscosity models can be made temperature dependent. The current choice is to multiply the
suggested viscosity with a factor exp(d(1/(T, + T) — 1/T,.)), where d is the exponential factor, T}, is
temperature offset (to allow using of Celcius), and 7;. the reference temperature for which the factor becomes
one.

2.2.5 Flow in Porous Media

A simple porous media model is provided in the Navier-Stokes solver. It utilizes the Darcy’s law that states
that the flow resistance is proportional to the velocity and thus the modified momentum equation reads

ou — -
p((;;—&-(ﬁ'-V)ﬁ)—V-a—i—rﬁ:pﬂ (2.28)
where 7 is the porous resistivity which may also be an orthotropic tensor. Usually the given parameter is
permeability which is the inverse of the resistivity as defined here. No other features of the porous media
flow is taken into consideration. Note that for large value of r only the bubble stabilization is found to work.
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2.2.6 Rotating coordinates

In rotating coordinate system around origin one may define the angular velocity vector, Q. The rotation
introduces additional forces that may be evaluated from the following

d_'iner ia d_'ro atin = — = = _»
“ el “ 20 1 960 X rotating + 3 x (8 x &), (2.29)

In numerical implementations the following Lagrange’s formula is used
Ox (Qxd)=(Q-D)0—(Q-Q)z. (2.30)
which results to the following form of the Navier-Stokes equation in rotating coordinates

p(?:Jr(ﬁV)ﬂ') —V-+200xd=p- DT - p(Q- D)0+ pf. (2.31)

It should be noted that now also the boundary conditions need to be given in the rotational coordinate system.

2.2.7 Coupling to Electric Fields

In electrokinetics the fluid may have charges that are coupled to external electric fields. This results to an
external force that is of the form

fo=—pcVo, (2.32)

where p, is the charge density and ¢ is the external electric field. The charge density may also be a variable.
More specifically this force may be used to couple the Navier-Stokes equation to the Poisson-Boltzmann
equation describing the charge distribution in electric doubly layers. Also other types of forces that are
proportional to the gradient of the field may be considered.

2.2.8 Coupling to Magnetic Fields

If the fluid has free charges it may couple with an magnetic field. The magnetic field induced force term for
the flow momentum equations is defined as

fn=J x B, (2.33)
Here B and E are the magnetic and electric fields, respectively. The current density J is defined as

J=0(E+1ixB). (2.34)

2.3 Keywords

Constants

Gravity Size 4 Real [x y z abs]
The above statement gives a real vector whose length is four. In this case the first three compo-
nents give the direction vector of the gravity and the fourth component gives its intensity.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Navier—-Stokes]
The name of the equation. If it is Navier—Stokes then an old logic will define the following
keyword.

Procedure File "FlowSolve" "FlowSolver"
The name of the procedure for the Navier-Stokes equation. This should be given as stated here.
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Variable String Flow Solution[Velocity:3 Pressure:1l]
This is the default name of velocity field in 3D, for 2D replace modify the number of velocity
components. User could give this mainly if needing several flow fields within one simulation.

Flow Model String [Full] [No convection] [Stokes]
Flow model to be used. The default is to include both convection and time derivative terms in the
model. The ”"No convection” model switches off the convection terms, and the ”Stokes” model
both the convection terms and the (explicit) time derivative terms.

Nonlinear System Convergence Tolerance Real
this keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations is small enough

ui = wia || < eluil],

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the itera-
tion count is met, it will switch the iteration type instead.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

wi = wi—al] < elugl],

where € is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

’LL; = )\ul + (]. — )\)Ui,h

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

i — w1 || < ef|uil],

where ¢ is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the Navier-
Stokes equations. Usually stabilization of the equations must be done in order to successfully
solve the equations. If solving for the compressible Navier-Stokes equations, a bubble function
formulation is used instead of the stabilized formulation regardless of the setting of this keyword.
Also for the incompressible Navier-Stokes equations, the bubbles may be selected by setting this
flag to False.

Div Discretization Logical
In the case of incompressible flow using the this form of discretization of the equation may lead
to more stable discretization when the Reynolds number increases.
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Gradp Discretization Logical
Whit this form of discretization pressure Dirichlet boundary conditions can be used (and pressure
level must be fixed by such a condition). Also the mass flux is available as a natural boundary
condition.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Navier-Stokes Logical
if set to True, solve the Navier-Stokes equations.
Magnetic Induction Logical
If set to True, solve the magnetic induction equation along with the Navier-Stokes equations.

Convection String [None, Computed, Constant]
The convection type to be used in the heat equation, one of: None, Computed, Constant.
The second choice is used for thermal flows.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Boussinesq Logical
If set true, sets the Boussinesq model on.

Flow BodyForce i Real
May be used to give additional body force for the flow momentum equations, i=1, 2, 3.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow momentum equations.

Potential Force Logical
If this is set true the force used for the electrostatic coupling is activated.

Potential Field Real
The field to which gradient the external force is proportional to. For example the electrostatic
field.

Potential Coefficient Real
The coefficient that multiplies the gradient term. For example, the charge density.

Angular Velocity Real
The angular velocity €2 used for rotating coordinate systems. The size is always expected to be
three.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Pressure Real

Velocity i Real
For each velocity component 1= 1,2, 3.

Kinetic Energy Real
For the k-¢ turbulence model.

Kinetic Energy Dissipation Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier-Stokes equation.

Density Real The value of density is given with this keyword. The value may be constant, or
variable. For the of compressible flow, the density is computed internally, and this keyword has
no effect.
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Viscosity Real

The relationship between stress and strain velocity. When using the solidification modelling, a
viscosity-temperature curve must be given. The viscosity must be set to high enough value in
the temperature range for solid material to effectively set the velocity to zero.

Reference Temperature Real

This is the reference temperature for the Boussinesq model of temperature dependence of density.

Heat Expansion Coefficient real

For the Boussinesq model the heat expansion coefficient must be given with this keyword. De-
fault is 0.0.

Applied Magnetic Field i Real

An applied magnetic field may be given with these keywords with i=1, 2, 3.

Compressibility Model String

This setting may be used to set the compressibility model for the flow simulations. Currently the

setting may be set to either Incompressible,Perfect GasandArtificialCompressible.
If perfect gas model is chosen the settings Reference Pressure and Specific Heat
Ratio must also be given. The artificial compressibility model may be used to boost conver-

gence in fluid-structure-interaction cases. The default value of this setting is Incompressible.

Reference Pressure Real

with this keyword a reference level of pressure may be given. This setting applies only if the
Compressibility Model is set to the value Perfect Gas.

Specific Heat Ratio Real

The ratio of specific heats (in constant pressure versus in constant volume) may be given with
this keyword. This setting applies only if the Compressibility Model is set to value
Perfect Gas. The default value of this setting is 5/3, which is the appropriate value for
monoatomic ideal gas.

For the k- turbulence model the model parameters may also be given in the material section using the
following keywords

KE
KE
KE
KE
KE

SigmaK Real [1.0]
SigmaE Real [1.3]
Cl Real [1.44]
C2 Real [1.92]
Cmu Real [0.09]

Non-Newtonian material laws are also defined in material section. For the power law the constant
coefficient is given by the keyword Viscosity.

Viscosity Model String

The choices are power law, carreau, cross, powell eyringandthermal carreau.
If none is given the fluid is treated as Newtonian.

Viscosity Exponent Real

Parameter n in the models power law, Carreau, Cross

Viscosity Difference Real

Difference An between high and low shearrate viscosities. Applicable to Carreau, Cross and
Powell-Eyring models.

Viscosity Transition Real

Parameter c in the Carreau, Cross and Powell-Eyring models.

Critical Shear Rate Real [0.0]

Optional parameter 7, in power law viscosity model.
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Nominal Shear Rate Real [0.0]
Optional parameter in the power law viscosity model that gives the shearrate that returns the
plain Newtonian viscosity.

Yasuda Exponent Real
Optional parameter y in Carreau model. The default is 2. If activated the model is the more
generic Yasuda-Carreau model.

Viscosity Temp Offset Real
Parameter 7}, in the thermal viscosity dependence. When using Celsius instead of Kelvin this
would be 273.15, for example.

Viscosity Temp Ref Real
Parameter 7. in the thermal viscosity dependence. This should be set so that unity factor is
obtained when 1, =T, + T

Viscosity Temp Exp Real
Exponential parameter d in the thermal viscosity dependence.

Porosity is defined by the material properties

Porous Media Logical
If this keyword is set True then the porous model will be active in the material.

Porous Resistance Real
This keyword may give a constant resistance or also an orthotropic resistance where the resis-
tance of each velocity component is given separately.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier-
Stokes equation are

Velocity i Real
Dirichlet boundary condition for each velocity component i= 1, 2, 3.

Pressure Real
Absolute pressure.

Normal-Tangential Velocity Real
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system using the keywords

Flow Force BC Logical
Set to t rue, if there is a force boundary condition for the Navier-Stokes equations.

Surface Tension Expansion Coefficient Real
Triggers a tangential stress boundary condition to be used. If the keyword Surface Tension
Expansion Coefficient is given, a linear dependence of the surface tension coefficient
on the temperature is assumed. Note that this boundary condition is the tangential derivative of
the surface tension coefficient

Surface Tension Coefficient Real
Triggers the same physical model as the previous one except no linearity is assumed. The value
is assumed to hold the dependence explicitly.

External Pressure Real
A pressure boundary condition directed normal to the surface.

Pressure i Real
A pressure force in the given direction i= 1,2, 3.

Free Surface Logical
Specifies a free surface.
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Free Moving Logical
Specifies whether the regeneration of mesh is free to move the nodes of a given boundary when
remeshing after moving the free surface nodal points. The default is that the boundary nodes are
fixed.

The k-¢ turbulence model also has its own set of boundary condition keywords (in addition to the
Dirichlet settings):

Wall Law Logical
The flag activates the (Reichardts) law of the wall for the boundary specified. the default is 9.0.

Boundary Layer Thickness Real
The distance from the boundary node of the meshed domain to the physical wall.

Bibliography

[1] L.P. Franca and S.L. Frey. Computer methods in Applied Mechanics and Engineering, 99:209-233,
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[2] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Computer methods in Applied Mechanics and Engineering,
95:253-276, 1992.
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Model 3

Advection-Diffusion Equation

Module name: AdvectionDiffusion

Module subroutines: AdvectionDiffusionSolver

Module authors: Juha Ruokolainen, Ville Savolainen, Antti Pursula
Document authors: Ville Savolainen, Antti Pursula

3.1 Introduction

Advection-diffusion equation (sometimes called diffusion-convection equation) describes the transport of a
scalar quantity or a chemical species by convection and diffusion. The difference in the nomenclature usually
indicates that an advected quantity does not have an effect on the velocity field of the total fluid flow but
a convected quantity has. Advection-diffusion equation is derived from the principle of mass conservation
of each species in the fluid mixture. Advection-diffusion equation may have sources or sinks, and several
advection-diffusion equations may be coupled together via chemical reactions.

Fick’s law is used to model the diffusive flux. Diffusion may be anisotropic, which may be physically
reasonable at least in solids. If the velocity field is identically zero, the advection-diffusion equation reduces
to the diffusion equation, which is applicable in solids.

Heat equation is a special case of the advection-diffusion (or diffusion-convection) equation, and it is
described elsewhere in this manual.

3.2 Theory

3.2.1 Governing Equations

The advection-diffusion equation may, in general, be expressed in terms of relative or absolute mass or
molar concentrations. In Elmer, when the transported quantity is carried by an incompressible fluid (or it is
diffused in a solid), relative mass concentration ¢; = C;/p for the species i is used (C; is the absolute mass
concentration in units kg /m?, and p the total density of the mixture). We have used the approximation valid
for dilute multispecies flows, i.e., 0 < ¢; < 1. The advection-diffusion equation is now written as

Oe; o
p < 8751 + (- V)Ci) =pV - (D;Ve;) + S; 3.1
where ' is the advection velocity, D; the diffusion coefficient and S; is a source, sink or a reaction term. The
diffusion coefficient may be a tensor.

For a compressible fluid, the concentration should be expressed in absolute mass units, and the advection-
diffusion equation reads

9C;
ot
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For a situation, where the quantity is transported through a phase change boundary, it is convenient to
scale the absolute mass formulation by the respective solubilities of the different phases. Such a case is for
example the surface of a liquid, where the transported quantity is evaporated into a gaseous material. The
scaled concentration variable satisfies the equilibrium boundary condition on the phase change boundary
automatically, and thus the advection-diffusion equation can be solved for both materials simultaneously.
The scaling is following c

3

)
Ci,mar

where z; is the concentration of species ¢ relative to its maximum solubility in the current material in absolute
mass units. The maximum solubility has to be a constant (temperature independent) for the absolute mass
formulation of the advection-diffusion equation to remain unchanged.

It is also possible to include temperature dependent diffusion (Soret diffusion). This introduces an addi-
tional term on the right-hand side of the equation:

(3.3)

T =

V- (pDirVT), (3.4)

where D; r is the thermal diffusion coefficient of species i. The coefficient D; 1 has to be given in the units
m? /K s regardless of the units used for concentration.

The velocity of the advecting fluid, ¥, is typically calculated by the Navier-Stokes equation and read in
from a restart file. All quantities can also be functions of, e.g., temperature that is given or solved by the
heat equation. Several advection-diffusion equations for different species ¢ may be coupled and solved for
the same velocity field.

Given volume species sources S; can be prescribed. They are given in absolute mass units, i.e., kg/m?s.
If the equation is scaled to maximum solubility, the source term can be given in absolute mass units, or in
scaled units, S; sc = S;/Ci masz. Which is the default.

3.2.2 Boundary Conditions

For each species one can apply either a prescribed concentration or a mass flux as boundary conditions.
Dirichlet boundary condition reads as
Ci = Cip, (3.5)

or
Ci = Cip, (3.6)

depending on the units. If the concentration is scaled to maximum solubility, the Dirichlet boundary condi-
tions have to be given also in scaled values, z; = C; 4/C; maz- In all variations, the boundary value can be
constant or a function of time, position or other variables.

One may specify a mass flux 7; perpendicular to the boundary by

oC;
%= —D;— = 3.7
Ji-1n on (3.7
In relative mass units, this may be written as
I 801’
Ji-n= 7,0Di78 =g. (3.8)
n

Thus the units in the flux boundary condition are always kg/m?s except when the equation is scaled to
maximum solubility. In that case the default is to give flux condition in scaled units, gsc = g/C; maw»
although the physical units are also possible.

The mass flux may also be specified by a mass transfer coefficient 5 and an external concentration Cl ¢

oC;
on

On the boundaries where no boundary condition is specified, the boundary condition g = 0 is applied.
This zero flux condition is also used at a symmetry axis in 2D, axisymmetric or cylindrical problems.

- Di = ﬁ(C’L - Ci,ea:t)~ (39)
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The equilibrium boundary condition on phase change boundaries under certain conditions is that the
relative amounts of the transported quantity are equal on both sides of the boundary,

(1) (2)
Cf _ G ; (3.10)
Clhar Climaa

where the superscripts (1) and (2) refer to different sides of the boundary. This boundary condition is
automatically satisfied if the equation is scaled with the maximum solubilities C’Z(]n)lw

However, the scaling causes a discontinuity into the mass flux of the species through the phase change
surface. The solver compensates this effect as long as such a boundary is flagged in the command file by the

user.

3.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-diffusion equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

Equation String [Advection Diffusion Equation Varname]
The name of the equation, e.g., Advection Diffusion Equation Oxygen.

Variable String Varname
The name of the variable, e.g., Oxygen.

Procedure File "AdvectionDiffusion" "AdvectionDiffusionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

lJup — up—1]| < €fluk],

where € is the value given with this keyword, and w is either ¢; or C;.
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Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

uy, = Aug + (1= Nug_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u before
the whole system is deemed converged. The tolerance criterion is:

i — wi—1|| < €l|Ti|,

where e is the value given with this keyword.

Stabilize TLogical
If this flag is set true the solver will use stabilized finite element method when solving the
advection-diffusion equation with a convection term. If this flag is set to False, RFB (Residual
Free Bubble) stabilization is used instead (unless the next flag Bubbles is set to False in a
problem with Cartesian coordinate system). If convection dominates, some form of stabilization
must be used in order to successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles orsetto False, no
stabilization is used. This choice may be enforced in a problem with Cartesian coordinates, but
the results might be nonsensical. Both Stabilize and Bubbles should not be set to True
simultaneously.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Advection Diffusion Equation Varname Logical
If set to True, solve the advection-diffusion equation.

Convection String
The type of convection to be used in the advection-diffusion equation, one of: None, Computed,
Constant.

Concentration Units String
If set to Absolute Mass, absolute mass units are used for concentration. Recommended for
a compressible flow. Also possible to select Mass To Max Solubility which causes the
absolute mass formulation of the equation to be scaled by the maximum solubilities of each
material.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Varname Diffusion Source Real
An additional volume source for the advection-diffusion equation may be given with this key-
word. It may depend on coordinates, temperature and other variables, such as concentration of
other chemical species, and thus describe a source, a sink or a reaction term. Given in absolute
mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the source term can be given in absolute mass units regardless of scaling.

Initial Condition ic id
The initial condition section may be used to set initial values for the concentration ¢;, C; or x;.

Varname Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity 1 Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Density Real
The value of density of the transporting fluid is given with this keyword. The value may be
constant, or variable. For compressible flow, the density of the transporting fluid is computed
internally, and this keyword has no effect.

Compressibility Model String
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter, the density is calculated from the
ideal gas law. Then also the settings Reference Pressure, Specific Heat Ratio
and Heat Capacity must be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Heat Capacity Real
For the compressible flow, specific heat in constant volume.

Varname Diffusivity Real
The diffusivity D given by, e.g., Oxygen Diffusivity. Can be a constant or variable. For
an anisotropic case, may also be a tensor D;;.

Varname Soret Diffusivity Real
The thermal diffusivity coefficient D given by, e.g., Oxygen Soret Diffusivity. Can
be a constant or variable.

Varname Maximum Solubility Real
The maximum solubility of the species in absolute mass units. Has to be a constant value.

Boundary Condition bc id
In advection-diffusion equation we may set the concentration directly by Dirichlet boundary condi-
tions or use mass flux condition. The natural boundary condition is zero flux condition.

Varname Real

Mass Transfer Coefficient Real

External Concentration Real
These two keywords are used to define flux condition that depends on the external concentration
and a mass transfer coefficient. This condition is only applicable to absolute mass formulation
of the equation (see keywords for Equation block).

Varname Flux Real
A user defined mass flux term in absolute mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the flux boundary condition can be given in absolute mass units regardless of
scaling. Note that this keyword does NOT affect the Dirichlet boundary condition nor the mass
transfer coefficient bc.

Varname Solubility Change Boundary Logical True
This keyword marks the boundary over which the maximum solubility changes. Has to be present
for the mass flux continuity to be preserved.

Normal Target Body Integer bd id
In a solubility change boundary, this keyword can be used to control on which side the mass flux
compensation is done. Basically, this can be done on either side but there can be some effect on
the accuracy or on the speed of the solution. Recommended is to give as normal target the body
with less dense mesh, or the direction of average species transport. If normal target body is not
specified, the material with smaller density is used.
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Advection-Reaction Equation

Module name: AdvectionReaction

Module subroutines: AdvectionReactionSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Thomas Zwinger
Document authors: Thomas Zwinger

4.1 Introduction

Advection-reaction equation describes the transport of a passive scalar quantity, c, by a fluid. The advected
quantity is assumed not to have an effect on the velocity field. Besides a reaction rate, advection-reaction
equation may have sources or sinks. If no reaction rate and source are given, this equation may be used to
trace passive scalars through a given flow-field. If a constant source of unity value is given, the equation also
may be used to evaluate the time a passive tracer has remained in the flow field.

4.2 Theory

4.2.1 Governing Equations
The advective transport of a scalar ¢ can be written as

@—HTVC—&—FCZS, 4.1)
ot
where ¥ is the advection velocity, I is the reaction rate and S is a source/sink, depending on the sign.

Due to the absence of any diffusion, (4.1) has to be solved applying the Discontinuous Galerkin (DG)
method. Elmer implements the particular method as presented in [1]. In order to evaluated jumps across
partition boundaries in parallel computations, DG requires the utilization of halo-elements for domain de-
composition (see ElmerGrid manual for details).

4.2.2 Limiters

If the scalar has a lower, cpin < ¢ and/or an upper limit ¢ < cpax limit (where the limit can be also a
function of another variable), the variational form of (4.1) becomes a variational inequality. In order to
obtain a consistent solution a method using Dirichlet constraints within the domain is applied. The exact
procedure is the following:

1. construct the linear system: Ac = S, with the system matrix A and the solution vector ¢ on the
left-hand side and the force vector S on the right-hand side

2. set nodes as active if the constraint is violated
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3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
€ = Cmay/min 18 applied

4. the manipulated system is solved: Ae=28
5. aresidual is obtained from the un-manipulated system: R = A¢ — S
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied.

4.2.3 Boundary Conditions

At boundaries, a Dirichlet boundary condition reads as
c=cyp. (4.2)
By nature of the applied DG method, the condition above only applies at inflow boundaries, i.e., if
Ty <0, (4.3)

where 77}, is the outwards facing surface normal of the boundary.
On the boundaries where no boundary condition is specified, the boundary condition ¢ = 0 is applied
upon inflow.

4.3 Keywords

Simulation
The simulation section gives the case control data:

Simulation Type String
Advection-reaction equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D,Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords — related
to linear algebra, for example — are common for all the solvers and are explained elsewhere.

CSC —IT Center for Science (cc



4. Advection-Reaction Equation 43

Equation String Advection-Diffusion
The name of the equation, it can be arbitrary but unique.

Discontinuous Galerkin Logical
needs to be set to True. This is currently also enforced internally.

Variable String Variable name
The name of the variable, e.g., Tracer.

Procedure File "AdvectionReaction" "AdvectionReactionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

llex — cu—1l| < ellexll,

where € is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable c before
the whole system is deemed converged. The tolerance criterion is:

llei — ciall < elleill,

where € is the value given with this keyword.

Limit Solution Logical
Assumes the variational inequality method to apply, if set to t rue.

Compute Nodal Average Logical
The user may choose to average the Discontinuous Galerkin field to nodes. This was historically
needed to be able to visualize the fields using ElmerPost but Paraview can also handle cell
fields. If this flag is set on then Varname_nodal is the name used for the resulting field.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies.

Convection String
The type of convection to be used in the advection-reaction equation, one of: None, Computed,
Constant.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Variable_name Source Real
defines the volumetric source for variable ¢

Initial Condition ic id
The initial condition section may be used to set initial values for the scalar c.

Variable_name Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.
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Convection Velocity i Real
Convection velocity 1= 1, 2, 3 for the constant convection model.

Variable_ name Upper Limit Real
The upper limit, ¢, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Lower Limit Real
The upper limit, ¢y, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to t rue

Variable_name Gamma Real
defines the reaction rate, I’

Boundary Condition bc id

Variable_name Real sets the value for ¢ at inflow boundaries

Bibliography
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Reynolds Equation for Thin Film Flow

Module name: ReynoldsSolver

Module subroutines: ReynoldsSolver, ReynoldsHeatingSolver
Module authors: Peter Raback

Document authors: Peter Raback

5.1 Introduction

The flow of fluids is in the continuum level usually described by the Navier-Stokes equations. For narrow
channels this approach is an overkill and usually not even necessary. Neglecting the inertial forces and
assuming fully developed laminar velocity profiles the flow equations may be reduced in dimension resulting
to the Reynolds equation.

The current implementation of the Reynolds equation is suitable for incompressible and weakly com-
pressible liquids as well as for isothermal and adiabatic ideal gases. The nonlinear terms for the compressible
fluids are accounted for. The fluid is assumed to be newtonian i.e. there is a direct connection between the
strain rate and stress. The equation may be solved either in steady state or in a transient mode.

There is an additional solver for postprocessing purposes that computes the local heat generation field
using the Galerkin method. It also computes the integrals over the force and heating fields over the whole
area.

5.2 Theory

The underlying assumption of the Reynolds equation is that the flow in the channel is fully developed and
has thus the Hagen-Poiseuille parabolic velocity profile. Accounting also for the movement of the planes
and leakage through perforation holes the pressure may be solved from the equation

ph? 1 . ap
v (1277Vp> Ypp = 2V (phvy) + hat + pup, (5.1)

where p is the density, 7 is the viscosity, p is the pressure and h is the gap height, v, is the tangential velocity,
and v, is the velocity in direction of the surface normal [1, 5]. Holes may be homogenized using the flow
admittance Y which gives the ratio between pressure drop and mean flow velocity through the hole.

The exact form of the Reynolds equation depends on the material law for density, p(p). The absolute
value of density does not play any role and therefore we may study just the functional forms. For gases we
solve for the pressure variation from the reference pressure P, rather than for the absolute pressure. The
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different functional forms for some idealized material laws are the following:

px  (Po+p) isothermal ideal gas
pox (Py4p)Y/7 adiabatic ideal gas
p X 1 incompressible

p X er/B weakly compressible.

Here v = C,,/Cy is the specific heat ratio and 3 the bulk modulus. In discretization of the equations it is
also useful to derive the functional dependencies of the density derivatives in respect to pressure,

Pp X 1 isothermal ideal gas
pp o< (1/7)(Po+p)Y/7~1  adiabatic ideal gas
Pp X 0 incompressible

pp X p/B weakly compressible.

In order to improve convergence of the iteration of the nonlinear system some terms including differen-
tials of density may be expressed implicitly using pressure. This way equation (5.1) may be written in the
following form:

O WV N S ~
v (1277Vp> Y pp pphat 2pphvt Vp—QpV (hy) + pop. (5.2)

The surface velocity ¥ may also be given in normal Cartesian coordinate system. Then the normal and
tangential components may easily be obtained from

UV, = U-7

Uy = U— vpfhl.
The normal velocity and gap height are naturally related by
Oh
ot

In transient case the user should make sure that this relationship is honored.

(5.3)

Up =

5.2.1 Flow admittances of simple geometries

The flow admittance, Y, occurring in the Reynolds equation may sometimes be solved analytically for
simple hole geometries from the steady-state Stokes equation. Generally Y depends on the history but
here we assume that it is presents the steady-state situation of the flow [2, 5]. This means that inertial and
compressibility effects are not accounted for. For cylindrical holes the admittance then yields,

D2

= 54
320’ (5.4)

where D is the diameter of the holes and b is the length of the hole. In case of a narrow slot with width W
the admittance is given by
W2
T 120

(5.5)

5.2.2 Gas rarefaction effects

Generally the Reynolds equation could also be used to model nonnewtonian material laws. The current
implementation is limited to the special case of rarefied gases. The goodness of the continuum assumption
1 depends on the Knudsen number, K,,, which is defined by

A

K, =2, .
W (5.6)
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where ) is the mean free path of the molecules and £ is the characteristic scale (here the gap height). In this
solver only the dependence with pressure is taken into account from the formula

1
N 1+ P / P 0
When the Knudsen number is very small (K,, < 1) the gas may be considered as a continuous medium.
When the Knudsen number is in the transition regime (K,, ~ 1) we may take the gas rarefaction effect
into account by an effective viscosity. This accounts for the slip conditions of the flow in the channel by
decreasing the viscosity value. An approximation given by Veijola [4] is

_ Mo
1+ 9.638K1-159°

It s relative accuracy is 5 % in the interval 0 < K,, < 880.

A Ao- (5.7)

7 (5.8)

5.2.3 Boundary conditions for the Reynolds equation

The Reynolds equation may have different boundary conditions. The natural boundary condition that is
obtained by default is

P _y

on
This condition may be used at symmetry and closed boundaries.

If the aspect ratio of the resonator is large then the pressure variation at the open sides is small compared

to the values far from boundaries. Then may set Dirichlet boundary conditions (p = 0) for the pressure.
However, if the aspect ratio is relatively small the open side effects should be taken into account. The
pressure variation at the side is not exactly zero while also the open space has a flow resistance. The pressure
derivative at the boundary is approximated by

(5.9)

g _p

on L’
where L is the effective added length of the open sides [3]. If gas rarefaction is not accounted for then
L = 0.8488h, otherwise

(5.10)

L = 0.8488(1.0 + 2.6 76 K2-5%) h. (5.11)

5.2.4 Postprocessing

When the equation has been solved the solution may be used to compute some data for postprocessing
purposes. The local volume flux in the lateral direction may be obtained from

h3
7= ——=Vp+ htj. (5.12)
12n
The total force acting on the surface is
P =/ (v + 315:) dA, (5.13)
A h

where the first term is due to pressure driven flow and the second one due to sliding driven flow. Also the
heating effect may be computed. It consist of two parts: pressure driven flow and sliding flow. The local
form of this is

3
=2
h=—IVp]* + 4|5 5.14
1y VI gl (5.14)
Therefore the total heating power of the system is
Q:/ qdA. (5.15)
A

It should be noted that if the velocity field ¥ is constant then the integral quantities should fulfill the condition
Q=F-7

Note that the above implementation does not take into account the leakage through perforation holes nor
the compressibility effects of the fluids.
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5. Reynolds Equation for Thin Film Flow 48

5.3 Keywords

The module includes two different solvers. ReynoldsSolver solves the differential equation (5.2) while
ReynoldsHeatingSolver solves the equation (5.14) and computes the integrals. The second solver
only makes sense when the pressure field has already been computed with the first one. The second solver
uses the same material parameters as the first one.

Keywords for ReynoldsSolver
Solver solver id

Equation String ReynoldsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
Name of the solver subroutine.

Variable String FilmPressure
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
The name of the module and procedure. These are fixed.

Apply Limiter Logical
The generic soft limiters may be applied for the Reynolds equation in order to mimic the effects
of cavitation. With this flag active the minimum and maximum limiters are accounted.

Nonlinear System Convergence Tolerance Real
The transient equation is nonlinear if the relative displacement or pressure deviation is high.
The iteration is continued till the relative change in the norm falls under the value given by this
keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Material mat id

Gap Height Real
Height of the gap where the fluid is trapped. If the case is transient the user should herself make
sure that also this variable has the correct dependence on time.

Surface Velocity 1 Real
The velocity of the moving body may be given in either Cartesian coordinates, or in ones that are
already separated to normal and tangential directions. In the first case the velocity components
are given with this keyword with 1=1, 2, 3.

Tangent Velocity i Real
For setting the tangential velocity (i.e. sliding velocity) use this keyword with 1=1, 2, 3.

Normal Velocity Real
Normal velocity is the velocity in the direction of the surface normal. Typically a negative value
means contraction.

Viscosity Real
Viscosity of the gas.

Viscosity Model String
The choices are newtonian and rarefied. The first one is also the default.
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Compressibility Model String
The choices are incompressible,weakly compressible,isothermal ideal gas,
and adiabatic ideal gas.

Reference Pressure Real
Reference pressure is required only for the ideal gas laws.

Specific Heat Ratio Real
This parameter is only required for adiabatic processes. For ideal monoatomic gases the ratio is
5/3. Only required for the adiabatic compressibility model.

Bulk Modulus Real
The parameter (3 in the weakly compressible material model.

Mean Free Path Real
If the viscosity model assumes rarefied gases the mean free path of the gas molecules in the
reference pressure must be given.

Flow Admittance Real
The steady-state flow admittance resulting from perforation, for example.

Body Force bf id

FilmPressure Lower Limit Real
The lower limit for the pressure that will be iteratively be enforced when the soft limiters are
active.

Boundary Condition bc id

FilmPressure Real
Sets the boundary conditions for the pressure. Usually the deviation from reference pressure is
zero at the boundaries.

Open Side TLogical
The open end effect may be taken into account by setting this keyword True.

Keywords for ReynoldsPostprocess

This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the ReynoldsSolver.

Solver solver id

Equation String ReynoldsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsPostProcess"
Name of the solver subroutine.

Reynolds Pressure Variable Name String
The name of the field that is assumed to provide the pressure field. The defaultis FilmPressure.
Note that the Variable of this equation need not to be defined since it is automatically set when
any of the field computation is requested.

Calculate Force Logical
Calculate the forces resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Force.

Calculate Flux Logical
Calculate the fluxes resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix F lux.

Calculate Heating Logical
Calculate the heating efficiency from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Heat ing.
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Calculate Force Dim Integer
By default the dimension of the force field is the mesh dimension plus one. Sometimes the
pressure lives on a 1D line of a 2D mesh. Then this keyword may be used to suppress the
dimension of force to two.

Calculate Flux Dim Integer
As the previous keyword but for the flux.
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Model 6

Linear Elasticity

Module name: StressSolve

Module subroutines: StressSolver

Module authors: Juha Ruokolainen

Document authors: Juha Ruokolainen, Thomas Zwinger

6.1 Introduction

This module computes displacement field from the Navier equations. These equations correspond to the lin-
ear theory of elastic deformations of solids. The material may be anisotropic and stresses may be computed
as a post processing step, if requested by the user. Thermal stresses may also be requested.

6.2 Theory

The dynamical equations for elastic deformations of solids may be written as

—V-r="f, 6.1)

where p is density, d is the displacement field, f gives a volume force, and 7 is the stress tensor. The stress
tensor is given by y B B
7 = Ciikle,, — i (T —Tp), (6.2)

where ¢ is the strain and quantity C is the elastic modulus. The elastic modulus is a fourth order tensor,
which in 3D has 21 independent components at the most (in 2D 10) due to symmetries. In Elmer thermal
stresses may be considered by giving the heat expansion tensor 5 and reference temperature T of the stress-
free state. The temperature field 7" may be solved by the heat equation solver or otherwise. The linearized
strains are given simply as

€= %(Vd + (Vd)™). (6.3)

6.2.1 Material laws

For isotropic materials the elastic modulus tensor may be expressed in terms of two independent scalars,
either the two Lame parameters p and A\ or Young’s modulus Y and Poisson’s ratio v. The stress tensor
given in terms of the Lame parameters is

T =2ue+ AV - dI — B(T — Ty), (6.4)
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where (3 is the heat expansion coefficient, and I is the unit tensor. The Lame parameters in terms of Young’s
modulus and Poisson’s ratio read

Yv Y
P - - 6.5
A+v)1-2v) " 2010 ©-5)
except for plane stress situations (7, = 0) where \ is defined as
Yv
A= —— . 6.6
=) (6.6)

For anisotropic materials the stress-strain relations may be given in somewhat different form, writing
TV = Fe Vs (67)

where 7 and €y are the stress and strain vectors, respectively, and the matrix £ (6 x 6 in 3D, 4 x 4 in 2D)
is the matrix of elastic coefficients. The stress and strain vectors are defined as

TV = (Ta: Ty Tz Tay Tyz T$z)T (6.8)
and
ev = (e €y €2 264y 26y, 2€wz)T. (6.9)
In 2D the stress vector is
v =(Tz Ty T2 Tmy)T (6.10)
and the strain vector
ey = (g5 €y €2 25$y)T. (6.11)

When plane stress computation is requested, 7, = 0, otherwise €, = 0. Cylindrically symmetric case is
identical to the 2D case, the components being given in the order of r, z, and ¢. The matrix F is given as
input for the anisotropic material model of Elmer.

6.2.2 Viscoelastic Maxwell model

Assuming incompressibility, a viscoelastic Maxwell model is introduced [1] by evolving the viscoelastic

stress tensor, Ty,

Otve  OT 1
% » (Tve — III), (6.12)

with 1 denoting the dynamic viscosity of the material and with IT and I standing for the isotropic part of the
Cauchy stress tensor and the unit tensor, respectively. Here 7 still denotes the elastic part of the stress tensor,
which in the case of incompressibility is altered to

7 =111 + 2pue. (6.13)

If the viscoelastic model is used in the context of solid-Earth deformation, a restoring force (second term
below), called Gravitational Pre-stress Advection (GPA), has to be introduced to prevent a loaded Earth from
collapsing [1]. The quasi-stationary momentum balance then reads

V-T—\pg/V(é'z-d‘):(L (6.14)
=cgpra

where g is the acceleration by gravity and €, the vertical direction (aligned with gravity). capa = pg is the
local coefficient for gravitational pre-stress advection, changing between different layers of the Earth.
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6.2.3 Modal, harmonic and stability analysis

In addition to steady state and time dependent equations, modal, harmonic and stability analysis may be
considered. In modal analysis the Fourier transform of the homogeneous form of the dynamical equation is
given by

-

pwd =V - 7(¢), (6.15)
or

/pd)kwk dQ) = /T’Lj 51] 'l[;) s, (6.16)

where w is the angular frequency and ¢ is the corresponding vibration mode.
When modal analysis of pre-stressed solids is considered, we first perform a steady analysis to compute
the stress tensor, here denoted by 05, and then solve the variational equation

- - Oy 0
o [ oot = [ ry(@eyd) do+ [ o G dn. 6.17)
Q Zj

Here the last term on the right-hand side represents the geometric stiffness due to external loads, thermal
stresses, etc.
In stability analysis the buckling modes ¢ are obtained from

_A/ 09k Ok 1) /Tm(*)eij(*) ds, (6.18)

o
q 7o, dxj

where ) is the margin of safety with respect to bifurcation (the current load can be multiplied by factor A
before stability is lost).

The equations described above may be interpreted as generalized eigenproblems and solved with stan-
dard techniques.

6.2.4 Rayleigh damping

Damping may be taken into consideration by using viscous damping or Rayleigh damping, in which it is
assumed that the damping matrix C; is proportional to the mass matrix M and the stiffness matrix K as

Cy = aM + BK. (6.19)

The identification of suitable damping coefficients o and S may be a difficult task.

6.2.5 Boundary conditions

For each boundary either a Dirichlet boundary condition

d; =db (6.20)

K2

or a surface force boundary condition
T-N=g (6.21)

must be given. The default boundary condition is the homogeneous natural boundary condition which im-
plies that g = 0.

The user may give spring k or damping ¢ coefficients on the boundary. These enable the introduction of
the force term in the form

L ad
= kd __ 6.22
g +£8t (6.22)

which may be treated implicitly maintaining the linear form of the equation.

CSC - IT Center for Science (cc



6. Linear Elasticity 55

6.2.6 Model lumping

For linear structures it is possible to create a lumped model that gives the same dependence between force
and displacement as the original distributed model,

F=KD (6.23)

where F' = (F, Fy, F, M, M, M.)T and D = (D, Dy D, ¢ ¢y ¢.)T. However, the lumped model is not
uniquely defined as it depends on the force or displacement distribution used in the model lumping. In the
current model lumping procedure the lumping is done with respect to a given boundary. The lumped force
and momentum are then integrals over this boundary,

Fi= [ faa (6.24)
A

Lumped displacements and angles are determined as the mean values over the boundary,
1
D, =~ / d; dA. (6.25)
A Ja

Therefore the methodology works best if the boundary is quite rigid in itself.

There are two different model lumping algorithms. The first one uses pure lumped forces and lumped
moments to define the corresponding displacements and angles. In 3D this means six different permutations.
Each permutation gives one row of the inverse matrix K —!. Pure lumped forces are obtained by constant
force distributions whereas pure moments are obtained by linearly varying loads vanishing at the center of
area. Pure moments are easily achieved only for relatively simple boundaries which may limit the usability
of the model lumping utility.

The second choice for model lumping is to set pure translations and rotations on the boundary and
compute the resulting forces on the boundary. This method is not limited by geometric constraints. Also
here six permutations are required to get the required data. In this method the resulting matrix equation is
often better behaving in comparison with the model lumping by pure forces, which may be another reason
to favour this procedure.

6.3 Keywords

Solver solver id
Note that all keywords related to linear solvers (starting with Linear System) may be used in this
solver as well. They are described elsewhere.

Equation String [StressSolver]
A describing name for the solver. This can be changed but it must be given,

Procedure File "StressSolve" "StressSolver"
Name of the solver subroutine.

Eigen Analysis Logical
Modal or stability analysis may be requested with this keyword.

Eigen System Values Integer
The number of eigen modes must be given with this keyword, if modal or stability analysis is in
effect.

Harmonic Analysis Logical
Use time-harmonic analysis where the solution becomes complex-valued if damping is defined.
The solution algorithm assumes that the diagonal entries in the matrix equation dominate.

Frequency Real
The frequency related to the harmonic analysis. If the simulation type is scanning, this may
be a scalar function, otherwise it is assumed to be a vector of the desired frequencies.
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Displace Mesh Logical
Should the mesh be deformed by the displacement field. The default is True except for eigen
and harmonic analysis.

Stability Analysis Logical
If set to t rue, then eigen analysis is stability analysis. Otherwise modal analysis is performed.

Geometric Stiffness Logical
If set to t rue, then geometric stiffness is taken into account.

Calculate Strains Logical
Computes the strain tensor of the solution.

Calculate Stresses Logical
If set to t rue, the stress tensor will be computed. Also von Mises stress will be computed by
default.

Calculate Principal Logical
Computes the principal stress components.

Calculate Pangle Logical
Calculate the principal stress angles.

Model Lumping Logical
If model lumping is desired, this flag should be set to True.

Model Lumping Filename File
The results from model lumping are saved into an external file the name of which is given by
this keyword.

Fix Displacement Logical
This keyword defines whether the displacements or forces are set and thereby chooses the model
lumping algorithm.

Constant Bulk System Logical
For some type of analysis only the boundary conditions change from one subroutine call to
another. Then the original matrix may be maintained using this logical keyword. The purpose is
mainly to save time spent on matrix assembly.

Update Transient System Logical
Even if the matrix remains constant within a time step, it may change with time. The time may
also be pseudo-time and then for example the frequency could change with time thus making the
harmonic system different between each timestep. This keyword has effect only if the previous
keyword is also defined to be true.

Maxwell Material Logical
If set to true, viscoelastic material model is applied. In the case of incompressible material the
keyword Incompressible has to be activated. The user has to supply a value for the viscosity
in the Material section in this case.

Incompressible Logical
Assume an incompressible material in connection with the viscoelastic Maxwell material. This
demands to declare an additional pressure variable to be used in the solver. For a two-dimensional
problem, that would read as Variable = String "t[d:2 p:1]", with d declaring the
displacements and p the pressure (the isotropic part of Cauchy stress tensor).

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Stress Analysis Logical
If set to True, solve the Navier equations.

Plane Stress Logical
If set to True, compute the solution according to the plane stress situation 7,, = 0. Applies
only in 2D.
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Body Force bf id
The body force section may be used to give additional force terms for the equations.

Stress Bodyforce 1 Real
Stress Bodyforce 2 Real

Stress Bodyforce 3 Real
The keywords listed above may be used to give a volume force.

Stress Bodyforce 1 im Real
Stress Bodyforce 2 im Real

Stress Bodyforce 3 im Real
The keywords listed above may be applied only in the case of the harmonic solution of the
equation to give the imaginary part of a volume force.

Stress Load Real
Keyword for defining initial stresses for the body. If the geometry is two-dimensional and not
cylindrically symmetric, a stress vector consisting of three entries is expected.

Strain Load Real
Keyword for defining initial strains for the body. If the geometry is two-dimensional and not
cylindrically symmetric, a strain vector consisting of three entries is expected.

Gravitational Prestress Advection Logical
Switches the additional restoring term of pre-stress advection used in solid-Earth deformation

GPA Coeff Real
Sets the factor of the gravitational pre-stress advection, cgp 4

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Displacement i Real
For each displacement component i= 1,2, 3.

Material mat id
The material section is used to give the material parameter values. The following parameters may be
set in the solution of the Navier equations.

Density Real
The value of density is given with this keyword. The value may be constant, or variable.

Poisson Ratio Real
For isotropic materials Poisson’s ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword. The modulus may be given as a scalar in
the isotropic case or as 6 X 6 (3D) or 4 x 4 (2D and axisymmetric) matrix in the anisotropic case.
Although the matrices are symmetric, all entries must be given.

Rayleigh Damping Logical
Apply Rayleigh damping.

Rayleigh Damping Alpha Real

Rayleigh Damping Beta Real
The parameters of Rayleigh damping.

Pre Stress Real
If stability analysis is performed or geometric stiffness is taken into account, one may give pre-
stress as an input to the solver. If the geometry is two-dimensional and not cylindrically sym-
metric, a stress vector consisting of three entries is expected.
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Pre Strain Real
If stability analysis is performed or geometric stiffness is taken into account, one may give pre-
strain as an input to the solver. If the geometry is two-dimensional and not cylindrically sym-
metric, a strain vector consisting of three entries is expected.

Heat Expansion Coefficient Real
If thermal stresses are to be computed, this keyword may be used to give the value of the heat
expansion coefficient. It may also be given as 3 x 3 tensor in 3D cases, and 2 x 2 tensor in 2D
cases.

Reference Temperature Real
If thermal stresses are to be computed, this keyword may be used to give the value of the refer-
ence temperature of the stress-free state.

Rotate Elasticity Tensor Logical
For anisotropic materials the principal directions of anisotropy do not always correspond to the
coordinate axes. Setting this keyword to True enables the user to input Young’s modulus matrix
with respect to the principal directions of anisotropy. Otherwise Young’s modulus should be
given with respect to the coordinate axis directions.

Material Coordinates Unit Vector 1(3) Real [1 0 0]
Material Coordinates Unit Vector 2(3) Real [0 0.7071 0.7071]

Material Coordinates Unit Vector 3(3) Real [0 -0.7071 0.7071]
The above vectors define the principal directions of the anisotropic material. These are needed
only if Rotate Elasticity Tensor is setto True. The values given above define the
direction of anisotropy to differ from the coordinate axes by a rotation of 45 degrees about x-axis,
for example.

Mesh Velocity 1 Real
Mesh Velocity 2 Real

Mesh Velocity 3 Real
Keywords for giving the mesh velocity

Boundary Condition bc id
Boundary condition sections are used to specify parameter values for various types of boundary con-
ditions. The following commands are related to the Navier equations.

Displacement i1 Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Normal-Tangential Displacement Logical
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system. The first component will in this case be
the normal component and the components 2, 3 refer to two orthogonal tangent directions.

Normal Force Real
A surface force (traction) normal to the boundary is given with this keyword.

Force i Real
A surface force (traction) in the given in coordinate directions 1= 1, 2, 3.

Force i Im Real
The imaginary part of a surface force (traction) in the given coordinate directions i= 1,2, 3.
Applies only to harmonic simulation.

Normal Force Im Real
The imaginary part of a surface force (traction) normal to the boundary is given with this key-
word. Applies only to harmonic simulation.

Damping Real
A given coefficient introduces a force proportional to velocity. Also Damping i and Damping
ij may be given.
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Spring Real
A given coefficient introduces a force proportional to displacement. Also Spring i and
Spring 1ij may be given.

Stress Load Real
Keyword for defining a surface force (traction) on the boundary in terms of given components of
the stress tensor. In this case the surface traction applied is computed in terms of the given stress
tensor and the normal vector to the boundary.

Model Lumping Boundary Logical True
When using the model lumping utility, the user must define which boundary is to be loaded in
order to determined the lumped model.
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Finite Elasticity

Module name: ElasticSolve

Module subroutines: ElasticSolver

Module authors: Mikko Lyly, Juha Ruokolainen, Mika Malinen
Document authors: Mika Malinen

7.1 Introduction

This chapter is concerned with the equations which describe finite deformations of elastic solids. As the
region of space occupied by the body at time ¢ is not known in advance, it is not convenient to handle
the equations in the form that expresses the field equations on the deformed configuration. Therefore the
associated problem is formulated here by employing the reference configuration which equals to the region
occupied by the body before the deformation.

7.2 Field equations

Let 2 denote the reference configuration, so that the region of space occupied by the body at the time ¢ is
given by
Qt = X(Q, t),
with x(+, t), for fixed ¢, a deformation of 2. If we define the displacement u(p, t) of the material point p € 2
by
u’(p7 t) = X(p7 t) - b

the basic system of field equations describing finite deformations of the body {2 may then be written as

poti — Div S = by,
S =F%(0), (7.1
F=I+Vu, C=FTF,

where pg gives the density when the body is in the reference position, the tensor field .S is referred to as the
first Piola-Kirchhoff stress, and by = by (p, t) defines a body force. The response function 3(C) generally
characterizes the second Piola-Kirchhoff stress as a function of the right Cauchy-Green tensor C.

In the basic case it is assumed that either

_ A
3(C) = §[tr(C — DI +u(C-1) (7.2)
or, when the neo-Hookean material is assumed,
— A
5(C) = S [det C - HC™ +u(I —C™Y), (7.3)
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with A and p the Lame material parameters. We note that a common way to express (7.2) uses the material
strain tensor
E=1/2(C-1), (7.4)

so that the constitutive law (7.2) may be written as
Y = Mr(E)I +2uE.

To treat the incompressible neo-Hookean material associated with the limit case A — oo (or equivalently
v — 1/2, with v the Poisson ratio), we introduce an auxiliary field p defined by

(1/N)p = —%[detC —1] (7.5)
to replace (7.3) by

S(C,p)=—pC ' +pu(I-C™). (7.6)

To handle the case of a nearly incompressible material (the value of v close to 0.5) computationally, the field
pis taken to be an additional unknown which is solved under the constraint (7.5). It is notable that in the limit
case of incompressible material p is unique only up to a constant if the displacement is prescribed over the
entire boundary of the body (a special care is then needed to ensure that the condition det C' = det F? = 1
is respected by the boundary conditions).

The solver also offers some utilities to handle more general constitutive laws so that a user-defined
material model in the form of an Abaqus user subroutine (UMAT) may be included. In this case the con-
stitutive law has to be defined differently by employing the Cauchy stress o whose material description
om(p,t) = o(x(p,t),t) is related to the first Piola-Kirchhoff stress by

S = (det F)o,, F~ L. (7.7)

A user-defined subroutine should define a stress response function & to specify how the Cauchy stress de-
pends on a strain field F/(F') and an additional N-tuple of state variable fields denoted by q = (¢1, ..., qn)-
One may then consider a generic constitutive law of the type

om(p.t) = &(E(F)(p,t),a(p,t)). (7.8)

The user-defined subroutine should also define the derivative of the Cauchy stress at the current state with
respect to the strain variable for performing the nonlinear solution procedure. That is, in the differentiation
the stress response function is treated as the composition

F i &(-,q) 0 E(F), (7.9)

with q being taken as a parameter, so that the Fréchet differential of (7.9) is obtained by using the chain rule
as
U — D&(E(F),q)[DE(F)[U]). (7.10)

The user-defined subroutine must thus return a representation of D& (E(F'), q) so that the differential (7.10)
can be generated on the side where the user-defined subroutine is called. In this connection the strain field
E (F') need not necessarily be the material strain (7.4), as the Hencky (logarithmic) strain or the standard
linearized strain can also be used. Including a user-defined material model requires some programming skills
and the best place to check for the current functionality is the solver code. A template subroutine for a user-
defined material model can also be found in the file UMATLib.F 90 that is located in the same directory as
the code of the solver module.

7.3 Boundary conditions

Boundary conditions may be obtained by prescribing the displacement and surface traction on complemen-
tary parts I'y and I's of the boundary 0f2, respectively. The displacement boundary condition is simply of
the form

u = u(p,t), (7.11)
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with @ a prescribed vector field on 'y x [0, 7.
Handling surface traction is more involved. First, assume that the surface traction vector s on the de-
formed surface x(I'y, t) is normal to the tangent plane of the deformed boundary surface, so that

3(X7 t) = g(X, t)m(x)a

where m(x) is the unit normal on the deformed configuration, x € x(T's, ¢) for any ¢, and g(x, t) is a given
scalar function. This can be shown to be equivalent to specifying the values of Sn such that

Sn = j(det FYF~"n onTy x [0,T], (7.12)

where n = n(p) is the normal vector to the boundary 02 and § = §(p,t) = g(x(p,t),t). The constraint
(7.12) gives rise to a nonlinear force term which is handled in the computational solution iteratively by using
a lagged-value approximation.

The surface traction s may also be specified by giving its components with respect to the frame of
reference such that

s(x(p,1),t) = 3(p, 1), (7.13)

with §(p, t) a given vector. While the condition (7.13) specifies the actual force per unit area of the deformed
surface, it also possible to specify directly the pseudo-traction s° = Smn which gives the actual force per
unit undeformed area. If the pseudo-traction is specified on I'; as

s%(p,t) = 8°(p, 1), (7.14)

the total force exerted across I'; is then given by the surface integral

/.@0 dr.

I'>

If the alternate (7.13) is used, the total force is obtained by

/s(det F)\/n - (F'F Tndr

I

where the additional scalar term in the integrand relates to the area change during the deformation.

7.4 Linearization: The basic constitutive laws

To handle the model computationally, the constitutive law S = S(F) = FX(F), with 2(F) = £(FTF),
has to be linearized also. This can be done in terms of the derivative DS(F)[U] by using the Newton
approximation ) . )

S(Fit1) = S(Fi) + DS(Fi)[Fry1 — Fil.

‘We then have

~ ~

S(Fk+1) ~ S(Fk) + FkDE(Fk)[Fk+1 — Fk] + (Fk+1 — Fk)E(Fk)
In view of F'y1 — F, = Vuyy1 — Vuy, this leads to the linearization

S(Fii1) = 8(Fi) + FiDE(Fy)[Vugy — Vug] + (Vg — Vug) S(Fy)

S’(Fk) — Fk,DZ(Fk)[V’U,k} — VukE(Fk) + Fk-DE(Fk)[VUk+1] + Vuk_HZ](Fk.).
(7.15)

In the case of (7.2) the derivative of the response function ¥ is given by

DX(F)[Vv] = %tr(FTV'U + VoIl )T + W(FTVv + Vo F),
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while
DX(F)[Vv] =\(det F)?tr(VoF ) C(F) '+
A
[ — 5(det F —1)(det F + 1)]C(F) " [FTVv + Vol F|C(F)™!
for the neo-Hookean material obeying (7.3). In the computation of the associated tangential stiffness matrix,

which result from substituting the approximation (7.15) into the discrete version of the weak formulation of
(7.1), the following self-adjointness property

Fk-DE(Fk)[VukJrl] -Vov+ Vuk+12(Fk) -Vv = FkDE(Fk)[V’U} . Vuk+1 + V’UZ(Fk) . Vuk+1

is also used.
When a nearly incompressible neo-Hookean material is considered, we need to linearize both the consti-
tutive law 8 = S(F,p) = FX(F,p), with 2(F,p) = Z(F’ F,p), and the constraint

o(F,p)=0 (7.16)
where
o(F,p) =ep+1/2(det F)? —1/2 (7.17)
with
e=1/\ (7.18)

The Newton updates related to solving (7.16) are given by

(det F}C)Qtr[(FkJrl — Fk)Flzl] + E(pk+1 — pk:) = —QD(Fk7pk). (719)

To obtain the Newton linearization of the stress response function, we note in particular that the derivative
of the function G(F,p) = —pC(F)~! is given by

DG(F,p)[(U,h)] = —hC(F)™' + pC(F)"'[FTU + UTF|C(F)~'.
It then follows that

DX(F,p)[(U,h)] = —hC(F)™' + (p+ p)C(F) '[F'U + UTF|C(F)™". (7.20)

7.5 Linearization: The case of a user-defined material model

Other constitutive laws can be defined by including a user-defined material model in the form of an Abaqus
user subroutine (UMAT). In contrast to the other constitutive laws, such subroutine is expected to return the
Cauchy stress corresponding to the current estimate of the strain increment with respect to the previous con-
verged solution (the solution before the time/load increment) as well as the derivative of the stress response
function for computing the differential (7.10).

It should be noted that, despite relying on the Cauchy stress, the weak formulation is still generated from
the equilibrium equations expressed in terms of the first Piola-Kirchhoff stress. The stress power calculations
are thus done in terms of an energetically conjugate pair of the first Piola-Kirchhoff stress and the rate of
change of the deformation gradient. To this end, in view of (7.7)—(7.9), we consider the mapping

F i S(F) = (det F){&(-,q) 0o E(F)}F~" (7.21)
and use (7.10) to obtain the Fréchet differential

DS(F)[U] = (det F){D& (E(F),q)[DE(F)[U]}F "

+ (det F)te(UF Y& (B(F), Q) F~T — (det F)&(E(F),q)F TUTFT. (7.22)

In the differentiation the state variables are thus treated as parameters. In the case of a user-defined material
model the equation (7.22) provides the key ingredient for linearization.
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7.6 Stress and strain computation

In addition to solving for the displacement, the solver can produce the strain and stress fields associated with
the solution. In this connection the strain tensor is defined by (7.4). In the stress computation the material
description of the usual Cauchy stress o is produced. That is, we measure the surface force per unit area in
the deformed configuration and write o, (p,t) = o(x(p,t),t). We note that this stress is related to one of
the Piola-Kirchhoff stresses as

om = (det F)"'SFT = (det F)"'FE(C)F”. (7.23)
7.7 Keywords
Simulation
In specifying the keywords for the simulation section, note that all coordinate systems are not sup-
ported.

Coordinate System String
The coordinate system may be Cartesian 2D, Cartesian 3DorAxi Symmetric.

Material mat id
The following keywords relate to giving the material parameters for the finite elasticity solver.

Density Real
This keyword is used for defining the density field pg corresponding to the reference configura-
tion.

Poisson Ratio Real
The values of the scalar Lame material parameters depend on the Poisson ratio as in the case of
the linear elasticity solver. The Poisson ratio is given by using this keyword.

Youngs Modulus Real
The values of the scalar Lame material parameters depend on Young’s modulus as in the case of
the linear elasticity solver. This keyword specifies the value of Young’s modulus.

UMAT Subroutine File
The value of this keyword consists of two string parameters. The first parameter specifies the
name of a compiled file containing the definition of a user-defined material model in the UMAT
form. The second parameter defines the name of the user-defined subroutine. If this keyword is
used, all material models must be defined in the UMAT form.

Number of Material Constants Integer
The value of this keyword defines the number of material constants that are passed to the UMAT
subroutine.

Material Constants Real
The values of the material constants passed to the UMAT subroutine.

Number of State Variables Integer
This keyword is used to declare the number of state variables.

Name String
This keyword may be used to define the name argument of the UMAT subroutine.

Equation eqg id

Plane Stress Logical
If the coordinate system is chosen to be Cartesian 2D, this keyword may be used to activate
nonlinear plane stress analysis. In the case of plane stress the definition of the Lame parameter A
is altered such that the plane stress components are directly obtained in terms of the plane strain
components. The strain F33 can then be expressed as E33 = —v/(1 — v)(F11 + Fa2).
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Solver solver id

Equation String [ElasticSolver]
A describing name for the solver. This can be changed but it must be given,

Procedure File "ElasticSolve" "ElasticSolver"
Name of the solver subroutine.

Neo-Hookean Material Logical
By default the constitutive law (7.2) is employed. Switching to the neo-Hookean material model
(7.3) can be performed by giving the value True for this keyword.

Mixed Formulation Logical

This keyword is used to handle incompressible or nearly incompressible material obeying the
neo-Hookean constitutive law. If the value True is given for this keyword, the field p is taken to
be an additional unknown which is solved under the constraint (7.5). In this case the solver
assumes that the mesh files correspond to the lowest-order finite elements (the lowest-order
pressure approximation together with the second-order displacement approximation is then con-
structed by default). In addition, the default names for the displacement variable w and pressure
variable p are then Disp and Pres, respectively.

Calculate Strains Logical
If the value True is given for this keyword, the strains are also computed. The strain components
are output into an ordered six-tuple as (Eq, Eyy E..; E;y Ey. E,.). However, in the axially
symmetric simulation only four components are produced as (F., E.. Ey, EIy), with the
convention z = r and z = 6.

Calculate Stresses Logical
If the value True is given for this keyword, the Cauchy stress (7.23) is also computed. The
stress components are output into an ordered six-tuple in the same way as the strain.

Calculate Principal Logical
If the strain or stress computation is activated, this keyword can be used to activate the computa-
tion of principal components.

Calculate PAngle Logical
This keyword can be used to activate the computation of the principal angles for the stress tensor.
If the value True is given for this keyword, then the computation of principal components is also
activated.

Initialize State Variables Logical
If the material model is defined in terms of a user-defined material model (UMAT), an extra call
of the UMAT subroutine can be done to obtain the state variables in the initial state (stress-free
initial condition is supposed).

Body Force bf id
This section may be used to define body forces.

Inertial Bodyforce j Real
This keyword may be used to give the component j of the body force b(x, t) in order to define
bo = po(p)b(x(p, t),t). It is noted that in this case b(x, t) defines the body force per unit mass.
The density changes are then considered correctly, i.e. the condition p(x(p,t),t) det F(p,t) =
po(p) is respected.

Stress Bodyforce j Real
This keyword may be used to give the component j of the body force b(x, t) in order to define
byp = (det F)b(x(p,t),t). It is noted that b(x,t) is now the body force per unit volume of
the deformed body, so this type of force is appropriate for specifying true volumetric forces,
whatever they might be.

CSC —IT Center for Science (cc



7. Finite Elasticity 66

Boundary Condition bc id
The Dirichlet conditions (7.11) for the displacement variable of the solver can be given in the standard
manner. Other options for defining boundary conditions are explained in the following.

Normal Surface Traction Real
A surface force which is normal to the deformed boundary and gives force per unit area of the
deformed surface may be given with this keyword.

Surface Traction k Real
By default this keyword may be used to give the actual force per unit area of the deformed sur-
face. The value of this keyword then specifies the component & of s in (7.13). If the keyword
command Pseudo-Traction = True is also given, then the values of this keyword com-
mand are used to determine the components of the pseudo-traction vector 3 which gives the
actual force per unit undeformed area.

Pseudo-Traction Logical
If this keyword has the value True, then the surface force is defined via the pseudo-traction
condition; see the explanation of the keyword Surface Traction k below.

Spring Real
This keyword can be used to generate a reaction force which is aligned with the normal direction
of the undeformed configuration and which is proportional to the displacement in the normal
direction.

Spring i Real
This keyword is similar to the keyword Spring but here the spring coefficients are defined with
respect to the coordinate axes.

FSI BC Logical
If this keyword has the value True, then the Navier-Stokes flow solution is used to determine
the surface force generated by the flow.
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Shell Equations of Classical Elasticity

Module name: ShellSolver
Module subroutines: ShellSolver
Module authors: Mika Malinen
Document authors: Mika Malinen

8.1 Introduction

This chapter is concerned with the equations which describe deformations of thin elastic shells. Here a shell
refers to a curved three-dimensional body which can be described in terms of its mid-surface and thickness
(the extent of the shell in the direction of normal to the mid-surface). When the placement of the shell in its
reference configuration is described by using a system of normal coordinates (that is, two coordinate curves
on the mid-surface are perpendicular to the third coordinate curve), simplifications to solving 3-D elasticity
equations can be sought via the process of dimensional reduction, so that unknowns that depend only on the
two curvilinear coordinates associated with the shell mid-surface can be employed. Classical shell theory [4]
is dedicated to the study of such models by assuming that the exact parametrization of the shell mid-surface
is known in advance.

However, classical shell theory cannot often be applied in a straightforward manner in connection with
finite element modelling, since in practice the mapping giving the mid-surface is not usually available in an
explicit form. To offer generality, the shell solver described here is also able to create a computational surface
model by assuming that information about the surface position and the director vector (the unit normal to
the exact mid-surface) are given at the nodes of a background mesh. Elementwise approximations of the
mid-surface are then created such that the surface position and the normal to the approximate surface agree
with the data given at the nodes. It should be noted that the approximate mid-surface obtained in this way
generally gives a more accurate description of the surface position than what would be obtained by using
the standard strategy where straightforward Lagrange interpolation merely based on the nodal position data
is employed. Here the approximation of the director field is then derived via straightforward differentiation
of the mapping giving the approximate surface (it should be noted that this approximation is consistent with
the given data at the nodes). As an alternate to the internal surface reconstruction, a higher-order nodal mesh
can be used to derive the necessary geometric data without expecting director data.

In the first place each (physical) element .S of the approximate mid-surface is originally parametrized in
terms of the rectangular Cartesian coordinates of points of a usual reference element (a square or an equilat-
eral triangle). However, the solver considered performs additional computation in order to find a convenient
elementwise reparameterization by lines of curvature coordinates, so that we may write S = ;- (K) where
¢ : K C R? — E3 and the rectangular Cartesian coordinates 4 of a point y in K correspond to lines
of curvature coordinates on .S (for the basic concepts related to lines of curvature, see [2]). Then each point
on the surface can naturally be associated with an orthogonal system of basis vectors which offer a conve-
nient starting point for representing vector-valued fields over the surface. Since the basis is orthogonal, the
components of a vector field have intuitive physical significance and tensor calculations related to the shell
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equations are greatly simplified in comparison with the case of general curvilinear coordinates.

It is mentioned that this solver can also be adapted to handle special cases where the exact parametrization
of the shell mid-surface by lines of curvature coordinates can be given globally. In this case, the approach of
classical shell theory is followed, so the mathematical formulation is done over a two-dimensional (planar)
reference domain.

8.2 Discrete shell model

The shell models we consider employ kinematic assumptions that enable the approximation of 3-D elasticity
equations without additional assumptions about the state of stress. The simplest assumption conforms with
using solid finite elements which have nodes located on the upper and lower surfaces of the shell, together
with auxiliary degrees of freedom to enable a normal strain field that depends linearly on the normal coor-
dinate. Conventional 2-D shell models can then be derived by imposing the condition of vanishing normal
stress, but use of a refined shell model can also be considered in this setting.

8.2.1 Preliminaries

We may now think of a physical surface element S = ¢, (K) to be associated with the physical solid
element Qg C E?® which is the image of the set S x [—d/2, d/2] under a mapping of normal coordinates

(P.y*) = p+y*(as o ox')(p), (8.1)

with d being the shell thickness and the surface function p +— (a3 o @' )(p) giving the unit normal to
the mid-surface at a point p € S in terms of the vector field az : K — R3. Since the normal coordinates
(p,y3) € S x [—d/2,d/2] thus identify a point in the physical element (g, it is natural to approximate the
elementwise restriction of the displacement vector field of the shell

w:Sx[—d/2,d/2] = R®, (p,y’) —~ u(p,y’), (8.2)

in a systematic manner such that

u(px(y),y’) = aly,y*) = vO(y) — v D(y) - %(y‘”’)%@)(y% (8.3)

with the vector fields v(*) : K — R? in two variables being taken as unknowns. The mathematical domain
of definition for three-dimensional shell variables will thus be the set Qx = K x [—d/2,d/2] whose points
are mapped to the points of the physical space E3 as

v, 4°) = O(y,v°) = pr(y) + v as(y). (8.4)

This representation of geometry follows by writing an alternate referential description of the normal coordi-
nates representation defined by (8.1).
Each physical point ©(y, ) of the shell can be associated with three vectors

9. (v, v*) = DO(y, y*)[éx] = 0:O(y,y?), (8.5)

with é; being the orthonormal basis vectors associated with the mathematical domain of definition, to give
a covariant basis for the translation space R3 of E3. Similarly, by restricting to the mid-surface, we define a
set of surface basis vectors a; : K — R?, which give the covariant basis at p = ¢ (y), via

aa(y) = Deg(y)a] = 0api(y), as(y)- aa(y)=0. (8.6)
The covariant components of the metric surface tensor A (the first fundamental form) are now given by
Aap(y) = aaly) - as(y). (8.7)
We also define B,g : K — R by

Bap(y) = a3(y) - 0aas(y) = —aa(y) - 9pas(y). (8.8)
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They give the covariant components of the second fundamental form B of the surface at p = @ (y). We
shall also need the contravariant basis vectors a’ of the surface satisfying the orthogonality conditions

ai(y) - a(y) =&/, (8.9)

with (5? being the Kronecker’s symbol.
When lines of curvature coordinates are used, the two sets of basis vectors are related by

91(y.v*) =i (y,v¥)ai(y), g:(v.v°) = 13(y,v¥)az(y), gs(v.v°) = as(y) (8.10)

where 12 are the mixed components of a diagonal (shifter) tensor. We then have

iy, v*) =1+ y*/Ri(y), p3(y.v®) =1+y*/Ro(y) (8.11)

with ) Bu(y) ) Bs(y)
11y 1 22Y 2
Ry Ay 00 B T A - PV &1
being the principal curvatures. The sign convention is here chosen such that the principal radii of curvature
R, > 0 if the normal vector is directed away from the centre of curvature.

Two different kinematic assumptions in the form (8.3) can be chosen. The most general version of
(8.3) leads to handling nine scalar fields as unknowns. The simplest kinematic assumption, which does not
necessitate introducing an additional assumption about the state of stress, however corresponds to the choice
where the part v(?) can be expressed simply as

v (y) = [P (y) - as(y)]a’(y), (8.13)

i.e. only one scalar field describes the second-order part with respect to 4. The resulting kinematic assump-
tion thus involves seven scalar fields (for original contributions that use this restriction, see historical notes
in [4] and papers by Reissner and Naghdi mentioned there). The assumption that only one quadratic compo-
nent in 3/ is included is motivated by having the ability to expand all components of linearized strain tensor
up to the first-order terms in 3. In practice, especially in the context of linear theory, this choice allows the
derivation of a variational formulation which does not necessitate solving the part (8.13) as tightly coupled
with the other unknowns, i.e. its values can be found afterwards when ’v(k'), k = 0,1, have first been solved.

8.2.2 The measure of strain

The measure of three-dimensional strain we employ is based on the Green-St Venant strain tensor field
E(a) : Qx — Sym associated with the elementwise restriction @ of the displacement field. Its components
measure the change of the metric tensor associated with the displacement field and are defined such that

2E;;(a)() = g;(-) - 9;a(:) + 0ia(-) - g;() + [0:a()] - [95a()]. (8.14)
In practice, we shall perform a change of basis in order to express the strain tensor field as
E(a)(y,y’) = E;(@)(y,y’)a'(y) ® ’ (y),

so that the components are then expressed with respect to the surface basis vectors depending only on the
two curvilinear coordinates of the mid-surface. Alternatively, the most basic representation of strain follows
by switching to a local orthonormal basis {e1(y), e2(y), e3(y)} = {e'(y), e*(y), e3(y)} obtained as

ealy) = ,es(y) =as(y), with Ay(y) = |aa(y)l, (8.15)

and writing then . _ _

E(a)(y,y’) = Ei(a)(y,y*)e' (y) @ € (¥).
The components of these representations can be shown to obey the following transformation rules (here the
summation convention is adopted so that a repeated index simultaneously appearing as a subscript and as a
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superscript in a term imply summation over all possible values, with a Greek index being however allowed
to have values in {1,2})

~ —I\A(,—1\v i . i 1w 4
Eaﬁ(ﬁl) - Ez‘:a(ﬁ) - (M )Q(ZQXZE)\V( )a EozB( Eag( ) ('u I)QEV3( )

Es3(t) = E3() = E33(@).

By letting U = (v1, v, . . .) denote an n-tuple of 2-D scalar fields which determine @, we next expand the
components of the strain tensor in powers of the normal coordinate 3> to obtain the first-order approximation

Ei;(a(U))(y,v”) = 7;(0U)(y) + €i;(U)(y) — vk (U)(y) — ¥°xi5(0)(y) (8.16)

where the 2-D fields v;;(U) : K — R and k;;(U) : K — R are linear with respect to U, while ¢;;(U) :
K — Rand x;;(U) : K — R are nonlinear. If the shell undergoes only small deflections, linearization can
additionally be performed by omitting the nonlinear terms to write then

Eij(a(U)) = 7;(U) - y’ry(U).

We note that the tangent plane components v,3(U) and ko5(U) constitute the so-called membrane strain
and bending strain tensors, while 7,3(U) are the transverse shear strains.
When we simplify the notation by setting

v = v, v = 3, v? = P, (8.17)

the components of the linearized strain tensors have the following component-free representations (the
component-freeness should be understood with respect to the displacements)

27a5(U) = aq - 95v + 0av - ag,
273(U) = a3 - 0,v — ay - B,
v33(U) = =B - as,
Kaa(U) = o - 0aB — KaVaas (8.18)
2k12(U) = a1 - 923 + 018 - ag — kaay - Oov — K101V - ag,
2603(U) = a3 - 0o8 — Kaas - 040 + 1 - aq,
r33(U) =9 - as,

with k1 = 811 and ko = B%. On the other hand, the nonlinear parts of the strain tensors can be expressed as

26a5(U) = BQ’U . agv,
2¢,3(U) = =3 - 9y,

e33(U) =1/28- B,
2Xap(U) = 040 - 058 + 0a - 030 — (K1 + K2)0uv - Oav,
2Xa3(U) = =B 0aB + Y - 0V + Ko - Oav,

x33(U) = -8 .

It should be noted that under our kinematic assumptions the expression for the linearized normal strain

is precisely

(8.19)

c

Y33(0) — 4 ka3 (U) = — B3 — s, (8.20)

so we cannot generally proceed beyond linear terms in 3> in the expansions of strains. This generally
motivates our choice to truncate the expressions for strains as done in (8.16). In addition, the terms of type
B§7ak(U) in the expressions for r;;(U) are expected to have little impact on the strain energy of a thin
shell and could therefore be omitted to obtain simplified expressions.

It is notable that the derivatives of 1) do not occur in the expressions for strains when only the terms up to
the first order with respect to > are taken into account. When weak solutions of shell equations are sought,
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the components of 1) are thus seen to be exceptional in that less regularity can be supposed. In addition, in
the context of linear theory together with the restriction (8.13), 1) enters only through its normal component
13 in the expression for x33(U). In this case, a variational formulation of the shell problem may be obtained
such that it does not necessitate solving 3 as tightly coupled with the other unknowns, i.e. its values can
be found afterwards when v(®), k& = 0,1, have first been solved. In the context of nonlinear theory such
simplification cannot be attained in a fully consistent manner and using the nine-component shell model
may be a more natural choice. If the nine-component model is not employed and nonlinearities are taken
into account, the shell solver neglects the incomplete part 1) - 9,v in the expression for x,3(U), so that a
formulation in terms of 'v(k), k = 0,1, can be obtained.

8.2.3 The principle of virtual work

To simplify the statement of the principle of virtual work, we now shorten the expressions for the strain
components by omitting the splitting into the linear and nonlinear parts, so that

E(a(U)) = ¢(U) - y°p(U) (8.21)

~—

with

€1 (U) =74, (U) + €;;(U),
i(U) =7:;(U) ;(U) (8.22)
pij(U) = £i5(U) + x4 (U).

Currently the shell solver can handle only a nonlinear extension of the standard constitutive law for an
isotropic material characterized by Young’s modulus £ and Poisson’s ratio v. That is, we assume that

S () = L[Ell(ﬂ)(') + B (@) (+) + Ess(@) ()]0 +

(1+v)(1—2v) Eij(a)() (8.23)

1+v
where the scalar fields % : Qx — R are the components of the second Piola-Kirchhoff stress with respect
to the orthonormal basis. This model is expected to be feasible when the stretches of the shell remain

relatively small, while rigid body deformations of arbitrary magnitude are possible.
The statement of the three-dimensional principle of virtual work can now be put into the form

DU(U)[V] = Q(U,V)

where DU(U)[V] gives the derivative of strain energy and Q(U,-) is a linear functional determined by
loads. We note that the linear functional does not always depend on the solution U. In that case we could
simplify the statement of the principle of virtual work as

with £(-) being a linear functional independent of U. The strain energy is expressed elementwise as

Uy (U) = / W(E@(0))(y,s*) Valy. 5 dydy?, (8.24)
QK

with W : Sym — R giving the strain-energy density and g(y,y>) denoting the determinant of three-
dimensional metric tensor. The contribution to the principle of virtual work can then be expressed as

/R(E(ﬁ(U))(y,y3)) - DE(@(U))[V](y,¥*)Valy,y?) dQx = Ok (U, V) (8.25)
Qx

for all kinematically admissible V, with the second Piola-Kirchhoff stress field X(-) = R(E(a(U))(+))
being found as the derivative R(E) - H = DW (E)[H].

A truly two-dimensional variational formulation follows by using (8.21) in connection with (8.24) and
performing the integration over the thickness of the shell. In the integration, we have chosen to neglect terms
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of O(d/R,,) in order to simplify the final statement of the 2-D version of the principle of virtual work. When
the restriction (8.13) is employed, after some reduction the strain energy over K may be expressed as

Uk (U) 22(1]2:(11,2)! {V[Eu(U) +eao(U)° + (1 —v) a%j;[ﬁaﬂ(U)P}‘/&dK

+ m / {633(U) + 1 i Clen(U) + 522(U)]}2\/adK

K
rs / [(£15(U))2 + (25(U))2)/adk (8.26)
K
tars [ {vln(0) + p(0)F + (1= 0) ﬂz_ pas (U}
7 a,f=1
+ g a0 + (p )i
K

with a being the determinant of the metric surface tensor.

8.2.4 Formulation in terms of the Cartesian components

The component-free expressions for strains (the component-freeness should be understood with respect to
the displacements) enable the approximation of shell equations directly in terms of the orthogonal Carte-
sian components of the vector fields (8.17). The variables of the shell solver are therefore the Cartesian
components with respect to the global frame.

If one considers rotation-like deformations caused by moment loads, it is seen that more intuitive rotation-
like variables might follow by writing the displacement as (cf. (8.3) under the constraint (8.13))

a

v—y’lag x 0+ (0 ag)a’] - %(y?’)Q(w rag)a’, (8.27)

so that the parts of first order in 4 are related by
Bxa3=a3x60xa3, B-a3=20-as.

If this option is chosen, in addition to the global components of the mid-surface displacement, the global
variables of the model are the component fields

ekze'ika

where 2, are the basis vectors of the global frame.

8.2.5 Strain reduction operators vs. high-order approximations

Efficient and reliable finite element discretization of shell equations is a challenging task and unsettled
questions still remain. Shell problems can exhibit different types of asymptotic behaviour when the shell
thickness tends to zero [1]. A great challenge for a finite element designer is to work out a formulation which
works for all possible asymptotic scenarios. An ultimate challenge would be to accompany the method with
a mathematical error analysis covering the full versatility of shell problems.

For the above reasons applying standard finite elements is not an option unless basis functions of high
degree (the p-version of FEM) are used, as standard low-order methods are not suitable for approximating
fields with negligible membrane and transverse shear strains (such case corresponds a bending-dominated
asymptotic behaviour). This relates to a computational trouble known as finite element locking. To obtain
better low-order methods, the shell solver of Elmer employs strain reduction operators which are applied to
the membrane and transverse shear strains and designed, in the first place, to relax constraints that arise in the
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case of bending-dominated problems. Currently the strain reduction operators have been worked out only
for the lowest-order approximation (a 3-node triangle or 4-node quadrilateral) under the restriction (8.13).

Approximation with hierarchic p-elements can also be applied, but also in this case the computational
surface model is based on the surface reconstruction derived from information about the surface position and
the director vector at the nodes of a background mesh. At the moment the internal surface reconstruction
is based on mapped polynomials of degree 3, so the accuracy is not expected to be optimal for all element
orders, since geometric errors eventually dominate the error. Numerical over-stiffness due to locking can
however be treated effectively by using finite elements of a sufficiently high order, so even a non-optimal
approximation combination might improve the solution if the dominating error is caused by locking. Note
that the high-order version does not apply any strain reduction operators to alleviate locking, so with this
approach increasing the polynomial order is the only way to handle locking. The p-approximation does not
necessitate using the restriction (8.13).

8.3 Specifying surface data

In order to improve the approximation of the shell mid-surface, the shell solver needs information about the
director vector. As alternatives the nodal director data can be read from a file, or it can be associated with an
ordinary Elmer variable / * Director’’ that has been solved before executing the shell solver. It should
be noted that parallel versions of file formats used in connection with reading from files do not exist yet, so
at the moment parallel computation is possible only when the director field is made available as the Elmer
variable ’ ' Director’’.

The nodal director data can be formatted into special data files in two ways. The first option is to write a
file mesh.director which lists the director at the nodes in a similar way as nodes are defined in the file
mesh.nodes. That is, the contents of the file mesh .director should be organized as

nl dx dy dz
nz2 dx dy dz

nn dx dy dz

The first integer is the identification number for the node followed by three real numbers which are the
components of the director with respect to the global coordinate frame. The file should be located in the
same place as the standard mesh files.

The second option is to provide a file mesh.elements.data which should define the nodal director
in elementwise manner and associate the name ' director’ with this data. Thus, if just the director data
is given, the contents of the file should be arranged as

element: element_id_1

director: dx_1 dy_1 dz_1 ... dx_n dy_n dz_n
end

element:

end

Here the nodewise ordering of the director data on lines starting with director: must correspond to
that of the mesh.elements file. Also this file should be located in the same place as the standard mesh
files. It is noted that a file mesh.elements.data is considered first in priority. Optionally, given a file
mesh.director, the solver can write the director data as elementwise property to a file whose format con-
forms with a file mesh.elements.data. The elementwise data contained in mesh.elements.data
may generally be discontinuous over adjacent finite elements.

One way to create the Elmer variable ' ' Director’’ is to utilize the solver NormalSolver that
uses the background mesh for the computation of the normal vector. This approach can compromise the
accuracy of the geometry model but allows parallel computation. For special cases where the dependency of
the director on the global coordinates is known, a slight modification of the Normal Solver module might
be enough for obtaining both an accurate approximation of the director and having the option to run the shell
solver in parallel.
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8.4 Combined analysis with beam sections

If the mesh contains also one-dimensional elements, these lower-dimensional elements can be used to define
additional stiffeners by treating them as elastic beams. The combined model can be assembled in the case
of both linear and nonlinear analysis, but the deformation of beam sections is always computed according to
the linear theory as described in the Model 10 chapter of this manual.

The model parameters of the beam model are named as described in the Model 10 chapter and their
values are read from material sections, so elementwise organized data cannot yet be given. In particular one
of the principal directions of the beam cross section (the y3-axis) can be given by specifying the value of the
keyword Director.

The shell model does not inherently recognize a moment around the shell director (normal) of the mid-
surface, while the beam formulation which is used employs the full resultant couple (moment) vector with
three components. To cope with this discrepancy, the beam stiffness matrix is manipulated before assembling
into the global stiffness matrix in such a way that the resultant couple vector cannot have a component with
respect to the director vector of the beam. The beam and shell directors are now defined independently, but
it is natural to construct the combined model so that the shell and beam directors agree in places where the
domains of the two models intersect.

8.5 A formulation with drilling degrees of freedom
If the shell mid-surface is not smooth, the modelling of normal strain via the equation

’733(U) =—-0B-a3

is not straightforward, since the director cannot be defined uniquely at a joint where the ambiguity occurs. In
this case, additional constraint equations would be needed in order to handle the discontinuity. It appears that
an alternate formulation based on using drilling degrees of freedom has a relative merit that such problems
may be treated more easily without introducing new constraint equations.

The energy expression for the formulation with drilling degrees of freedom is similar to (8.26), but now
the second term in the right-hand side of (8.26) is replaced by

EpEd
1+v

1 1 2
/ |:03 - 5811)2 + 5621}1 \/&dK (828)
K
so that the sixth unknown 63 may be related to an angular momentum balance condition [3], with £p an
adjustable parameter. It is noted that in this formulation the approximation of the displacement is reduced to

the traditional form
a=v—ydas x 0 (8.29)

by using a simplified treatment of transverse deformations. The formulation with drilling degrees of freedom
have been implemented only in the case of linear shell theory.

8.6 Keywords

Simulation

Coordinate System String Cartesian 3D
The coordinate system should be selected to be three-dimensional, although basis functions for
computation correspond to 2-D finite elements.

Material mat id
The following keywords relate to specifying the shell thickness and material parameters.

Shell Thickness Real
The thickness d of the shell is specified with this keyword.
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Poisson Ratio Real
Poisson’s ratio is given by using this keyword.

Youngs Modulus Real

This keyword specifies the value of Young’s modulus.
Density Real

This keyword is used for defining the density of the material.
Rayleigh Damping Alpha Real

This specifies a coefficient to activate mass-proportional damping.

Solver solver id

Equation String
A describing name for the solver.

Procedure File "ShellSolver" "ShellSolver"
The name of the solver subroutine.

Variable String Deflection[U:3 DNU:3]
The name of the solver variable can be chosen freely (but it must be used consistently else-
where). The default variable is Deflection[U:3 DNU:3] which is thus suitable for the
model derived under the restriction (8.13). Then the first three components of the solver variable
define the mid-surface displacement field v(® (the default variable name U), while the rest are
related to the vector v(!) (the default variable name DNU). The variables always correspond to
the orthogonal Cartesian components with respect to the global coordinate frame.

Variable DOFs Integer
The value of this can be either 6 or 9. The value 9 can be used only when p-elements are applied.
The value 6 is given by default.

Rotate DOFs Logical
If the six-component model is used, this keyword can be given in order to employ the Cartesian
components of the vector field 8 as model variables.

Drilling DOFs Logical
In the case of linear shell theory, this can be be used to activate the formulation with drilling
degrees of freedom described in Section 8.5.

Large Deflection Logical
By default the nonlinear equations are solved. With the value being False, the linearized strain
tensor is employed.

Eigen Analysis Logical
Eigenanalysis based on the linearized model can be done if this keyword is given the value True.

Displace Mesh Logical
If this keyword is given the value True, the mesh is mapped to represent the deformed config-
uration. The formulation of the total Lagrangian type is nevertheless used, so the shell problem
is posed over the undeformed configuration. In the case of eigenanalysis this keyword is not
supported.

Nonlinear System Convergence Tolerance Real
The ratio of the 2-norm of the nonlinear system residual to the 2-norm of the initial right-hand
side vector is always used as the stopping criterion for the nonlinear iteration. This keyword
specifies the stopping tolerance for the Newton iteration to solve the nonlinear system.

Linear System Convergence Tolerance Real
It should be noted that each linearized problem solved during the nonlinear iteration gives an
increment §U**+!1 = U+ U to the previous iterate. Therefore, except for the case of solving
the linear shell model (Large Deflection = False), a rather mild stopping tolerance
may often be used for the linear systems without affecting the progress of the nonlinear iteration.
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Mesh Reparameterization Logical
If the value True is given, the solver does not apply the internal surface reconstruction which
depends on given director data, but it expects a third-order nodal mesh of the physical mid-
surface. In this case, all geometric information is derived directly from the mesh, so no user-
supplied information about the shell director is needed. At the moment no numerical tricks are
then applied to handle numerical over-stiffness (locking), but the basic third-order approximation
may give reasonable results if the shell is not very thin.

Skip Surface Reconstruction Logical
If the value True is given, the solution of some special cases can be performed such that the
mathematical formulation is given over a two-dimensional (planar) reference domain which is
utilized to give a global parametrization of the mid-surface by lines of curvature coordinates. In
this case, the approximation should be done by using p-elements.

Strain Reduction Operator Integer
This keyword specifies the choice of strain reduction operators. If this keyword is not given, the
solver switches to a method which has been found to give the best results for benchmark cases
considered during the development.

Drilling Stabilization Parameter Real
This keyword may be used to define the value of {p for the formulation with drilling degrees of
freedom.

Body Force bf id

Normal Pressure Real
The value of this keyword should give the sum of normal tractions applied to the upper and lower
faces of the shell at y3 = =+d. If the shell model is nonlinear, this is the normal surface force per
unit area of the deformed surface. In this case the normal to the deformed mid-surface and the
area are computed by using the previous iterate.

Boundary Condition bc id
The Dirichlet conditions for the components of v(?) and v(!) can be given in the standard manner. In
addition, the resultant force vector IN and the resultant couple vector M can be specified to give a
mechanical load on a curve ¢ which lies on the mid-surface in its reference configuration and may be
represented as ¢ = f(I), with I C R. This gives rise to a contribution

/ N(£(s)) - v® (£(s)) de(E(s)) + / M(£(s)) - vV (£(s)) de(f(s))
I I

to the linear functional of the shell problem. Note that by default the components of all data vectors
are defined with respect to the global coordinate frame.

U i Real
If the default variable name is used, then, with i=1, 2, 3, Dirichlet BCs for the components of
the mid-surface displacement v(°) can be given.

DNU i Real
If the default variable name is used, then, with i=1, 2, 3, Dirichlet BCs for the components of
v can be given.

Resultant Force i1 Real

This keyword may be used to give the components of the resultant force N measured per unit
length of a curve c on the mid-surface.

Resultant Couple i Real
This keyword may be used to give the components of the resultant couple M measured per unit
length of a curve c on the mid-surface.
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Dead Loads Logical

By default giving constant values for IN or M creates “dead loads” whose orientation is fixed
with respect to the global frame. Giving the value False for this keyword alters the meaning
of the resultant force and couple loads such that their orientation follows the deformation of
lines of curvature, with the direction of the first component following the deformation of the
coordinate curve corresponding to the smallest curvature in the undeformed configuration. Then
Resultant Force 3 generally gives an edge-load in the direction of normal to the deformed
mid-surface.

Spring i Real
With i=1, 2, 3, this keyword may be used to create a resultant force which is proportional to the
displacement along the ith coordinate direction. With i=4, 5, 6, one may generate a resultant
couple which is proportional to the (i-3)rh component of v(!) with respect to the global frame.

Mass 1 Real
This keyword, with 1=1, 2, ..., 6, may be used to assemble an additional mass or a moment
of inertia. The first three components are related to translational DOFs, while the remaining
components are related to the DOFs which determine v(!); cf. the indexing convention used in
connection with Spring 1.
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Plate Equations of Linear Elasticity

Module name: Smitc

Module subroutines: SmitcSolver

Module authors: Mikko Lyly, Jani Paavilainen
Document authors: Mikko Lyly, Peter Raback

9.1 Introduction

The linear elastic plate elements of Elmer are based on the shear deformable model of Reissner and Mindlin.The
finite element discretization is performed using the so called stabilized MITC-plate elements, which are free
from numerical locking.

9.1.1 Reissner-Mindlin model

The displacement @ = (ug,uy,u.) of a Reissner-Mindlin plate (thin or moderately thick linearly elastic

body which in its undeformed reference configuration occupies the three dimensional region € x (—£, L),

272
where €2 is the midsurface and ¢ the thickness) is obtained from the kinematic equations

uz(‘r»yvz) = _gm(xay) Tz 9.1
uy(z,y,2) = —0y(z,y) - 2 9.2)
us(z,y,2) = w(z,y) 9.3)

where 6, and 6,, are components of the rotation vector § = (6, 0,) and w is the transverse deflection of the
mid-surface, see Figure 1.
The functions w and § = (6, 0,) are determined from the condition that they minimize the total potential

energy
1

*/@:mdﬂ-‘r/"/'qu—/pwdQ 9.4)
2J)o= — Q- Q

where p is the transverse pressure load, k = %(y + ET) is the curvature of the mid-surface, v = Yw — 0
is the transverse shear strain, m = & : k is the bending moment, and ¢ = G - =y the transverse shear force
vector. The fourth order tensor F and second order tensor G define the bending and shear rigidities of the
cross section, respectively. For linearly elastic materials we have G - v = Gt~y and

£:5=Ki+ ——(tru)l] 9.5)

where K = Et3/[12(1 — 1/?)] is the bending stiffness, E is Young’s modulus, G shear modulus, and v
Poisson ratio. The design of the tensors £ and G for orthotropic and perforated materials is discussed in
section 9.3.
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The minimizer of the energy satisfies the equilibrium equations

V-m+q¢=0 (9.6)
-V-qg=p 9.7

9.1.2 Surface tension
When surface tension is present, the following term is added to the energy:

l/yw.rywcm 9.8)
2 Ja

where 7T is a second order tensor representing the given normal force (usually 7" = T'I, where T is constant).
The equilibrium equation (9.7) is then rewritten as

—V-(qg+ T -Vw)=p 9.9

9.1.3 Boundary conditions
The following boundary conditions can be applied in the Reissner-Mindlin plate model:

o Soft fixed edge: w =0and 0 -n =0

Hard fixed edge: w =0and § =0

Soft simply supported edge: w = 0

Hard simply supported edge: w =0and § -t =0

Freeedge: m-n=0and (¢+7 - Vw) -n =0

The boundary conditions can of course be non-homogeneous as well. For fixed and simply supported edges
the prescribed values of w, 6, 6 - n, and 0 - t, are taken into account on matrix level after finite element
discretization. On the free part of the edge, the non-homogeneous case is treated by adding the following

terms in the energy:
/ qnw dI' + / m,, - 0.dl’ (9.10)
Tiree r

free

where g, = ¢ - n and m,, = m - n are prescribed functions.

9.1.4 Kirchhoff plates

When the thickness of the plate is small (¢ << diam(f2)), the Reissner-Mindlin model can be considered
as a penalty approximation of the classical plate model of Kirchhoff. The Kirchhoff model is obtained from
(9.1)-(9.9) by enforcing the constraint v = 0. The governing equations are then reduced to

KAAw —TAw=1p (9.11)

9.1.5 Transient and natural mode analysis

A transient plate model is obtained by adding the inertia term p¢ on the left-hand side of (9.7), (9.9), and
(9.11). Here p is the density of the material. The natural vibration frequencies and mode shapes are then
obtained by taking p = 0 and solving the Fourier transformed equations.
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9.2 Finite element implementation

The direct minimization of (9.4) using the standard Galerkin finite element method fails due to the well
known numerical locking phenomena (the method is unable to deal with the Kirchhoff constraint v = 0,
which becomes valid when ¢ is small). In order to avoid locking, Elmer utilizes the so called SMITC
(Stabilization and Mixed Interpolation of Tensorial Components) elements, which are known to be optimally
convergent and work well under all conditions [4].

The linear element of the SMITC-family was first introduced by Brezzi, Fortin and Stenberg in [2]. The
method is defined by replacing the shear energy term in (9.4) by the following numerical modification:

/ Y, 4, 4 9.12)
Q

where , is called the reduced shear strain (sometimes also referred to as the assumed or substitute shear)
andgq, = (t? + ah?)71G - 7,, the reduced shear force. Here / is the mesh size (the diameter of the biggest
element) and o« > 0 is a numerical stabilization parameter (typically o = 0.15).

The reduced shear v, is defined elementwise such that

Vhix = (ax — bry,ax + cxx) (9.13)

for any element K. The parameters ax, bx, and cg, are determined from the conditions

/(1—1h)-tds:0 (9.14)
E

for every edge E of K. Here ¢ is the counterclockwise tangent to E.

It has been shown [3] that the linear SMITC-element is equivalent to the T3BL (Triangle, 3 nodes,
Linked Interpolation) element of Xu, Auricchio and Taylor [8, 1], the anisoparametrically interpolated MIN3
element of Tessler and Hughes [7], and the TRIA3 element of MacNeal [5]. We refer to [3] for a more
detailed discussion.

9.3 Elastic parameters for perforated plates

In microelectromechanical systems the plate structures are often perforated in order to reduce the squeezed-
film damping effect. This has also an effect on the elasticity equation. If there are so many holes that it is
not feasible to treat them individually their effect may be homogenized over the whole structure. In practice
this means that the original elastic parameters are replaced by effective parameters that take into account the
holes. This method was reported by Pedersen et al. [6] and implemented into the solver by Jani Paavilainen.

In the homogenization effective parameters for an orthotropic plate are defined so that the unperforated
model approximates the perforated plate. The basic idea is to set the analytical expressions of the deforma-
tion energies of the perforated and unperforated plates equal. This method is inherently limited to simple
geometries where analytical expressions may be found. So far, only square holes have been implemented in
the solver.

The unit cell of a perforated plate may be assumed to consist of one small square plate with side b — 2a,
and of four beams of length a as shown in Figure 9.1. Using approximate formulas an analytical formula for
the deformation energy of the perforated plate is obtained. This has to be equal to the deformation energy
of an unperforated orthotropic membrane. From this condition we get a set of equations from which the
effective parameters may be solved.

The elasticity tensor has three independent components, C1; = Cas, C1o2 = Ca1, and Cyy. The expres-
sions for these are [6],

_ _E [blb—2a) | a(b—2a)?
Cn = Cxn= 12 { =2 b (9.15)
vE(b— 2a)
Cia = Cq = 0 =07 (9.16)
B E 12Ka(b — 2a)
Cu = wEiiy {2b(b ~2a) + bhs} . 9.17)
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basic
element

2a

Figure 9.1: The basic element of the perforated plate consisting of five rectangular beams

where K is a constant!, defined as

|

The midplane tension of the perforated plate may be reduced to lateral stresses of the orthotropic plate

by a simple scaling,
T =+/(1-4a%/b?) Ty, 9.19)

where is the tension 7} of the perforated plate. Using this reduced tension and the modified material param-
eters of equations (9.15), (9.16) and (9.17) the orthotropic plate mimics the behavior of the perforated plate
when looking at macroscopic quantities. However, the model is not suitable for approximating maximum
stresses around the holes, for example.

(1—-0.632522) (b—2a)3h, josh >b—2a

(1 - 0.63%) (b—2a)h3, josh <b—2a. ©-18)

W= Wl

9.4 Keywords

Solver solver id

Equation String SmitcSolver

Procedure File "Smitc" "SmitcSolver"
The procedure which includes the linear plate model.

Variable String Deflection
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 3
Degrees of freedom for the deflection. The first degree is the displacement and the two following
ones are its derivatives in the direction of the coordinate axis.

Eigen Analysis Logical
Also the eigenvalues and eigenmodes of the elasticity equation may be computed. This is done
automatically by calling a eigensolver after the original equation has been solved. The default is
False.

'In article [6] there is an error in the definition of K. In the article there is an expression (b — 2a)/h3, which would make K
discontinuous at h = b — 2a.
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Eigen System Values Integer

If the eigenvalues are computed this keyword gives the number of eigenmodes to be computed.
The lowest eigenvalues are always solved for.

Hole Correction Logical
If the plate is perforated the holes may be taken into account by a homogenized model. This is
activated with this keyword. The default is False.

Material mat id

Density Real
Density of the plate.

Poisson Ratio Real
Youngs Modulus Real
The elastic parameters are given with the keywords Youngs Modulus and Poisson ratio.

Thickness Real
Thickness of the plate.

Tension Real
The plate may be pre-stressed.

Hole Size Real

Hole Fraction Real
If Hole Correction is True the solver tries to find the size and relative fraction of the
holes. If these are present the hole is assumed to be a square hole.

Boundary Condition bc id

Deflection i1 Real
Dirichlet BC for the components of the deflection, i=1,2,3.

Body Force bf id

Pressure Real

Possibility for a body forces. For coupled systems there is a possibility to have up to three forces.
The two others are then marked with Pressure Band Pressure C.

Spring Real
The local spring which results to a local force when multiplied by the displacement.

Damping Real
The local damping which results to a local force when multiplied by the displacement velocity.
The spring and damping may also be defined as material parameters.
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One-dimensional Equations for Elastic
Beams

Module name: BeamSolver3D

Module subroutines: TimoshenkoSolver
Module authors: Mika Malinen
Document authors: Mika Malinen

10.1 Introduction

The solver described in this section can be used to solve structural beam equations. The equilibrium equa-
tions are expressed in terms of stress resultants IN and M that represent forces and moments experienced
by the cross section of a beam. If the cross section is considered to be an oriented surface with positive unit
normal ey, the stress resultant IV is defined by

N = /0’61 dA (10.1)

A
where o is the stress tensor and A denotes the cross section of the beam. Generally IV is resolved into
components with respect to an orthonormal basis {e1, ez, eg} associated with a local frame which has its
origin at the intersection of the cross section and the axis of the beam. The coordinates of points with respect
to this frame are denoted by (y1, y2, y3) with the y;-axis being aligned with the axis of the beam, while the

other two axes are assumed to coincide with the principal directions of the cross section. The stress resultant
M = Mjey + Msez + Mseg has as its components the bending moments

My = /y3(0'€1) -e1dA, Mz = —/yg(ael) -e1 dA, (10.2)
A A

while M, is a torsional moment. We note that in general accurate modelling of the torsion is not a simple
problem and here a rudimentary approximation will only be employed.

10.2 Governing equations

Let us assume that the axis of the beam is described by using the arc length parametrization s € [0, L] —
r(s) € E3. The equilibrium equations are then given by

~N'(s) = F(s),

F (10.3)
—M'(s) — t(s) x N(s) = G(s), ‘
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where F' and G are the densities of applied forces and moments per unit length and ¢(s) = ey (s) is tangential
to the beam axis. It should be noted that ' and G can be considered to include inertial body forces to obtain
equations for transient cases.

In the case of Timoshenko’s treatment of shear deformation, suitable generalized measures of strain may
be expressed as

e(s) =u/(s) — 0(s) x t(s),

k(s) = 6'(s) (10.4)

where u : [0, L] — R3 is the displacement of the beam axis and the components of 6 : [0, L] — R? are the
so-called rotations. It is noted that the underlying approximation of the displacement w3p, for a generic point
r(s) + yz2ea(s) + yses(s) of the cross sections is given componentwise by

u3p(8; Y2, y3) - €1(s) = u
u3p(8; Y2, Y3) - €2(s) = ua(s) — ysbh(s), (10.5)
u3p(5; Y2, y3) - €3(s) = uz(s) + yab1(s).

The constitutive relations are written as

N = De,
(10.6)
= EK,
where
D = diag(FA, GAks, GAk3) (10.7)
and
E = diag(GJr, ElL, EI3). (10.8)

Here E and G are Young’s modulus and the shear modulus, respectively, while J7 and I}, give a torsional
constant and the second moments of area, respectively. The parameters k; are known as the shear correction
factors.

10.3 The weak formulation

A weak formulation of the beam problem stems from the identities

L L
—/N/-'uds:/F-'uds,
0 0
L L L (10.9)
—/M'~1/st—/t><N-1bds:/G-'¢ds
0 0 0
that yield after integration by parts
/N vds_/F wds+ N(L) - v(L) — N(0) - v(0),
(10.10)
/M W ds—/th ¢ds_/a s+ M(L) - (L) — M(0) - 1(0).
0
In order to specify forces exerted upon the beam by the environment, we shall set
Nog=-N(0) and N =N(L). (10.11)
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Similarly the bending moments applied to the beam are specified as
My=-M(0) and M, = M(L). (10.12)

By using (10.4) and (10.6) and by including transient inertia terms, the equations (10.10) lead to the
standard abstraction of the problem: Find w = (u(-,t),0(-,t)) € U such that

a(w,z) =1(z), Vz=(v,¢)eV (10.13)

with
L L L L
a(w,z):/mil~vd3+/Im5~1,bds+/E0/~1,Z/ds+/D(u’—0xt)~(v’—¢><t)ds (10.14)
0 0 0 0
and
L L
l(z):/F-vds+/G-1pds+NL~v(L)+N0-'u(O)+ML~1/J(L)+MO~1/;(O). (10.15)
0 0

Here m is the mass per unit length and the diagonal I,,, gives the (mass) moments of inertia. In addition, U
and V denote the sets of kinematically admissible functions and test functions, respectively.

10.4 Keywords

Simulation

Coordinate System String Cartesian 3D
The coordinate system should be selected to be three-dimensional, as no specific orientation of
the beam axis is supposed.

Material mat id
The following keywords relate to specifying the material parameters and the cross section data.

Youngs Modulus Real
This keyword specifies the value of Young’s modulus F.

Shear Modulus Real
This keyword specifies the value of G.

Density Real
This keyword is used for defining the density of the material. The density is needed in transient
cases to include the effects of inertial forces.

Cross Section Area Real
This keyword specifies the area A of the cross section.

Principal Direction 2(3) Real
The three components given by using this keyword should define the direction of the local ys-
axis, so that the vector ez can be computed. This direction must be orthogonal to the beam axis
that is determined by the coordinates of the element nodes. If this keyword is not specified, any
orientation is supposed to be suitable by assuming that the parameters of the cross section do not
depend on the orientation of the coordinate axes.

Torsional Constant Real
To get an approximation of the torsional effects, the value of the parameter Jr can be given.

Second Moment of Area 2 Real
This keyword should give the value of the integral I, = [ A y3 dA.
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Second Moment of Area 3 Real
This keyword should give the value of the integral I = [ A y3 dA.

Rayleigh Damping Alpha Real
This specifies a parameter to activate mass-proportional damping for translational degrees of
freedom.

Solver solver id

Equation String
A describing name for the solver.

Procedure File "BeamSolver3D" "TimoshenkoSolver"
The name of the solver subroutine.

Variable String Deflection[U:3 Theta:3]
The name of the solver variable can be chosen freely (but it must be used consistently elsewhere).

Variable DOFs Integer 6
There is no need for using this keyword as the only possible value is 6 and it is given automat-
ically by the solver. The first three components of the solver variable define the displacement
u of the beam axis (the default variable name U), while the rest give the vector 8 (the default
variable name Theta). In this connection the components of both the vectors are defined with
respect to the global coordinate frame.

Body Force bf id

Body Force k Real
The value of this keyword gives the kth component of the applied force F' with respect to the
global coordinate frame.

Boundary Condition bc id
The Dirichlet conditions for the components of w and 6 can be given in the standard manner. Note
that here the components of both vectors are defined with respect to the global coordinate frame.

U i Real
If the default variable name is used, then, with i=1, 2, 3, Dirichlet BCs for the components of
the displacement u can be given.

Theta i1 Real
If the default variable name is used, then, with i=1, 2, 3, Dirichlet BCs for the components of
the rotation @ can be given.

U i Load Real
In the case of the default variable name this creates a point force applied in the direction of the
ith basis vector of the global coordinate frame.

Theta i Load Real

In the case of the default variable name this creates a moment load about the direction of the ith
basis vector of the global coordinate frame.
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Adding pointwise springs and masses

Module name: SpringAssembly
Module subroutines: SpringAssembler
Module authors: Mika Malinen
Document authors: Mika Malinen

11.1 Introduction

The utility described in this section can be used to add nodewise specified springs and masses to structural
models. This utility is generic and should be applicable to several structural models including equations
of linear and nonlinear elasticity, shells, plates and beams. It should be noted that some models may be
defined to have pointwise springs or masses without using this utility, provided the set of boundary elements
includes point elements and the model itself can handle springs or masses. The utility considered here does
not however depend on the content of the mesh file defining boundary elements, since the places of the
springs and masses are now supposed to be specified in terms of the indices of the mesh nodes.

11.2 Guiding assembly procedure

The module subroutine considered can be called as an additional assembly procedure to change the stiffness
and mass matrices of the target model which is modified to have the springs or masses. To achieve this, in the
solver input file the solver section associated with the primary model must contain the keyword command
Assembly Solvers (for the documentation of this generic utility command see also ElmerSolver Man-
ual). The value of this keyword gives the integer identifier of the solver section which is utilized to perform
the additional assembly procedure.

To describe what is needed, let us suppose that the primary solver which should utilize the spring defini-
tions is associated with the variable name "Displacement". If one then adds Xtk solver section into the
solver input file as

Solver X
Equation = "Assemble Springs"
Exec Solver = Never
Procedure = "SpringAssembly" "SpringAssembler"
Displacement Variable Name = "Displacement"
End

and adds into the solver section of the primary solver a line
Assembly Solvers(l) = X

then it should be possible to use boundary condition sections to add spring specifications as
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Boundary Condition Y
Target Nodes(...) =
Spring 1 =
Spring 2
Spring 3 =

End

An additional mass (and moment of inertia when applicable) may be added in a similar way by using a
keyword Mass 1, with i being an integer string.

11.3 Keywords

Solver id

Displacement Variable Name String
The value of this keyword must be the variable name of the solver which is modified to have
additional springs or masses. The default value is "Displacement".

Boundary Condition bc id

Spring i1 Real
This keyword may be used to create a reaction which is proportional to the value of the ith
global DOF (degree of freedom) of the finite element used to discretize the primary model.

Mass 1 Real
With this keyword, the mass matrix of the model can be modified by assembling an additional
diagonal mass matrix. The integer string i of the keyword refers to ith global DOF (degree of
freedom) of the element. In the basic 3D simulation the values for all i€ {1,2,3} should be
the same by physical reasons as they originate from the same scalar property. With 1 ; 3 an
additional moment of inertia may be given for models for which it is meaningful (for example a
shell model).

CSC —IT Center for Science (cc



Part 111

Models of Acoustics

CSC —IT Center for Science

(@) ey-nD___|]



Model 12

The Helmholtz Model

Module name: HelmholtzSolve

Module subroutines: HelmholtzSolver

Module authors: Juha Ruokolainen, Mikko Lyly, Mika Malinen, Peter Réback
Document authors: Juha Ruokolainen, Peter Rdback

12.1 Introduction

This module solves the Helmholtz equation, which is the Fourier transform of the wave equation. In addition
to the basic equation the solver may take into consideration variable density, background convections field,
simple damping and special boundary conditions to interface with other time-harmonic solvers.

12.2 Theory

For example, sound propagation in air is fairly well described by the wave equation

1 0%

——= -V =0, 12.1

= 952 p (12.1)
where c is the sound speed. When linear, the equation may be written in frequency space to give the
Helmholtz equation

— kP -V?P =0, (12.2)

where k = w/c gives the wave number in terms of the angular frequency w. The instantaneous pressure may
then be computed from the complex-valued field P as

p(t) = R(Pe™*t) = R(P) cos(wt) — I(P) sin(wt), (12.3)

where ¢ = \/—1 is the imaginary unit.
In Elmer the equation has an added term which is proportional to the first time derivative of the field,
whereupon the equation becomes
— (k* —ikD)P — VP =0, (12.4)

where D is the damping factor. In order to construct special preconditioners for iterative linear solvers, the
discretization of the original Helmholtz problem with a complex shift may be used in the preconditioning.
If we consider the case D = 0, the shifted equation is given by

—k*(1-n)P-V?*P=0, (12.5)

where 7 is the complex-valued shift parameter. Usually 7 is taken to be imaginary, i.e. the real part of 7 is
then zero. This approach is motivated by the fact that the shifted problem is easier to solve iteratively when
7 is sufficiently large.
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12.2.1 Boundary Conditions

The usual boundary condition for the Helmholtz equation is to give the flux on the boundary:
VP -ni=yg. (12.6)

Dirichlet boundary conditions may also be set. The Sommerfeldt or far-field boundary condition is written
as

VP + %}P -0, (12.7)

where the complex-valued quantity Z may be defined by the user. It is noted that incoming and outgoing
waves may be approximated by setting Z = —c and Z = c, respectively.

A special kind of flux condition is expressed in terms of a given velocity field that is the time-harmonic
solution of a flow or structure equation. When the velocity field ¢ is given, then the flux is obtained from

g = —iwpv -1, (12.8)

where p is the fluid density. If a time-harmonic displacement is given instead, a further multiplication with
the term iw appears in the equation.

12.3 Keywords

Simulation
This section gives values to parameters concerning the simulation as whole.

Frequency Real
Give the simulation frequency in units of 1/s. Alternatively use the Angular Frequency
keyword.

Angular Frequency Real
Give the simulation frequency in units of 1/rad. Alternatively use the Frequency keyword.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that for the Helmholtz equation TLUT
preconditioning works well.

Equation String [Helmholtz]
The name of the equation.

Procedure File ["HelmholtzSolve" "HelmholtzSolver'"]
This keyword is used to give the Elmer solver the place where to search for the Helmholtz
equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present and must be set to the value 2.

Bubbles Logical
If set to True, this keyword activates the bubble stabilization.

Linear System Preconditioning Damp Coefficient Real
The real part of the shift 7).

Linear System Preconditioning Damp Coefficient Im Real
The imaginary part of the shift 7.

Velocity Variable Name String
If thereisa Flow Interface, then the name of the time-harmonic velocity variable may be
specified. The default is F1ow. Note that a normal real-valued velocity field is not suitable.
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Displacement Variable Name String
If thereisa Structure Interface, then the name of the time-harmonic displacement vari-
able may be specified. The defaultis Displacement. Note that a normal real-valued displace-
ment field is not suitable, whereas a complex-valued eigenmode is.

Displacement Variable Eigenmode Integer
If an eigenmode is used for the interface, this keyword is used to specify the number of the mode.

Displacement Variable Frequency Logical
If an eigenmode is used for the interface, this keyword may be used to choose the frequency to
be the frequency of the computed eigenmode.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the Helmholtz equation.

Sound Speed Real
This keyword is used to give the speed of sound.

Sound Damping Real
This keyword is used to give the value of the damping factor D in equation (12.4).

Density Real
The density of the material must always be given so that the solver can be coupled with other
time-harmonic solvers (although in basic cases the solution may not depend on the value of this
keyword).

Convection Velocity i Real
If the pressure field is convected by a background velocity field (as in the Doppler effect), then
this keyword is used to give the velocity field.

Body Force bf id

Pressure Source 1 Real
The real (: = 1) and imaginary (z = 2) parts of a source per unit volume. The use of this is
infrequent.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Those related to the Helmholtz equation are

Pressure i Real
This defines a Dirichlet boundary condition for the real and imaginary parts of the solver variable,
which is here assumed to have the name Pressure. The values i= 1, 2 correspond to the real
and imaginary parts of the field.

Wave Flux i1 Real
The real and imaginary parts of the boundary flux, with the values 1= 1, 2 corresponding to the
real and imaginary parts of the flux.

Wave Impedance i Real
This keyword may be used to define the real and imaginary parts of the quantity Z in (12.7).
Here the values 1= 1, 2 correspond to the real and imaginary parts of Z.

Plane Wave BC Logical
Automatically sets the boundary condition for outgoing plane waves if set True.

Flow Interface Logical
Use a time-harmonic velocity field to set the flux.

Structure Interface Logical
Use a time-harmonic displacement field to set the flux.

CSC —IT Center for Science (cc



Model 13

The Linearized Navier-Stokes
Equations in the Frequency Domain

Module name: Acoustics

Module subroutines: AcousticsSolver
Module authors: Mika Malinen
Document authors: Mika Malinen

13.1 Introduction

The basic acoustic equations such as the Helmholtz equation, which is frequently taken as the starting point
in acoustic analyses, are based on the assumption of lossless flow, i.e. the effects of viscosity and heat
conduction are neglected. These effects are significant, however, in thin zones near a solid boundary. In this
chapter, a system of acoustic field equations taking into account the effects of viscosity and heat conduction
is described. Consideration is confined to the time-harmonic solution of these equations.

13.2 Mathematical model

The acoustic field equations may be derived using the general principles of continuum mechanics and supple-
menting these equations by suitable constitutive equations applicable for the fluid flow. Here the linearized
versions of such equations are used to derive an approximate system of field equations appropriate to the
small-amplitude acoustics problem.

In the following the velocity, density, pressure and temperature fields associated with the flow are denoted
by ¥, p, p and T, respectively. The notations pg, pp and Tj are used for the values of the density, pressure
and temperature at the equilibrium state.

13.2.1 The field equations

Consider the acoustic equations based on the linearized equation of motion, the constitutive equation relating
the stress to the motion for a Newtonian fluid, the kinematic relation, the linearized continuity equation and
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the linearized energy equation

o
=
I
|
<
<y
_|_
g
B

(13.1)
dp
a - _POV U,
du

PO = KAT — poV - U+ poh.

Here 7 is the stress tensor, b is the body force (per unit mass), A and p are parameters characterizing the
viscosity of the fluid, u is the specific internal energy, x is the heat conductivity and % is the internal supply
of heat.

We supplement the system (13.1) by suitable equations of state assuming that the properties of the
medium are expressible as functions of two state variables, say the temperature and density. We denote
the specific entropy (entropy per unit mass) and its equilibrium value by s and sg and assume that the rela-
tion

du = Tods + (po/p3)dp (132)
is valid. In addition, we approximate the equations which give the changes of pressure and specific entropy
in terms of the changes of the state variables by

_ (vy=1)pCv (y=1)Cy
p_pO—Tﬁ(T—TOH‘TBQ(P—PO) (13.3)
and o O )
O o Cvv— -
5—50 = T, (T - To) “TopoB (p = po), (13.4)

where C'y is the specific heat at constant volume (per unit mass), -y is the ratio of the specific heats at constant
pressure and constant volume and 3 is the coefficient of thermal expansion defined by

= _;(g;)p_ (13.5)

Confining consideration to the time-harmonic case, the solutions of the primary unknowns are assumed
to be of the form
Uz, t) = U(x) exp(iwt),
p(x,t) = po + p(x) exp(iwt), (13.6)
T(x,t) = To + T'(z) exp(iwt),
where w is the angular frequency. By the substitution of (13.6), the system of field equations based on

(13.1)—(13.4) may be reduced to a system where the only unknown fields are the amplitudes ¥(x) and T'(x)
of the disturbances of the velocity and temperature fields. The reduced system may be written as

-1 i(y — 1 -
iwopoir+ O = DOVPOGE M)V(v ) — pAT = pob,
BTo wTpp (13.7)
-1 :
—kAT 4+ iwpeCy T + WB)C’M)V - U = poh.

It is noted that after the solution of the velocity and temperature the amplitudes p(x) and p(zx) of the distur-
bances of the pressure and density fields can readily be obtained from the relations

-1)C '
p= (v % V'OO(T—i—LV-U),
BTy wp (13.8)
p=2v.5
w
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For numerical approximation the system (13.7) is rewritten as a mixed problem; to motivate this, see [2].
The mixed formulation is written as

T —iVT — iV +ieV(V - T) + ieAT = —(i/w)b,

e A 1 . 1 _ih
(y—1)0 y—1 " 14iyk2en’  BTow?’ (13.9)
- - vk?
V-i—-———¢=0,
UTTR ivk%ngb

where ¢ is an auxiliary unknown, 7 is the scaled temperature defined by

wp
and o N
[ Y (13.11)
c pow K M
with c the adiabatic sound speed defined by the relation
ToB%% = ~y(y —1)Cy. (13.12)

It should be noted that although the solver of the acoustic equations is based on the formulation (13.9), the
solver overwrites the approximations of 7 and ¢ by the unscaled temperature and the pressure, which may
be expressed as
1
1+ ivk2en
It is assumed that 3 = 1/T;. This value is obtained by evaluating the coefficient of thermal expansion
for the equilibrium values of the state variables in the case of an ideal gas.

p = pow(T + ®). (13.13)

13.2.2 Boundary conditions

Suitable boundary conditions must be adjoined to the field equations (13.1). In a usual manner, one may
specify any component of the velocity vector on the boundary. Alternatively, if the component of the velocity
vector is not specified at a point on the boundary, the corresponding component of the surface force vector
may be prescribed. Similarly, as a boundary condition for the energy equation one may specify either the
disturbance of the temperature or zero heat flux (the default boundary condition) on the boundary.

Specifying two impedances on the boundary provides an alternative way of prescribing boundary con-
ditions in the normal direction to the boundary. Firstly, one may specify the specific acoustic impedance Z
which is defined to be the ratio of the normal component of the surface force vector (which equals to the
pressure in the case of a nonviscous Newtonian fluid with no bulk viscosity) to the normal component of the
velocity vector at a point on the boundary, i.e. one may specify

ni-on

]
n

7 =

where 77 is the outward unit normal vector to the boundary. Secondly, one may prescribe the ratio of the heat
flux to the disturbance of the temperature at a point on the boundary by specifying

T(x) -7
T = VT(x)- 7
T(x)
For example, outgoing waves may be approximated by setting Z = —pgc and Zp = —iw/c on the outflow

boundary.
Slip boundary conditions may also be used. The velocity slip boundary condition relating the tangential
component of the surface force vector to the tangential velocity jump at a point on the boundary is written in

the form
Co

(2('7 - 1)CV(T0 + Tw)

O v ) 2p0(5 - = 5, - D),

n-t=

Qll
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where # is a tangent vector to the boundary, ¢, is the momentum accommodation coefficient and T, and
¥, are the reference wall temperature and velocity. Here the reference wall temperature is defined to be the
deviation of the wall temperature from the equilibrium temperature 7. The similar boundary condition for
the heat flux is given by

7CT(’Y + 1) (2(’}/ — 1)Cv(TO + Tw)

VT i =
YT T ) 71'

)1/2POCV(T - Tw)v

where cr is the energy accommodation coefficient.

13.3 The use of block preconditioning

The finite element approximation of the system (13.9) leads usually to large linear systems which have to
be solved using preconditioned iterative methods. The general preconditioners available in Elmer may not
always work satisfactorily well when the size of the system becomes larger and larger. To facilitate the
solution of large problems, a problem-specific strategy for solving the linear systems that arise from the
discretization of (13.9) has been developed. We describe the essential features of this solution method in this
section; for a full description see [1].

The solution strategy discussed here is based on using nested GCR iterations in combination with a
special block-preconditioner. Given the linear system

KU =F

the standard GCR method generates a sequence of improving approximations such that each iterate U(*)
minimizes ||F — KU®)|| over the so-called Krylov subspace. The standard algorithm can be modified
easily so that the update direction can be chosen flexibly. Obviously, an optimal update direction would be
given by the current error e(*) = U — U*) . To find an approximation to the error one may apply an iterative
method to

Ke®) = (k)

where () = F — KU is the residual. The preconditioned GCR algorithm which employs this idea to
find the update direction can be described as follows:

Form an initial guess U
r® = p_ KU©
k=0
while (Stopping criterion is not met)
Solve K s(+1) = (k) jteratively using at most m iteration steps
pk+D) — K g(k+1)
doj=1k
o) — (k1) _ ’U(j), v+ 5 o, (@)
st = g(k+1) _ < (1) (k+1) 5 ()
end do
plk+1) — v(k+1)/||v(k+1)||
s(t1) = (k1) /|| (k41|
UG — gk < pk+D) p(k) 5 g(k+1)
ptD) = p(k) < (kA D) (k) 5 o(k+1)
k=k+1

end while

Here the inner product and norm are defined by < v,r >= - r and ||v|| =< v,v >'/2. The GCR iteration
steps used to update the approximation of U are referred to as outer iterations, while the iteration steps of
the preconditioning iterative method used for solving the new search direction s(**1) are referred to as inner
iterations.
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Here the GCR algorithm is also used as the inner iterative method. In connection with the inner iterations
a special block-preconditioner is used. The preconditioning is done by solving approximately the block-
triangular system of the form

*

A B* B* 0 Sy Ty
0 ¢ D 0 s | | rr
0 B G H||sy| " |rel| (13.14)
0 0 0o M||w re

where s,, s, and s, are update directions for the errors of v, 7 and ¢. In addition, 1) is an auxiliary unknown
which has been introduced so as to handle the boundary conditions of the preconditioner is a consistent way.
In practice, an approximate solution of (13.14) is constructed by applying iterative methods to the systems
of the type

My =1y, (13.15)
C D sr | |7
[EGH%}_[%} (1310
and
Asy =1y, (13.17)

where 7y and 7, are modified right-hand sides the computation of which requires the evaluation of certain
matrix-vector products. The special solver discussed hence requires that iterations are performed on three
levels.

One of the key ideas in the nested application of the GCR algorithm is that the outer iteration can be
made rapidly convergent. Consequently the optimality of the outer iteration need not be sacrificed by using
such techniques as restarting or truncation. A few inner iterations are usually enough to produce a useful
reduction in the outer iteration residual. Therefore the maximum number of iterations the inner iterative
method may take need not be large. We have found that limiting the number of inner iterations by taking
m = 5 (this is the default value) or m = 10 leads often to an efficient method. In addition to specifying
the maximum number of inner iterations, the user can control the residual reduction in the outer iteration
process by specifying the error tolerance d;ppe, SO that the inner GCR iteration is stopped if

8 — K3EH|| < G ®]), (13.18)

where §571) ig the approximation to s*+1) The default value of Oinner 18 0.1.

Ideally a mild stopping criterion should be used in the solution of the linear systems of the type (13.15)-
(13.17) which arise in the block-preconditioning of the inner iteration. The iterative solution of (13.15) being
a cheap operation, the overall cost of the block-preconditioning is essentially determined by the solution of
the systems of the type (13.16) and (13.17). These systems are solved using the preconditioned BiCGStab(l)
method. In this connection the Jacobi and incomplete LU factorization preconditioners can be applied.

13.4 Utilities

The dissipative acoustics solver may be used in resolving the acoustic impedance of a system. The value of
the impedance defined by
J s, pdS

J s, v (—7) dS
may automatically be calculated for a given boundary .S;. Here this impedance will be referred to as the
specific acoustic impedance of the surface (.5;).

The acoustic impedance is divided into two parts, a part in phase with velocity and a part out of phase
with velocity. The value of the impedance z; is meaningful only when the velocity on the input boundary is
considered. It is though possible to calculate the response over an other boundary S; and to compare it to
the input velocity, i.e. one may compute

(13.19)

zZ; =

L fsjpdS'
I Py o s

This impedance is here called the cross specific acoustic impedance.

(13.20)
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13. The Linearized Navier-Stokes Equations in the Frequency Domain 99

13.5 Keywords

The following keywords are particularly related to the acoustics solver.

Simulation

Angular Frequency Real
This keyword is used to declare the angular frequency. Alternatively one may define the fre-
quency by using the Frequency keyword.

Frequency Real
This keyword is used to declare the frequency. Alternatively one may define the angular fre-
quency by using the Angular Frequency keyword.

Simulation Type String
The value of this keyword should be either Steady State or Scanning. The value Scanning
may be used to obtain results for several frequencies by using a single sif-file.

Coordinate System String
The coordinate system must be set to be one of the following options: Cartesian 2D,Cartesian
3DorAxi Symmetric.

Solver solver—id

The following keywords may be used in the solver section that contains solver parameters for the
acoustics solver.

Equation String
This keyword can be used to give a name for the discrete acoustic equations

Procedure File Acoustics AcousticsSolver
This keyword is used to give the Elmer solver the place where to search for the acoustics solver.

Variable String Flow

The name F1ow is used for the solution of the acoustics equations consisting of the amplitudes
of the disturbances of the velocity, temperature and pressure from the equilibrium state (note that
the disturbance of the density is not computed explicitly). The acoustics solver uses a convention
that if dim is the coordinate system dimension then the components 1, ..., 2 x dim of F1low give
the real and imaginary parts of velocities (Flow.1 and Flow.2 are the real and imaginary
parts of the first velocity component, etc.). The temperature and pressure solutions come after
the velocity solution.

Variable Dofs Integer
The value of this keyword should equal to 2 x (dim + 2) where dim is the coordinate system
dimension.

Element String
The use of standard finite elements in the approximation of the acoustic equations is likely to
lead to an unstable method. The finite element formulation can be stabilised by using additional
bubble finite element functions in the approximation of velocities. If this keyword is given the
valuep:1 Db:n, withn aninteger, then n additional bubble functions contained in the p-element
library are used in the approximation of each velocity component.

Bubbles in Global System Logical
This keyword should be given the value False, so that the additional bubble basis functions
needed for the stability are eliminated via the static condensation.

Utilize Previous Solution Logical
If a single sif-file is used to compute the solutions for several frequencies, then the previous
solution can be used as an initial guess for the next iterative solution. This can be done by giving
the value True for this keyword.

Material material-id
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Specific Heat Real
This keyword is used to define the specific heat (per unit mass) at constant volume.

Specific Heat Ratio Real
This keyword is used to define the ratio of the specific heats at constant pressure and constant
volume.

Equilibrium Density Real
This keyword is used to declare the density at the equilibrium state.

Equilibrium Temperature Real
This keyword is used to declare the absolute temperature at the equilibrium state.

Heat Conductivity Real
This keyword is used to define the value of the heat conductivity.

Viscosity Real
This keyword is used to define the value of the viscosity .

Bulk Viscosity Real
The material parameter ) is determined by giving the bulk viscosity «’ defined by " = A+2/3 .
If the value of this keyword is not given, the Stokes condition is assumed, i.e. the value of A is
determined by the condition x’ = 0.

Re Heat Source Real
This keyword is used to define the real part of the heat source (per unit mass).

Im Heat Source Real
This keyword is used to define the imaginary part of the heat source (per unit mass).

Re Body Force i Real
This keyword is used to define the real part of the i’s component of the body force vector (per
unit mass).

Im Body Force i1 Real
This keyword is used to define the imaginary part of the i’s component of the body force vector
(per unit mass).

Boundary Condition bc—-id

Re Velocity 1 Real
This keyword is used to prescribe the real part of the i’s component of the velocity vector.
Im Velocity 1 Real
This keyword is used to prescribe the imaginary part of the i’s component of the velocity vector.

Re Temperature Real
This keyword is used to prescribe the real part of the amplitude of the disturbance of temperature.

Im Temperature Real
This keyword is used to prescribe the imaginary part of the amplitude of the disturbance of
temperature.

Re Surface Traction i Real
This keyword is used to define the real part of the i’s component of the surface force vector.

Im Surface Traction i Real
This keyword is used to define the imaginary part of the i’s component of the surface force vector.

Re Specific Acoustic Impedance Real
This keyword is used to define the real part of the ratio of the normal component of the surface
force vector to the normal component of the velocity vector at a point on the boundary.

Im Specific Acoustic Impedance Real
This keyword is used to define the imaginary part of the ratio of the normal component of the
surface force vector to the normal component of the velocity vector at a point on the boundary.
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Re Specific Thermal Impedance Real
This keyword is used to define the real part of the ratio of the normal derivative of temperature
to the disturbance of the temperature at a point on the boundary.

Im Specific Thermal Impedance Real
This keyword is used to define the imaginary part of the ratio of the normal derivative of temper-
ature to the disturbance of the temperature at a point on the boundary.

Slip Boundary Logical
The value of this keyword should be set to be True if slip boundary conditions were given.

Momentum Accommodation Coefficient Real
This keyword is used to define the momentum accommodation coefficient ¢, .

Energy Accommodation Coefficient Real
This keyword is used to define the energy accommodation coefficient cr.

Re Reference Wall Velocity i Real
This keyword is used to prescribe the real part of the i’s component of the reference wall velocity.

Im Reference Wall Velocity i Real
This keyword is used to prescribe the imaginary part of the i’s component of the reference wall
velocity.

Reference Wall Temperature Real
This keyword is used to define the reference wall temperature.

Calculate Acoustic Impedance Logical
This keyword is used to define the boundary for which the specific acoustic impedance z; is
calculated.

Impedance Target Boundary Logical
When calculating the cross impedance z;;, this keyword defines the boundary S;. The input
velocity boundary (5;) is defined using the Calculate Acoustic Impedance keyword.

The following keywords are related to the use of block preconditioning and may be given in the Solver
section.

Solver solver—id

Block Preconditioning Logical
The value of this keyword should be set to be True to enable the use of block preconditioning.

Max Outer Iterations Integer
The value of this keyword defines the maximum number of outer iterations.

Max Inner GCR Iterations Integer
This keyword is used to define the value of the parameter m, i.e. the maximum number of inner
iterations. The default value is 5.

Ratio of Convergence Tolerances Real
This keyword is used to define the stopping criterion for the outer iteration. The outer iteration
is stopped when

IF = KU oo < (g7 % &) (1K [T loo + 1 Fllo0)-
Here ¢, is defined using this keyword and ¢ is the value of the Linear System Convergence

Tolerance keyword. Having €, < 1 is desirable.

Residual Reduction Ratio Real
This keyword is used to define the value of the parameter d;,y,¢, in the stopping criterion (13.18).
The default value is 0.1.
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Linear System Convergence Tolerance Real
In connection with the block-preconditioning the keyword Linear System Convergence
Tolerance defines the stopping criterion used in connection with the iterative solution of
(13.16) and (13.17). In this connection the stopping criterion of the type

179 — A < ell7

is used. Here ¢ is the value of this keyword. It is noted that the solution accuracy of (13.15) need
not be specified by the user.

Velocity Convergence Tolerance Real
The systems (13.16) and (13.17) may solved with different degrees of accuracy. Instead of using
the Linear System Convergence Tolerance keyword one may specify the solution
accuracy for (13.17) by using this keyword.

Schur Complement Convergence Tolerance Real
The systems (13.16) and (13.17) may solved with different degrees of accuracy. Instead of using
the Linear System Convergence Tolerance keyword one may specify the solution
accuracy for (13.16) by using this keyword.

Linear System Max Iterations Integer
In connection with the block-preconditioning the Linear System Max Iterations key-
word is used for defining the maximum number of iteration steps which can be taken in the
iterative solution of (13.15)—(13.17).

Velocity Assembly Logical
The coefficient matrix A in (13.17) corresponds to the (1,1) block of the coefficient matrix K.
As the elements of A can be extracted from K, the assembly of A can be avoided if a diagonal
preconditioning is used in the iterative solution of (13.17). If an incomplete factorization pre-
conditioner is used, the matrix A is assembled explicitly. In this case the value True must be
given for this keyword.

ILU Order for Schur Complement Integer
The value of this keyword defines the fill level for the incomplete LU factorization preconditioner
that is applied in the iterative solution of the linear systems of the type (13.16).

ILU Order for Velocities Integer
The value of this keyword defines the fill level for the incomplete LU factorization preconditioner
that is applied in the iterative solution of the linear systems of the type (13.17). If this keyword
is not given, then a diagonal preconditioning is used. This keyword has an effect only when the
Velocity Assembly keyword is given the value True.
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Model 14

Wave Equation

Module name: WaveSolver

Module subroutines: WaveSolver

Module authors: Juha Ruokolainen, Peter Riback, Mika Malinen
Document authors: Mika Malinen

14.1 Introduction

This module can be used to solve a generalized version of the wave equation in time domain. It provides an
alternative to the Helmholtz equation which follows from the wave equation by transforming to the frequency
domain.

14.2 Theory
This solver can be used to handle the following generalized version of the wave equation:

1 9%

— o A+ A
with ¢ and f being the sound speed and a source function, respectively. In addition, 7 and « are model
parameters, which can also be set to be zero to obtain the standard wave equation.

In the case of sound waves the equation (14.1) can be obtained from the equation of motion and the
continuity equation by linearization. By assuming an isentropic fluid and irrotational flow, we then come to
considering the velocity-pressure system

dp
ot

o Op

)
P02l —iV(V - v) + av — VP = pob,
at
L op (14.2)
— +V.-v=0,
poc ot

where p is the density of the fluid at the equilibrium state, 7) is a parameter related to the fluid viscosity
and & is a reaction parameter. If we use the continuity equation to eliminate the divergence term from the
equation of motion and set n = 7j/pg, & = &/pp and p = P/py, the velocity-pressure system can also be
expressed as

87'0_1_ V(a)—l—av—Vp b,

ot ot (14.3)
1 0p ’
72E+V v=0.
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The elimination of the velocity from the time-differentiated continuity equation

10%p ov
— === -V (=)=0 14.4
c? Ot? ( ot ) (14.4)
then yields (14.1), with f =V - b.
Boundary conditions. Basically boundary conditions of three types can be given. In addition to a basic
Dirichlet constraint, one can specify the Neumann constraint
N o O
_ n— (). n=ag. 14.5
Vp-n 62V(at) n=g (14.5)
In the absence of body forces and reaction terms (b = 0 and « = 0), the value of g is related to the normal
component of the acceleration via

o
T
The final option is to set
N P 1 9p
— n— —=V(= =—-—= 14.
Ve c2v(6t) LT (14.6)

in order to approximate outgoing waves, especially when 7 is small.

14.3 Keywords

Solver solver id
The following keywords are especially related to the wave equation solver.

Equation String
This keyword can be used to give a name for the equation handled by the solver.

Procedure File "WaveSolver" "WaveSolver"
This specifies the name of the solver subroutine.

Variable String "Excess Pressure"
The name of the solver variable can be chosen freely.

Variable DOFs Integer
The value of this keyword must be 1.

Time Derivative Order Integer
There is no need for using this keyword as the only possible value is 2 and it is given automati-
cally by the solver.

Initial Condition ic-id
The initial condition section may be used to set initial values for the field variable. The form of the
commands depends on the name given for the solver variable.

Material mat id
The material section is used to give the values of the material parameters.

Sound Speed Real
This keyword is used to give the value of the sound speed c.

Sound Damping Real
This keyword is used to give the value of the parameter 7).

Sound Reaction Damping Real
This keyword is used to give the value of the parameter «.

Body Force bf id
Although volumetric sources may be rare, there is an option to specify such a source.
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Sound Source Real
This keyword can be used to specify the source function f = V - b.

Boundary Condition bc id
Special keywords are used to specify Neumann and outflow constraints, while a Dirichlet constraint
can be given in a standard manner.

Excess Pressure Real
The form of the command to specify a Dirichlet constraint naturally depends on the name given
for the solver variable.

Source Acceleration Real
This keyword can be used to specify the source function g.

Outflow Boundary Logical
This keyword can be used to activate the use of the constraint (14.6). An alternate keyword for
the same purpose is Plane Wave BC.
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Large-amplitude Wave Motion in Air

Module names: CompressibleNS
Module subroutines: CompressibleNS
Module authors: Mika Malinen
Document authors: Mika Malinen

15.1 Introduction

This module contains a monolithic solver for the compressible Navier—Stokes equations subject to the ideal
gas law. It can be used to model the fully nonlinear wave propagation in the time domain.

15.2 Mathematical model

The acoustic wave motion in a fluid is generally characterized by the compressional Navier—Stokes equa-
tions. If the medium obeys the ideal gas law, so that the fluid pressure p satisfies

the Navier—Stokes system may be reduced to consist of the equation of motion

ov

plogy + (5 V)] = pAT — (u+ NV(V - 5) + RoVT + RTVp = b, (15.2)
the energy equation
oT
pCV(E—&—U-VT)—KAT+R,0TV-17:0, (15.3)
and the continuity equation
7]
3—f+5-vp+pv-6=o. (15.4)

Here v, p and T are the fluid velocity, density and temperature, respectively, and the material properties are
expressed in terms of the viscosity parameters 1 and A, the heat conductivity K and the specific heat Cy/,
with R = (v — 1)Cy.

If po and Tj are the equilibrium values of density and temperature, we may then write

p:P0+57 T:T0+T7 (155)

so that § and 7 give the disturbances in p and T'. To solve the coupled system consisting of (15.2)—(15.4) the
fully implicit time integration is employed. At each time level a nonlinear iteration is thus applied. Given
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nonlinear iterates v, 7 and dx, new approximations are generated via

(po + k) [(Ve) k41 + (Uk - V)Uhy1] — pATp1 — (0 + A)V(V - Tpy1)

+ R(po + 0k)Vis1 + R(To + ) Va1 = b,
(po + 0k)Cv [(Te)kt1 + Tk - VTiy1) — KATL 1 + R(po + 01)(To + )V - U1 = 0,
(Pt)k+1 + Tk - Vogr1 + (po + 0,)V - U1 = 0,

(15.6)

with the time derivatives approximated using suitable finite difference schemes. It is recommended that the
BDF(2) method is used for the time discretization. It is also noted that the pressure is not approximated
directly, so it has to be computed separately using (15.1) and (15.5).

It should be noted that the solver is tailored to the case of the lowest-order continuous temperature and
density approximation. To obtain stable finite element solutions the velocity discretization must be enhanced
by using elementwise bubble functions or by rising the polynomial order of the velocity approximation.
Therefore a special element type definition in the solver input file should be given.

15.3 Keywords

The keywords that are related especially to this solver are described in the following.

Simulation

Coordinate System String
The coordinate system must be set to be one of the following options: Cartesian 2D,
Cartesian 3DorAxi Symmetric.

Solver solver id

Equation String
A name to the equation may be given by using this keyword.

Procedure File "CompressibleNS" "CompressibleNS"
This keyword is used to give the Elmer solver the place where to search for the compressible
Navier—Stokes solver.

Variable String
A name to the solver variable should be given by using this keyword.

Variable DOFs Integer
The value of this keyword should equal to dim + 2 where dim is the coordinate system dimen-
sion. The field variables are organized in such a way that the first dim components correspond
to the velocity solution and the temperature and density fluctuations come after the velocity.

Element String
The user has to specify what strategy is used for enhancing the velocity approximation by giving
the element type definition. If the command Element = ’’p:2’ "' is given, then the velocity
is approximated using the shape functions of the second order elements. The element type defi-
nition Element = ’’p:1 b:1’’ can be given to enhance the velocity approximation with
one bubble function.

Material mat id
Equilibrium Density Real
The equilibrium density py should be specified by using this keyword.

Equilibrium Temperature Real
The equilibrium temperature Tj should be specified by using this keyword.

Specific Heat Real
The value of this keyword specifies C'y .
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Specific Heat Ratio Real
The value of this keyword specifies 7.

Heat Conductivity Real
The heat conductivity K should be defined by using this keyword.

Viscosity Real
The viscosity parameter ;. should be defined by using this keyword.

Bulk Viscosity Real
The viscosity parameter ) is taken to be A = k — 2/3p, with  the value of this keyword.

Body Force bc id

Body Force i Real
This keyword defines the i’s component of the body force.
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Model 16

Electrostatics

Module name: StatElecSolve

Module subroutines: StatElecSolver

Module authors: Leila Puska, Antti Pursula, Peter Réback
Document authors: Peter Raback, Antti Pursula

16.1 Introduction

The macroscopic electromagnetic theory is governed by Maxwell’s equations. In Elmer it is possible to
solve the electrostatic potential in linear dielectric material and in conducting medium. The dielectric case
is described in this Chapter. For static currents, refer to Chapter 17. Based on the potential, various field

variables as well as physical parameters, such as capacitance, can be calculated.

16.2 Theory

Maxwell’s equations are here written as

vV-D = P
V.-B 0
. oB
VxE = o
4 - 0D
H — I
V x J+ 5

(16.1)
(16.2)

(16.3)

(16.4)

For linear materials the fields and fluxes are related simply by B= uﬁ and D = ¢E, where the permittivity
€ = €o&, 18 defined through the permittivity of vacuum ¢ and the relative permittivity of the material ¢,..
In a stationary case the electric field may be expressed with a help of an electric scalar potential ¢,

E=-V¢. (16.5)
Assuming linear material law and using the equation (16.1) gives
-V -eVop=p. (16.6)
This is the electrostatic equation for non-conducting media.
The energy density of the field is
12 = 1 9
e=-FE-D=—-e(V¢)°. (16.7)
2 2
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Thus the total energy of the field may be computed from

1
E:f/EW@%Q (16.8)
2 Ja
If there is only one potential difference ® present, then the capacitance C' may be computed from
2F

16.2.1 Boundary Conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

—eVo-ni=g. (16.10)

The flux may be defined e.g. by the surface charge density: g = o.
In case there is a object in infinite space it is of course not possible to extent the volume over it. Instead
a spherically symmetric approximation may be used. It results to a flux given by

7
=

g=c¢ (16.11)

T

This may be implemented as an additional term to the system matrix so that the linear nature of the problem
is maintained.

Conductors are often covered by thin oxidation layers which may contain static charges. The effect of

these charges can be taken into account by Robin type of boundary condition which combines the fixed

potential value on the conductor and the flux condition due to the static charges

1
g= —%hqb + iph + %@0 on the boundary, (16.12)

where €5, and h are the permittivity and the thickness of the oxidation layer respectively, p is the static charge
density of the layer, and @ is the fixed potential on the conductor.

Note that this formulation is valid only for thin layers. For a larger layer a separate body and a source
defined for that should be added.

16.2.2 Capacitance matrix

There is a possibility to compute the capacitance matrix. The algorithm takes use of the original matrix A
before the initial conditions are set. Now the point charges are given by

q=A¢p. (16.13)
The induced charges on a body may be computed by summing up the point charges.

If there are n different bodies, the boundary conditions are permuted n times so that body ¢ gets a
potential unity while others are set to zero potential,

Ly

The symmetry of the matrix is ensured afterwards by setting

0:%w+cﬂ. (16.15)
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16.3 Notes on output control

The user can control which derived quantities (from the list of electric field, electric flux, electric energy,
surface charge density and capacitance matrix) are calculated.

There are also available two choices of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

164 Keywords

Constants
Permittivity Of Vacuum Real [8.8542e-12]
Solver solver id

Equation String Stat Elec Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatElecSolve" "StatElecSolver"

Following are listed four keywords with default values for output control.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Calculate Electric Energy Logical [False]
Calculate Capacitance Matrix Logical [False]

Capacitance Bodies Integer
In case of a capacitance matrix computation the number of bodies at different potential must be
given (not accounting the ground).

Capacitance Matrix Filename String
The name of the file where capacitance matrix is being saved. The default is cmatrix.dat.

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Potential Difference Real
Used to give the potential difference for which the capacitance is calculated, when capacitance
matrix calculation is not performed. This keyword gives thus the voltage between the electrodes
of a simple capacitor. The voltage has to be consistent with the potentials defined in boundary
conditions.

Material mat id
Relative Permittivity Real
Body Force bodyforce id
Charge Density Real

Boundary Condition bc id
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Potential Real
If the name of the primary variable is potential then this sets the Dirichlet boundary condition.

Electric Flux Real
Neumann boundary condition in terms of g.

Surface Charge Density Real
Another way to define flux condition. Identical to the previous keyword.

Electric Infinity BC Logical
The spherical approximation for the open boundaries extending to infinity.

The following five keywords are used if a thin oxidation layer is modeled. Note that these are only
active if the Electric Flux BC keyword is set to True.

Layer Thickness Real
Defines the thickness of the oxidation layer. This is presumed to extend on the outside the
boundary.

Layer Relative Permittivity Real
The relative permittivity of the oxidation layer.

Layer Charge Density Real
The volume charge density in the oxidation layer.

Electrode Potential Real
The potential on the conductor behind the oxidation layer.

Capacitance Body Integer i
These should number from i=1 up to Capacitance Bodies. The ground may be given
directly with zero potential or with value O for this keyword. This definition is only needed in
the computation of the capacitance matrix where the potential is permuted in a very specific way.
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Model 17

Static Current Conduction

Module name: StatCurrentSolve

Module subroutines: StatCurrentSolver

Module authors: Leila Puska, Antti Pursula, Peter Réback
Document authors: Antti Pursula

17.1 Note

There is a vectorized and multithreaded version of the solver with almost the same functionality (some more,
some less) as module StatCurrentSolveVec.

17.2 Introduction

The macroscopic electromagnetic theory is governed by Maxwell’s equations. This module solves the elec-
trostatic potential in a conducting medium allowing volume currents and electric power loss (the Joule heat-
ing) to be derived.

17.3 Theory

In the electro-quasistatic approximation Maxwell’s equations are written as

vV-D = p 7.1
VxE =~ 0 (17.2)
ﬁ - 0D
H = = 17.
V x T (17.3)

so that the electric field may be expressed in terms of an electric scalar potential ¢ as
E =—-V¢. (17.4)
In addition, the continuity equation for electric charges is easily obtained from (17.1) and (17.3):

ap -
— -J=0. 17.5
5 +V-J (17.5)

Ohm’s law for conducting material gives the relationship between the current density and the electric
field,

-

J=0cE (17.6)
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where o is the electric conductivity. Starting from the continuity equation (17.5) and using the equa-
tions (17.6) and (17.4), we get
—V-oV¢=p;. 17.7)

This Poisson equation is used to solve the electric potential. The source term is often zero, but in some cases
it might be necessary. The vectorized and multithreaded version of the solver can also be used to handle a
generalized equation

VTV (2=, (17.8)

where ¢ is the permittivity. This version is a consequence of (17.3).
The volume current density in a conductor is now calculated by

J=—aVe, (17.9)
and the density of electric power loss, which is turned into heat, by
h=V¢- -oVo. (17.10)

The latter is often called the Joule heating. The total heating power is found by integrating the above equation
over the conducting volume.
The user may also compute the nodal heating which is just the integral of the heating sampled at nodes.

17.3.1 Boundary Conditions

For the electric potential either a Dirichlet or Neumann boundary condition can be used. The Dirichlet
boundary condition gives the value of the potential on specified boundaries. The Neumann boundary condi-
tion is used to give a current .J, on specified boundaries

Jy = oV - ii. (17.11)

17.3.2 Power and current control

Sometimes the desired power or current of the system is known a priori. An additional control may then
be applied to guide the system. When the electric potential has been computed, the heating power may be
estimated from

P:/v¢-av¢d9. (17.12)
Q

If there is a potential difference U in the system, the effective resistance may also be computed from R =
U? /P and the effective current from I = P/U.
The control is achieved by multiplying the potential and all derived fields by a suitable coefficient. For

power control the coefficient is
Cp=+/Py/P, (17.13)
where P, is the desired power. For current control the coefficient is
Cr=1Iy/I, (17.14)

where I is the desired total current.

17.4 Note on output control

The user can control which of the derived quantities (i.e., the volume current and the Joule heating) are
calculated and additionally specify if the electric conductivity is also output. The latter is useful when the
conductivity depends for example on temperature. This feature is available only for cases with isotropic
(scalar) conductivities.
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Two ways to visualize the derived quantities are available. The node values can be calculated by taking
the average of the derived values over a collection of neighbouring elements (constant weights). This often
results in visually good images. The other possibility is to weight the average with the size of the elements,
which is more accurate and should be used when some other variable depends on these derived values. The
latter choice is also the default.

17.5 Keywords

Solver solver id

Equation String Stat Current Solver

Variable String Potential
This may be any name as far as it is also used consistently elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatCurrentSolve" "StatCurrentSolver"

The following two keywords control the calculation of derived fields.

Calculate Volume Current Logical [True]
Calculate Joule Heating Logical [True]

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Calculate Nodal Heating Logical [True]
Calculate nodal heating that may be used to couple the heat equation optimally when using
conforming finite element meshes.

Power Control Real
Apply power control with the desired heating power being F.

Current Control Real
Apply current control with the desired current being I.
Material mat id
Electric Conductivity Real
Body Force bodyforce id
Current Source Real
This enables a scalar-valued source, not used often though.

Joule Heat Logical
If this flag is active, the heat equation solver will automatically compute the quantity V¢ - c V¢
as heat source. Then it is assumed that ¢ is named Potential. If there is no heat equation,
this flag has no effect.

Boundary Condition bc id
Potential Real
Dirichlet BC for the potential.

Current Density BC Logical
Must be set to True if Neumann BC is used.

Current Density Real
Neumann boundary condition for the current.
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Model 18

Computation of Magnetic Fields in 3D

Module name: MagnetoDynamics

Module subroutines: Whitney AV Solver, Whitney AVHarmonicSolver,MagnetoDynamicsCalcFields
Module authors: Juha Ruokolainen, Mika Malinen, Eelis Takala

Document authors: Mika Malinen, Juha Ruokolainen, Juhani Kataja, Eelis Takala, Peter Raback

18.1 Introduction

This module may be used to solve a version of the Maxwell equations in the A-V form. The approximation
of the associated vector potential variable A is here done by using vector-valued (edge) finite element basis
functions, while the classic Lagrange interpolation is applied to compute the scalar potential V. The use
of edge finite elements limits the applicability of this solver to 3D problems. In addition to performing the
computations in the time domain, the analogous version of the equations may also be solved in the frequency
domain. Several ways to handle stationary equations are also included. Furthermore, an additional solver
may be called to produce nodal and elementwise approximations of derived fields after the two potentials
have been obtained.

The equations over moving media are treated in the case of rigid motion. This implies that the associated
velocity field is divergence-free and the velocity gradient is both constant and skew.

18.2 The transient equations

If a charge ¢ moves in a region in which there are both electric and magnetic fields, the electromagnetic force
on the charge moving with velocity v is experimentally observed to be given by the Lorentz force
F =q¢(E+v x B). (18.1)
Alternatively, the force exerted on a volume element df2 is therefore given by
dF = (pE + pv x B)dQ (18.2)

where p is the charge density, per unit volume. By assuming a short relaxation time of the charge’s motion
as compared with the characteristic time scale of the motion of the body, we may incorporate the notion of
such electromagnetic field in Ohm’s law by writing it as

J:cr(g) =oF, (18.3)

where J is the current density and o is the electrical conductivity. An alternative would be to define the
electromagnetic field E’ as the ratio of the volume force density to the charge density, but both the definitions
lead to the conclusion that in order to explain the Lorentz force we must have

E'=E +vxB. (18.4)
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We note that since our definition of the electromagnetic field depends on the notions of force and charge
which are assumed to be invariant quantities (under a change of observer), the electromagnetic field also has
an invariant nature. It is tacit here that if the separation of the known electromagnetic field into its electric
and magnetic components was sought via (18.4), the result would depend on the observer. However, we
shall not need such separation since solving for E’ is enough to find the current density.

Otherwise the content of electromagnetic equations on a region €2 is here cast into a magnetic version of
Maxwell’s equations

OB
l1E = ——(— 18.
cur 5 (18.5)
1
curl(;B) -J = g, (18.6)
divB = 0, (18.7)
divd = 0, (18.8)

where p is the permeability and g is a divergence-free source satisfying (for ways to ensure this condition
beforehand, see the description of the Helmholtz projection in the context of stationary equations below)

divg = 0. (18.9)

Writing this system in terms of the electromagnetic field defined by (18.4) via eliminating E and using
Ohm’s law (18.3) yields

B
%—curl(va)—&-curlE’ = 0, (18.10)
1
curl(;B)—aE’ - g, (18.11)
divB = 0, (18.12)
div(cE') = 0. (18.13)

The content of this system is adequate for finding the instantaneous spatial solutions B(x,t) and E’(x, t) at
time ¢ simultaneously over both static and moving parts of the model. Here the point x is thus specified by
its coordinates with respect to a single, fixed Cartesian coordinate frame.

If an Elmer model contains moving bodies, the spatial discretization is typically done over an instanta-
neous configuration whose representation is obtained via a rigid motion of the previous mesh into the current
configuration. In this case the time stepping machinery of Elmer by default produces an approximation to
the material time derivative of a spatial field (the material point is held fixed in the differentiation) when the
field is a scalar field. It agrees with the usual definition of the substantial (or total) time derivative of the
spatial field. However, when the field is a one-form and is approximated by using edge finite elements (here
the case of the vector potential), a more subtle approach is needed to show that the computational procedure
leads to an approximation of the Lie derivative [2].

Since the computational procedure does not make it straightforward to evaluate the standard partial
derivatives with respect to time, the need of rewriting the equations in forms which employ other time
derivatives arises as a natural endeavour. To this end, we shall consider the upper convected time deriva-
tive [1]

DB 0B
Dt Ot
which agrees with the Lie derivative L,, B of the vector B with respect to v when the motion is rigid so that

+(v-V)B — (B-V)v+ (divv)B, (18.14)

dive = 0. (18.15)
It can be expressed in terms of the substantial time derivative

DB 9B
D =5 T V)B (18.16)
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as

DB DB .
D" i (B-V)v + (divv)B. (18.17)
By using vector identities, the definition (18.14) can also be rewritten as
DB 0B
T curl(v x B) + v(div B). (18.18)

This immediately implies that, under Gauss’s law for the magnetic field (18.12), the content of the Faraday
law (18.10) can be expressed as
bB 1E' =0 (18.19)
i + cur =0. .
Although we consider (18.19) to be a convenient way to express the Faraday law for our purposes, we do
not want to assert whether this useful mathematical reduction happens by chance or whether it should be
considered to reflect some theoretical underpinning.

If we think of A as a one-form, the formula for the Lie derivative of A with respect to v should be
written as (see, for example, [2])

0A

LyA=—-+(v-V)A+ (Vo)T A. (18.20)

In the case of rigid motion, however, the velocity gradient is skew so that
(Vv)T = —Vo. (18.21)

Hence the vector representations for the Lie differentiation of vectors and one-forms become the same.

When the edge finite element basis functions defined on the reference element give the pull-back of
the basis functions on the physical element by the element mapping (the standard construction followed by
Elmer), evaluating the rate of change of the associated degrees of freedom gives coefficients to approximate
the finite element interpolant of the Lie derivative. That is, if ¢ (-) are linear functionals which define the
degrees of freedom of a one-form, it follows that

Pr(LuA) = k(A7 +61)) — pi(A(, 7)) (18.22)

where 7 is a fixed value of time and d¢ is a time increment. Thus writing the equations such that the Lie
derivatives are employed is seen to be very natural.
In practice the solution is sought in terms of potentials. In the first place we set

B = curl A. (18.23)

It should be noted that this implies some ambiguity, since the resulting set of equations does not have a
unique solution without imposing additional constraints on A(x,t). Otherwise, if A satisfies the equations,
any field A, having the decomposition A4 = A + V¢ may also be made to be a solution. The uniqueness
of A could be assured for example by seeking A(-,t) € H(curl, Q) N H (div, ) that satisfies additionally

divA=0

on €2 and
A-n=0

on the boundary 0f).
In the case of the vector potential description (18.23) the Faraday law in the form (18.10) yields

A
curl(aa—t —vxcurlA+ E') =0,

so we may automate the satisfaction of the Faraday law by seeking the solution in the form

% —vxcurlA+ E = -V, (18.24)
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with 1) being an unknown scalar potential. Switching to the substantial time derivative then gives

% —(v-V)A—-vxcurl A+ E' = —Vi. (18.25)

Straightforward calculation shows that this is equivalent to

DA

S (VATv+ E =-Vy (18.26)
and, by using the vector identity
(VA v =V(v-A) - (Vv)T A, (18.27)
we further obtain DA
ot (Vo)TA+E' = -V —v-A). (18.28)
By setting
Yp=V+uv-A, (18.29)

the content of (18.28) can finally be expressed as
L,A+E =-VV. (18.30)

The equation (18.30) offers the possibility of eliminating the field E’ from the set of primary unknowns
while the additional constraint (18.13) serves the determination of V. It should be noted that the scalar

potential v is related to the field E via

A
5 TE=-Vi.

The relation (18.29) can be used to recover 1 after A and V' have been solved.
To derive a weak version of the equations, let v be an appropriate test function for V', so that we have v €
H'(€). Multiplying (18.13) with v, integrating by parts and using (18.30) bring us to the weak formulation

/O'(L.UA) -VodQ + /UVV -VodQ = — /(UE’) -nvdS. (18.31)
Q Q )

The determination of the scalar potential V' is thus joined with the possibility of specifying either V' or the
normal component of the current density o E’ on the boundary. If the normal component of the current
density is specified on the entire boundary 02 as

—(0E') -n = j,, (18.32)

the boundary data must satisfy the compatibility condition

/jndS:O.

o0

On the other hand, by using (18.23) and (18.30), we may rewrite (18.11) as
1
0(LyA)+0oVV +curl(—curlA) =g (18.33)
I

to obtain the weak version

/J(LUA)-ndQ—i—/UVV-ndQ—i—/lcurlA-curlndQ
]
Q

2

1 (18.34)
+/(—cur1A) (N xm)dS = /g-ndQ,
o0 K Q
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with 7 an appropriate test function corresponding to A. The weak formulations obtained from (18.34) and
(18.31) generally form the basis for the A-V formulation of the problem.
It should be noted that here we have avoided seeking a unique solution in the space

A(-,t) € H(curl,Q) N H(div, )

as only the requirement A(-,t) € H(curl, Q) appears to be necessary in this derivation. The Elmer im-
plementation relies on this minimal regularity assumption so that a finite element approximation Ay, (-, )
is sought from an edge finite element space X ;, C H (curl, §2). This simplification however leads to the
inconvenience that the uniqueness of the vector potential solution cannot be ensured. Thus, given a solution
(A, V), we can generate another solution (A, Vy) = (A + V¢,V — Ly¢), although the associated fields
B and E’ remain invariant.

The steady state solution of the evolutionary equations. Sometimes the steady state solution of the evo-
Iutionary model may be of an interest. For example the steady state solution of a case where a homogeneous
disk is spun with a constant angular velocity in a region in which there is a steady magnetic field without
circumferential variation can be described over a fixed domain. Then (18.24) yields

E —v xcurl A= —-Vv. (18.35)

In this special case the scalar potential variable of the solver is taken to be .
In this connection, we note that when a body makes a rigid rotation about the line through the origin o
spanned by the angular velocity w, the velocity field is described by the formula

v(x,t) =v(o,t) + w(t) x (x — 0). (18.36)

We also note that the term (Vv)T A occurring in the expression for the Lie Derivative has the following
representation in terms of w
(Vo)TA = —(Vv)A = —~w x A. (18.37)

A Poynting’s theorem for electromagnetic energy. The magnetic energy density is defined by

1
Wi =3B H. (18.38)

Let us define a Poynting vector S’ corresponding to our definition of the electromagnetic field E’ by
S'=FE x H, (18.39)
with B = pH. In view of (18.19) and (18.11), we then obtain

divS’=curlE'-H — E' - curl H
DB (18.40)
=—-——— -H—-E' . (ocF .
D (0E +g)
On the other hand, the Lie derivative of the magnetic energy density (note that for scalar-valued functions
the expressions of the Lie derivative and the total derivative are equivalent) is given by

D 1 DB

piaB H) =5

3 H. (18.41)

We hence come to the conservation principle of the magnetic energy expressed as

DWy | ..

W—‘rdlvsl = —El' (UE/+g) (1842)
The right-hand side of (18.42) describes the power per unit volume of the heating effect of the electric current
which is called the Joule effect.
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Since the displacement current has been neglected in the magnetic version of the equations considered,
the above conservation principle does not contain an electric energy density term. Elmer however calculates
the total electromagnetic energy density as

Wﬂ’l, + WG

with .
W, = iEE/ -E'. (18.43)

Here ¢ is the permittivity.

Solution in the frequency domain. The equations in the A-V form may also be solved in the frequency
domain. In this case the ansatz A(x,t) = A(x)exp(iwt) and V(z,t) = V() exp(iwt) is made to obtain
the analogous set of equations for determining the complex-valued amplitudes A(x) and V(). In addition,
we employ (18.24) with ¢ = V.

18.3 The stationary equations and the Helmholtz projection of a source

In the stationary case the electric field E’ is simply the gradient of a scalar potential. The weak formulation
based on (18.34) and (18.31) then simplifies to

/0VV-ndQ+/lcurlA-curlndQ—f—/(lcurlA)-(nxn)dS:/g~ndQ (18.44)
[ [ :
Q Q o0 Q

and
/UVV -VodQ =— /(O'E/) -novdS. (18.45)
Q 19]9)

As the solution of V' and A can then be done sequentially by first solving for V, the basic scenario for
applying the solver to stationary cases is that only the field A is solved by employing the weak formulation

/lcurlA'curlndQ—l—/(lcurlA)~(nxn)dS:/gS~ndQ (18.46)
1 [ :
Q o9 Q

where g g denotes the static source.

It should be noted that the source should generally be divergence-free. The divergence-freeness of gg
may be assured by setting gg = P(g;;) where g;; is the user-supplied source term and the Helmholtz
projection P(gy;) = gy — VQ, with Q € M C H' (), is defined via the requirement

/v gy — VQ)qdQ =0 (18.47)
Q

for any admissible variation ¢ of @. Integration by parts is used to obtain the version

/VQ-quQ = /gU-quQ— /P(gU) -nqds. (18.48)
Q Q o0

If g;; has already been obtained from a scalar field V* as
gy = —oVV? (18.49)

to obtain a close resemblance of g;; and P(gy;) (especially, P(g;;) = gy when gy is already divergence-
free) it is natural to set
Plgy) n=gy-n (18.50)

on the boundary where the current density was prescribed. On the remaining part of the boundary where the
Dirichlet constraint was specified for V* the homogeneous Dirichlet constraint for the field ) may be used.
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However, by default a different strategy is applied by setting () = 0 on parts where |g;; - 1| # 0. Then the
boundary integral in (18.48) vanishes. The Helmholtz projection of the source may also be performed when
the evolutionary version of the equations is handled.
Other types of source vectors may also be considered as the user may generally specify the source in the
form
g="P(gy)+curl M* —oVV?® (18.51)

or, if the Helmholtz projection is not applied,
g=gy +curl M? —oVV?. (18.52)
Here M ? is referred to as the magnetization. It arises from using a constitutive law of the form
H=,"'B- M" (18.53)

The last terms in (18.51) and (18.52) enable the direct generation of the source electric current density in
terms of the source potential V' without first computing g;; from (18.49).

To conclude, we note that it is also possible to solve the stationary equations such that both A and V" are
handled as unknowns and solved simultaneously by employing the variational equations

/JVV-ndQ—i—/lcurlA-curlndQ—}—/(lcurlA)-(nxn)dS:/P(gU)-ndQ (18.54)
1 [ :
Q Q o) Q

and
/UVV -Vod) = — /(UE’) -novdsS. (18.55)
Q o0

18.4 The boundary conditions

We see from the weak versions (18.34) and (18.31) that, if the Dirichlet type constraints
Axn=axn and V =9 (18.56)

are not given, we may specify the tangential components of the magnetic field H = (1/u)B and the normal
component of current density J = o E’. These may be defined via giving h to define

1
—curlA=nxhxn (18.57)
1

and
— (cE')-n = j,. (18.58)

We note that giving a Dirichlet constraint is a useful way to guarantee the uniqueness of the scalar potential
V' which would otherwise be determined only up to a constant.
A Robin-like generalization of (18.57) leads to the boundary condition

1
—curlA=a(AXxn)+nxhxmn, (18.59)
1

with « being a given parameter. We however note that the case &« # 0 may lack in having a physical
interpretation. On the other hand, a generalized version of (18.58) is written as

— (0E') - n = j, — BV, (18.60)
which in the stationary case reduces to the Robin boundary condition
oVV -n+ BV = j,. (18.61)

In addition, a procedural technique may be applied to specify a Dirichlet constraint for A when the normal
component of the magnetic flux density B is given on the boundary.
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The surface impedance condition for time-harmonic cases. In the case of time-harmonic analysis it is
possible to generate tangential surface currents via giving a boundary condition

Exn=Zs(Hxn)xn (18.62)
where Zg is referred to as the surface impedance and defined as

L
Zg =111 (18.63)
od

Here § denotes the skin depth
§=+2/(opw). (18.64)

18.5 A consistently regularized formulation for magnetostatics

The possibility to seek a unique vector potential solution to the magnetostatic equations is included here as
a special case via using the scalar variable to impose the divergence-free constraint on A in a weak manner.
This strategy employs the weak formulation

1

/;curlA-curlndQ—/qu-ndQZ/P(QU)'ndQ,

Q Q @ (18.65)
/(—A+kV¢)'quQ:0

Q

with ¢ € H'(Q)/Py(£) (the definition of the space H*(£2)/ Py (12) reflects the fact that ¢ can be determined
up to a freely chosen constant only) and k& being a regularization/stabilization parameter. The choice £ = 1
is seen to be natural. Then, if [IA = A — V¢ denotes the Helmholtz projection of A, the content of this
formulation can also be cast into the form

/lcurlA'curlnde/(AfHAy(ann)dQ:/P(gU)-ndQ,
w
o)

@ (18.66)

—/HA-quﬂzo.
Q

This formulation reflects how the scheme works; the second term in the left-hand side of the first equation in
(18.66) acts as a penalization term to get into the right set of divergence-free solutions. Thatis, A—IIA = 0
is enforced by having this term. It is noted that with & = 0 the method reduces to the standard Lagrange
multiplier formulation to impose the Coulomb gauge.

18.6 Keywords
Keywords for WhitneyAVSolver

Here we list the keywords that are relevant to solving the evolutionary and stationary versions of the equa-
tions by calling the solver subroutine WhitneyAVSolver and that may also be common to the other
solvers. Such common keywords relate to specifying material parameters, body forces, and boundary con-
ditions.

Constants

Permeability of Vacuum Real
This constant has the default value 47 - 10~7.

Material mat id

The following material parameters may be used by all the solvers in the module.
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Electric Conductivity Real
This keyword is used to specify the electric conductivity o. If the material is anisotropic, the
electric conductivity may also be defined to be a tensor function by giving its components with
respect to the global coordinate lines.

Relative Permeability Real
If this keyword is used, the permeability p can be specified in terms of the permeability of
vacuum. To obtain the permeability, the value of this keyword is then internally multiplied with
the permeability of vacuum. Instead of using this keyword, the keywords Permeability or
Reluctivity may be used.

Permeability Real
This keyword may be used to specify directly the permeability .

Reluctivity Real
The value of this keyword specifies the reluctivity v. The permeability is then taken to be 1 =
1/v. The reluctivity can also be taken to be an array-valued parameter in order to model magnetic
anisotropy.

Solver solver id

Equation String WhitneySolver
A describing name for the discrete model handled by this solver may be given by using this
keyword. The name can be changed as long as it is used consistently.

v

Procedure File "MagnetoDynamics'
This declaration specifies the name of the solver subroutine.

"WhitneyAVSolver"

Variable String AV
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be one.

Element
The default initialization routine should give a suitable element type definition automatically, so
that the value of this keyword need not necessarily be given by the user.

Use Piola Transform Logical

Several types of edge finite elements can be used for spatial discretization. This keyword must
be given the value True when the basis functions for the edge element interpolation are selected
to be members of the optimal edge element family or when second-order approximation is used.
The elements of the optimal family provide optimal accuracy even when the physical elements
are not obtained as affine images of the reference elements. The simpler basis functions which
are used otherwise may not provide such accuracy for non-affine element shapes. For the docu-
mentation of the edge element basis functions see the appendices of the ElmerSolver Manual.

Quadratic Approximation Logical
This keyword can be used to activate the approximation with the edge finite elements of second
degree; see also the keyword Use Piola Transform.

Static Conductivity Logical
If the stationary equations are solved such that both A and V are handled as unknowns, this
keyword can be given the value True so that the solver can create an automated value for the
Element keyword.

Fix Input Current Density Logical
To ensure the divergence-freeness of the source term via performing the projection (18.47), the
value True should be given for this keyword.

Automated Source Projection BCs Logical
If the projection (18.47) is applied to the user-specified source g;;, the solver has originally
constrained the field ) automatically such that () is chosen to satisfy the zero Dirichlet condition
on parts where |g;; - 2| # 0. This feature can be disabled by giving the value False for this
keyword in order to specify, for example, the homogeneous Dirichlet constraint for () (known as
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the field Jfix) on boundaries where the scalar potential V' or V'? is constrained by a Dirichlet
constraint.

Use Lagrange Gauge Logical
This keyword must be True in order to switch to the regularized formulation (18.65) which has
a unique vector potential solution.

Lagrange Gauge Penalization Coefficient Real
This keyword defines the stabilization parameter & in (18.65).

Use Tree Gauge Logical
Due to the chosen discretization, the vector potential is not sufficiently constrained to guarantee
the uniqueness. Despite this, the iterative solvers are expected to be able to generate a consistent
solution among many. However, to enable the solution with direct solvers this keyword is by
default given the value True so that a special technique is applied to additionally constrain the
discrete vector potential variable (in the case of iterative solvers the default value is False).
This option is not supported when Use Piola Transform = True is given.

Linear System Refactorize Logical
It is noted that if the refactorization of the system matrix is controlled with this keyword, the
matrix factorization is anyhow recomputed automatically if the time step size differs from the
previous one.

Linear System Preconditioning String
Here the value None may give better performance than the standard ILU preconditioners since
the null space of the system matrix may be non-trivial, leading to a singularity problem in con-
nection with handling the LU decomposition.

Linear System Iterative Method String
The iterative solvers BiCGStab or BiCGStab(L) may work well.

Body Force bf id

In the body force section the user may give various volumetric sources contained in the vector g as
defined in either (18.51) or (18.52). The velocity field related to a rigid motion may also be defined
for cases where this information is explicitly needed to write the equations.

Current Density i1 Real
This keyword is used to specify the components of the source g;.

Magnetization i Real
This keyword is used to specify the components of the magnetization M, with ¢ = 1,2, 3.

Electric Potential Real
This keyword specifies the source electric potential V'°.

Angular Velocity 1 Real
When the velocity is explicitly needed, this keyword may be given to define the components of
the angular velocity w. This is then used to obtain the representation for the velocity term in the
equation (18.35).

Lorentz Velocity i Real
This keyword may be used to define the velocity v(x,¢) when the steady state solution of the
evolutionary model is sought. Alternatively, if the velocity is specified by the formula (18.36)
and the angular velocity w is given, a constant value may be given in order to specify the uniform
part v(o, t) of the velocity.

Boundary Condition bc id

As explained, two versions of Dirichlet conditions are possible in connection with the A-V formu-
lation. The first option relates to giving the value of the scalar potential, while the other version is
used for prescribing the tangential components of the vector potential field. Assuming that the solver
variable is AV, we may thus use the following keywords to specify the Dirichlet conditions:
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AV Real
This keyword is used to specify the Dirichlet condition for the scalar potential V', which is
approximated by using the standard Lagrange interpolation.

av {e} j Real
This keyword is used to the give the vector a in (18.56) in order to prescribe the degrees of
freedom corresponding to the edge element interpolation of the vector potential. The value
of this keyword defines the component a;, j € {1,2,3}, with respect to the global Cartesian
coordinate system.

Jfix Real
This keyword is used to specify the Dirichlet condition for the scalar potential field (7, which is
defined via (18.47).

The following keywords may be used in order to handle the flux-related boundary conditions:

Magnetic Field Strength i Real
This keyword can be used to define the components h; of the vector h so that the boundary
conditions (18.57) and (18.59) may be imposed. It should be noted that on an interface between a
permanent magnet with a given magnetization M ] and a material without magnetization (M5 =
0) the boundary condition m x (v1B; — 19 Bs) = m x M3 is imposed by default, with m
being the normal vector associated with the common interface.

Electric Current Density Real
This keyword can be used to define the electric current density j, in the boundary conditions
(18.58) and (18.60).

Current Density Real
If the Helmholtz projection of the source is applied, this keyword may be used to specify the
left-hand side in (18.50) as g;; - m = —ji, with jy, the value of this keyword.

Magnetic Transfer Coefficient Real
The value of this keyword gives the parameter « in the boundary condition (18.59).

Electric Transfer Coefficient Real
The value of this keyword gives the parameter 3 in the boundary condition (18.60).

Finally, the following keywords relate to a procedural technique to determine a tangential constraint
for the vector potential A when the normal component of the magnetic flux density B is specified on
the boundary.

Magnetic Flux Density i Real
This keyword is used to specify the components of the magnetic flux density B with respect to
the global Cartesian coordinate axes.

Magnetic Flux Density {n} Real
This keyword may be used to specify directly the normal component B,, of the magnetic flux
density.

Keywords for WhitneyAVHarmonicSolver

In the following the additional keywords related to solving the harmonic version are listed. Typically these
are used for giving optional values which specify the imaginary parts of the parameter values. The corre-
sponding real parts are then given by using the keyword commands already described above.

Solver solver id

Equation String WhitneyHarmonicSolver
This gives a describing name for the discrete model handled here. The name can be changed as
long as it is used consistently.

CSC —IT Center for Science [@)BY-nD |



18. Computation of Magnetic Fields in 3D 128

Procedure File "MagnetoDynamics" "WhitneyAVHarmonicSolver"
The name of the solver subroutine is declared.

Variable String P[Pot re:1 Pot im:1]
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom is always two. Here the real and imaginary parts
are named so that they are easily recognized.

Angular Frequency Real
The angular frequency w = 27 f in the harmonic ansatz is specified.

Material mat id

Reluctivity Im Real
The reluctivity v = 1/u may be specified to be a complex-valued quantity with the imaginary
part given by using this keyword. An array value may also be given in order to model magnetic
anisotropy.

Electric Conductivity Im Real
The value of this keyword may be used to specify the imaginary part of the conductivity param-
eter. If the material is anisotropic, the electric conductivity may also be defined to be a tensor
function by giving its components with respect to the global coordinate lines.
Body Force bf id

The following keywords are used to specify the imaginary parts of the volume sources:

Current Density Im i Real

Magnetization Im i Real

Boundary Condition bc id

The following keywords relate to specifying imaginary parts in conjunction with defining boundary
conditions:

Magnetic Field Strength Im i Real
Electric Current Density Im Real
Magnetic Transfer Coefficient Im Real
Electric Transfer Coefficient Im Real
Magnetic Flux Density Im 1 Real

Magnetic Flux Density Im {n} Real

To give the boundary condition (18.62) the following keywords may be used:

Layer Electric Conductivity Real
This keyword defines the electric conductivity of the surface material.

Layer Relative Permeability Real
The permeability p of the surface conductor is specified in terms of the value of this keyword
and the permeability of vacuum.

Keywords for MagnetoDynamicsCalcFields

An additional solver may finally be called to compute derived fields.

Solver solver id
The fields to be computed are chosen in the solver section. The field Magnetic Flux Density
is computed always, others if requested. The size of a vector field is 3, while a tensor field has the size
6. For the harmonic solution the sizes are doubled as the imaginary components are also present.
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Equation String CalcFields
A describing name for the solver is given. This can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics" "MagnetoDynamicsCalcFields"
The name of the solver subroutine is given.

Potential Variable String
This keyword is used to specify the name of the underlying potential variable, for example AV.
For edge elements the Use Piola Transformand Quadratic Approximation flags
are inherited from the solver owning this variable.

Angular Frequency Real
The angular frequency must be declared in this connection also as this is needed by some post-
processed fields.

Calculate Magnetic Field Strength Logical
If True is given, a vector field Magnetic Field Strength is computed.

Calculate Electric Field Logical
If True is given, a vector field Electric Field is computed.

Calculate Current Density Logical
If True is given, a vector field Current Density is computed.

Impose Body Force Current Logical
If True is given, the body force current density given by the keyword Current Density i1
is added to above.

Calculate Nodal Forces Logical
This keyword can be used to activate the computation of nodal forces to enable further mechan-
ical analysis. The nodal forces are calculated by computing an opposite parameter derivative of
the magnetic energy, with the placement of the body being described in terms of a one-parameter
family of deformations x(x, €) = x + e\u. Here w is a unit vector along the global coordinate
axis and )\ is the Lagrange basis function associated with a mesh node xj. The components of
the nodal forces are then obtained as

B
fr-u=— [ H-(B-V\)udQ+ [[H -B— [ H-dB]div(\yu)dQ.
/ [re]

Calculate Maxwell Stress Logical
If True is given, a tensor field Maxwell Stress is computed. This computation assumes
that the reluctivity (and the permeability) is a real-valued parameter.

Calculate Harmonic Loss Logical
If True is given, scalar fields Harmonic Loss Linear andHarmonic Loss Quadratic
are computed. See Chapter 26 for more details.

Calculate Joule Heating Logical
If True is given, a scalar field Joule Heating is computed.

Calculate Nodal Heating Logical
If True is given, a scalar field Nodal Joule Heating is computed. In SI system the re-
sulting unit is Watt. The nodal heating is easy to directly link as a nodal heat source to the heat
equation assuming conforming meshes for the both equations.

Calculate Nodal Fields Logical
If this is set False, do not compute nodal fields at all. The default is True.

Calculate Elemental Fields Logical
If this is set False, do not compute elemental fields at all. The default is True. Elemental
fields are nice in that they can present discontinuities in meshes.

If the harmonic loss will be computed, then the following material parameters should be provided. Note
that these are not parameters needed by the primary solver since the loss estimation is just a post-processing
feature. See Chapter 26 for more details.
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Material material id

Harmonic Loss Linear Coefficient Real
This keyword is used to define the material parameter C' in (26.6) for the losses that are linear
with frequency. Note that the coefficient may be a function of frequency itself.

Harmonic Loss Quadratic Coefficient Real
As the previous keyword except define the material parameter C' for the quadratic loss terms.

Component component id

Calculate Magnetic Force Logical
The lumped magnetic force affecting the master bodies of the current component will be calcu-
lated if this is set true. If elemental fields are available, then airgap forces are also lumped.

Calculate Magnetic Torque Logical
The total torque associated with the master bodies of the current component will be calculated
if this is set true. If elemental fields are available, then also torque arising from airgap forces is
included.

Master Bodies Integer
This defines the integer identifiers of bodies which constitute a component.

Master Boundaries Integer

The identifiers of boundary condition sections may also be used to constitute a component.
Torque Origin(3) Real

This keyword is used to define a point in space which torque axis meets.

Torque Axis(3) Real
This keyword is used to define the axis with respect to which torque is calculated.

In addition to the field computation, two scalar quantities are always computed by the solver and saved in
the list of the Simulat ion section values: Eddy current power andMagnetic Field Energy.
The first one is only relevant for time-dependent and harmonic cases.
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Circuits and Dynamics Solver

Module name: CircuitsAndDynamics

Module subroutines: CircuitsAndDynamics, CircuitsAndDynamicsHarmonic, CircuitsOutput
Module authors: Eelis Takala, Juha Ruokolainen

Document authors: Eelis Takala

19.1 Introduction

It may become necessary to connect a magnetoquasistatic model to circuit equations when modelling elec-
trical devices that are circuit-driven. Even if such model could in theory be handled without introducing
circuits, it can considerably simplify the model setup. In Elmer the circuit equations are added into the
system matrix of a magnetodynamics solver and thus they are solved in a strongly coupled manner together
with the finite element equations. One should note that adding the circuit equations may hinder the parallel
performance of the solver. In case this is a critical concern to the user, one should pay attention to tuning
the model [9] (for example by using the so-called reduced support that can bring great benefits [8]). Here
the module for adding the circuit equations to the system matrix of the magnetoquasistatic solvers is pre-
sented. Note that this solver may (and needs to) be used together with the modules MagnetoDynamics
or MagnetoDynamics2D.

When the CircuitsAndDynamics module is used in a published academic work, please refer to [9]. When
reduced support is used in order to achieve better parallel scalability, one may refer to [8].

19.2 Theory

In Elmer the magnetodynamic problems are currently solved by using the so-called a-v formulation. This
can be done in 2D or 3D and with all simulation types (i.e., steady, harmonic, or transient). The a-v
formulation [7, p. 124] may be presented as follows: find @ € W} and v € WY such that

(vV xa,V xa')g+ (00a,a)g, + (0Vv,a')a, — (o, a')o + (n x h,a')r, =0Va' € W}, (19.1)

and
(08va, Vv )g, + (0Vv, Vv ), + (n-j,v')r, =0V € W, (19.2)

where v = p~ is the reluctivity, a is the magnetic vector potential, v is the electric scalar potential, j, is
the source current density, 7 is the normal vector to the boundary T'y,, and a’ and v’ are test functions. The
domain 2 is the considered body, 2. C € consists of a conductive material, and I'y, and T, are boundaries
where the magnetic field and the current density field are imposed, respectively. The edge finite element
discretization [7, p. 93] generates approximations of the magnetic vector potential a and electric scalar po-
tential v functions in discrete versions of W} and W{. This formulation thus requires a system matrix with
two types of unknowns for expressing the magnetic vector potential and the electric potential. For more infor-
mation about the formulation in Elmer see the modules MagnetoDynamics or MagnetoDynamics2D.

1
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19.2.1 Component and Circuit network equations

The circuit equations are described as a general equation
Ax+Bx=f (19.3)

where x is the circuit variable vector, A and B are the coefficient matrices and f is the force vector. In Elmer
this equation can be described in the solver input file (SIF) in MATC language.

Circuit equations can be divided into two categories: 1) the component equations that determine the
behaviour of a component, and 2) the circuit network equations that determine the relationship between the
components (the Kirchhoff I and II laws).

The component equations are further divided into two subcategories: 1) the circuit element equations
that can be used to define ideal components (for example Ohm’s law), and 2) FE component equations that
are coupled to the finite element equations (related to the finite elements which belong to the corresponding
components). During the development of the CircuitsAndDynamics module a new section of keywords,
called "Component”, was added. Within this section the user may control the component equation by spec-
ifying which bodies belong to the component and what formulation should be used with it, together with
specific component formulation input data (for example the number of turns).

The circuit network equations are further divided into two categories as well: 1) the Kirchhoff I law
that is the current conservation law (every node in the network graph must conserve the current), and 2) the
Kirchhoff II law that is the conservation of energy (the potential difference over every loop in the network
graph must be zero).

In Elmer the circuit equations are technically divided into two categories: 1) the automatically written
equations, and 2) the manually written equations. This is due to the fact that it is convenient to write the
FE component equations automatically once the formulation and its specific data are known while the rest
of the equations can be manually written without any difficulties. Note that the ideal components could be
automated as well (for example a resistor model); however such components do not exist at the moment and
the user needs to write those equations manually.

In the following sections three supported component formulations (massive, stranded, and foil winding)
are presented. The type of the formulation can be chosen in SIF via ”Coil Type” keyword in the “Component”
section.

19.2.2 Massive coil

In some cases where the winding consists of only few turns the so-called massive inductor model [2] may
be used. Then the a-v formulation takes the following form: for all massive inductor indices jy, (multiple
instances may exist in one computation)

(vV x a,V x a')q + (00:a,a’)q_, + Z Vi (oVvg,a')q, =0 (19.4)

iEij

and _ ' _
(c0a,Vs')q, + V;.(6Vvy, Vs)a, =1, (19.5)

where €, is the massive inductor domain, I';  lists nodes on the electrode boundaries, Vj  is the voltage
and I;  is the total current through the electrodes.

The source electric potential v can be precomputed with an electrokinetic formulation (the Poisson
equation) by setting it 1 at the positive electrode boundary and O at the negative boundary. If the electroki-
netic solver is not executed, then the reduced support is used.

19.2.3 Stranded coil

In the case of a coil with a small diameter wire that is densely packed, a stranded model could be used. The
main line of models takes the form [3]: for all stranded inductor index numbers jg

WV xa,Vxa)g+I(js,;,a)as =0 (19.6)

s
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and
(0ha,5, ;. )as + 1. (0 7 Gy i dsi)0s = Vi, (19.7)

where I;_ is the total current in the coil and V}, is the voltage in the coil. This is the preferred method for
defining the component equation for the so-called classical stranded inductor model [7, p. 286], but the
resistance of the coil can also be given explicitly [6, 5]. The classical model yields

/ Oa - wdSds + RI;, =V, (19.8)
Qs
where w is the wire density vector and R is the resistance of the coil.

19.2.4 Foil winding model

In the case of a foil winding with a small layer thickness that is densely packed, a foil winding model could
be used. It takes the following form [4, 1]: for all foil winding index numbers j¢

(vV x a,V x a')q + (60:a,a)q, + Z (Vi () Vi, a o, = 0 (19.9)
ier,
and N
(00ra, V'(a)Vs)q, + (0Vj, (@) Vi, V' (a)VV')q, = lef ij/ V(@) de, (19.10)
Jt Q

a,jf

where € is the foil winding domain, I';; lists the nodes on the electrode boundaries, Vj, is the voltage and
I;, is the total current through the electrodes.

19.3 Keywords

The circuits and dynamics solver adds the circuit equations to the system matrix of the WhitneySolver or the
MagnetoDynamics2D solver. Keywords are needed to both of these solvers.

19.3.1 CircuitsAndDynamics solver

Solver solver id

Equation String Circuits

Procedure File "CircuitsAndDynamics" "CircuitsAndDynamics"
The procedure which includes the addition of circuit equations to the linear system of Magneto-
Dynamics and MagnetoDynamics2D solvers.

No Matrix Logical True
This solver does not have it’s own matrix. It only operates on the matrices of the magnetody-
namics solvers.

Component component id

Master Bodies Integer body ids
Body ids of the bodies which constitute a circuit component.

Coil Type String type
If the circuit component is defined as a coil, it can be treated as a ’stranded”, “massive” or ~foil
winding”.

Resistance Real resistance
If the coil type is defined as stranded, then the resistance of the coil can explicitly be defined with
this keyword. In case this keyword is not given the resistance is computed by using the electric
conductivity of the associated body materials.
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Electrode Area Real area
If the coil type is stranded and resistance is not explicitly given, then this keyword may be
given to specify the area of the coil terminal. This is then used to compute the Resistance
parameter of the coil. Note that if neither Resistance nor Electrode Area are given,
then the area of the terminal is automatically computed. However, at the moment this feature is
not yet working in 3D.

Body Force 1

Source Name Real value
The circuit definitions may be used to give a freely chosen name to a source associated with a
circuit component. For example, if the name "Source Name" is used, this command can then
be used to specify the source (function).

19.3.2 CircuitsAndDynamics output

This solver saves the results of all the variables that belong to the CircuitsAndDynamics solver, namely the
currents and voltages of components (also those variables that are defined by the user). These can then be
saved into a text file by using the SaveData solver.

Simulation

Max Output Level Integer Level
This determines what is shown on the standard output. Level 3 shows some information about
what is happening during the execution, Level 8 shows component variable results and Level 10
shows all the Circuit Variable results. All these variables are stored even if they are not shown in
the standard output. The stored variables can be saved with the SaveData routine.

Solver solver id

Equation String Circuits Output

Procedure File "CircuitsAndDynamics" "CircuitsOutput"
The procedure which outputs the results of the added circuits (currents, voltages, resistances,
etc.).

19.3.3 Additional Keywords to the MagnetoDynamics or MagnetoDynamics2D solver
Solver solver id

Equation String WhitneySolver

Procedure File "MagnetoDynamics" "WhitneyAVSolver"
This is the WhitneySolver to whose system matrix the circuit equations are added. This proce-
dure could be MagnetoDynamics2D as well.

Export Lagrange Multiplier Logical True
The magnetodynamics solvers need this when circuit equations are added.

19.3.4 Circuit Definitions

The circuit definitions are written in MATC.

S nof _circuits = 1
S nof_variables = 6
$ Circuits = nof_circuits

$ o l=—— Circuit 1 —--—-
$ ! Define variable count and initialize circuit matrices
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.variables = nof_variables

.A = zeros(nof_variables, nof_variables)
.B = zeros(nof_variables, nof_variables)
.Mre = zeros(nof_variables, nof_variables)
.Mim = zeros (nof_variables, nof_variables)
.perm = zeros (nof_variables)

IR IR IR IR RS
QOO0
el el e e

U

Define variables
$ C.l.name.l = "varl"
.l.name.2 = "var2"

O
Q

Define component variables
.l.name.3 = "i_component (1)"
.l.name.4 = "v_component (1)"
.l.name.5 = "i_component (2)"
.l.name.6 = "v_component (2)"
The number in the parenthesis refers to
the component id that is defined in sif.

= = W W
QO -

$ ! Define Sources:
$ C.1.B(0,0) =1
$ C.l.source.l = "Source Name"
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Vectorial Helmholtz for Electromagnetic
Waves

Module name: VectorHelmholtz

Module subroutines: VectorHelmholtzSolver, VectorHelmholtzCalcFields
Module authors: Juhani Kataja, Juha Ruokolainen and Mika Malinen
Document authors: Juhani Kataja, Roman Szewczyk and Mika Malinen

20.1 Introduction

This module is aimed to solve the time-harmonic Maxwell equations in high-frequency regime so that the
curl-curl equation is valid. As an alternate method the electric field may be decomposed by using the A-V
representation. Then Gauss’s law serves as an additional equation to determine V. In addition to taking into
account all Maxwell’s equations in the derivation, this version offers more flexibility in prescribing boundary
conditions.

20.2 Theory

The time-harmonic Maxwell equations (in the case of a time factor e =™, w = 27 f) give
pleurl E =iwH, (20.1)
curl H = —iweE + J, (20.2)

where complex scalars © = pop, and € = €ge, are the permeability and permittivity parameters of the
model, while E, H and J are electric field, magnetic field strength and impressed current distribution,
respectively. The quantities 1, €g are the permeability and permittivity of vacuum, and p, and €, are the
relative permeability and permittivity.

The elimination of H from the equations (20.1) and (20.2) gives

curly ! curl E — w*cFE = iwJ (20.3)
over a computational domain €2. The Dirichlet and Robin boundary conditions for (20.3) are

Exn=fxn onlg, (20.4)

nxcurlE—anx(nx E)=nxgxn only, (20.5)

where the subsets ' and Iz cover the boundary 0X of €, i.e., 9Q = I'g U I'z. Note that the Neumann
boundary condition is achieved by setting o = 0.
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The variational form of (20.3) is as follows:

Find E € Hy g(curl, Q) such that

/(u_1 curl E - curlv* — w*cE - v*)dQ — a/ pH(E xn)- (v xn)dS
Q Iz

= —/ p (g xn)- (v x n)dS —l—/ iwd -v*dQ) Vv € Hy g(curl, Q). (20.6)
ry Q

Here v* is the complex conjugate of v.

20.2.1 Boundary condition models

Leontovich impedance boundary. The Robin boundary condition (20.5) can be utilized to approximate
a boundary effect of well conducting medium by choosing

a=iwnZ," and g=0, (20.7)

where Z, is the surface impedance. For example Z,, can be given as

Zp=(1- i)w/g;w, (20.8)

where o, and . are the bulk conductivity and permeability of the wall [1].

First-order absorbing boundary condition. Now let the computational domain 2 be Br \ D, where
Bpr C R3 is an open ball of radius R and D C Bpg. Furthermore, suppose that 'z U I' covers only 9D,
while the first-order absorbing boundary condition on 0Bp, is given by [2]

n X curl E = iw /eopon X (n x E). (20.9)

This can be recovered with a Robin boundary on 9 Bg, with
a =1iwy/eoup and g =0. (20.10)
Port feed. Suppose a guided wave E,, propagates with a propagation constant 5. Furthermore, suppose

that E,, is the only propagating mode at the chosen frequency. The port feed model can be implemented
with the Robin boundary condition by choosing

a=iB and g=2iBE,. (20.11)

Surface potential. The differential of a scalar potential ¢ defined on a boundary can be used to generate

g as
g = (Oud)a” (20.12)

where a® give the dual basis of coordinate basis vectors a,, on the surface, so that

/ 1Y (g x 1) - (v x n)dS = / 1 (Bud)a® x 1) - (v* x n)dS.
Iz

I'z

20.3 Formulations involving an additional scalar variable

The entire set of the time-harmonic Maxwell equations is given by

curl(y 'B) = —iweE + J, (20.13)
div(eE) = p, (20.14)
curl ¥ = iwB, (20.15)
divB =0, (20.16)
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where B = pH and p is the charge density. From a mathematical point of view, the equations (20.15) and
(20.16) may be considered constraints which restrict the possible forms of the fields E and B. If we choose
to write

1
B = —curlA, (20.17)
w
we get the decomposition
E=A-VV (20.18)

in order to satisfy the constraints (20.15) and (20.16). We note that the variables of the standard A-V
formulation can be obtained from the given decomposition (20.18) by redefining A := 1/(iw)A.
The elimination of B from (20.13) again gives (20.3), so we may now insert (20.18) into (20.3) to obtain

curl p teurl A — w?e A 4+ W eVV = iwJ. (20.19)
In addition, Gauss’s law (20.14) serves as a way to determine V/, giving
div(eA —eVV) = p. (20.20)
It is noted that (20.19) and (20.20) imply a version of the law of conservation of charge
w?p +iwdivJ = 0. (20.21)

In practice, we may usually take p = 0. Hence the impressed current should be divergence-free.

Now a major difference as compared with the simple formulation in terms of E is that incorporating
Gauss’s law enables us to give boundary conditions in the normal direction of the boundary. This additional
boundary condition involves the surface charge density ¢ on the boundary. The basic constraint, which can
be deduced from Gauss’s law by applying divergence theorem, says that the jump of the displacement current
D = ¢ F gives the surface charge density at the interface, i.e.,

[D]-n =gq, (20.22)

where [D] = —D + D, gives the difference of its argument field at an interface, with Dy assumed to be
the field outside the body considered, and with n the outward normal. Similarly, we may apply divergence
theorem by starting from (20.13) to obtain the interface condition

[J]-n =iw[D] - n = iwgq, (20.23)

where the second equality follows from (20.22). If we finally assume that

(20.24)

we can express a boundary condition for Gauss’s law in terms of the source voltage Vj and the impedance
Z of the voltage source as
V-V

D] .
[ ]n inO

(20.25)

We note that in the limit as Z; — 0 the Dirichlet condition V' = V} is enforced, whereas [D] - n = 0 is
obtained in the limit as Zy — oo.
The variational form can be put into the following form:

Find A € Hy 4(curl,Q) and V € H, , such that
/[/fl curl A - curlv* — w?e(A — VV) - v*]dQ — iw/ (K xn)- (v xn)dS
Q Tz

= / twd - v*dQ — iw Hj - (v" xn)dS Vv e Hy a(curl,Q), (20.26)
Q 'z

/ we(A - VV) - Vw*dQ + / w?[D] - nw*dS
Q

Ly

:/ w2D0~nw*dS—/w2pw*dQ Yw € H&D.
r Q

q
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20. Vectorial Helmholtz for Electromagnetic Waves 139

Here K is the surface current which is related to the jump of the tangential trace of H as
K=nx[H]=nx(—H+ H,). (20.27)

If the surface impedance Z), is specified (cf. (20.7)), we may use the relations

1 1
Kxn=—Exn+Hy=—(A-VV)xn+H, (20.28)
ZP Zp

in order to replace the boundary terms in the first equality of (20.26) by the expression given in terms of A
and V. A generalized version analogous to (20.5) can also be written as

—iwK xn = fapflE xn —iwH, +,uflg X M. (20.29)

An additional condition to express the law of conservation of surface charge on the boundary I"'; where
the surface current is specified can be derived from (20.26). To this end, let w € H(}. p be a test function
associated with the boundary I';;. In addition, the variational form (20.26) allows us to choose v = Vb
provided that A is not constrained to vanish on I'z, so that by taking a linear combination of the two
variational equations in (20.26), by enforcing the law of conservation of charge (20.21), and by assuming
that the surface charge density on I"; is defined by (20.25), we obtain

—iw/(K x n) - (Vi* x n)dS — iw/(v - Vo)w*dS
0
Fz 'z (20.30)
- /w(J n)i*dS — iw/Ho (Vi x n)dS.
FZ 1—‘Z

The equation (20.30) is a direct corollary of (20.26) and in principle expresses only information that is
already present in (20.26). In practice an additional assembly of the equation (20.30) has nevertheless been
seen to be beneficial for the iterative solution of discrete equations.
One way to give the surface impedance Z,, is to specify the parameter « as in (20.7). Another option is
to set
K xn=0.,6(E xn) (20.31)

by giving the complex-valued conductivity parameter o, and the layer thickness §. We note that the vari-
ational form (20.26) does not give a direct way to specify the tangential trace of E. Suitable simultaneous
Dirichlet conditions for both A x 1 and V' may be used to enforce this constraint, but we note that Z, — 0
enforces E x n = 0 as the limit condition, whereas Z, — oo leads to the limit condition n x [H| = 0.
On the other hand, the constraint A x n = 0 gives a way to set B - n = 0 on a boundary. Then we have
E x n = —VV x n, which is the expected condition for TEM waves. To fully describe the case of TEM
waves, the homogeneous Neumann boundary condition for Gauss’s law is also needed.

It should be noted that the equations (20.19) and (20.20) without an additional constraint for the part A
do not make the decomposition (20.18) unique. Therefore only E then has a unique interpretation.

20.4 Keywords

Constants
The keywords of this section are used to change the values of natural constants.

Permittivity of Vacuum Real
The permittivity of vacuum €, defaulting to 8.854187817 - 10712 2.

Permeability of Vacuum Real

The permeability of vacuum i, defaulting to 47 - 1077 V=

Am-
Material material id
The material parameters ¢, and p,. ! are defined in this section.
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Relative Permittivity Real
The real part of relative permittivity &,..

Relative Permittivity im Real
The imaginary part of relative permittivity &;..

Relative Reluctivity Real
The real part of z; 1.

Relative Reluctivity im Real
The imaginary part of z, 1.

Electric Conductivity Real
If the electric conductivity o is given, then J is replaced by J = o E + Jy where the part J is
now the impressed current density.

Electric Conductivity Im Real
The imaginary part of .

Keywords for VectorHelmholtzSolver

Solver solver id
The solver section defines control variables for the equation solver. Most of the possible keywords
— related to linear algebra (starting with Linear System), for example — are common for all the
solvers and are explained elsewhere.

Equation String
A string identifying the solver. This can be changed but it must be given; for example
VectorHelmholtzSolver

Procedure File "VectorHelmholtz" "VectorHelmholtzSolver"
The name of the solver subroutine.

Variable String
The identifier for the field variable to be solved. Real and imaginary parts must be provided,
cf. the default value E[E re:1 E im:1] orAV[AV re:1 AV im:1] (when Gauss’s law
(20.20) is also employed).

Angular Frequency Real
The angular frequency w.

Use Piola Transform Logical
Utilize modern Piola transformed edge finite elements. This increases the number of DOFs on
meshes containing quadrilateral element faces. If the mesh contains elements that are not affine
images of the reference element, then this option should be enabled to maintain accuracy.

Quadratic Approximation TLogical
This keyword is needed when the simulation is done with the edge finite elements of second
degree.

Use Gauss Law Logical
This keyword can be used to activate the use of the A-V representation, so that Gauss’s law
(20.20) is also employed.

Linear System Preconditioning Damp Coefficient Real
If present, the preconditioner is constructed from a damped system matrix A + (S — M + B),
where A is the original total system matrix, S is the stiffness matrix containing the curl terms,
M is the scaled mass matrix corresponding to the discretization of the operator —w?cI, B is the
matrix arising from boundary integrals and « is the damping coefficient.

Linear System Preconditioning Damp Coefficient im Real
The imaginary part of the damping coefficient .
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Mass-proportional Damping Logical
If this option is activated, the preconditioner is constructed from a damped system matrix A —
kM, where A and M are as above.

Lossless cavity models usually benefit from shifted preconditioning with x # 0. Utilizing BiCGStab({)
with the ILU(0) or Vanka preconditioner and choosing damping coefficient k = ¢ is likely to result in
a convergent iteration. It is noted that if the mass-proportional perturbation is used, giving Kk = —|n|i
creates the same perturbation which would result from introducing the electric conductivity o = |n|we.

Body Force bf id
The impressed current J is specified in the Body Force section.

Current Density ¢ Real
The i:th component of the real part of the current density J.

Current Density im ¢ Real
The 7:th component of the imaginary part of the current density J.

Boundary Condition bc id

E re {e} i Real
The real part of the component data f; to evaluate DOFs corresponding to the edge basis func-
tions.

E im {e} i Real
The imaginary part of the component data f; to evaluate DOFs corresponding to the edge basis
functions.

Electric Robin Coefficient Real
Real part of .

Electric Robin Coefficient im Real
Imaginary part of a.

Absorbing BC Logical
This can be used to set « as defined in (20.10).

Magnetic Boundary Load ¢ Real
The ¢:th component of the real part of g. If a = 0, then this can be used to set the surface current
via

iwn x [H] = —p 'n x g xn, (20.32)

so that a given surface current K is set by defining g = —iwpk.

Magnetic Boundary Load ¢ im Real
The :th component of the imaginary part of g.

TEM Potential Real
This can be used to define the real part of the scalar potential ¢ to calculate g.

TEM Potential im Real
This can be used to define the imaginary part of the scalar potential ¢ to calculate g.

Electric Current Density Real
This can be used to give the normal component of the current density so that a boundary condition
for the Gauss law can be set by using (20.23). The sign convention is chosen such that if we take
D¢ = 0 as the outside field, we have

—iw[D]-n = j,

where j,, is specified by this keyword. If the keyword Layer Thickness is given in the same
boundary condition section, this constraint can also be given over a one-dimensional line of a
three-dimensional model to produce current density per unit length.
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Electric Current Density Im Real
The imaginary part of the normal component of the current density.

Electric Transfer Coefficient Real
This parameter can be given to create a boundary condition of the form

— iw[D] - n+ iwDy -1 =—B,V + jn, (20.33)

where (3, is specified by this keyword. The keyword Electric Current Density may
be used to create j,,. In particular, the condition (20.25) can be specified by setting 5, = 1/Z
and j, = Vo /Zy + iwDy - . In addition, if the keyword Layer Thickness is given in the
same boundary condition section, this constraint can also be given over a one-dimensional line
of a three-dimensional model.

Electric Transfer Coefficient Im Real
The imaginary part of 3.

Layer Electric Conductivity Real
This defines the real part of o, in (20.31).

Layer Electric Conductivity Im Real
The imaginary part of op,.

Layer Thickness Real
This defines the value of § in (20.31).

Good Conductor BC Logical
This can be used to automate the computation of « so that (20.8) is obtained. In this case the key-
word Layer Electric Conductivity canbe used to give o., while the keyword Layer
Relative Reluctivity should be specified to define (1) ! so that pe = po/(pir,c) 1.

Layer Relative Reluctivity Real
The reluctivity of the material bounding the body.

Layer Relative Reluctivity Im Real
The imaginary part of reluctivity related to the material bounding the body.

Apply Conservation of Charge Logical
This can be used to activate the assembly of the supplementary terms in (20.30). The current
implementation handles only the first term of the left-hand side of (20.30), i.e., the other terms
are assumed to vanish.

Keywords for VectorHelmholtzCalcFields

Solver solver id
Unique id for the post-processing solver.

Equation String
A string identifying the solver.

Procedure File "VectorHelmholtz" "VectorHelmholtzCalcFields"
The name of the postprocessing subroutine.

Angular Frequency Real
The angular frequency w.

Calculate Elemental Fields Logical
Calculate elementwise constant approximations of the fields. Useful for discontinuous material
parameters.

Calculate Magnetic Flux Density Logical
Output the magnetic flux density B = —i/w curl E.

Calculate Magnetic Field Strength Logical
Output the magnetic field strength H = ;= B.
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Calculate Electric field Logical
Output the electric field E.

Calculate Poynting Vector Logical
Output the Poynting vector + E x H*.

Calculate Div of Poynting Vector Logical
Output the divergence of Poynting vector

1 1 1

and also generate the result variable Joule Heating corresponding to the term 1/2E - J*
above.

Calculate Energy Functional Logical
Evaluate the left-hand side of (20.6) by using the discrete solution.
Bibliography
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Model 21

Electromagnetic Waves

Module name: EMWaveSolver

Module subroutines: EMWaveSolver, EMWaveCalcFields

Module authors: Juhani Kataja, Peter Rgback, Juha Ruokolainen and Mika Malinen
Document authors: Mika Malinen

21.1 Introduction

The module described here is aimed at solving the time-dependent electromagnetic wave equation derived
from Maxwell’s equations. Here the unknown field is approximated by using vector-valued (edge) finite
elements.

21.2 Theory

By assuming time-independent material parameters, the electromagnetic wave equation may be written as

O’E OF oJ g
lp™! 1E +e—— —_— =
curly - cur +e€ o2 +o Bn ot
where p1 = pop, and € = gpe, are the permeability and permittivity, E is the electric field and J g is an
impressed current density. The quantities po and €y are the permeability and permittivity of vacuum, and p,.
and ¢, are the relative permeability and relative permittivity; respectively.

The Dirichlet and Robin-like boundary conditions for (21.1) are

21.1)

Exn=fxn onlg, (21.2)
OF
n X curl E + an x (n x E):g onl'y, (21.3)

where I'p and I'z give a partitioning of the boundary 0X2 of the computational domain €2 such that 92 =
I'g UT'z. Note that the Neumann boundary condition is achieved by setting o = 0. An absorbing boundary
condition can be created by choosing

o = +/eolo- (21.4)

To obtain the variational formulation of (21.1) integration by parts is carried out. After using (21.3) we
then come to the weak form

O*E 0E OF
71 . . —_— 71 —_— .
/Q(p curl B curlv—i—eat2 v—i—aat v)dQ—l—a/FZy (615 xn) - (v xn)dS

:—/ ;flg~vde/J'E~de (21.5)
FZ Q

which can be used to obtain the fully discrete equations.
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21.3 Keywords

Constants
The keywords of this section are used to change the values of natural constants.

Permittivity of Vacuum Real
The permittivity of vacuum ey, defaulting to 8.854187817 - 10~12 (V%).

Permeability of Vacuum Real
The permeability of vacuum i, defaulting to 47 - 107 (ﬁ).

Material material id
The material parameters ¢, 1, and ¢ are defined in this section.

Relative Permittivity Real
This defines the value of the relative permittivity ¢,..

Relative Permeability Real
This defines the value of .

Electric Conductivity Real
This defines the value of o.

Keywords for EMWaveSolver

Solver solver id

Equation String
This gives a name for referring to this solver definition.
Procedure File "EMWaveSolver" "EMWaveSolver"
This is used to identify the solver subroutine.

Variable String
The name for the field variable to be solved. If this is not given, the solver defaults this to E.

Use Piola Transform Logical
Utilize modern Piola-transformed edge finite elements. This increases the number of DOFs on
meshes containing hexahedral and pyramidal elements. If the mesh contains elements that are
not affine images of the reference element, then this option should be enabled.

Quadratic Approximation TLogical
This keyword can be used to switch to using vector-valued finite elements of second order.

Body Force bf id
The time derivative of the impressed current density J g can be specified in the Body Force section.

Current Density Rate ¢ Real
The 7:th component of the time derivative field J g.

Boundary Condition bc id

E {e} 1 Real
In the case of the default variable name this command defines a vector so that its tangential trace
f x n is approximated by E, x n, with E}, the finite element interpolating function. The
value of this keyword defines the components of the vector with respect to the global Cartesian
coordinate system.

Electric Damping Coefficient Real
This specifies the value of the parameter a.

Magnetic Boundary Load i Real
The value of this keyword specifies the ¢:th component of g.
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Keywords for EMWaveCalcFields

A separate solver section can be written so as to create a postprocessed field E1field which corresponds
to the computed solution and which can be used for visualization.

Solver solver id

Equation String
This gives a name for referring to this solver definition.

Procedure File "EMWaveSolver" "EMWaveCalcFields"
This is used to identify the name of the postprocessing subroutine.

Calculate Elemental Fields Logical
Calculate an elementwise fit for the primary solution. This is useful especially in cases where
material parameters have discontinuities.
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Computation of Magnetic Fields in 2D

Module name: MagnetoDynamics2D

Module subroutines: MagnetoDynamics2D, MagnetoDynamics2DHarmonic, BSolver
Module authors: Juha Ruokolainen, Eelis Takala, Mika Malinen, Peter Rdback
Document authors: Peter Raback, Mika Malinen

22.1 Introduction

This module may be used to solve a version of the Maxwell equations in 2D special cases (including axially
symmetric problems) when the unknown is the z-component (or ¢-component) of the vector potential. In
contrast to the 3D version of the magnetodynamics solver described earlier, the standard Lagrange interpola-
tion is here applied. In addition to performing the computations in the time domain, the analogous version of
the equations may also be solved in the frequency domain. Furthermore, an additional solver may be called
to produce derived fields (for example the magnetic flux density) from the computed vector potential. Also
Joule losses may be computed for harmonic fields.

22.2 Theory

When the current density acts in a direction orthogonal to the plane considered, the scalar potential need
not be considered as an unknown in the A-V formulation of Maxwell’s equations. In the case of Cartesian
coordinates the system is then fully described by the vector potential A = Az(x1,x2)es as

0%63 + curl(% curl Ases) — o(v x curl Azes) = Jszesz + curl M (22.1)
where Jsejs is the electric current density and the magnetization current is expressed in terms of a planar
magnetization vector M = Mje; + Mseo. In addition, v is an optional velocity field describing a motion
of a body. It should be noted that if the motion is modelled via performing a rigid motion of the previous
mesh into the current configuration, the effect of motion may be incorporated in the total time derivative and
v need not be specified explicitly; cf. the discussion in connection with the 3D equations.

When cylindrical coordinates (r, ¢, z) are employed, the curl of the vector potential A = A,(r, z)e,
has components (—0,44,0,0, Ay + Ay/r) with respect to the orthonormal basis {e,, e,,e,}. The field
equation is then given by

0Ay

1
05 €4 + curl(— curl Azey) — o(v x curl Azes) = Jyey + curl M, (22.2)
I

with the magnetization vector being M = M,e, + M_e..
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The harmonic version of the equation is obtained by replacing the operator % by multiplication with 7w
and solving the vector potential as a complex-valued field. In the case of a harmonic problem described in
terms of Cartesian coordinates the Joule heat generation in stationary conductors may be computed from

1
h = *O’UJ2|A3|2.
2
As the electric conductivity o may be discontinuous over material boundaries, it is attractive to compute a
field without it and carry out the multiplication within the heat solver where the source term is needed.

22.2.1 Boundary Conditions

The Dirichlet boundary condition for As is simply
Az =AY (22.3)

Since we now have
curl Azes x n = (VA3 -n)es,

natural boundary conditions of the type
1 0As

T =Y (22.4)

may be used as an alternative. It may be difficult to extend the Dirichlet conditions far enough. Then a
spherically symmetric far-field approximation may be used. This gives a boundary condition of Robin kind
which corresponds to the choice

1 rn

g = —A4s
w2

(22.5)

in (22.4). If no boundary conditions are specified, the natural boundary condition with g = 0 prevails.

22.3 Keywords

Keywords for MagnetoDynamics2D

Here we list the keywords that are relevant when utilizing the module MagnetoDynamics2D and that
may also be common to the other solvers. Such common keywords relate to specifying material parameters,
body forces, and boundary conditions.

Constants

Permeability of Vacuum Real
This constant has the default value 47 - 107 in SI units. In different unit system change this
accordingly.

Material mat id

The following material parameters may be used by all the solvers in the module.

Electric Conductivity Real
This keyword is used to specify the electric conductivity o.

Relative Permeability Real
If this keyword is used, the permeability p can be specified in terms of the permeability of
vacuum. To obtain the permeability, the value of this keyword is then internally multiplied with
the permeability of vacuum. Instead of using this keyword, the keywords Permeability or
Reluctivity may be used.

Permeability Real
This keyword may be used to specify directly the permeability p.
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Reluctivity Real
The value of this keyword specifies the reluctivity v. The permeability is then taken to be y =
1/v.

Magnetization i Real
The components of the magnetization vector, i = 1, 2.

H-B Curve Cubic Real
The H-B curve must be given as a cubic spline. This enables that the derivative of the curve is
computed analytically from the spline coefficients.

Solver solver id

Equation String MgDyn2D
This keyword gives a describing name for the discrete model handled by this solver. The name
can be changed as long as it is used consistently.

Procedure File "MagnetoDynamics2D" "MagnetoDynamics2D"
This declaration specifies the name of the solver subroutine.

Variable String Potential
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be one.

Nonlinear System Max Iterations Integer
If the material laws are nonlinear, the equation may need some iterations before reaching the
solution. This keyword gives the maximum number of iterations. The default is one. If a
nonlinear H-B curve is given, then Newton’s linearization is applied after the first iteration.

Nonlinear System Convergence Tolerance Real
This keyword gives the convergence tolerance for the nonlinear iteration.
Body Force bf id
In the body force section the user may give various volume sources.
Current Density Real
This keyword is used to specify the current density in the z/¢-direction.
Lorentz Velocity i Real

This keyword may be used to define the optional velocity v.

Boundary Condition bc id

Potential Real
If the variable is given the name Potential, this keyword can be used to specify the Dirichlet
condition for the vector potential.
Infinity BC Logical
Sets far-field conditions for the vector potential assuming spherical symmetry at distance.
Mortar BC Integer
This enforces continuity in the case of rotating boundary conditions by the mortar finite element
method.

Keywords for MagnetodDynamics2DHarmonic

Here only the additional keywords related to the harmonic solver are listed. For other keywords see the
definitions above.

Material mat id

Electric Conductivity im Real
The imaginary part of the electric conductivity.
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Magnetization i Im Real
The imaginary components of the magnetization vector, ¢ = 1, 2.

Solver solver id

Equation String MgDynZ2DHarmonic
A name for the solver.

Procedure File "MagnetoDynamics2D" "MagnetoDynamics2DHarmonic"
This declaration specifies the name of the solver subroutine.

Variable String Potential [Potential Re:1 Potential Im:1]
The name of the variable may be freely chosen provided it is used consistently also elsewhere.
The associated number of degrees of freedom should always be two.

Body Force bf id

Current Density Im Real
This keyword is used to specify the imaginary part of the current density.

Keywords for BSolver

An additional solver may finally be called to compute derived fields. Note: The subroutine BSolver
described here is obsolete. It is recommended that the subroutine MagnetoDynamicsCalcFields
within the module MagnetoDynamics is used for postprocessing.

Solver solver id

The postprocessing solver currently only solves for the magnetic field density. The size of the re-
quested vector field is 2 when the target variable is real-valued and 4 if it is complex-valued. The user
does not need to specify the output fields.

Equation String BSolver

A describing name for the solver is given. This can be changed as long as it is used consistently.
Procedure File "MagnetoDynamics2D" "BSolver"

The name of the solver subroutine is given.

Target Variable String
This keyword is used to specify the name of the underlying potential variable; the default is
Potential.

Discontinuous Galerkin Logical
The derived fields are discontinuous if the material properties has jumps. Therefore the visual-
izations are more appealing if the fields are allowed to be discontinuous. Setting this flag True
activates discontinuous Galerkin (DG) computation of the fields. Note that these fields are com-
patible only with certain postprocessing practices. One possible way is to use vtu output and
ask elemental fields for saving, such as Vector Field Elemental 1.

Average Within Materials Logical
If DG formulation for the fields is asked, this enforces averaging of the fields within materials.

Calculate Joule Heating Logical [True]
The automatic computation of the Joule heating may be turned on by this keyword. The default
is False. The keyword is only applicable for the harmonic case. The computation results to
two additional variables. Joule Heating gives the absolute heating and Joule Fieldthe
field that gives the heating when multiplied by the electric conductivity. This may be needed if
the electric conductivity is discontinuous making also the heating power discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active, then the
Joule Heatingand Joule Field are multiplied by the ratio of the desired and computed
heating powers.
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Magnetic Induction Equation

Module name: MagneticSolve

Module subroutines: MagneticSolver

Module authors: Juha Ruokolainen

Document authors: Ville Savolainen, Antti Pursula

23.1 Introduction

The magnetic induction equation describes interaction of a conducting liquid or gas with applied and induced
magnetic fields in the low-frequency domain. The induction equation for the magnetic flux density is always
coupled to the Navier-Stokes equation for the movement of the fluid. The magnetic field, in turn, causes the
Lorentz force in the Navier-Stokes equation. The fluid is typically hot, and the Navier-Stokes equation is
often coupled also to the heat equation.

The induction equation solver can also be used in a body without a moving fluid, i.e., when ¥ = 0 and the
Navier-Stokes equation is not solved. In this case, the problem belongs to the field of magneto-quasistatics.

23.2 Theory

The magnetic induction equation may be derived from Maxwell’s equations, with the displacement current
in Ampere’s law neglected, and the Ohm’s law for conducting fluids, 7= U(E—H—)’x ]§) This approximation
for the behavior of electromagnetic fields in conducting, moving fluids is called magnetohydrodynamics.
The magnetic induction equation is given by
a—BJrivaxé—Vx(Uxé):o, (23.1)
at  op
where o is the electric conductivity and p the magnetic permeability of the material. These must be
specified by using the keywords Electric Conductivity and Magnetic Permeability in the
Material section.
The force term induced by the magnetic field for the flow momentum equations is given by

fm =7 B, (23.2)

and the Joule heating in the heat equation by
1
hn = — 171" (23.3)

where 7'is the current density, calculated from the Ampere’s law 7= V x H. These body forces are specified
by the keywords Lorentz Force and Joule Heat.
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The magnetic field can also be divided into external, or applied, and induced field, B = B¢ + B, The
external magnetic field B¢ is created by permanent magnets or currents outside the fluid. The external field
may be given to the induction equation solver either from a restart file, e.g., as calculated by the magnetostatic
solver, or defined via the sif file’s keywords Applied Magnetic Field 1, 2 and 3. If the restart file
is used, the components of B¢ are read from the variables named magnetic flux density 1,2 and
3. If both methods are used, the two applied fields are summed together. It is assumed that the sources of the
external field are outside the flow region, i.e., V x Be = 0, and that the time derivative of the external field
can be ignored. The time derivative dB° /Ot can, however, be specified directly by the keywords Magnetic
Bodyforce 1,2 and 3. The induction equation solver gives the components of the induced magnetic field
B*.

Both transient and steady-state solvers for the magnetohydrodynamical system (induction, Navier-Stokes
and heat equations) are available. The magnetostatic and time-harmonic solvers for the external magnetic
field are described elsewhere in the Models Manual. In some cases it is also possible that the velocity is a
priori known, for example when studying induction in a rotating body. Then a user defined velocity can be
used instead of computing the velocity from Navier-Stokes equations.

Currently the induction equation can be solved in a cylindrically symmetric or a general three-dimensional
formulation.

23.2.1 Boundary Conditions

For the induction equation one can apply either Dirichlet or natural boundary conditions. In both cases, one
must check that the computational domain is extended far enough to avoid numerical errors. For this reason,
it is possible to solve the magneto-quasistatics problem in an adjacent body.

The Dirichlet boundary condition for a component of the induced magnetic field B; (we have dropped
now the superscript ¢ that marked the induced field) is

Bi— B (23.4)

B! can be a constant or a function of time, position or other variables. The keywords for the Dirichlet
boundary conditions are Magnetic Field 1,2 and 3.

In the cylindrically symmetric case, the Dirichlet boundary condition for the azimuthal component B,
is in the same units as for the other two components, i.e., in T, and not for a contravariant component. On
the symmetry axis one has to set B, = 0 and By = 0, and 0B, /dr = 0 is applied implicitly.

If no Dirichlet condition is specified, natural boundary condition is applied.

23.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Magnetic Induction]
The name of the equation. It is also possible to use this solver as external procedure. Then the
name of the equation must not be the above (use e.g. Magnetic Field Solver). Also the
following four keywords have to be added with the values give here.

Procedure File "MagneticSolve" "MagneticSolver"
Variable String Magnetic Field
Variable DOFs Integer 3

Exported Variable 1 = -dofs 3 electric current
The above four keywords are to be given only when using the solver as an external procedure.
Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations & is small enough

|1B* — BM|| < €| B,
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where e is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear, and
this should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

B = B*+(1-\NB"",

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u, before
the whole system is deemed converged. The tolerance criterion is:

s = wia || < elluill,
where ¢ is the value given with this keyword.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Magnetic Induction Logical
If set to True, solve the magnetic induction equation.

User Defined Velocity Logical
Controls whether the velocity is given by the user or computed by another solver. Default value
is False, which means that velocity solution of Navier-Stokes equations is used.

Navier—-Stokes Logical
If set to True, solve also the Navier-Stokes equations. For magnetohydrodynamics, this is done,
except when the computational region for the magnetic field is extended beyond the fluid.

Heat Equation Logical
If set to True, solve also the heat equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow momentum equations.

Joule Heat Logical
If set true, the Joule heating is added in the heat equation.

Magnetic Bodyforce i Real
This keyword can be used to specify explicitly the time dependence of the external field, i.e., the
term —9B° /Ot. This is especially useful for time-harmonic fields, where the time derivative can
be calculated and expressed easily.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following

variables are active:

Magnetic Field i Real
For each magnetic flux density component i= 1,2, 3.
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the induction equation. They can be a constant or a function of a given variable.

Magnetic Permeability Real
The magnetic permeability is set with this keyword. For most fluids, the vacuum value for pg
can be used, and the keyword setto 1 .25664e—6.

Electric Conductivity Real
The value of the electric conductivity is set with the keyword. For example, for polythermal
flows the conductivity could be a function of the temperature.

Applied Magnetic Field i Real
This keyword can be used to specify the external field, or a part of it, and its contribution to the
term V x (¢ x B¢). The field may be a function of, e.g., time or position.

MHD Velocity i Real
The user defined velocity can be given with these keywords with i=1, 2, 3.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The ones related to
induction equation are

Magnetic Field i Real
Dirichlet boundary condition for each magnetic flux density component i= 1,2, 3.
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Model 24

Reduced Dimensional Electrostatics

Module name: StatElecBoundary

Module subroutines: StatElecBoundaryForce, StatElecBoundaryEnergy,
StatElecBoundaryCharge, StatElecBoundarySpring

Module authors: Peter Raback

Document authors: Peter Raback

24.1 Introduction

In some applications the geometry is such that the 3D electrostatics may quite accurately be reduced to a 1D
problem. This is the case for nearly aligned planes. If the angle between the planes is ¢ (in radians) the error
of this approximation is roughly 2,?/3. Therefore we may use an analytical solution that results directly
from the distance of the planes that are in different potential. The ideal model may be further developed by
taking into account perforated structures and dielectric layers.

24.2 Theory

It is assumed here that the electric field is stationary in the time-scale under study. The electric field E may
be expressed with an electric scalar potential ¢,

E =V¢. (24.1)
If there are no free charges, the scalar potential may be solved from
—V.eVep=0. (24.2)

When one dimension is much smaller than the other two we may assume that the field is one-dimensional.
Then the electric field resulting from potential difference ® = A¢ is

E = Eit = —ii, (24.3)

e=—eF?d=—. (24.4)

which corresponds to a induced charge density on the surface

e

; (24.5)

q
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The force is obtained from the derivative of the energy,

Oe ed?

f:% :_ﬁ’ (24.6)
and the spring constant from the derivative of the force,
0 £®?
255:367 (24.7)

The forces and spring constants are always aligned in the direction of the surface normal since any other
direction is incompatible with the original assumptions.

24.2.1 Electrostatics of perforated structures

If there are holes or other imperfections in the structure they may be homogenized over the whole area. By
computing the electric energy and force in the presence and absence of holes we get correction factors

€holes = (€jdeal (24.8)

and
fholes = ﬁfideal (24.9)

The correction terms may be precalculated for a given geometry. However, if the relative change in the
aperture is large the correction terms should be modeled in some manner. we would also like to have similar
expressions for the spring constant

khotes = Ykideal- (24.10)

If we assume that ey, )¢5 is proportional to 1/d then the following relations may easily be derived.
B=a-add (24.11)

and 1
yzafaﬂ+§dﬂa (24.12)

where the derivation is done respect to d.

Now we are only left with the problem of finding a nice functional approximation for .. The holes in
the membrane may be expressed using three dimensionless variables d = d/r, b= b/r and R= R/r. Here
7 is the hole radius, b the hole depth, d the aperture and R the distance between holes. When R >>1and
b >> 1 the correction depends only on d.

Numerical computations suggest that the correction oz(ci) should approach unity as the distance d ap-
proaches unity. On the other hand, it should approach 1 — ¢ for small values of d. Here ¢ is the area fraction
of the holes.

Numerical calculations suggest that a second order rational polynomial gives quite an accurate fit to the
computed results,

1
q]. + a1d+a2d2'

Fully analytical formulas are now more tedious but the values for 3 and +y are easily calculated using the
derivatives

a(d) =1 (24.13)

a1 + 2(12d
d) = 24.14
OL( ) q(1+a1d+a2d2)2, ( )
and ) 55
— 942 — _
old)’ = 2qa2 ai — 3aia2d — 3asd (24.15)

(1 + ald + a2d2)3
Least squares fitting to the numerical computations suggest that for cylindrical hole a1 = 4.2523, as =
0.4133, for a rectangular slot a; = 2.3198, as = 0.2284 and for a square hole a; = 3.8434, as = 0.3148.
When fitting the model the suggested constant term diverged up to 4 % from unity but the value one was
enforced anyway because it has the nice limiting value properties.
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24.2.2 Dielectric layer

If the conductor is covered with a dielectric layer we need to modify the equations. We assume that the
aperture consists of two materials with permittivities €1 and €5 and thicknesses d; and d». Because the flux
must be the same this means that the fields are

o
E = 24.16
! d1 + 81d2/82 ( )
and
B, = _* (24.17)
2 €2d1/€1 + d2 ' '
Defining d, = dy + €1d2/e2 these become
o
E, = € (24.18)
and o
E,= L2 (24.19)
€9 dl
The total energy density is then
1 d 12 _,d g
e=-e,02 0y g2 02 _ CL (24.20)

2 2 2ey d2 2d,
We assume that the resonator moves so that d; changes and ds remains constant. Then the force density is

Oe de 0dy  £1?

— — == 24.21
/ 0dy  0d, 0dy 2d2 ( )
And similarly the spring constant density
3f €1 (1)2
= = . 24.22
ody d3 ( )

These expressions may be used inside the integral instead of the constant field values to account for the
dielectric layer. It may be noted that the equations are exactly the same as for the case without the layer
except that the aperture d is replaced with the efficient aperture d,, = dy + £1d3/e5.

24.3 Implementation issues

This module is not a solver in itself. It only provides boundary conditions for real models. Natural models
to combine with these boundary conditions are models describing deformation in solid structures. For plates
the conditions are applied to the leading dimension while for generic 3D solids the conditions are applied
to the boundaries. Therefore the same subroutines may be applied to either boundary or to material section.
There is actually just one subroutine and the value it returns is defined by the name of the routine used to
call it.

These routines here were historically developed for MEMS modeling in a different setting and were
much later added to the open source publication as a lighter version.

244 Keywords

Constants

Permittivity Of Vacuum Real [8.8542d-12]
The default is given in SI units. In other units the constant should be changed appropriately.

Boundary Condition bd id
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Procedure "StatElecBoundary" "StatElecBoundaryForce"
Function that returns the nodal force density.

Procedure "StatElecBoundary" "StatElecBoundaryCharge"
Function that returns the nodal charge density.

Procedure "StatElecBoundary" "StatElecBoundaryEnergy"
Function that returns the nodal energy density.

Procedure "StatElecBoundary" "StatElecBoundarySpring"
Function that returns the nodal spring density.

Gap Height Real
Distance on which the 1D electrostatic model is applied for. May depend on displacement, for
example, via MATC functions.

Potential Difference Real
Potential difference between the plates.

Relative Permittivity Real
Relative permittivity of the material between the plates.

Layer Thickness Real
There may be a non-conducting layer on top of the plate. If this keyword is not defined no layer
is assumed.

Layer Permittivity Real
Relative permittivity of the layer.

Hole Type String [slot / round / square]
The 1D electrostatics can account also for perforated structures if the depth of the hole is large
compared to the width of the hole. The different hole geometries are an infinite slot, a round hole
and a square hole.

Hole Size Real
The size of the hole is for a round hole the radius, for a square half the side and for a slot half of
the width.

Hole Fraction Real
The fraction of the holes on the surface.

Hole Depth Real
The depth of the holes i.e. also the thickness of the perforated plate.
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Poisson-Boltzmann Equation

Module name: PoissonBoltzmannSolve
Module subroutines: PoissonBoltzmannSolve
Module authors: Peter Riback

Document authors: Peter Riback

25.1 Introduction

The macroscopic electromagnetic theory is governed by Maxwell’s equations. In steady state the electric
field may usually be solved from a simple Poisson equation. However, if there are free charges in the domain
that are affected by the electric field the equation is no longer valid. Also the contribution of the free charges
need to be taken into consideration. If the electrostatic force is the only force affecting the distribution of
the electric charges then the potential in the steady-state is given by the Poisson-Boltzmann equation [1].
This equation may find its use in microfluidics and electrochemical applications. Note that if the charge
distribution is affected by the flow distribution of the carrier fluid this equation is no longer valid.

25.2 Theory

The electrostatic equation for the electric potential ¢ yields,
—V-eVo=p, 25.1)

where ¢ is the permittivity of the medium and p is the charge density. Assuming that there is a fixed charge
density and both positive or negative moving ions the charge may be written as

p=po+e(zn +znh) (25.2)

where pg is interior charge distribution of fixed positions of all solute charges, and e is the unit charge of a
electron, and z is the charge number of the positive or negative ions, and n is the corresponding ion density.

The electrochemical potential y of the ions is defined by u = ez¢ + kg1 Inn, where the first term is the
electrostatic contribution and the second term comes from the entropy of the ions at the weak solution limit.
In equilibrium g, is constant over the whole domain and thus the ion density obeys a Boltzmann distribution,

n = nge ¢*¢/ksT (25.3)

where kg is the Boltzmann constant. Inserting this to the Poisson equation we obtain the Poisson-Boltzmann
equation that determines the potential field self-consistently,

—V-eVo=py+ ez_nge_ezf‘z’/kBT + ez+n8“e_ez+¢/kBT. (25.4)
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A special case of the equation is obtained if the charge numbers and the concentrations are equal, z =
—2~ =zt and ng = ny = ng . Then the equation simplifies to

— VeV = py — 2ezngsinh(ezg/kpT). (25.5)

The Poisson-Boltzmann equation is obviously nonlinear. We will show the iterative procedure only for this
case, the generic case is dealt similarly.

25.2.1 Iteration scheme

Defining o = 2ezng and § = ez/kpT the Poisson-Boltzmann equation for a symmetric electrolyte may be
written as
—V -eVeo = py — asinh(B9). (25.6)

The straight-forward iterative procedure treats only the left-hand-side of the equation in an implicit manner,
— VeVt = py — asinh(Bo™). (25.7)

The convergence of this scheme is, however, quite poor for many cases of practical interest. An improved
strategy should linearize also the right-hand-side.
Making a Taylor’s expansion we may approximate

sinh(B¢(" ) & sinh(8¢™) + B cosh (™) (¢ — ¢() (25.8)
which results to the Newton iteration scheme
—V - eV + af cosh(Bp™) | ¢+
= po — asinh(B¢™) + aB cosh(Bp™)p™. (25.9)

This scheme has good convergence properties and is usually the method of choice.

25.2.2 Boundary conditions

For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

oc=¢eVo-, (25.10)

where o is the surface charge density.

25.2.3 Derived quantities
When the potential has been solved the electric field may be obtained as a postprocessing step from
E=-V¢. (25.11)
Charge density may be obtained as the right-hand-side of the Poisson equation,
p=po+ ez*nae*ez_‘z’/kBT + ez*nare*eer‘i’/kBT. (25.12)
which in symmetric case yields,
p = po — 2ezng sinh(ez¢/kpT). (25.13)

The energy density of the field ay be computed from

1
—£
2
However, in a more generic treatment also the contribution of the concentration should be included in the
expression of the energy.

e= %E D = ~¢(Ve)2. (25.14)

CSC —IT Center for Science (cc



25. Poisson-Boltzmann Equation 161

25.3 Notes on output control

The user can control which derived quantities (i.e. electric field and electric energy) are calculated.

There are also available two choices of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighboring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

25.4 Keywords

Constants

Permittivity Of Vacuum Real [8.8542e-12 C2/Nm?]
Boltzmann Constant Real [1.3807e-23 J/K]
Unit Charge Real [1.602e-19 C]

Equation equation id

Calculate Electric Energy Logical [False]
Controls whether the electric energy density is written in results files (default False).

Solver solver id

Equation String Poisson Boltzmann Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File PoissonBoltzmannSolve PoissonBoltzmannSolve
Following are listed three keywords with default values for output control.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations.

Nonlinear System Convergence Tolerance Real
The relative error after which the iteration is terminated.

Nonlinear System Newton After Iterations Integer
The number of iterations after which Newton iteration is turned on. The default is zero which
should usually be optimal.

Nonlinear System Newton After Tolerance Real
Optional parameter which gives the tolerance in error after which Newton iteration is turned on.

Calculate Electric Field Logical [True]
Calculate Electric Flux Logical [True]
Constant Weights Logical [True]
Used to turn constant weighting on for the results.
Material mat id
Relative Permittivity Real
The total permittivity is the product of the relative permittivity and the permittivity of vacuum.

Reference Temperature Real
This keyword is used to give the temperature occurring in the Boltzmann factor.
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Charge Number Integer
For symmetric cases the charge number. For unsymmetric cases one may give separately Positive
Charge Number and Negative Charge Number.

Ion Density Integer
For symmetric cases the original density of ions. For unsymmetric cases one may give separately
Positive Ion Densityand Negative Ion Density.

An alternative set of parameters are also possible which are particularly suitable for testing purposes.
These are limited to the symmetric case where the potential normalized with the Zeta potential is
solved. Then the permittivities should be set to unity and only two variables are needed to define the
case.

Poisson Boltzmann Beta Real

This keyword gives the ratio of parameter 3 to the the Zeta potential.
Poisson Boltzmann Alpha Real

This keyword gives the parameter «

Body Force bodyforce id

Charge Density Real
The fixed charge distribution that is not affected by the electric field.

Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if flux BC is used.

Surface Charge Real
Gives the surface charge for the Neumann boundary condition.
Bibliography
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Loss Estimation Using the Fourier
Series

Module names: FourierLoss
Module subroutines: FourierLossSolver
Module authors: Peter Raback, Mika Malinen

Document authors: Mika Malinen, Peter Raback

26.1 Introduction

The primary motivation for this solver is the estimation of electromagnetic losses by using the Steinmetz

equation approach. It could have other uses as well. The main idea is to make a Fourier transformation on-

the-fly and compute losses that are proportional to the frequency always when full cycle has been completed.
Given an evolutionary finite element field

N
An(x,t) =Y a;(t)v;(2), (26.1)

j=1

the solver enables to replace the evolution of the scalar degrees of freedom «;(t) for ¢ € [to,to + T'] by the
Fourier series approximation

K K
a;(t) ~ af + ) af coslkw(t —to)] + Y bE sin[kw(t —to)], (26.2)
k=1 k=1

where the angular frequency w may be defined in terms of a period T" as w = 27 /T The coefficients aé‘f and
bé? are given by

T
@:%/%w+mw,
0
T
ﬁ:%/%W+meMWDﬁ, (26.3)
0T
b = % / oy (1! + to) sin(2rkt’ /T)dt"
0
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In practice the time stepping algorithm gives the values of «;(t) at only a discrete set of time values and
linear interpolation is applied to generate «;(t) at the other points.
The use of (26.2) in (26.1) now yields

K
A, (z, )+ Z dy(x) coslkw(t — to)] Z ) sin[kw(t — to)] (26.4)
where the fields @y () and by, () have the finite element expansions
N
=Y afi(z) and BF(x Z bhap; ()
j=1
If the field of interest is B = V x ffh, we have similarly
K
B(z,t) = V x do(x) + Zv x (@) coslkw(t —to)] + > V x by(z) sinfkw(t — o). (26.5)
k=1

If the problem setup is given in 3D case it is assumed that the solution is obtained using edge element
basis. In the special case of 2D target field and the target variable is expected to be a scalar field Ay (x,t)
and B is then generated as

AL A
oy * ox ¥

26.2 Loss estimation

In a typical application we have in mind the field /Th is taken to be the vector potential solution corresponding
to the AV formulation of electromagnetic equations. Then the field B = V x A gives the magnetic flux
density which, in view of (26.5), may be approximated in the form

B( )+ Z By(x) cos[kw(t — tog) — dx],

with ¢ a phase angle.
The loss power associated with each simple-harmonic component may then be estimated over a body €2
by using the Steinmetz equation approach as

P = / CfeBy dQ (26.6)
Q

where C, « and 3 are given data and f;, = kw/(27). The total loss P is then obtained as

K
P= Z P,. (26.7)

The field variable P}, associated with this solver is the total loss power distribution per unit volume which is
obtained from the weak formulation

K
/ Py dQ = / > Cfe Bl dQ (26.8)
Q Q k=1

where v, denotes a suitable test function. The current implementation enables several terms with constant
exponents « and 5. The coefficient C, on the other hand varies among materials and may be a function of
frequency.
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26.3 Keywords

Solver solver id

Procedure File "FourierLoss" "FourierLossSolver"
This keyword is used to give the Elmer solver the place where to search for the routine producing
the loss estimate.

Equation String [FourierLoss]
A name to the computational version of the loss equation may be given by using this keyword.
The name has no effect but it should be unique.

Target Variable String
The value of this keyword gives the name of the field for which the Fourier series expansion is
produced. It is usually assumed that the field is magnetic vector potential. It may be either nodal
(with 1 component in 2D and 3 components in 3D) or a curl-conforming vector field.

Target Variable AV Logical
The user may enforce the target variable to be one resulting from the AV-solver which uses the
edge degrees of freedom to express the vector potential. If the flag is not given, the existence of
the AV solver is deduced from the size of the permutation vector. Because the detection may be
erroneous, for example when a DG field is used, this may also be given value False to enforce
use of a nodal field.

Target Variable Direct Logical
By default it is assumed that the target variable is the magnetic vector potential and the curl
operator is applied. However, with this flag it is possible to give either scalar field | B| or vector
field B directly. The handicap of this is that the field is not continuous. However, this may be
particularly useful for testing purposes.

Variable String
The primary variable is the loss component for the linear frequency dependence. The default
name is Fourier Loss if all components are summed together and Fourier Loss i if
each component is treated separately.

Separate Loss Components Logical
By setting this flag to True the user may save the different loss components in Steinmetz model
as separate fields for postprocessing. Otherwise they will be merged to one single field.

Inexact Integration Logical
The integration may be performed most accurately by integrating the product of the linear ap-
proximation of the time-dependence and the sines and cosines analytically. Currently this exact
integration is used. However, the user may replace it with inexact version even though this is not
recommended.

Simpsons Rule Logical
If using inexact integration, the default method is the trapezoidal integration. Instead the user
may request the Simpson’s rule for better accuracy. If exact integration is used, this keyword has
no effect.

Discontinuous Galerkin Logical
Instead of the standard Galerkin formulation the user may also choose to compute the post-
processed fields using discontinuous Galerkin (DG) approximation. This enables discontinuities
between elements. However, the cost is often quite large since the matrix structures related to DG
are very large compared to the standard Galerkin method. The lumped quantities are computed
on-the-fly so for them there is no difference.

Average Within Materials Logical
This only applies when the DG method is used to compute the loss fields. When this flag is
turned on the fields within same material are weakly enforced to be continuous. This results to
much smoother fields while still maintaining the discontinuity over material interfaces.
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Calculate Elemental Fields Logical
The user may request elemental fields to be computed. These are natural since they allow dis-
continuous fields to be visualized. This features uses the same degrees of freedom as the DG
approximation but does not include interactions between elements.

Calculate Nodal Losses Logical
This may be used to calculate the losses directly in terms of power (i.e. Watts in SI units) lost
in each node. For conforming meshes this provides the easiest coupling with heat equation and
these losses become directly the r.h.s. source terms for the heat equation. Nodal losses are always
lumped to one field even though the distributed fields would be separated.

Fourier Series Components Integer
This keyword is used to define the parameter K in (26.2), i.e. how many Fourier series compo-
nents are generated.

Fourier Series Output Logical
If the value True is given, then the Fourier component fields @ and by, are output into the result
file. Note that for edge elements this does not currently work as they cannot be directly written
to a file but they should be mapped into a space that is able to be visualized.

Angular Frequency Real
This keyword is used to give the angular frequency w. Alternatively, the simulation section may
be used for the same purpose.

Frequency Real
Instead of giving the angular frequency, the user may specify the frequency f = w/(27) by
using this keyword.

Fourier Start Time Real
This keyword can be used to define the start time ¢( for performing the integration.

Fourier Start Timestep Integer
This keyword can be used to define the start time ¢( such that ¢ty = ¢,,, with n the timestep index
given by using this keyword.

Fourier Start Cycles Integer
This keyword can be used to define the start time ¢y such that ty = nT, with n the value of this
keyword.

Fourier Integrate Cycles Integer
By default the Fourier coefficient computation is restarted after integration over one complete
period T'. If this keyword is used, then the restarting occurs after integration over n periods,
with n the value of this keyword. The reason for this could be that the results include some
randomness that we would like to filter out by integrating over several cycles.

Harmonic Loss Frequency Exponent (K) Real
The value of this keyword gives the parameters oy, in a vector format. The number of compo-
nents, K, should be the same as the number terms in Steinmetz loss model. Alternatively the
user may give this componentwise, i.e. Harmonic Loss Frequency Exponent 1,etc.

Harmonic Loss Field Exponent (K) Real
The value of this keyword gives the parameters 3y in a vector format. The number of compo-
nents, K, should be the same as the number terms in Steinmetz loss model. Alternatively the
user may give this componentwise, i.e. Harmonic Loss Field Exponent 1, etc.

Fourier Loss Filename File
Name for the file in which the losses will be saved. Losses will be saved so that each body for
which there are any losses is written to a separate line. If the name is not given, nothing will be
saved.

Material material id

Harmonic Loss Coefficient 1 Real
This keyword is used to define the material parameter C' in (26.6) for each simple-harmonic term
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1. The highest existing value ¢ determines the number of terms in the loss model. Note that the
coefficient may only be a function of frequency itself.
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Coil Current Solver

Module name: CoilSolver
Module subroutines: CoilSolver
Module authors: Peter Riback
Document authors: Peter Riback

27.1 Introduction

Assume that we have been given a geometry of a coil. Now the coil consists of individual wires and there-
fore the direction of the current is basically well defined. Unfortunately it is often difficult to provide the
directional information of the wires. In simple cases (such as ideal cylinder) the user may give the current in
the coil using analytical functions. In general case this is however not possible.

This solver tries to provide numerical means for setting the coil current. The idea is that the computed
current density (or potential) may then be used in further simulations of magnetic fields.

Now the natural way to create the currents is to solve a static current conduction equation. Unfortunately
for closed loops it is difficult to define the boundary conditions. Rather than trying to make some special
mesh this solver provides a unique strategy to create the currents in two pieces using Dirichlet conditions for
some nodes in the bulk.

27.2 Theory

Our starting point for defining currents in the coil is to use an equation for the static current conduction,
—V.oVe=0. (27.1)

where ¢ is the electric potential, and ¢ is the electric conductivity. For this equation we may set either
Dirichlet boundary conditions

= ¢o (27.2)

or Neumann boundary conditions

9
058 = . (27.3)

If we solve the equation with the standard Galerkin method with FEM, the volume current density may then
be calculated using the same finite element spaces from

j=—0oVe. (27.4)
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Normalization of potential and current

Typically we know the total current through the cross section

J = /jn dr. (27.5)

If the current density over the boundary area A is constant, this gives the flux density, j,, = J/A. Often it
is more ideal to define Dirichlet conditions and normalize the potential afterwards to give the desired total
current Jg, so that one sets

Jo
= — 27.6
6= 27.6)
which leads to redefining the current density similarly as
— JO —
)= — 7. 27.7
Ji=7J 27.7)

If we know that the cross section of the coil is constant and thereby also the desired intensity of the
current density jo is constant, we may normalize the current density also locally taking only the direction
from the initial current density,

=0 (27.8)
171

Now this normalization should not be done light-heartedly since after this the solution might not be divergence-
free any more. When the magnitude of the solution is known a priori, we could use also other means of
obtaining the direction field.

Modified conductivity field

In the previous considerations we assumed that conduction is isotropic and homogeneous. Unfortunately
this means that for coils the current won’t follow the wires as it tends to take the shortest path more easily.
On the other hand we don’t know the anisotropic conductivity since if we knew it, we would also know
the direction of the current and there would be nothing to compute. Therefore we look at some ways to
iteratively determine the solution from the already computed field.

One idea is to introduce an additional field variable, say c, such that

—V:.coVep = 0. (27.9)
cloVol = Jjo. (27.10)

This may be handled iteratively by solving ¢ from the Ist equation and ¢ from the 2nd equation. Unfortu-
nately numerical tests showed that the resulting field c is prone to numerical oscillations. Therefore we may
regularize the 2nd equation by adding some diffusion

—V -DVe+ [oV|e = jo. (27.11)

where D is the numerical diffusion. Unfortunately the equation does not necessarily have any solution. In
fact real tests showed that increasing the value of D will make the solution smoother but at the same time
it will be more difficult to find a solution that would fulfill both equations. Still the current density may be
closer to the real current density than in the homogeneous case. Just a small number of iterations will get
the most of the benefits of the scaled conductivity field.

We may also look at the conductivity in an anisotropic form. One idea is to use the knowledge that in the
true coil the conductivity is only in the direction of the gradient. We may therefore look at the conductivity
in the form

Vo

. Vo
Ve

Now without the multiplier c this would not lead to an improvement because then the direction does not have
an effect as the flux is always in the direction of the gradient only. However, the combined effect of these
two could improve the accuracy of the direction of the current density.

g =

(27.12)
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There can also be partially geometric means for setting the direction of the conductivity field. Basically
the distance from the coil surface, s, defines a field the gradient of which defines a direction with zero
conductivity. So we take an isotropic conductivity as a starting point and eliminate the conductivity in the
direction of the normal, i.e.,

1
o =0y 7 [I — abs(Vs)] (27.13)
Unfortunately this formulation has some difficulties at the center of the coil where the distance function is
poorly defined.

For structured and extruded meshes one could also use the directions of the element edges to directly set
the direction of the current. Starting from a rough information about the current direction, the edges aligned
with the current could be detected and thereafter the current direction could be refined accurately with the
geometry. This method has not been implemented.

Case of closed coils

The closed coils are dealt with in two parts. The idea is to use rough fiction boundary conditions for the
bulk nodes. Setting potentials to 0 and ¢ on a narrow gap around the fictitious interface, we can generate
a current to the coil. Now this current is “good” only in the other side of the coil where the effects of the
poorly defined boundary conditions have settled. The distance from the fictitious interface should be at least
around three times the diameter of the coil cross section. Therefore the approach is better suited for ’lean”
coils. We apply the same procedure to opposite sides of the coil and normalize the coil current to be the
same. The final current is a union of the two cases so that we always take the more accurate of the two
computed currents fields.

Now the currents should ideally be continuous. However, the potential derived in this way can never
be continuous since at some stage the potential should have a jump over the coil. Still, if the coil potential
is used only element-wise so that it is always operated by a gradient we may use a special subroutine that
returns always the more accurate set of nodal potentials for each element. After taking the gradient of the
potentials the solution should be continuous.

Using the coil solver

The solver can be used to compute currents or potentials to be used by other solvers. The standard case could
equally well be computed by the StatCurrentSolver but this solver includes some ways to make the
current distribution more accurate in the case of coils. Unfortunately all these techniques are based on
heuristics and they will most likely offer better current distributions that the standard approach.

If one tries to normalize the intensity of the current density to a predefined constant value, the user should
be sure that the cross section of the coil is constant. Otherwise the user introduces a current source or drain
that may be difficult to treat in the later steps of the simulation.

When using in conjunction with the Magnet oDynamics module, it is advisable to perform the fixing
of the current to be divergence free using the internal Jfix solver. Otherwise the solution might not exist
for the equation.

Currently it assumed that there is just one coil, and for the closed coil it is assumed that the coil axis is in
the direction of the z-axis. These limitations are not inherent to the method and could be resolved by small
coding effort.

27.3 Keywords

The solver includes some internal definitions which eliminates some keywords. For example, the variable
related to the solver is internally created and also the boundary conditions related to it are set internally so
the user does not need to know of it.

Solver solver id

Equation String CoilSolver
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Procedure File "CoilSolver" "CoilSolver"
Name of the solver module and solver.

Coil Closed Logical
Is the coil closed. If it is, then the potential will be computed in two parts. Note that for many
coils it is currently assumed that all the coils are either open or closed. Closed coils will in effect
create a secondary potential field and an auxiliary field Pot Select used to toggle between the
two potentials.

Coil Conductivity Fix Logical
Fix the coil conductivity so that the current density would be more even.

Cfix diffusion Real
Diffusion coefficient for the regularization of c field.

Coil Anisotropic Logical
Make the conductivity be aligned with the gradient of the potential.

Calculate Coil Current Logical [True]
Calculate the current flowing in the coil(s). The effect of the enforced currents in the coil may
be given as a source term either as current or as a enforced potential.

Use Wall Distance Logical
Use wall distance to introduce anisotropy of the coil conductivity. If wall distance is used, then
it is assumed that a field Wall Distance exists.

Save Coil Set Logical
Optionally save the CoilSet field.

Save Coil Index Logical
Optionally save the CoilIndex field. This makes sense only if there are more than one coil.
Then the index gives the number of the coil.

Normalize Coil Current TLogical
After the current has been computed normalize it to the desired magnitude if this flag is given.

Nonlinear System Max Iterations Integer
For the inhomogeneous cases give the number of iterations. The default is 2 for the scaled
conductivity, and 3 for the scaled anisotropic conductivity.

The following keywords define a single coil. They may be located in the Solver section if there is
just one coil. If there are many coils, they should be located in different Component sections.

Desired Coil Current Real
The desired current .J; in the coil. The default is 1.

Desired Current Density Real
The desired intensity jp of the current density in the coil. The default is 1.

Coil Cross Section Real
Cross section (area) of the coil that may be used to related the total current and the flux density.

Coil Center(3) Real
Center of the coil in the Cartesian coordinates (z, y, z). If the coil center is not given, then the
volumetric mid-point is assumed to be the center.

Coil Normal (3) Real
The user may give the coil axis around which the coil circulates. If not given, the coil axis is
found as the axis that gives the maximum inertial momentum for the coil. The tangent directions
are deduced from the coil normal.

Coil Bandwidth Real
A parameter related to the width of the fictitious interface used to set the potentials in an auto-
mated way. This is relative to the total width. Default is 20% of the width of the coil.
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Narrow Interface Logical
This flag enforces the use of narrow strategy for the setting of Dirichlet conditions and computa-
tion of the resulting nodal charges. It is a better strategy than the wider coil bandwidth strategy
particularly for thick coils. Makes the above keyword obsolete.

Boundary Condition bc id
Potential Real
Dirichlet BC for the potential.

Current Density BC Logical
Must be set to True if Neumann BC is used.

Coil Start Logical
Defines a boundary where coil starts. Not needed if coil is closed.

Coil End Logical
Defines a boundary where coil ends. Not needed if coil is closed.

The user can use the united potential also for closed coils by using a special subroutine. The calling conven-
tion would then be, for example, in the Body Force section for the MagnetoDynamics module

Electric Potential = Variable time
Real Procedure "CoilSolver" "CoilPotential"

Here t ime is just a dummy variable. Similarly for coil potential normalized on-the-fly within each element,

Electric Potential = Variable time
Real Procedure "CoilSolver" "CoilPotentialNormalized"
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Electrokinetics

Module name: Electrokinetics

Module subroutines: helmholtz_smoluchowskil, helmholtz_smoluchowski2,
helmholtz_smoluchowski3, helmholtz_smoluchowski

Module author: Thomas Zwinger

Document author: Thomas Zwinger

28.1 Introduction

If dealing with electrolytic fluids constrained to small volumes, surface forces caused by electric surface
charges in combination with externally applied electrostatic fields are sufficient strong to affect the fluid
volume. If these effects are utilized to attenuate the fluid volume, we talk of Electrokinetics. The term
Electroosmotic Flow (EOF) is used in connection with the attenuation of a net charge inside a originally
neutral electrolyte caused by separation induced by a surface charge of a wall.

28.2 Theory

Chemical reactions between the contents of a liquid and the wall material may lead to a net charge of the
containment at the wall-liquid interface. If the liquid is an electrolyte (i.e., it contains free ions), ions of
opposite charge align along the wall creating the Stern layer. Adjacent to the Stern layer, a charge separation
- called the diffuse layer of the initially neutral electrolyte takes place. Due to the two layer structure the
whole are area of charge separation in the vicinity of a wall is called the Electric Double layer (EDL).

28.2.1 Electroosmotic slip velocity

Considering a symmetric electrolyte — i.e., the bulk ion density of ions with opposite valence numbers +z
are equal nar = ny = no — at a certain temperature, 7', the typical width-scale of the EDL is given by the

Debye length [1]
1/2
ereo ky, To
M=|——= . 28.1
P (2 ng 22 e ) (28.1)

Here e stands for the unit charge and &}, denotes the Boltzmann constant. The relative permittivity of the
electrolyte and the permittivity of vacuum are given by ¢; and €, respectively.

The potential, ® and the volume charge density, p., within the EDL are tightly coupled to each other by
the Poisson-Boltzmann equation (25.4) (see chapter 25). In order to exactly resolve the dynamics close to the
walls, (25.4) should be solved and the resulting specific electric force then be considered in the equation of
motion. Nevertheless, provided the typical length scales of the flow perpendicular to the containment walls,
H, strongly exceed those of the EDL — in other words, we obtain very small values for the non-dimensional
group L = Ap/H < 1 - the dynamics of the electrolyte inside the EDL does not have to be resolved at
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all. In this case simple considerations of a force balance between shear stress and electric force lead to a slip
condition for the fluid [2]. At the boundary, the tangential velocity is set to the Helmholtz-Smoluchowski
velocity

ﬁtang‘ = lfg_g = M? (28.2)

e
with us standing for the local fluid viscosity. The zeta potential, { — a property depending on the electric
properties of the wall material as well as the electrolyte — usually is determined experimentally. From a
physical point of view it can be interpreted as the value of the solution obtained by (25.4) at the Stern layer.
The tangential component, Etang , of the external electric field, E is evaluated from the outward pointing

surface normal 77, applying the following relation
Brang, = E — (E : ﬁ) it (28.3)

Alternatively, the resulting slip velocity may be related to the tangential field using the Electroosmotic Mo-
bility, pgor .
UH-s = EO Etang.- (28.4)

A combination of (28.2) and (28.4) leads to the following identity

erenC
1223 '

jEo = (28.5)

28.3 Limitations

e The Helmholtz-Smoluchowski velocity should not be applied if the non-dimensional group £ defined
in 28.2.1 is of unity order or larger. Then the potential- and charge density distribution as well as the
dynamics of the electrolyte inside the EDL has to be resolved.

e In astrict sense, the Helmholtz- Smoluchowski theory applies only to configurations where the normal-
component of the external field, E -7, is small. If dealing with electric insulating wall materials — as
it is usually the case in microfluidic apphcatlons — this condition is implicitly complied with.

o The assumption of a Newtonian fluid underlies the derivation of the Helmholtz-Smoluchowski veloc-
ity.

e The function helmholtz_smoluchowski can only be applied on boundaries of two-dimensional
domains, where the tangential direction is uniquely defined.

28.4 Keywords

Keywords for helmholtz_smoluchowski

Constants

Permittivity Of Vacuum Real [8.8542e-12 C?/Nm?]
permittivity of vacuum, only needed if Helmholtz-Smoluchowski velocity is defined using ex-
pression (28.2)

Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1, 2,3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1, 2,3} inthe section Material material id,wherematerial id is the id-number
associated with the material parameter list of the electrolyte
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Material material id
If the Helmholtz-Smoluchowski velocity is defined using expression (28.2), then the following key-
words have to be provided in this section

Viscosity Real
viscosity of the electrolyte

Density Real
volumetric density of the electrolyte

Relative Permittivity Real
relative permittivity of the electrolyte

Boundary Condition bc id
In two-dimensional configurations the Helmholtz-Smoluchowski velocity directly can be assigned to
the tangential component of the velocity field

Normal Tangential Velocity Logical True

Velocity 2 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski"
Sets tangential EO slip velocity

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

In three-dimensional configurations (and as an alternative also in two-dimensional), the velocity has
to be defined for each component

Normal Tangential Velocity Logical False

Velocity 1 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowskil"
Velocity 2 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski2"
Velocity 3 = Variable Dummyargument

Real Procedure "Electrokinetics" "helmholtz_smoluchowski3"

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.

If the Helmholtz-Smoluchowski velocity is defined using expression (28.2), then the zeta potential, ¢,
for the specific boundary region has to be defined

Zeta Potential Real
Sets the zeta-potential for this boundary

Alternatively, the user can declare the EO-mobility, as explained in (28.5)

EO Mobility Real
Sets EO mobility for this boundary
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electrolyte

Figure 28.1: Structure of the EDL. The value of the induced potential, ® at the Stern layer usually is referred
to as the zeta-potential, ¢
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Mixed Approximation of the Poisson
equation

Module name: ModelMixedPoisson
Module subroutines: MixedPoisson
Module authors: Mika Malinen
Document authors: Mika Malinen

29.1 Introduction

In some cases obtaining an accurate approximation of the flux connected with the solution of the Poisson
equation may be of a particular interest. To this end, the flux may be introduced as an additional independent
variable which is solved simultaneously with the associated scalar variable. Such approximations where two
finite elements spaces are employed at the same time are generally known as mixed methods.

The mixed problem considered here also provides a basic example of the application of divergence-
conforming finite elements. They are also known as face finite elements and offer a natural choice when just
the continuity of the normal component of the solution can be assumed. It should be noted that the selection
of face finite elements is not complete yet, so discretizations over simplicial (i.e., triangular or tetrahedral),
quadrilateral and hexahedral meshes are only supported currently.

29.2 Governing equations and the weak formulation
Let us consider rewriting the Poisson problem

—div(aVu) = f on§,
u=g only, (29.1)
aVu-n=q only
as
q—aVu=0 on{),
—divg = on €,
7=/ (29.2)
u=g only,
g-n=q onls.

Here a is a material parameter and the physical interpretations of the fields u and g depend on a case. For
example, v may be the temperature or a potential variable, while g may represent the heat flux, electric field,
current density, etc.
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If U = L2(92) denotes the set of square-integrable scalar functions over the d dimensional body {2, we
are thus led to seeking the weak solution of the flux in the space of divergence-conforming functions defined
by

Q=1{ve LN divv € Ly(Q) and v - m = g on Ty}.

By defining ;1 = 1/a, multiplication with test functions and integration by parts lead us to seeking (q,u) €
Q x U such that

/uq'deJr/udivde:/g(v~n)dS,
Q r

(29.3)
divqwdf) = —/fwdQ,
Q

D\:o

for any (v, w) € Q, x U, with the test space of fluxes being defined by
Qo= {v e Ly(Q)?| divv € Ly(Q) and v -1 = 0 on Ty}

As a generalization, the scalar parameter i can be replaced by a tensor of order 2. In addition the total time
derivative may be added to the model. The weak formulation (29.3) is then replaced by

/uq-de—l—/udivde:/g(v-n)dS,
Q Q

i (29.4)

/divqwdQ—/(%—i—a.q)wdQ:—/fwdQ,
Q Q Q

where p is a second-order tensor and a is the convection velocity treated as a model parameter.

It is worth noting that the standard Neumann boundary condition is now built in the construction of the
solution space, i.e., it is specified as an essential boundary condition in the mixed formulation. On the other
hand the standard Dirichlet condition is handled as a natural condition. The boundary conditions of the
standard and mixed formulation have thus opposite roles to another.

Finite element approximations to the solution of (29.3) are constructed in the standard manner by ex-
pressing the weak formulation in terms of finite element versions of the solution and test spaces. For the
available face finite elements a natural finite dimensional version of U is based on functions which are con-
stants elementwise. For additional details on the construction of divergence-conforming finite elements see
also the Appendix “Face and edge elements” of the ElmerSolver Manual.

29.3 Keywords

Material mat id

Material Parameter Real
This keyword specifies the value of a.

Material Tensor(3,3) Real
This keyword defines the tensor p in the generalized model (29.4).

Convection Velocity i Real
The components of the convection velocity a may be given by using these keywords.
Solver solver id
Equation String
A describing name for the solver.

Procedure File "ModelMixedPoisson" "MixedPoisson"
The name of the solver subroutine.
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Variable
The name of the solver variable can be chosen freely (but it must be used consistently elsewhere).

Variable DOFs Integer
The value of this keyword should be 1.

Second Kind Basis Logical
This keyword specifies whether the Brezzi-Douglas-Marini space or the Nédélec face elements
of the second kind are used in two or three dimensions, respectively.

Element String
A special element definition is needed to obtain a suitable set of degrees of freedom. The solver
should be able to create an automated value for this keyword provided the value of the key-
word "Coordinate System" specifies the dimension of coordinate system basis. That is,
one should use the value "Cartesian 2D" or "Cartesian 3D" to specify the coordinate
system.

Body Force bf id

Source Field Real
The value of this keyword gives f.

Boundary Condition bc id

Scalar Field Real
This keyword is used to define the data g.

0 {f} 7 Real
If the solver variable has been given the name Q, this keyword defines a vector g so that its
normal trace g - n is approximated by q,, - n, with g,, the finite element solution. The value
of this keyword defines the components §;, j € {1,2,3}, with respect to the global Cartesian
coordinate system.
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Block Preconditioning for the Steady
State Navier-Stokes Equations

Module name: ParStokes, PressurePrecond, VelocityPrecond

Module subroutines: StokesSolver, PressurePrecond, VelocityPrecond
Module authors: Mika Malinen, Jonas Thies, Juha Ruokolainen
Document authors: Mika Malinen

30.1 Introduction

The discretization of the incompressible Navier—Stokes equations usually leads to large linear systems which
cannot be solved efficiently with the standard iterative methods. Special preconditioning strategies should
therefore be employed to obtain rapid convergence of iterations. In this section we describe a special solver
for the steady state Navier—Stokes equations which has utility when the Reynolds number is moderate. The
development of the solver was originally motivated by needs to solve the full Stokes equations in connection
with glaciological simulations. Therefore, the possibility to utilize parallel computation has been in mind
from the very beginning (the module name comes from Parallel Stokes solver).

The speciality of the solver is that it contains an in-built two-level iteration scheme to handle the linear
systems arising from the linearization and discretization. Inner iterations can be associated with precon-
ditioning and they provide search directions for the outer iterative method (GCR) applied to the primitive
problem. The preconditioning strategy is here based on the idea of block preconditioning via utilizing the
natural block structure of the discrete system. In practice simpler auxiliary problems need to be solved in
order to find the update directions for the velocity and pressure unknowns in a decoupled manner. In this way
the door is opened to utilizing other efficient methods, such as multigrid methods for the discrete Poisson
problems, in connection with the solution of the more complicated problem.

The alternate flow solver contained in the ParSt okes module basically mimics the standard Navier—
Stokes (NS) solver of Elmer. However, it does not provide all features available in the standard NS solver.

30.2 The model

The equations to be solved are written as

po(u - V)u — div[2u(D)D(u)] +'Vp = Pog; (30.1)
—divu =0

or

—div[2u(D)D(u)] + Vp = pog,

30.2
—divu =0 ( )
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when the effect of convection is neglected to obtain the Stokes equations. Here D(w) is the symmetric
part of the velocity gradient, the constant pg is the fluid density and p is the fluid viscosity. For example,
in the case of Glen’s flow law we have u(D) = 1/2A*[I,(D)]*~Y/2, with A and k parameters and
I,(D)=1/2(D - D).

Common boundary conditions may be expressed as

u=u onlp,
2u(D)D(u)n —pn=38 only, (30.3)
u-n=0 and nx[2u(D)D(u)n]xn=—-Fnxuxn onlg.

Here 4 is the specified velocity, 3 is the specified traction, and also the friction coefficient 5 > 0 is given as
initial data.

30.3 Linearization

Either Newton’s method or the strategy of Picard type can be used to linearize the effect of viscosity. The
possible convection term is always linearized with the Picard method.

30.4 Discretization aspects

The solver is tailored to the case of the lowest-order continuous pressure approximation. Equal-order approx-
imations of (u, p) are unstable, but the solver offers the following two strategies to obtain stable methods:

o P5-P1/Q>-Q1 approximation. The polynomial order of the velocity approximation can be taken to be
of the second order. This option requires that the finite element mesh contains second-order elements
based on the Lagrange interpolation.

o A hierarchic version of bubble-stabilized methods. The lowest-order velocity approximation may also
be enhanced relative to the pressure by using elementwise bubble functions. The richness of velocity
approximation depends on how many bubble basis functions are constructed. For example, the set of
basis functions for the linear triangular and tetrahedral elements can be augmented with one interior
bubble function by giving the element type definition Element = "p:1 b:1" in the Equation
section. Analogous rectangular and brick elements may also be constructed, but our experience is
that more than one bubble function may be necessary to obtain stability, making this strategy less
attractive. It is recommended that the definition Element = "p:1 Db:4" is generally used in three
dimensional cases. The (J2-Q); and P»-P; approximation methods may require less computational
work, especially for three-dimensional problems where the burden of numerical integration in the
assembly phase is increased significantly.

It is noted that other instabilities generally arise when the flow is convection-dominated. The computa-
tional methods of the solver have not been designed to handle this scenario, i.e. the Reynolds number for the
flow should be moderate.

30.5 Block preconditioning

The linearization and discretization of the flow model considered leads to solving linear systems of the form

A, BT v| | F
55 L] o0
where Ay, is the coefficient matrix for the velocity unknowns at the nonlinear iteration step £ + 1 and B is
the divergence matrix. If the linear system (30.4) is abbreviated as Kx = b, the outer iterative method based
on the generalized conjugate residual method (GCR) can be used to generate iterates z:(*) that minimize the

residual 2-norm
b — Ka ™|
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over the search direction space
X, =20 + span{s(l)7 s@ s(k)}

where 2(?) is the initial guess. In this setting, the preconditioner is considered to be an operator P which,
given the previous iterate, produces the new search direction s(*+1),
Here the search directions are found as approximate solutions of systems

psk+D) — p _ Ko(R) (30.5)

The preconditioner matrix is selected to be of the form

p_ { ’ BQT } (30.6)

where T approximates A and Q = p~' M, with M the pressure mass matrix. By default the choice T' = A is
used. An alternate is to select 7" to be the block diagonal approximation of A or the scaled vector-Laplacian
matrix, which is the discrete version of the operator —u div V subject to suitable boundary conditions.

To apply the preconditioner via performing approximate solves of (30.5), the user must define methods
for solving subproblems of the type

QP — ¥ and TV D — R _ pTspUtD)

or, in practice, their preconditioned versions

(Qpa)ép(kﬂ) _ Rgf) (30.7)
and R
(TP;l)(SV(kH) _ R(f) _ BTsyk+1). (30.8)

The efficiency of the block-preconditioned solver depends heavily on how these auxiliary problems are
solved (the solves associated with the coefficient matrix 7" are the most critical). A crucial aspect of the
methodology is that these subsidiary problems can be considerably easier to solve than the original fully
coupled system. They may also be solved inexactly without impairing the performance of the preconditioner.
In addition, it is noted that performing highly accurate solutions of the linearized systems (30.4) is not needed
in the beginning of the nonlinear iteration when the iterates are not accurate. The solver provides an option
to employ adaptive stopping criteria so that the solution accuracy for (30.4) is adapted automatically based
on the size of the current nonlinear error.

30.6 Defining additional solvers for subsidiary problems

If the block preconditioner is applied, the solver input file must contain two additional solver sections to
enable the assembly of the subsidiary problems with the coefficient matrices 7" and (). In this connection
special equation names (given as the value of Equation keyword) have to be used. If the value of the
parameter d defines the space dimension, these solver sections should be written as

Solver 1
Equation = "Velocity Preconditioning"
Procedure = "VelocityPrecond" "VelocityPrecond"
Variable = "V"

Variable DOFs = $d
! Potential commands to adjust the solution of velocity
! preconditioning problems:

End
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Solver 2

Equation = "Pressure Preconditioning"
Procedure = "PressurePrecond" "PressurePrecond"
Variable = "p"

Variable DOFs = 1
! Potential commands to adjust the solution of pressure
! preconditioning problems:

End

The first solver section is needed for creating the velocity preconditioning system (30.8), while the second
solver section corresponds to the pressure preconditioning system (30.7). Each of these sections may also
contain additional keyword commands to change the default linear solver and its parameters. The default
variable names V and P can be changed freely.

If a boundary condition © = @ of Dirichlet type is specified, the variable of the velocity preconditioning
equation §V (the Elmer variable V above) must also be constrained similarly by using the homogeneous
Dirichlet condition. Usually there is no need to specify boundary conditions for the pressure preconditioning
variable.

30.7 Examples

The solver described here has for example been applied to simulate flows of ice sheets. To obtain an example
in this field, see the ISMIP HOM A test case

.../elmerfem/fem/tests/ParStokes_ISMIP_HOM_ A010/

in the source code repository.

30.8 Keywords

Material material-id

Density Real
This keyword is used to define the density pg.

Viscosity Model String
This keyword can be used to select a more advanced viscosity model such as Glen’s law. For
available options see the documentation of the standard Navier—Stokes solver.

Viscosity Real
This keyword is used to define directly the viscosity p.

Constant-Viscosity Start Logical
In some cases it may be useful to start the nonlinear iteration with a constant viscosity although
the intention is eventually to use another model. Starting with a constant viscosity can be avoided
by giving the value False for this keyword.

Solver solver—id
Equation String
This keyword declares the name of the equation.
Procedure File ’'’ParStokes’’ ’’StokesSolver’’
The name of the file and procedure.
Variable String
This keyword is used to declare the name of the solution.
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Variable DOFs Integer
The value of this keyword defines the number of unknown scalar fields and must hence equal to
d + 1 where d is the spatial dimensionality of the computational domain. The unknown scalar
fields are always numbered in such a way that the highest running number is associated with the
pressure solution.

Convective Logical
If the value True is given, the convection term will be included so that the steady state version
of the incompressible Navier—Stokes equations is solved.

Nonlinear System Convergence Tolerance Real
This keyword defines the stopping criterion for the nonlinear iteration. The nonlinear iteration is
terminated when the maximum number of nonlinear iterations is reached or when

16— K(z)zll2/[Ibll2 < en,

where ¢ is the value of this keyword.

Nonlinear System Max Iterations Integer
This keyword defines the maximum number of nonlinear iterations.

Nonlinear System Newton After Iterations Integer
If n is the value of this keyword, n Picard updates are performed before switching to Newton’s
method.

Nonlinear System Newton After Tolerance Real
If the norm of the nonlinear residual is smaller than the value of this keyword, then the nonlinear
iteration method is switched to Newton’s method.

P2-P1 Approximation Logical
This keyword can be used to select the P»-P;/(Q)2-(Q)1 approximation method. The finite element
mesh must then contain second-order finite elements based on the Lagrange interpolation.

Element String
If bubble functions are used as the stabilization strategy, then an element definition must be given
to specify the number of bubble functions. The recommended choice is "p:1 b:4" for three
dimensional simulations.

Block Preconditioning Logical
If the block preconditioner is used, the value of this keyword must be True.

Block Diagonal A Logical
This can be used to select the preconditioner matrix 7 to be the block diagonal approximation of
the A-block.

Use Velocity Laplacian Logical
This can be used to select T to be the scaled vector-Laplacian matrix. Then the keyword Block
Diagonal A mustalso setto be True.

Linear System Convergence Tolerance Real
When the block preconditioning is used, the value of this keyword defines the stopping criterion
for the outer GCR method applied to (30.4). The iteration is terminated when

I — KzDl2/||b]]2 < e,

where ¢, is the value of this keyword.

Linear System Adaptive Tolerance Logical
The usage of adaptive stopping criteria can be activated with this keyword.

Linear System Relative Tolerance Real
If the adaptive stopping criteria are employed, this keyword controls the solution accuracy for
the linear systems (30.4) during the nonlinear iteration. The stopping tolerance ¢, for (30.4) is
chosento be e, = g - ng\’f), with ngr the value of this keyword and 77](\];) the previous nonlin-
ear error. If the value obtained in this way is smaller than the value of the keyword Linear

System Convergence Tolerance, then this has no effect.
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Linear System Base Tolerance Real
The stopping tolerance for solving (30.4) can never be larger that the value of this keyword.

Linear System Max Iterations Integer
When the block preconditioner is used, this keyword is used to define the maximum number of
the outer GCR iterations applied to (30.4).

Linear System GCR Restart Integer
The outer GCR iteration can be restarted after m iterations to avoid the increasing cost of the
orthogonalization procedure. The value of this keyword specifies the parameter m. The default
value is m = 50. Giving a larger value can be beneficial if convergence problems relating to the
outer iteration are met.

Body Force bf-id

Flow BodyForce i Real
This keyword is used to define the i’s component of the body force vector g.

Boundary Condition bc-id

Surface Traction 1 Real
This keyword can be used to specify the components of the traction vector 3. An alternate for
the phrase Surface TractionisPressure.

Normal Surface Traction Real
This keyword can be used to specify a surface traction in the form § = pn where p is the value
of this keyword. An alternate for the phrase Normal Surface Traction is External
Pressure.

Slip Coefficient i Real
This defines the friction coefficient such that the friction force is proportional to the velocity in
the direction 1.

CSC —IT Center for Science (cc



Model 31

Rotational Form of the Incompressible
Navier-Stokes Equations

Module name: Stokes

Module subroutines: StokesSolver
Module authors: Mika Malinen
Document authors: Mika Malinen

31.1 Introduction

The basic incompressible flow solver of Elmer uses the standard formulation of the Navier—Stokes equations.
This section describes an alternative solver based on the rotational form of the Navier—Stokes system. In
addition, some iterative methods that utilize splitting strategies in the solution of the associated discrete
problems are represented.

31.2 Field equations

Using the vector identity

1

(@- V)= (Vxud)xid+ §V(ﬁ-ﬁ), (3L.1)

the Navier—Stokes system for incompressible Newtonian fluid may be written as

<8ﬁ+(vX i) x *) 2uV -E(@) + VP =1b.

— U U | — -E(u =0,
P\ ot H (31.2)

V-i=0,

where € is the stretching tensor (2.4) and
I

P=p+ —pu-u (31.3)

2

is the total (Bernoulli) pressure. The stress &, which may be of interest especially near boundaries, can now
be expressed as

_ 1 = _
o= (—P+ 5pﬂ-ﬁ)]+2ué(ﬁ). (31.4)

The system (31.2) provides an alternative starting point for finding discrete solutions. Thus, instead
of approximating the conventional primitive variables (i, p), we here look for discrete solutions of (@, P).
It should be noted that if the convection term is not taken into account the system (31.2) reduces to the
(generalized) Stokes equations. The pressure variable then reduces to the standard pressure, i.e. P = p.
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31.3 Boundary conditions

Either the normal velocity @ - 73, with 7 the outward unit normal vector, or the normal surface force 7 - 77 can
be prescribed on the boundary. The tangential boundary conditions can be handled systemically in a similar
manner. Thus, if  is a tangent vector to the boundary, one may prescribe either the tangential velocity @ - ¢
or the tangential surface force 77 - 1.
A rather common way to define an outflow boundary condition for the Navier—Stokes equations is to
impose the normal surface force condition
on-n =0, (31.5)

which ensures the uniqueness of the pressure solution. This condition arises when the homogeneous natural
boundary condition (do-nothing boundary condition) is imposed in the standard formulation of the Navier—
Stokes equations. It should be noted, however, that the homogeneous natural boundary condition associated
with the variational formulation of (31.2) can be written as

- — 1 .

—Pi+2uen =on — ip(ﬂ- @) = 0.
Thus, a distinction must here be made between the surface force boundary condition and the natural boundary
condition. In the case of the rotational form, imposing the homogeneous natural boundary condition in the

normal direction yields

I
n-fi=gpi-i,
which, except for the special case of irrotational steady flow of a non-viscous fluid, may be an artificial
boundary condition. Nevertheless, the tangential natural boundary condition associated with the rotational

form is equivalent to the condition of vanishing tangential surface force, i.e. 77 - t = 0.

Qll

31.4 Linearization

The linearization of the equation of motion in (31.2) can be done by utilizing the Newton iteration. This
iteration strategy is based on approximating the rotational convection term as

(Vxi)xim(Vxt)xad+(Vxad)xd—(Vxad) xa

where d is the previous velocity iterate. In this connection, the nonlinear boundary condition corresponding
to the outflow condition (31.5) is linearized as

1 _
—-P+ 5p(2d’~ﬁ—d’-d’)+2ué(ﬂ)ﬁoﬁ:0.
An alternative linearization strategy is to apply Picard’s method. Here this method corresponds to lin-
earizing the convection term and the outflow boundary condition as

(Vxu@)xid~(Vxd)xad

and 1
—P + ipci- 4+ 2ue(w)n -1 = 0.

The convergence of the Newton method can be considerably faster than that of Picard’s method. Our
experience is that this can be the case, especially, when the steady solutions are sought for moderately large
Reynolds numbers. However, a difficulty with the Newton method is that the iteration may not be convergent
for arbitrary initial guesses. This trouble can often be avoided by performing some Picard updates before
switching to Newton’s method. In the case of time-accurate simulations this is usually unnecessary since
suitably accurate initial guesses are often available from the previous time levels.
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31.5 Discretization aspects

The solver is tailored to the case of the lowest-order continuous pressure approximation, but it does not
provide any in-built technique to stabilize discrete solutions based on inherently unstable equal-order ap-
proximations of (@, P). The solver offers two strategies which can be used to obtain stable methods. First,
one can use elements where the velocity approximation is augmented by using elementwise bubble func-
tions. Second, one can utilize hierarchic versions of the second-order elements to rise the polynomial order
of the velocity approximation. Both the strategies can be put into effect by utilizing the shape functions for
p-elements. Some stable approximation methods are summarized as follows.

e A hierarchic version of Py-P; approximation for triangular and tetrahedral elements. If the ba-
sic mesh consists of linear elements (element type 303 or 504), giving the element type definition

Element = "p:2" in the Equation section switches to the P»-P; approximation where the ve-
locity approximation is enhanced by using hierarchic basis functions associated with the mid-edge
nodes.

o A hierarchic version of QQ2-Q1 approximation for rectangular and brick elements. Analogously to
the previous case, if the basic mesh consists of bilinear or trilinear elements (element type 404 or

808), giving the element type definition Element = "p:2" in the Equation section switches to
the (Q2-Q)1 approximation where the velocity approximation is enhanced by using hierarchic basis
functions.

e A hierarchic version of bubble-stabilized methods. The velocity approximation may also be enhanced
relative to the pressure by using elementwise bubble functions. The richness of velocity approximation
depends on how many bubble basis functions are constructed. For example, the set of basis functions
for the linear triangular and tetrahedral elements can be augmented with one interior bubble function
by giving the element type definition Element = "p:1 b:1" inthe Equation section. Analogous
rectangular and brick elements may also be constructed, but our experience is that more than one
bubble function may be necessary to obtain stability, making this strategy less attractive. The @Qs-
@1 and P»-P; approximation methods may generally require less computational work, especially for
three-dimensional problems where the number of interior bubble functions can be large (notice that in
the case of the time-dependent equations the interior degrees of freedom are not eliminated by using
the method of static condensation).

It is noted that other instabilities may arise when the flow is convection-dominated. A potentially useful
aspect of using the rotational formulation is that, as compared with the standard convection form, instabilities
relating to dominating convection may be more benign.

31.6 Utilizing splitting strategies by preconditioning

Discrete Navier—Stokes problems lead usually to large linear systems which are customarily solved with
iterative algorithms, in combination with preconditioning. The general preconditioning strategy used in
Elmer is based on the computation of incomplete factorizations. The performance of these preconditioners
is case-dependent and may not always be satisfactory.

More efficient solution algorithms for a particular problem can often be developed by exploiting the
block structure of the linear system. In the following such a solution strategy will be described. Since
the application of the preconditioner considered is based on solving certain simpler problems, the door is
opened to utilizing other efficient methods, such as multigrid methods for the discrete Poisson problems, in
connection with the solution of this more complicated problem.

The linearization and discretization of (31.2) leads to solving linear systems of the form

[g%THg}:H}’ (31.6)

where A is the coefficient matrix for the velocity unknowns and B is the divergence matrix. The solution
strategy we consider is based on applying a preconditioned Krylov subspace method to (31.6). Given a
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previous iterate (Uy, I1;,), the preconditioning is performed via solving approximately systems of the form

A 0 0 Uns1 — Up F — AU, — B1I,,
B M 0 Vk41 = | —BUy . (31.7)
B H S Hk+1 - Hk _BUk

Here M is the pressure mass matrix, while H and S are approximations of (scaled) Laplacian operators. In
practice the approximate solution of this block triangular system is generated by applying linear solvers to
systems with the coefficient matrices A, M and S. A crucial aspect of the methodology is that these sub-
sidiary problems can be considerably easier to solve than the original fully coupled system. They may also
be solved inexactly without impairing the performance of the preconditioner. Moreover, to our experience
the performance of the preconditioner is insensitive to discretization parameters and depends only mildly on
the Reynolds number, especially in the case of the evolutionary equations. The method is also suitable for
finding the steady solutions via using large time step sizes.

The outer iterative method applied to the primary system (31.6) is based on GCR, while the user can
specify linear solvers which are used to solve the subsidiary problems related to the preconditioning. It
should be noted that boundary conditions associated with the preconditioning operators are built-in, so the
user need not specify these constraints.

31.7 Restrictions

Currently, only homogeneous surface force conditions can be imposed on the boundary. If Q2-Q; or Py-P1
approximation is used, the boundary conditions are set by employing the linear interpolation of boundary
data. As a result, optimal accuracy may not be realised. If the preconditioning is done via solving (31.7), the
time discretization must be done using BDF(1) and viscosity should be constant.

If decoupled solution strategies are employed, parallel computations are possible only with the version
that does not involve performing the outer Krylov iteration update.

31.8 Keywords

Material material-id

Density Real
This keyword is used to define the density p.

Viscosity Real
This keyword is used to define the viscosity .

Solver solver—id

Equation String
This keyword declares the name of the equation.

Procedure File ’’Stokes’’” ’’StokesSolver’’
The name of the file and procedure.

Variable String
This keyword is used to declare the name of the solution.

Variable DOFs Integer
The value of this keyword defines the number of unknown scalar fields and must hence equal to
d + 1 where d is the spatial dimensionality of the computational domain. The unknown scalar
fields are always numbered in such a way that the highest running number is associated with the
pressure solution.

Convective Logical
If the value ’ " False’ ' is given, the convection term will be neglected so that the generalized
Stokes equations are solved.
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Nonlinear Iteration Method String
This keyword defines the nonlinear iteration method. The default is the Newton method, and
Picard’s method can be chosen by giving the value ’ " Picard’’.

Nonlinear System Convergence Tolerance Real
This keyword defines the stopping criterion for the nonlinear iteration. The nonlinear iteration is
terminated when the maximum number of nonlinear iterations is reached or when

| | <ror] [5]

)

where T'OL is the value of this keyword.

Nonlinear System Max Iterations Integer
This keyword defines the maximum number of nonlinear iterations.

Nonlinear System Newton After Iterations Integer
If n is the value of this keyword, n Picard updates are performed before switching to Newton’s
method.

Nonlinear System Newton After Tolerance Real
If the norm of the nonlinear residual is smaller than the value of this keyword, then the nonlinear
iteration method is switched to Newton’s method.

Nonlinear System Relaxation Factor Real
If this keyword is used, then the new nonlinear iterate is taken to be

(1= XN (U, 1) + AN(Ug—1, 1),

where ) is the value of this keyword.

Block Preconditioning Logical
If the block preconditioning via (31.7) is used, the value of this keyword mustbe ’ ’ True’ ’ .

Linear System Convergence Tolerance Real
When the block preconditioning is used, the value of this keyword defines the stopping criterion
for the outer GCR method applied to (31.6).

Linear System Max Iterations Integer
When the block preconditioning is used, this keyword is used to define the maximum number
of the outer GCR iterations applied to (31.6). It should be noted that the GCR iteration requires
that all previous iterates are saved. Especially in the case of time-accurate simulations the con-
vergence of the preconditioned GCR method is expected to be rapid so that saving all the iterates
is not expected be expensive. If the block preconditioning is used, the solver allocates computer
memory based on the value of this keyword, so giving an exaggerated value should be avoided.

Body Force bf-id

Body Force i Real
This keyword is used to define the i’s component of the body force vector b.

Boundary Condition bc-id

Outflow boundary Logical
If the value '’ True’’ is given, then the normal outflow boundary condition (31.5) will be
used. Note that this does not define the tangential boundary conditions which have to be specified
separately.

If the preconditioning is done via solving (31.7), three additional solver sections need to be written to define
linear solvers for subsidiary problems with the coefficient matrices A, M and S. In this connection special
equation names (given as values of Equat ion keyword) have to be used. These solver sections should be
written as follows.
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Solver 1

Equation = "Velocity Preconditioning"
Procedure = "VelocityPrecond" "VelocityPrecond"
Exec Solver = "before simulation"

Variable Output = False
Variable DOFs = $ d

Variable = "VelocityCorrection"

End

Solver 2

Equation = "Divergence Projection"
Procedure = "DivProjection" "DivProjection"
Exec Solver = "before simulation"

Variable Output = False
Variable DOFs = 1

Variable = "DivField"
End
Solver 3
Equation = "Pressure Preconditioning"
Procedure = "PressurePrecond" "PressurePrecond"
Exec Solver = "before simulation”

Variable Output = False
Variable DOFs = 1

Variable = "PressureCorrection"

End

The first solver section defines a linear solver for the preconditioning system with the velocity matrix A,
while the second solver section defines a solver for the system involving the pressure mass matrix M. Finally,
the third section is related to the system with the coefficient matrix .S arising from the discretization of the
Laplacian operator. Each of these sections should also contain the standard keyword commands that actually
define the linear solver. Some examples of such definitions can be found in the tests subdirectory of the fem

module.
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Free Surfaces, Phase Change and
Particle Dynamics
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Level-Set Method

Module name: LevelSet

Module subroutines: LevelSetSolver, LevelSetDistance, LevelSetIntegrate, LevelSetCurvature, LevelSet-
Timestep

Module authors: Peter Réback, Juha Ruokolainen

Document authors: Peter Riback

32.1 Introduction

There are a number of problems involving free surfaces in continuum mechanics. There are two main strate-
gies to solve them using the finite element method: Lagrangian and Eulerian approach. In the Lagrangian
approach the free surface is solved exactly so that it is also an interface between the individual elements. This
requires that the computational mesh is distorted in a way that this is possible. However, often the changes
in geometry may be too drastic or even the whole topology may change and the Lagrangian approach is no
longer feasible. The Eulerian approach describes the interface in a fixed mesh using some additional variable
to describe the position of the interface. One possible Eulerian technique is the level-set method (LSM).

In the level-set method the free surface is given as a zero level-set of a higher dimensional variable. E.g.
for 2D surfaces the level-set function is defined in 3D space. The level-set function is usually defined to
be a signed distance so that inside the domain it obtains a positive value and outside a negative value. The
changes in the value of the level-set function mean also that the interface changes the position.

This module includes several different subroutines that may be used when applying the level-set method.
Currently there is no reinitialization strategy for 3D problems. Also some other procedures are not fully
optimized for the best performance. Therefore the current implementation is best applied to quite simple 2D
problems.

32.2 Theory

The interface is defined by a marker function ¢ so that at the interface ¢ = 0, inside the fluid of interest
¢ > 0 and elsewhere ¢ < 0. The interface is update by solving the equation

99

o T Vo=a (32.1)

where « is the convection field and « is the normal flux on the interface. It is quite challenging to solve
the differential equation above without diffusion effects playing a significant role. It is advisable to use 2nd
order time-discretization schemes and short timesteps. More precisely, the Courant number C' = |d|dt/h
should be below unity.

It is desirable that the absolute value of function equals the shortest distance to the zero level-set. How-
ever, as the level-set function is advected this property may be gradually lost. Therefore a process called
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reinitialization may be evoked. In 2D the reinitialization may easily be done by geometric procedure. First
the zero level-set is formed by going through all the elements and finding the line segments that make the
zero level-set. Then the minimum distance of all the nodes is computed by a brute-force search. Assuming
there are NV nodes and M line segments, the search algorithm is /N x M which is quite acceptable complexity
for small cases but may become computationally costly in large cases.

The line segments may be assumed to go with the flow and thereby they form an on-the-fly Lagrangian
mesh. Therefore it is also possible to advect the line segments when the velocity field is given since for
any node 7 = 7+ u dt. After the advection the shortest distance is computed. In the case of no advection
the sign of the distance is inherited from the original level-set function. However, when the level-set is also
convected the sign must be deduced from the geometric information as well. In the current implementation
each line segment is given a flag telling on which side of the element the fluid of interest is located. This
directional information is then used in giving the correct sign for the distance.

The volume of the fluid of interest in the level-set method may be computed over an integral that obtains
a value one inside the fluid and value zero outside the fluid. The Heaviside function H(¢) has this desired
property. However, as the interface does not follow the element division the numerical integration would
result into spurious fluctuations depending on the position of the interface within the elements. To obtain a
smooth behavior the Heaviside function must be regularized.

0, T < —a
H.(z) =1 fla/z) |z|<a (32.2)
1, T >,
where the following has been implemented
1 . us
Flt) == (1 +sin (t—)) (32.3)
2 2
while one could also use 5 ]
F0 =5 = £3) + 5. 624

Here « is the interface bandwidth which equals typically the size of a few elements. Now the volume (area
in 2D) is obtained by the integral

V= [ Hu(¢)do. (32.5)
Q

After the same regularization the area (length in 2D) may be obtained from the integral

A= / 5(0)| V6| dQ (32.6)
Q
where the delta function is
0, |z] > o
O = 32.7
@) {210‘ cos (7), |z|<a. (32.7)

The information obtained by the above integrals may be used to improve the volume conservation of the
level-set advection. If the initial volume V) is known the level-set function may be given a small correction
by

do = oV
A
This correction has no physical basis but it may be argued that a consistently small update of the level-set
function has a minor effect in overall results. It is more important that the volume is conserved since the
history information of the shape of a bubble is gradually lost while the errors in volume are never forgotten.
However, if the fluid of interest is divided into several parts this kind of overall correction does not have any
justification since it could ruin the volume balance between the different domains.

The problems in accuracy may be partially resolved by using an optimal timestepping strategy. This
may be achieved by looking at the velocity field around the active boundary. The normal velocity may be
obtained by u, = U - V. Registering the maximum velocity at band the timestep may be limited so that

(32.8)
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the Courant number is bound. If ds is the maximum allowed change in the position of the zero level-set the
corresponding time-step is dt = ds/ max |uy,|.

In the Eulerian approach to the free surface problems the surface tension force must be smeared out to a
volume force within a narrow band from the interface. The transformation is achieved by using a regularized
delta function,

/ okdl = / okd(P)V e dSd, (32.9)
r Q
where o is the surface tension coefficient and « the curvature of the interface given by
Vo
K=V —=. (32.10)
IVl

In the finite element approach the force cannot be estimated directly since it involves three derivatives of the
level-set function. Therefore we must solve an additional equation for the curvature &,

k— V3K =V - V. (32.11)

Here ¢, is an ad hoc diffusion coefficient that may be used to smooth the resulting curvature field. Otherwise
the sharp corners may result to very large peak values of the curvature. The weak formulation of the above
equation introduces surface fluxes which are evaluated from the normal derivatives of the level-set function.
Once the level-set function and the corresponding curvature have been computed the surface tension may be
applied as a volume force in the flow equations.

32.3 Keywords

LevelSetSolver

This subroutine uses the finite element method to solve the equation (32.1). The implementation is valid in
2D, 3D and axisymmetric problems.

Solver solver id

Equation String "Level Set Solver"
Procedure File "LevelSet" "LevelSetSolver"

The subroutine for advecting the level-set function.

Variable String "Surface”
The name of the level-set function. This may be chosen freely as long as it is used consistently
elsewhere.

Stabilize Logical
Either stabilization or bubbles are used to solve the convection problem. This flag enforces the
stabilization on.

Material mat id

LevelSet Velocity i Real
The velocity field that advects the level-set function. In 2D i=1, 2 and in 3D i=1, 2, 3. This
may be a constant field or also something computed with the Navier-Stokes solver.

Body Force bodyforce id

LevelSet Flux Real
The flux (i.e. the normal velocity) of the level-set function.
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LevelSetDistance

This solver uses the geometric information to compute the signed distance and, if desired, to advect the
zero level-set at the same time. This solver does not solve an equation and hence it does not need to have a
variable of its own. The solver is limited to 2D and axisymmetric cases.

Solver solver id

Equation String "Level Set Distance"

Procedure File "LevelSet" "LevelSetDistance"
The subroutine for renormalizing (and advecting) the level-set function.

LevelSet Variable String "Surface"
This keyword should refer to the name of the level-set variable that is used to advect the field.
The default is Surface.

Exported Variable 1 String "Surface"
In case the level-set variable does not exist it must be introduced. This may be the case if this
subroutine is also used for advecting the level-set function.

LevelSet Convect Logical
Whether to also convect the level-set function. Default is False.

Extract Interval Integer
When this function is used to extract the zero level-set function the user may choose the interval
how often this is done. The default is one. Just extracting the level-set may be useful if one just
wants to save the zero level-set without activating reinitialization.

Reinitialize Interval Integer
When this function is used to reinitialize the level-set function the user may choose the interval
how often this is done. The default is one but often this results to excessive smoothing of the
level-set field. If reinitialization is asked the zero level-set will also be automatically extracted.
Reinitialize Passive Logical
If this keyword is set True the reinitialization is not applied to the level-set field. The field is
only used to extract the zero level-set and compute the corresponding signed distance but this
information is not used to change the original field.

Narrow Band Real
In case that also the convecting is done by this solver there is the possibility to introduce a
narrow band which gives the distance at within the level-set function is recomputed. Default
is co. Typically this should be larger that the level-set bandwidth « used to evaluate surface
integrals.

Filename File
The zero level-set may also be saved. It consists of a number of line segments that are defined
elementwise. The results from the file may be used for visualization, for example, in MatLab. If
no filename is given the zero level-set is not saved.

File Append Logical
If the above is given this flag enforces the results to be appended on the same file rather than
writing over the old results.

Material mat id

LevelSet Velocity 1 Real

LevelSet Velocity 2 Real
If also convection is accounted in this solver the convection field is given by the above expres-
sions. Currently it is not possible to give the desired surface flux as it is not uniquely defined for
the line segments having different normals even at the same point.
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LevelSetIntegrate

This subroutine computes the integrals (32.5) and (32.6). In addition of computing volume and surface
integrals this subroutine may also be used to set the absolute level of the level-set function so that volume is
conserved using equation (32.8). The implementation is valid in 2D, 3D and axisymmetric problems.

Solver solver id

Equation String Level Set Integrate

Procedure File "LevelSet" "LevelSetIntegrate"
The subroutine for computing the integrals.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
defaultis Surface.

LevelSet Bandwidth Real
When computing the values over the domain the interface is treated a with smooth functions.
How smooth the functions are depends on the value of this keyword. Typically the bandwidth
should be such that the interface is extended over a few elements.

Conserve Volume Logical
The volume in the level-set formulation is not conserved by construction. To that end the level
of the level-set function may be tuned so that conservation is enforced. The defaultis False.

Conserve Volume Relaxation Real
If conservation is enforced it may be done only partially as there are inaccuracies in the evalua-
tion of the volume integrals. The default is one.

Initial Volume Real
If conservation is enforced the target volume is given by this keyword. Otherwise the volume
from the first timestep is used as the target value.

LevelSetCurvature

This solver computes the value of the curvature give the level-set function using equation (32.11).

Solver solver id

Equation String Level Set Curvature

Procedure File "LevelSet" "LevelSetCurvature"
The subroutine for computing the curvature.

Variable String "Curvature"
The name of the curvature variable.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
default is Surface.

Curvature Diffusion Real
Artificial diffusion may be used to control the singularities of the curvature field around sharp
corners. The default is zero.

Curvature Coefficient Real
A constant that is used to multiply the curvature field before the solver is exited. This may be
used for example to change the sign of the curvature if the material of interest is on the outside
and not an the inside.

LevelSet Bandwidth Real
The delta function for the volume force may be applied to the curvature field also within this
solver directly. This has the disadvantage that the evaluation is done at nodal points rather than
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at the integration points. However, if the flow solver used may not be modified this may be the
best alternative. If this keyword does not exist, no delta function is used to filter the curvature
field.

Boundary Condition bc id

Levelset Curvature BC Logical
The weak formulation of the curvature computation results to boundary integrals that should be
set at all surfaces where the curvature is computed.

LevelSetTimestep

The solution of the level-set function is accurate only if the timestep is limited so that the local Courant
number along the zero level-set is in the order of one or smaller. A tailored function for setting the timestep
is given in this module. This solver assumes that the level-set variable is named Surface and that this
variable is related to some solver. The velocity needed for setting the timestep should be given by the
keywords LevelSet Velocity i, where i=1, 2, 3.

Simulation
The function call and the needed parameters reside in the Simulation block of the command file.

Timestep Function
Real Procedure "LevelSet" "LevelSetTimestep"

LevelSet Courant Number Real
This keyword gives the desired Courant number of for the level-set solvers. The default for the
desired Courant number is one.

LevelSet Timestep Directional Logical
If the timestep limit is active this option may be used to account only the normal direction of the
interface velocity rather that the absolute direction. Default is False.

Other solvers

Basically the user may give user defined material parameters where the values are computed as a function of
the level-set function. Unfortunately this approach generally uses nodal points for the smearing whereas it
is optimal to use the Gaussian integration points for doing this. There is one exception to this model that has
been implemented for the MaterialModels module, namely the viscosity may be computed at Gaussian
integration points.

Material mat id
Viscosity Model String levelset
This uses the level-set methodology to smear out the viscosity between inside and outside values.

Viscosity Real
The value of the viscosity outside the domain (negative level-set function values).

Viscosity Difference Real
The difference between the inside and outside viscosity values.

Levelset bandwidth Real
The bandwidth at which the viscosity is smeared out between the extreme values.
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Kinematic Free Surface Equation with
Limiters

Module name: FreeSurfaceSolver

Module subroutines: FreeSurfaceSolver

Module authors: Thomas Zwinger, Peter Raback, Juha Ruokolainen, Mikko Lyly
Document authors: Thomas Zwinger

33.1 Introduction

Flows with a free surface are to be found in geophysical as well as technical applications. On large scale
flows the free surface usually is governed by a kinematic boundary condition given as a partial differential
equation. This equation then is solved on the specific boundary in combination with the (Navier)-Stokes
equation and the mesh update solver.

33.2 Theory

The implicit equation describing the free surface is given by
F(Z,t) =z — h(z,y,t), (33.1)

with the explicit position of the free surface h(z,y,t). Mass conservation implies that, with respect to the
velocity of the surface, u,, F' has to define a substantial surface, i.e.,

% +unVE =0. (33.2)

The net volume flux through the free surface then is given by the projection of the difference between the
fluid velocity at the free surface, @ and the velocity of the free surface with respect to the surface normal

—

ay = (ty — @) - 7. (33.3)

In Geophysical context (e.g., Glaciology), a often is referred to as the net accumulation. With the surface

unit normal defined as UF
=, (33.4)
IVE|

this leads to oF
EJrﬁVF: —||VF|a.. (33.5)
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Using the definition in (33.1), (33.5) can be rewritten in its explicit form

1/2
oh\?%  /on\?
@@ e

with the components of fluid velocity vector at the free surface given as @ = (u, v, w)T. The variational

formulation of (33.6) reads as
1/2
dh  Oh  Oh o2 on\?]"
E—!—u%—&—va—y pdV = w+ [1+ e + @ aj ppdV, (33.7)
Q Q

where the occurrence of h in the right-hand side is inserted from the previous time-step/non-linear iteration,
hence linearizing the equation. In case of a horizontally moving mesh, the contribution in form of an arbitrary
Lagrangian-Eulerian (ALE) formulation has to be included (by default is is omitted). With the horizontal
mesh velocity components, Umesh and vmesh, the ALE version of equation (33.6) then reads

1/2
on\?  [on\?

oh oh oh
V— —w =

o Tlar oy

O (0 thmen) T4 (0~ ) S — 0 =
ot U — Umesh Oz U — Umesh By w =

33.2.1 Limiters

In certain cases the free surface is constrained by an upper hpax (2, y, t) and/or a lower Ay (z,y,t) limit.
For instance, the free surface of a fluid contained in a vessel cannot penetrate the vessel’s walls. This adds
the constraint

hmin S h S hmax (339)

to (33.7) converting the variational formulation into a variational inequality. In order to obtain a with (33.9)
consistent solution a method using Dirichlet constraints within the domain is applied. The exact procedure
is the following:

1. construct the linear system: Ah = f, with the system matrix A and the solution vector i on the
left-hand side and the force vector f on the right-hand side

2. set nodes as active if (33.9) is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
h = hmax/min 18 applied

4. the manipulated system is solved: Ah = f
5. aresidual is obtained from the un-manipulated system: R = Ah—f
6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied. As the solver in principle works with second order elements, the limitation procedure only converges
with only the between elements shared nodes being subject to the algorithm described in this section. This
is done automatically by the code.

33.3 Constraints

The code only works in Cartesian coordinates and — by the nature of the differential equation — effectively
converges only in a transient simulation. Although, technically, it also can be run in steady state simulations.
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33.4 Keywords

Solver solver id

Equation String "Free Surface Limited"

Variable String Varname
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere, as Varname is used as a preceding keyword for the exported variable of
the residual, as well as for the accumulation

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceSolver" "FreeSurfaceSolver"
The following four keywords are used for output control.

Velocity Implicitness Real
Determines the level of implicitness in the velocity field. Values shall be in the interval ¢, €
[0,1]. The velocity is interpolated between the current and the previous time level such that
u=(1—c,)u"" ! + ¢, u™. Thus, unity corresponds to complete implicitness (default).

Maximum Displacement Real
This limits the maximal local displacement in a time-step. If exceeded, relaxation automatically
is applied in order to limit the displacement.

Apply Dirichlet Logical
Takes the variational inequality method (here referred to as Dirichlet method) into use. The user
should be aware that if the method is applied (value True) this implies setting the Nonlinear
Max Iterations to a value large enough for the method to converge. The default value is
False.

ALE Formulation TLogical
If set to True, the mesh horizontal mesh velocity is taken into account in the convection term.
The default value is False.

Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0

Stabilization Method String
Sets stabilization method. Either Stabilized or Bubbles can be set.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max||dR/(R — Ro)|| < e

where e is the value given with this keyword.

Exported Variable 1 String
The residual, which is the essential property in solving the variational inequality has to be given
as an exported variable. The name is fixed by the variable name Varname given in the Solver
section plus Residual. For instance, if the variable is named FreeSurf, the exported vari-
able is expected to be FreeSurf Residual.

Exported Variable 1 DOFs Integer
As the free surface is a scalar, the value has to be set to 1.

Use Linear Elements Logical
If set to true, forces usage of linear element types despite the order of the mesh. Mind, that in
case of limited elements, by default linear elements are used. The default value is False.

Equation eg id
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Convection String
The type of convection to be used: None (default), Computed, Constant. In the last case,
the keyword Convection Velocity is expected to be found in the Material section.

Body Force bf id

Varname Accumulation Real
sets the value for the normal accumulation/volume flux, a ; for the variable name varname. If
this keyword is set, the following keyword Varname Accumulation Flux is ignored (as
those are excluding)

Varname Accumulation Flux i Real
sets the accumulation flux in Cartesian components (i = 1,2,3 in 3-dimensional problem). The
resulting vertical flux then is evaluated using the surface normal.

Initial Condition ic id

Varname Real
Initiation of the free surface variable (sets initial shape of surface)

Boundary Condition bc id

Body ID Integer
usually, the solver is run on a lower dimensional boundary of the model. Then a separate body-
id has to be defined and all component of the solver (Equation, Body Force, Equation,
Initial Condition and Material) defined accordingly.

Varname Real
Dirichlet condition of the free surface variable (makes really sense only on dimension - 2 bound-
aries, e.g. lines in case of a three dimensional run)

Mesh Update i Real
usually, the free surface evolution should have a feedback on the domain’s geometry. This usually
is achieved by running the MeshUpdate Solver and linking the variable of the free surface with
the corresponding component of the Mesh Update (i=1,2,3). For instance, in a 3-dimensional
case with the variable name FreeSurf this could read as: Mesh Update 3 = Equals
FreeSurf
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Free Surface with Constant Flux

Module name: FreeSurfaceReduced
Module subroutines: FreeSurfaceReduced
Module authors: Peter Riback

Document authors: Peter Riback

34.1 Introduction

The determination of free surface is often an essential part of solving a fluid dynamics problem. Usually the
surface is found by solving a free surface equation resulting from force balance, or by finding the free surface
from zero flux condition. In some extreme cases both of these methods were found to fail and therefore an
alternative approach was taken. The method can only be applied to stationary 2D or axisymmetric flows
where the total flux is conserved. This is the case, for example, in many coating and drawing processes.

34.2 Theory

The determination of the free surface takes use of the conservation of mass. If the flow is stationary the mass
flux through all planes cutting the flow must be same. In the following we concentrate on the axisymmetric
case which has more applications than the 2D case.

In the axisymmetric case the mass flux is obtained from

R
f(R,2z) = / (- ) rds. (34.1)

Ro

The free surface is set by finding a surface profile R(z) such that the integral is constant for all nodes on the
surface, or
f(R, Zj) = f(Rl,Zl) Vj S [I,M]. (34.2)

Note that the factor 27 has been consistently omitted since it has no bearing to the shape of the free surface.

The subroutine uses simple heuristics to determine the direction of the flow on the free surface. The first
upwind node z; on the free surface is assumed to be fixed and the corresponding flux is f;. The new radius
is set approximately by assuming that the added or removed flow has the same velocity as the velocity on
the surface. Then the corrected radius is found from

unR(m) dR™ = f(R(m), Z) _ f(R1, Zl) (34.3)

or

fR™,2) — (B, 21)

(m+1) _ p(m)
RO™+D = ROm) 4 ey

(34.4)
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After the new profile is being found the element nodes are moved to the new positions. The nodes that are
not on the surface may be mapped in many different ways. The straight-forward strategy is to use linear 1D
mapping. Also more generic 2D mapping may be used.

The free surface and the fluid flow must be consistent and therefore the system must be solved iteratively.
When convergence of the coupled system has been obtained the suggested d R vanishes and the free surface
solver does not affect the solution.

Sometimes the free surface solver overshoots and therefore it may be necessary to use relaxation to
suppress the large changes of the solution.

Note that the free surface solver is simple based on mass conservation. No forces are applied on the free
surface. If surface tension needs to be taken into account it may be done while solving the Navier-Stoke
equation.

34.3 Applicable cases and limitations

The method has some limitations which are inherent of the method:

e Limited to steady-state simulations.

e Limited to 2D and axisymmetric cases.

o If there is back-flow within the free surface flow the correctness of the solution is not guaranteed.
Some limitations result from the current implementation:

o The free surface must be oriented so that the flow is on its negative side.

o There may be several free surfaces of this type but they must be directed the same way.

e The line integral from Ry to R may cause some difficulties in unstructured meshes. Therefore struc-
tured meshes are favored.

o At the moment density is assumed to be constant and therefore only incompressible fluids may be
considered.

34.4 Keywords

Solver solver id

Equation String "Free Surface Reduced"

Variable String dx
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceReduced" "FreeSurfaceReduced"
The following four keywords are used for output control.

Perform Mapping Logical
If this keyword is True the coordinate mapping is done locally by using linear 1D mapping.
This is also the default. Also 2D mapping is possible by using a separate mesh update solver.
Then the keyword should be set to False.

Nonlinear System Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0
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Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max ||[dR/(R — Rop)|| < €
where € is the value given with this keyword.
Boundary Condition bc id

Free Surface Reduced Logical
Must be set to True for the free surface when the solver is used. The boundary must be simply
continuous.

Free Surface Number Integer
If more than one free surface of the reduced type is present simultaneously they must somehow
be separated. This keyword is for that purpose. The surfaces should be ordered from 1 to the
number or free surfaces. Value 1 is also the default if the surface is active. Note that free surfaces
with different numbers should be aligned the same way and should not touch each other.

Free Surface Bottom Logical
If this flag is free it sets the lower boundaries of integration when solving for the free surface.
Note that this surface should not touch any of the free surfaces. A free surface is automatically a
lower boundary for another free surface.

If mapping is not performed within the solver also boundary conditions for the mapping are required.
Surface tension may be taken into account while solving the Navier-Stokes equation. The proper
keywords for activating the surface tension are explained in the manual of the Navier-Stokes solver.
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Transient Phase Change Solver

Module name: PhaseChangeSolve

Module subroutines: TransientPhaseChange
Module authors: Peter Raback

Document authors: Peter Raback

35.1 Introduction

There are many phenomena that involve an interface between liquid and solid phase. Such problems occur,
for example, in crystal growth and casting processes. This subroutine defines the position of the phase
change boundary in a transient case using an Lagrangian approach.

For Lagrangian steady state phase change algorithm look at the next chapter. For Eulerian phase change
algorithm look at the enthalpy method in the heat solver. Generally Lagrangian approaches are more accurate
but their use is limited to rather smooth interfaces with moderate displacements.

35.2 Theory

General theory

The phase change from solid to liquid occurs at the melting point 7;,,. At the boundary the temperatures of
the liquid and solid are therefore equal to that. The phase change results to a change in the internal energy
known as the latent heat L.
The latent heat makes the diffusive heat flux over the boundary discontinuous and results to the so called
Stefan condition
Lpv -l = (ksVTs — k) VT)) - 11, (35.1)

where 7 is the normal of the phase change boundary, ¥ is the velocity of the phase change boundary, p is the
density of the solid and 7 and 7} are the temperatures of the solid and liquid phases, and s and «; are the
thermal conductivities, respectively.

In steady state pulling and drawing processes the velocity of the phase change boundary should be equal
to pull velocity, v = 1% (bulk velocity of the solid phase).

Transient algorithm

In transient phase change problems the interface temperature is set to be at the melting point when solving
the heat equation. From the solution a heat flux is then obtained from

q=rsVTs — kI VT (35.2)
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Now this heat flux is assumed to be used for the melting of the solid phase into liquid phase. Assuming
that the phase change boundary is mapped to the new position moving it only in the y-direction we get from
equation (35.1) the velocity in the y-direction,

pLn, (v, — D,V?v,) = 7. (35.3)

Here an artificial diffusion D,, has been added since the algorithm otherwise is prone to numerical oscilla-
tions. In order for the diffusion not to affect the results significantly it must fulfill the condition D, << h?
where h is the size of the 1D elements.

The corresponding displacement is easily obtained from multiplication u, = v, dt, where dt is the
timestep. However, in the current formulation may also be done using the Galerkin method to include the
possibility of an additional diffusion factor. Therefore the equation is of the form,

Ouy

ot

In continuous processes the triple point may be used to define the pull velocity so that at the point the
solution of the equation vanishes. In case the pull occurs in the y-direction this means that V;, = v,,.

The algorithm is ideally suited for relatively small time-steps where the change in the position is small
compared to the other dimensions of the problem. Otherwise the transient algorithm may result to spurious
oscillations. However, often the timestep size is most severely limited by the flow computations. Therefore
it may be possible to boost the convergence towards the true operation regime by multiplying the suggested
change by a constant factor.

- D,V?u, = v,. (35.4)

35.3 Applicable cases and limitations

The method has some limitations which are described below

e Phase change surface must be nearly aligned with either of the main axis. To be more precise the
boundary must in all instances be such that for each coordinate there is only one point on the boundary.

e Applicable in 2D and 3D cases

e Melting point and density over the interface may vary is assumed to be constant over the whole inter-
face.

e The convection velocity of the interface should be constant.

o [t should be noted that the solver only gives the position of the phase change boundary. In order to
modify the whole geometry a mesh update solver must be applied.

35.4 Keywords

Solver solver id

Equation String "Transient Phase Change"
Procedure File "TransientPhaseChange" "TransientPhaseChange"

The subroutine that performs the phase change analysis.

Variable String PhaseSurface
The variable for the PhaseSurface coordinate. This may be of any name as far as it is used
consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate, the default.

Phase Change Variable String
By default the phase change analysis uses Temperature as the active variable. The analysis
may be performed also to any other scalar variable given by this keyword
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Use Nodal Loads Logical
The most accurate method of computing the heat fluxes is to use the residual of the matrix equa-
tion. This is activated by the keyword Calculate Loads in the heat equation and it results
to a variable named Temperature Loads that may be used directly to give the melting heat
over the interface nodes.

Normal Variable String
The normal of an element may be computed directly from each element segment, or it may be
computed using Galerkin method in the NormalSolver. In the latter case the name of the
normal field variable may be given by this keyword.

Triple Point Fixed Logical
This keyword enforces the triple point to be fixed. Depending on the type of algorithm this may
mean different things. In the transient algorithm this means that the interface velocity is tuned so
that the velocity at the triple point is zero. Only applicable in 2D where the triple point is unique.

Pull Rate Control Logical
The pull rate may be set so that the triple point remains at a fixed position. The feature is activated
setting this keyword True.

Velocity Relaxation Factor Real
The relaxation factor for the interface velocity field.

Velocity Smoothing Factor Real
The velocity diffusion factor of the interface, D,,.

Transient Speedup Real
The factor at which the change in the boundary position is changed in the transient case. This
may be used to speedup the transient convergence.

Nonlinear System Max Iterations Integer
In case the pull-rate control is used the phase change algorithm may have to be solved several
times in order to define the consistent pull-rate. This keyword gives the maximum number of
iterations.

Nonlinear System Convergence Tolerance Real
The tolerance for terminating the transient algorithm.

Body body id

Solid Logical

Liquid Logical
The solver requires information on which of the materials in the system is solid and which is
liquid. Currently the solver assumes that both the liquid and solid is uniquely defined.

Material mat id

Heat Conductivity Real
In a transient case the heat conductivities of the materials must be given.

Density Real
Density is needed to obtain the latent heat in units of energy per volume.

Latent Heat Real
The latent heat is the specific internal energy related to the phase change. The latent heat may
also be a variable.

Convection Velocity i Real
For the transient algorithm the pull velocity of the boundary may be given with this keyword.

Boundary Condition bc id
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Body Id Integer
The phase change solver operates usually on a boundary of a two-dimensional domain. Techni-
cally the equation on the boundary is treated in a normal finite element manner and therefore the
boundary must be defined to be the body where the equation is to be solved. Usually this would
be the next free integer in the list of bodies.

Phase Change Side Logical
This keyword is used for the boundaries that define the edges of the phase change interface. The
diffusive operators used for smoothing create a weak term in the Galerkin formulation that must
be cancelled. When this flag is active the weak terms are not assembled at all for the boundary
thus eliminating the need to cancel them.
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Steady State Phase Change Solver

Module name: PhaseChangeSolve

Module subroutines: SteadyPhaseChange

Module authors: Peter Raback and Juha Ruokolainen
Document authors: Peter Rdback

36.1 Introduction

There are many phenomena that involve an interface between liquid and solid phase. Such problems occur,
for example, in crystal growth and casting processes. This subroutine defines the position of the phase change
boundary by finding the correct isotherm in a steady state simulation. The mesh is the correspondingly
mapped i.e. this is a Lagrangian approach.

For transient phase change algorithms look at the next chapter. For Eulerian phase change algorithm no
additional solver is required as the phase change is implemented within the heat equation of Elmer by using
the enthalpy method. Generally Lagrangian approaches are more accurate but their use is limited to rather
smooth interfaces with moderate displacements.

36.2 Theory

For the general theory on phase change look at the Theory section of the previous chapter.

Steady state algorithm

In steady state the algorithm is based mainly on geometrical ideas. First the heat equation for temperature T’
is solved by using a flux condition for the interface

q=LpV - 7. (36.1)

Thereafter the next approximation for the phase change surface may be found by going trough each element
and creating a list of line segments F; on the isosurface. This is basically the zero level-set of the field
T — T,,. Each line segment is defined by two coordinate &;; and &;». The surface is then updated by
mapping the current phase change surface to the line segments. For the moment a N2 algorithm is used for
the mapping. For larger cases a more robust search algorithm might be implemented.

For example, if a free surface is almost aligned along the x-axis, then for a node (;, y;) on the boundary
the proposed change of the point ¢ in the y-direction is

Yj2 —Yin
Tj2 = Tj1

sy = (yj1 —yi) + (x5 — 1) (36.2)

assuming that z; € [z;,1, ;2| while s, = 0.
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Speeding up the convergence

In many cases the simple geometrical search algorithm converges very slowly. The reason is the explicit
character of the algorithm that fails to account for the change in the temperature field caused by the moving
phase change boundary. This limitation may be partially overcome using suitable under- or over-relaxation.
This relaxation parameter may also be tuned during the iteration using lumped quantities such as the pro-
posed change in the volume of the phases that may be expressed as

U:/ 5. i dA. (36.3)
A

The proposed volume changes form a series, vo @ . ylm-y gim), Assuming that the series is
a geometric one we may estimate the required relaxation factor that would give the correct phase change
boundary at just one iteration,

y(m-1)

m) —m-1)__ =~
¢ =¢ Um=1) _pym)’

(36.4)
In numerical tests this formula was found occasionally to overshoot and therefore a less aggressive version
is used instead,
m—1)1U(m_1) +ym)
2Um=1) _ y(m)"

The use of the lumped model requires that the temperature field is described accurately enough. To ensure
numerical stability the factor ¢ should have a upper and lower limits. After the factor has been defined the
suggested displacements are simply scaled with it, §¥ = ¢5.

It is also possible to accelerate the solution locally using a Newton kind of iteration. If the basic algorithm
has already been applied at least twice we may estimate the sensitivity of the local temperature to the moving
interface and using this information to estimate a new change,

M = ¢l (36.5)

T, — T
T(m) — T(m—1)

§m) —

s(m=1), (36.6)

This algorithm might be a better option if the phase change surface is such that there is not much correlation
between the displacements at the extreme ends. However, the algorithm may be singular if the isotherms of

consecutive iterations cross. Any point ¢ where Ti(mfl) ~ T(™) leads to problems that may be difficult to
manage. This handicap may rarely limit the usability of the otherwise robust and effective scheme.

36.3 Applicable cases and limitations

The method has some limitations which are described below
e Limited to steady state cases
e Limited to 2D and axisymmetric cases.

e Phase change surface must be nearly aligned with either of the main axis. To be more precise the
boundary must in all instances be such that for each coordinate there is only one point on the boundary.

e Melting point is assumed to be constant over boundary (not concentration dependent, for example).
e It should be noted that the solver only gives the position of the phase change boundary.

e When internal mesh update is used the mesh is distorted only in one coordinate direction.
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36.4 Keywords

Solver solver id
It is worth noting that for this solver the problem is, or at least could be, solved accurately. All the
nonlinearities of the problem reside in the coupling with the heat equation. Hence, there is no point in
giving criteria on the nonlinear system level. Only the coupled level tells whether the system has truly
converged.

Equation String "Steady Phase Change"

Procedure File "SteadyPhaseChange" "SteadyPhaseChange"
The subroutine that performs the phase change analysis.

Variable String Surface
The variable for the PhaseSurface coordinate. This may be of any name as far as it is used
consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate, the default.

Phase Change Variable String
By default the phase change analysis uses Temperature as the active variable. The analysis
may be performed also to any other scalar variable given by this keyword

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the phase change solver. Using a factor
below unity may sometimes be required to achieve convergence. Relaxed phase change variable
is defined as follows:
w, = u; + As_1,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.
If using the lumped model to accelerate the solution the final relaxation factor will the product
of the two.

Nonlinear System Newton After Iterations Integer
The local Newton type of iteration may be set active after a number of iterations given by this
keyword.

Nonlinear System Newton After Tolerance Real
The Newton type of iteration may also be activated after a sufficiently small change in the norm.
This keyword gives the limit after which Newton iteration is triggered on.

Lumped Acceleration After Iterations Integer
The phase change solver may be accelerated pointwise, or by using a lumped model to determine
an optimal relaxation factor for the whole solution. This keyword activates the lumped model
procedure.

Lumped Acceleration Mode Integer
This helps to toggle between different versions of the lumped acceleration. The options include
values 0,1,2,3 where 0 is also the default.

Lumped Acceleration Limit Real
The lumped approach sometimes gives too high or too small relaxation factors. This may happen
particularly at the very vicinity of the solution where the approximation errors have a greater
effect.

Triple Point Fixed Logical
This keyword enforces the triple point to be fixed. This means that the temperature used for
finding the isotherm is set to be the temperature of the triple point. This freezes the position by
construction. Typically this should be combined with a temperature control that at convergence
results to the triple point being at melting point.
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Internal Mesh Movement Logical
The mesh around the growth interface may be moved in two ways: using the mesh update solver
based on the linear elasticity, or using the simple 1D mapping built in the solver. If this flag is
set active the internal mesh movement is used.

Passive Steps Integer
If for some reason we want to omit that the solved phase change position is updated to the mesh
we may use this flag which for the given number of rounds does not apply the mesh update.

Body body id

Solid Logical

Liquid Logical
The solver requires information on which of the materials in the system is solid and which is
liquid. Currently the solver assumes that both the liquid and solid is uniquely defined.

Material mat id

Melting Point Real
The melting point is the temperature at which the transition form solid to liquid occurs. The
melting point is assumed to be constant. If the triple point is fixed the value of the melting point
is not used in finding the levelset.

Density Real
Density may be needed in the computation of the surface normals By default, the normals point
out from the denser of the two materials. Also the density is needed for the computation of latent
heat release.

Latent Heat Real
The latent heat is the specific internal energy related to the phase change. The latent heat may
also be a variable. It is actually not needed by the phase change solver but must be provided for
the heat solver.

Boundary Condition bc id

Phase Change Logical
The interface of the phase change is determined by this special flag.

Phase Velocity i Real
For the steady state case the heat equation often requires the heat flux as a boundary condition.
For this reason the phase velocity for each component may be determined. The keyword is not
needed by the current solver.
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Particle Dynamics

Module name: ParticleDynamics

Module subroutines: ParticleDynamics

Module authors: Peter Riback, Juha Ruokolainen
Document authors: Peter Riback

37.1 Introduction

Note: this is an initial version of the dynamic particle tracker. For real applications it probably requires some
additional effort.

The ability to follow single or statistical particles within a finite element can be used in a variety of appli-
cations. A common application is to follow particles along streamlines for the purpose of flow visualization.
Accounting for electrostatic forces opens the field to microfluidics and accounting for the gravitational force
enables applications in sedimentation, for example. If also particle-particle interaction is accounted for also
granular flow phenomena may be studied.

This module depends on the many library routines related to particle transport in Elmer. In this module
it is assumed that there may be particle-particle interactions. This choice fixes the time-stepping strategies
of the different particles together, at least without heroic timestepping schemes. In other words, the same
timestep size is applied to the whole particle set.

The particles are located in the finite element mesh using a marching routine where intersections with
element boundaries are checked for. The nearest boundary on the way is crossed until there is no boundary
to cross. Then the right element has been reached. The algorithm is fast when the stepsize with respect to
elementsize is smaller or of the same order. Therefore for the initialization the octree-based search may be
more economical and also more robust regarding geometric shapes.

The particle-particle interaction is based on the knowledge of nearest neighbours. Currently the neigh-
bours are determined using the closeness to the nodes if the parent element. This means that the interaction
distance needs to be smaller than /2 where h is the mesh parameter. Further, it means that the mesh must
be rather uniform.

As the name implies, this module assumes the particles to be dynamic i.e. they have an acceleration.
However, the user may also use the module neglecting the inertial forces and requiring a force balance
between the drag force and external forces.

37.2 Theory

Forces acting on the particle

Assume that we have a particle in position . The corresponding velocity is
dr
dt

U=

(37.1)
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Newton’s second law yields
di
md—: = Df(7,7,...) (37.2)

where a number of different forces may be considered.
The gravity force acting on the particle is

—

f=mg, (37.3)
where ¢ is the acceleration due to gravity. The electrostatic force is simply proportional to the electric field
fe=qE=qVo (37.4)

where q is the electric charge.
The viscous fluids cause also a force that acts on the particle

fs = —b(@ - ) (37.5)

where ¥ is the velocity of the fluid. If the change is estimated to be d7” then the estimate may be improved
by the gradient of velocity, i.e. Vj - di". For Stokes flow the proportionality coefficient scales with viscosity,
for example for spheres b = 67nd where 7 is the fluid viscosity and d the radius of the sphere.

Collision model

Two particles may collide with one-another. Assume that the initial particle positions are 7} and 7. Velocity
vectors are ¥; and U and lets define 67 = 77 — 75 and ¥ = ¥; — U. Now the condition for a collision is

|07 + dU dt| = Ry + Ra. (37.6)
This leads to condition for the timestep

b — D2 =
dt = —— YA (37.7)
a
where b = §7- 87, a = 0¥ - 67, and ¢ = 07 - 67 — (Ry + Ro)?. Collision happens if 0 < dt < Dt.
The collision only affects the normal component. The normal vector is aligned with §7 = §7 + dt 6U
i.e. i, = 7 /|i”'|. Now the normal velocity components are v; ,, = ¥; - 7i,.. After the collision the normal

velocity component is
o — cMs(vey, — v15) + Miviy + Mava (37.8)
b My + M .
and likewise for véyn. Here the parameter c is called bounciness and it varies between zero, for fully inelastic
collision, to one, for fully elastic collisions. The new velocity is now

Ui = Ui 4 (Vi = Vin) 7l (37.9)
and the new position,

7 =T + Uidt + vidt’ (37.10)
where dt’ = Dt — dt.
Collisions with the wall are governed with the same equations assuming that mass of the wall is infinite.

The change in the velocity and coordinate position may be mutated to a change in velocity and force.
This way the collision model is better additive with the other type of models present in the system.
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Contact model

In general the contact between particles depends on their relative position, relative velocity, and relative
angular velocity. Generally the contacts should include some damping (negative feedback from velocity)
since otherwise the system is prone to flow up. In molecular dynamics, for example, also interaction with
more than two particles should be considered. The current treatment is quite limited and we here assume
that the contact results just to a spring force in the form

fr = kmax(Ry + Ry — |dF, 0)7,, (37.11)

where k is the spring coefficient.
A similar particle contact model may be present with the wall but possibly with different value for the
spring coefficient.

Periodic boundary conditions

It is relatively straight-forward to implement periodic boundary conditions for rectangular and hexahedral
type of geometries. And for different geometries the periodic conditions seems more unlikely.

Time evolution

For particles with mass the basic update sequence of velocity and position is

dt

Tipr = T4+ 2%f (37.12)
m

Fiog = FHdtvig (37.13)

while for massless particles it is assumed that the particle drag is in balance with the other forces given
explicitly

1
G = ;If (37.14)
Fio1 = FHdtvig (37.15)

The timestep dt may be given explicitly, or it may be defined from the characteristic velocity V. If the
change in distance dS is given then

ds
dt = — 37.16
v ( )
and when the Courant number C' is given
h
dt =C— 37.17
v ( )

where V is either the maximum absolute velocity, or the mean absolute velocity.
Also other timestepping schemes could be used but that’s something for later.

37.2.1 Postprocessing

The possibility to use each particle as an integration point in data fitting problem makes it possible to couple
the particles back to a continuous field. The following kinds of information could be abstracted from the
particles, for example.

Kinetic energy of particles

1
E, = 5mv2. (37.18)
Potential energy associated to gravity field
E;=mg- 7. (37.19)

Potential energy associated to electrostatic field The corresponding potential energy is
E. = qo¢. (37.20)

Etc. In practice sufficient amount of data may not be present at every node if the data is used only after
appropriate smoothing.
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37.3 Keywords

Solver solver id

Equation String [ParticleDynamics]
The name of the equation.

Procedure File "ParticleDynamics" "ParticleDynamics"
The name of the procedure.

Keywords related to the allocation and initialization of the particles.

Number of Particles Integer
Number of particles to be sent. The number may be given by this keyword as an absolute number.
Often a relative number, particularly in parallel computation, may be favorable.

Particle Node Fraction Real
The relative fraction of particles to nodes. The nodes may also be masked ones.

Particle Element Fraction Real
The relative fraction of particles to elements. The elements may also be masked ones.

Coordinate Initialization Method String
Initialization method for the coordinates. The options include nodal ordered,elemental
ordered, sphere random, box random, box random cubic with their own initial-
ization strategy.

Initial Coordinate Size n, dim; Real
The default initialization methods for coordinates.

Initialization Condition Variable String
If this is given then the particles are initialized only where this has a nonzero permutation vector.

Initialization Mask Variable String
If this is given then the particles are initialized only in elements or nodes where the variable has
a positive value.

Min Initial Coordinate i Real

Max Initial Coordinate i1 Real
For box initialization methods set the bounding box for doing initialization.

Particle Cell Radius Real
If the initialization method is box random cubic then the particle is always put to a unit cell
located in the given bounding box.

Particle Cell Fraction Real
If the initialization method is box random cubic then this keyword gives the fraction of
filled cells in the initial configuration.

Initial Sphere Radius Real
If the initialization method is sphere random then this set the radius of the sphere.

Initial Sphere Center Size 3; Real
Sets the size of the initial sphere center.

Velocity Initialization Method String
There are many ways to initialize the velocities of the particles: thermal random, even
random, constant random.

Initial Velocity Size n, dim; Real
The particle velocities may be also initialized only by this keyword, or this may be used to give
a bulk component to the otherwise random velocity field.

Initial Velocity Amplitude Real
In many velocity initialization methods an initial velocity amplitude is needed.
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Initial Velocity Time Real
When initializing the velocity also the initial coordinates may be affected by determining a offset
for the time used to advance the particles. This could be used, for example, to distribute the
particles from an initial point using the random velocity field.

Initial Coordinate Search Logical
After the initialization is done do an initial octree-based search for the initial coordinate posi-
tions. This is applicable only to serial problems.

Reinitialize Particles Logical
Reinitialize the particles in the start of each time when the subroutine is called. This would make
sense in some kind of scanning mode. The default is False.

Particle Release Number Integer
If not all particles are sent at the same time. This is the absolute number of particles sent at the
start of the subroutine call.

Particle Release Fraction Real
If not all particles are sent at the same time. This is the fraction of particles sent at the start of
the subroutine call.

Delete Wall Particles Logical
Currently a hack which is used to remove particles sitting on the wall which otherwise seem to
get stuck.

Keywords related to the timestepping strategy.

Timestep Size Real
The internal timestep size.

Max Timestep Size Real
The lower limit of the internal timestep size.

Min Timestep Size Real
The upper limit of the internal timestep size.

Timestep Distance Real
The distance that is travelled within one timestep based on the characteristic velocity.

Timestep Courant Number Real
The desired Courant number resulting from the timestep based on the characteristic velocity.
Note that currently just one element is used to compute the parameter h. A global definition of
the Courant number would result to a significant increase in the computational cost.

Max Characteristic Speed Logical
When computing characteristic velocity use the max norm.

Max Timestep Intervals Integer
Maximum number of internal timesteps.

Max Cumulative Time Real
Maximum cumulative time within one call.

Simulation Timestep Sizes Logical
Alternatively, one may use the timesteps as defined by the Timestep Sizesofthe Simulation
section.

Keywords related to the actual physical interaction models chosen within the particles and with particles
and walls.

Particle Particle Collision Logical
Is there some collisions between particles.

Particle Particle Contact Logical
Is there contact between particles resulting to additional forces.
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Box Particle Periodic Logical
Is the system periodic.

Box Periodic Directions Integer
If not all directions require the periodic model this may be used to define the active directions.

Box Particle Collision Logical
Is there collisions between particles and 2D or 3D box. This provided for a cheaper treatment of
BCs than the generic way.

Box Particle Contact Logical
Is there contact between particles and walls resulting to additional force.

Box Contact Directions Integer
If not all directions require the contact model this may be used to define the active directions.

Velocity Variable Name String
Name of the variable if velocity drag is present.

Velocity Gradient Correction Logical
When using the drag model evaluate the drag forces using correction from the velocity gradient.

Potential Variable Name String
Name of the variable if electrostatic potential is present.

Velocity Condition Variable Name String
Name of the field which determines the fixed velocity conditions of the particles.

Coordinate Condition Variable Name String
Name of the field which determines the fixed coordinate conditions of the particles.

Keywords related to the physical properties of the particle and to the joint physical properties of the
particle-particle and particle-wall contacts.

Particle Mass Real
There are a number of particle properties needed in different interaction models and particle mass
is one of them. In principle these could be altered to be variables but currently they are assumed
to be the same for all particles.

Particle Radius Real
The particle radius used in particle-particle interaction, and in evaluating the density of the par-
ticle.

Particle Gravity Logical
Should gravity be accounted for. If yes, use the gravity defined in the

Particle Lift TLogical
The background fluid has a density that results to a lift (buoyancy) that may be accounted for.
Should gravity be accounted for. If yes, use the gravity defined in the Constants section.

Particle Damping Real
Particle damping proportional to velocity only.

Particle Drag Coefficient Real
Particle drag coefficient in fluid field.

Particle Bounciness Real
Defines, when particles collide is the collision totally elastic or totally inelastic. Corresponding
extreme values are 1 and 0. This relates only to collision models.

Particle Spring Real
Spring constant in the force model between particles. This relates only to contact models.

Particle Charge Real
The electric charge of the particle.
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Particle Decay Distance Real
The decay of the particle effect.

Wall Particle Radius Real
In interaction with the walls different properties are given as the interaction with the wall is quite
different regarding, for example, the contact shape.

Wall Particle Spring Real
Spring constant in interaction with wall.

Wall Particle Bounciness Real
Elasticity of collision with interaction with the wall.

Keywords related to the generation of fields from the particle data.

Particle To Field Logical
Is there any coupling from particles to field needed? This leads to the need of finite element
machinery. The opposite is always assumed to be true i.e. the particles are always assumed to be
located in the FE mesh.

Reinitialize Field Logical
When revisiting the solver should the particle field be initialized at the start.

Particle To Field Mode Integer
If a field is generated from the particles, what actually should be computed.

Particle Decay Time Real
This is an optional parameter that represents the characteristic time that is used to forget history
data from the particle to field representation.

Particle Decay Distance Real
This is an optional parameter that represents the characteristic distance that is used to forget
history data from the particle to field representation.

Keywords related to saving and echoing information. No effect to the actual computations.

Output Interval Integer
The internal output interval of the solver. If not given the particle data will be saved within the
solver. The alternative is to save particle data with an external solver.

Output Format String
Output format which may be either table or vtu.

Table Format Logical

Vtu Format Logical
Alternative way of giving the output format. Has the nice property that several formats may be
given at the same time.

Filename Prefix String
The prefix of the filename used for saving. Depending on the chosen format an appropriate suffix
is attached to the prefix.

Filename Particle Numbering Logical
If possible in the format, use particle indexes for the numbering of files.

Filename Timestep Numbering Logical
If possible in the format, use timestep indexes for the numbering of the files. This is the default
in vtu format.

Particle Info Logical
Optionally print out on the screen information on the number of particles and time steps taken.

Statistical Info Logical
Optionally print out on the screen some statistical information on the coordinate positions and
velocities. May be useful for debugging purposes, for example.
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Scalar Field i String
The scalar fields of the particles to be saved in vtu format. Currently options include distance
and dt.

Vector Field i String
The vector fields of the particles to be saved in vtu format. Currently options include velocity
and force.

Particle Save Fraction Real
If there is a huge number of particles it may be sufficient to use only a subset of them for
visualization. This keyword gives the fraction.

Boundary Condition bc id

Wall Particle Collision Logical
This activates the collision model between particles and generic boundaries.

Particle Accumulation Logical
An optional flag that activates the possible destruction of the particles at the boundary in case
conditions for accumulation are met.

Particle Accumulation Max Speed Real
If this critical speed is given, then accumulate only those particles with smaller velocity.

Particle Accumulation Max Shear Real
If this critical shear rate is given, then accumulate only those particles with a smaller shear rate.

Particle Trace Logical
If this flag is set active then use the accumulated particles to compute a trace to a finite element
field.

Moving Wall Logical
The movement of the wall may be accounted for in the wall-particle collision model.
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Semi-Lagrangian Advection Using
Particle Tracking

Module name: ParticleAdvector

Module subroutines: ParticleAdvector

Module authors: Peter Raback, Juha Ruokolainen
Document authors: Peter Raback

38.1 Introduction

This solver utilizes the particle tracker features of Elmer to advect scalar fields diffusion-free on the mesh.
For each node of the field one particle is sent backwards in time and the field value is restored from the
location where the particle is found.

For more details on the particle tracking look at the other modules utilizing the same features in a more
generic way.

38.2 Theory

In particle advection we assume that the fields are transported diffusion-free carried by a velocity field .
The particle are initialized at the nodes of the mesh. Thereafter each particle is followed —4t in time i.e. the
following integral is evaluated

—ot
7= *H/ 7 dt. (38.1)
0

Currently the integral may be evaluated using first order explicit scheme or a second order Runge-Kutta
scheme. In the first order scheme a quadratic correction term is available making the scheme effectively
comparable with the Runge-Kutta scheme. There the following approximation is used

1
<U>=1vy+ §(V170) - Up dt. (38.2)
When the particles have been transported the field may be evaluated from

f(ro,t) = f(r,t — dt) (38.3)

The treatment of boundaries results to some additional complication. It is assumed that if the particles
vanishes in the upstream boundary then the boundary values of f are used.

The particles may have some properties along the path integral. For this purpose the user may evaluate
evolution over time,

I, = / c(t) dt (38.4)
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and over distance,

I, = / c(t) ds (38.5)

38.3 Parallel operation

The parallel operation of the particle advector routine is much more complicated than the serial. The particles
are followed in the partitioned mesh and if they pass the partition interface they are passed to the next
partition. Finally the values must be sent back to the originating partition in order to collect the results.

The 2nd order Runge-Kutta method will probably have problems in parallel so the user should rather
choose the quadratic correction method which offers similar accuracy.

38.4 Keywords

Solver solver id

Equation String [ParticleAdvector]
The name of the equation.

Procedure File "ParticleAdvector" "ParticleAdvector"
The name of the procedure.

Advect Elemental Logical
Should we advect the particles on center of elements instead of nodes. This is often more robust
as the velocity field is well defined within elements.

Advect DG Logical
Initialize particles at corners of DG elements with reduced size. This may also be more robust
but also significantly more costly.

Advect IP Logical
Initialize particles at integration points. May yield optimal accuracy with high computational
cost.

Coordinate Initialization Method String
This is automatically enforced to nodal ordered.

Particle Node Fraction Real
This is automatically enforced to one in order to have one particle for each node.

Initialization Mask Variable String
If this is given then the particles are initialized only in nodes where the variable has a positive
value.

Reinitialize Particles Logical
Reinitialize particles after each time visiting the solver. This could be desired operation in tran-
sient simulation if we just want to advect for one timestep.

Velocity Initialization Method String
This is enforced to nodal velocity which means that the first velocity is taken from the
nodal point.

Velocity Variable Name String
Name of the velocity field in vector form. Defaultis flow solution.

Time Order Integer
This is defaulted to zero which means that the velocity field is used directly for the particle
velocity.

Timestep Size Real
There are several keywords related to the timestepping strategy. All of them are available also
here. The negative sign is added internally. Here just the most typical ones are given. This
keyword gives the internal timestep size.
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Simulation Timestep Sizes Logical
Alternatively, one may use the timesteps as defined by the Timestep Sizes of the

Max Timestep Intervals Integer
Maximum number of internal timesteps.

Max Integration Time Real
This keyword may be used to retire particles after following them long enough in time. This
may help to save some time if there are regions with almost zero velocities or closed circulation
loops.

Particle Accurate At Face Logical
When hitting the well this keyword enforces the more accurate integration method which returns
the correct point of exit. This is then used in the advection as the point of evaluation. When
using accurate particle detection the algorithms might not always be as robust.

Runge Kutta Logical
Use the 2nd order Runge-Kutta method for integration.

Velocity Gradient Correction Logical
This is an alternative way of increasing the accuracy of the integral. Here the gradient of the
velocity field is evaluated at the point of the particle to account for the curvature of the flow.

Source Gradient Correction Logical
This is a way to increase accuracy of the path integrals by evaluating the integrands c(t) and ¢(s)
using gradient correction over the step.

Variable 1 String
Names of the variables to be advected (i=1,2,3,...). Any proper field variable of Elmer may be
advected. The field may exist in advance, if not it will be created There is also a group of in-
ternal variables with fixed name: particle status, particle number, particle

distance, particle coordinate, particle coordinate_abs, particle velocity,

particle velocity.abs, particle time, particle time integral, and
particle distance integral These are related to the particle tracking machinery.

Result Variable i String
The default name of the advected variable is obtained by adding the prefix Adv to the field name.
Alternatively, the user may give the name of the result variable by this keyword.

Operator i1 String
Possible operator that may be applied to the variable. The choices are derivative (with re-
spect to time), difference, and cumulative. By default no additional operator is applied.

Norm Variable Index Integer
The solver may compute the change in one specific field value in order to provide information
for consistency check, or convergence monitoring. This keyword sets the index related to the
Variable i list. Default is zero i.e. no norm is computed.

Particle Info Logical
Show the particle information at the end of the solver execution.

Body Force bf id

Particle Distance Integral Source T
he integrands c(s) related to the distance path integral. Existence of this keyword will activate
also the path integral variable named Particle Distance Integral.

Particle Time Integral Source T
he integrands ¢(t) related to the time path integral. Existence of this keyword will activate also
the path integral variable named Particle Time Integral.

Particle Fixed Condition Real
We may want to freeze the particles on the body depending on the physics. This is done if this
condition has a positive value.
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Boundary Condition bc id

Particle Wall T
his will mark the wall which the particle cannot go though and by default stops at.

Particle Fixed Condition Real
We may want to freeze the particles on the boundary depending on the physics. This is done if
this condition has a positive value.
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Ordinary differential equation in
moving mesh

Module name: StructureFlowLine
Module subroutines: StructureFlowLine
Module authors: Peter Raback
Document authors: Peter Raback

39.1 Introduction

The purpose of this solver is to allow accurate solution of ordinary differential equations in moving mesh.
The approach is limited meshes that could be extruded being drawn to the direction of the extrusion. The
idea is that then in moving coordinates we have a direct correspondence between mesh parameter h, draw
velocity v and timestep dt, by dt = h/v.

All the equation could basically also be solved in an eulerien mesh where the velocity is presented as
convection term in the transport equation. The problem with this kind of approach is that such convec-
tion terms require some kind of stabilization schemes. In extreme cases when diffusion tends to zero such
equations easily become hard to solve. The current approach cannot consider diffusion. Only convection,
reaction and diffusion terms are possible.

39.2 Keywords

Solver solver id

Equation String MarchingOde
The name of the equation.

Procedure File "MarchingODESolver" "MarchingODESolver"
The name of the procedure.

Variable String
Name of the variable used for the marching.

Nonlinear System Max Iterations Integer
If the system is nonlinear we may solve it for each node until convergence or number of iterations
has been reached.

Nonlinear System Convergence Tolerance Real
Convergence tolerance if several iterations are used..

Draw Velocity Real
Speed of the drawing process in the direction of the extrusion.
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Parabolic Model TLogical
Really solve for u? rather than u. This treatment may then be used to eliminate the nonlinear
nature of the problem.

Apply BCs Only Logical
We might want to apply the marching routine only at the surface.
Active Coordinate Integer

The drawing direction i.e. 1, 2 or 3. This is a keyword passed on to routines detecting extruded
structures, as are some of the following ones too.

Dot Product Tolerance Real
When determining the structure of the mesh in the active direction this tolerance is used to decide
that an element edge is aligned with the direction of the action.

Material bc id
Varname: Source Real

Source term for the field to be marched.

Varname: Reaction Coefficient Real
Reaction term for the field to be marched.

Varname: Time Derivative Coefficient Real
Time derivative term. If not given it is assumed to be unity.
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Mesh Adaptation Solver

Module name: MeshSolve

Module subroutines: MeshSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen

40.1 Introduction

Moving boundaries are often encountered in different types of computations, e.g. in Fluid-Structure Inter-
action (FSI) problems. Moving boundaries pose the problem of mesh adaptation to the boundaries. With
this solver, instead of generating the whole mesh afresh when a boundary is moved, the current mesh nodes
are moved so that the mesh hopefully remains "good’. This type of solution only applies to cases where
the changes in geometry are relatively small. It is, however, often cheaper in terms of CPU time to use this
module in contrast to regenerating the whole mesh.

For time dependent simulations the mesh deformation velocity is also computed. The name of this
variable is Mesh Velocity.

40.2 Theory

The equation for elastic deformation of the mesh, given displacement of the boundaries, may be written as
-V.7=0, (40.1)

where the stress tensor 7 can be expressed in terms of Lame parameters as

—

7 =2ue(d) + AV - dI. (40.2)

Here d is the mesh displacement field, p« and A are the first and second Lame parameters, respectively, and 1
is the unit tensor. The linearized strains are given as

S P,

e(d) = 5(Vd + (Vd)D). (40.3)

The Lame parameters in terms of Young’s modulus Y and the Poisson ratio x read

Yk Y
= A= —. 40.4
=0 —ma—2x) 2(1 + r) (40.4)
Note that in this context the values of the material parameters are fictional, and may be chosen to help
convergence or quality of the resulting mesh.
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40.2.1 Boundary Conditions

For each boundary a Dirichlet boundary condition

d; =db (40.5)

K2

may be given. Usually the displacement is given a priori or computed by, for example, the elasticity solvers.

40.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Mesh Update]
The name of the equation. If different from the default name Mesh Update, then the following
two keywords must be defined as well.

Procedure File "MeshSolve" "MeshSolver"
Name of the solver subroutine.

Variable String
Name of the variable.

Equation eqg id
The equation section is used to define a set of equations for a body or set of bodies:

Mesh Update Logical
If set to True, solve the mesh adaptation equations.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the Navier equations.

Poisson Ratio Real
For isotropic materials the Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. Those related to the
Navier equations are

Mesh Update i Real
Dirichlet boundary condition for each displacement component i= 1,2, 3. The boundary dis-
placement may be computed with some other solver. The computed displacement field may then
be used in the setting in the following way:

Mesh Update i Equals Displacement i
Including such lines with i=1, 2, 3 in the boundary condition setting will give the position of
the updated mesh on the boundary directly in terms of the solution of the displacement solver.

40.4 Examples
40.4.1 A Simple FSI computation using MeshSolver

In this simple computation Navier-Stokes equations are solved in the domain shown in the two pictures
below. On the left there is an inflow boundary, and on the right an outflow boundary. In the block inside the
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flow domain (the mesh is not shown for the block), the elasticity equations are solved. The block is fixed at
the bottom, and is otherwise deformed by the fluid pressure and flow fields. The whole system is iterated as
follows:

e Solve fluid flow,
e Solve deformation of the block,
e Solve the fluid domain mesh with MeshSolver according to the displacements of the block,

until convergence is obtained.
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Figure 40.1: The original computational mesh (up), and the mesh of the converged solution (down) of a FSI
computation.
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Nonphysical Mesh Adaptation Solver

Module name: NonphysicalMeshSolve

Module subroutines: MeshSolver

Module authors: Juha Ruokolainen, Peter Riback
Document authors: Juha Ruokolainen, Peter Rdback

41.1 Introduction

This solver is a variation of the MeshSolver for cases where the true mesh velocity is not of concern and
more liberties can be used in the mesh adaptation. Also it may be used as the mesh adaptation solver in
conjunction with MeshSolver. For example, in shape optimization of fluid-structure interaction problems
two mesh adaptation solvers may be needed simultaneously.

41.2 Theory

For the equation to be solved look at the theory section of the MeshSolver. In addition to that, also weak
ways of giving boundary conditions is implemented, namely

T - =kd+ f+c(d—do) 41.1)

where k is a spring coefficient, f is a given force, and d is the target configuration. When ¢ goes to infinity,
this condition approaches the Dirichlet conditions.

41.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Procedure File "NonphysicalMeshSolve" "MeshSolver"
Name of the solver subroutine.

Variable String [-dofs 3 Mesh Deform]
The name of the displacement field. It should be different from Mesh Update in order to avoid
conflicts in its interpretation. Here we use the name Mesh Deform. The dimension should be
the same as that of the mesh.

Cumulative Displacements Logical
If the same solver is called multiple times, then this flag controls whether the displacements are
added each time to the initial or previous mesh shape. The default is False.
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Moving Mesh Logical
This keyword relates to a mesh that is being moved by an outside solver such as the MeshSolver.
The default is True.

Target Field String
The name of the field dj that is used as a target when setting the boundary conditions in a weak
manner.

Nodal Penalty Factor Real
A coefficient that is used to set the displacements to those given by the target field in a soft
manner. This is constant for each node which results to problems in mesh consistency.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the Navier equations.

Poisson Ratio Real
For isotropic materials the Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. Those related to the
Navier equations are

Mesh Deform i Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Mesh Coefficient 1 Real
The spring coefficient related to the given coordinate direction, 1= 1,2, 3.

Mesh Force i Real
The right-hand-side of the mesh deformation equation, 1= 1,2, 3.

Mesh Normal Force Real
The right-hand-side of the mesh deformation equation in the normal direction.

Mesh Penalty Factor Real
When using the soft way of setting boundary conditions, this value gives the weight function c.
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Rigid Mesh Transformation

Module name: RigidMeshMapper
Module subroutines: RigidMeshMapper
Module authors: Peter Raback
Document authors: Peter Raback

42.1 Introduction

Sometimes there is a need to transform meshes without generating a new mesh. The most simple case is
that of a rigid motion where some bodies move according to prescribed rotations and translations. Typically
this could be a preprocessing step in a parametric study of some problem. Then this solver may be used to
perform the mesh transformation.

In addition to applying rigid transformations to bodies followed by a stretching, this solver includes also
a relaxation parameter which may be used to define which fraction of the node coordinates is taken from the
suggested coordinates, and which part from the original coordinates.

It should be noted that the usage of this solver is rather limited. It cannot handle cases where bodies
move with respect to one another if there is a mesh between the bodies. Then the MeshUpdate solver
should be used instead.

42.2 Theory

Given original coordinate ¥y the solver applied first a rotation, then a translation, and finally a scaling
operator such that the suggested new coordinates yield

i = S(R(&y — 6) + 1) + 7, (42.1)

where £'is the vector of translation, 0'is the origin, S the scaling matrix, and R is the rotation matrix. Rotation
may currently be performed only around one main axis.

Often it is desirable that the rigid transformations are performed only for some objects and while some
stay fixed. Between them the transformation degree should vary smoothly. To this aim the solver may be
used to compute a degree of transformation field from the Poisson equation

— V- (14c|VE)VE = s (42.2)

where c is an optional coefficient which may be used to increase the mesh rigidity around singularities. A
suitable boundary condition is ® = 0 for fixed objects and ® = 1 for moving objects.

Usually the rigid mesh mapper does not have a source term. However, for different testing purposes there
is also the possibility to give a source term s which may be used to distort the mesh in a continuous way.
Upon request the deformation may then be normalized to unity.

CSC —IT Center for Science (cc



42. Rigid Mesh Transformation 236

When the rigid mesh mapping is applied together with the relaxation, the end result is

dit = ® (& — 7). (42.3)

42.3 Keywords

Solver solver id

Equation String [RigidMeshMapper]
The name of the equation.

Procedure File "RigidMeshMapper" "RigidMeshMapper"
The name of the procedure.

Variable String
Optionally the solver may be used to compute a relaxation field whose values are on the interval
[0, 1]. The final displacement is then obtained as a product of the field and the suggested rigid
body motion. The name is arbitrary since it is not referenced elsewhere.

Mesh Rotation Axis Order (dim) Integer
The user may specify the order in which the mesh is rotated around the axes with this keyword.
By default first rotation is around z-axis, then around y, and finally around z. Different order
will give a different end result.

Translate Before Rotate Logical
If this keyword is given value True, then the translation is carried out before rotations. The
default is vice versa.

Cumulative Displacements Logical
The displacement resulting from this solver may be either absolute or cumulative. For example,
for rotating problems if the mode is cumulative only the incremental angle is given. If the
cumulative mode is not enforced, then the full angle from the start of the simulation should be
given. The defaultis False.

Calculate Mesh Velocity Logical
If this keyword is enforced, then the solver will compute the mesh velocity resulting from rigid
body deformation in a transient case. The name of the resulting vector field will be Mesh
Velocity.

Mesh Relax Normalize Found
Normalize the mesh relaxation field such that the maximum value is one.

Body Force bf id
The mesh transformations are defined in this section.

Mesh Translate Real [{,f,7.]
The translational vector which may also be given individually for each component, : = 1, 2, 3.

Mesh Rotate Real [a,a,0.]
The rotation around main coordinate directions. This may also be given individually for each
component, 7 = 1,2, 3. When given for each component, they may also be variables of time, for
example.

Mesh Scale Real [s5,5,5.]
The scaling around of main directions. This may also be given individually for each component,
1=1,2,3.

Mesh Origin Real [0,0,0.]
The origin used in rotation and scaling.

Mesh Matrix (dim,dim) Real
Give the mesh transformation matrix. This overrides all other rigid mesh mapping keywords.
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Mesh Displace i Real
An alternative for giving the mesh deformation in rigid body motion. Give separately for each
component, ¢ = 1,2,3. This is a local field that may vary between the nodes while the rigid
body motion may only depend on global variables such as time.

Mesh Relax Real
The relaxation factor determining which amount of the coordinate transformation is taken into
account. This is a local field which may depend on coordinate values whereas the other above
keywords must be constant for each body force.

Mesh Relax Source Real
An optional source term for the mesh relaxation field.

Boundary Condition bc id
The boundary conditions that define the moving and fixed walls.

Moving Boundary Logical
Gets relaxation field multiplied by one.

Fixed Boundary Logical
Gets relaxation field multiplied by zero.
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Structured Mesh Mapper

Module name: StructuredMeshMapper

Module subroutines: StructuredMeshMapper

Module authors: Peter Raback and Thomas Zwinger
Document authors: Peter Raback and Thomas Zwinger

43.1 Introduction

For structured meshes some operations may be done much more effectively than for generic meshes. One
such operation is the mapping of mesh so that it is fitted for given top and bottom surfaces. For example,
the mesh for the computational glaciology could be deduced from a uniform initial mesh when its top and
bottom surfaces would be known in terms of some given fields.

43.2 Theory

The algorithm used for the mapping has two sweeps. Assume that we would like to perform mapping in
direction €. At the first sweep over all elements we would deduce pairwise information over nodes on which
nodes are in up and down directions from each other. Then using this directional information recursively
one can easily deduce which nodes are the t op and bot t om representatives of any node in the mesh. With
this information any node between the top and bottom surface may be mapped as the linear combination of
the top and bottom displacements. In the end the top surface of the mesh is mapped to the given top position
and the bottom surface of the mesh to the given bottom position, correspondingly.

43.3 Keywords

Solver solver id

Equation String [StructuredMeshMapper]
The name of the equation.

Procedure File "StructuredMeshMapper" "StructuredMeshMapper"
The name of the procedure.

Active Coordinate Integer
The direction in which the structured mapping is performed i.e. 1, 2 or 3.

Displacement Mode Logical
The values may be either used either directly as absolute coordinate values, or as displacement
adding them to the original coordinate values. With this keyword the latter may be chosen.
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Dot Product Tolerance Real
When determining the structure of the mesh in the active direction this tolerance is used to decide
that an element edge is aligned with the direction of the action.

Top Surface Level Real
If the value is constant, then this keyword may be used to give the top surface position.

Top Surface Variable Name String
The top surface may be given by some auxiliary variable computed by some other solver, for
example.

Bottom Surface Level Real
If the value is constant, then this keyword may be used to give the bottom surface position.

Bottom Surface Variable Name String
The bottom surface may be given by some auxiliary variable computed by some other solver, for
example.

Mid Surface Real
Sometimes there is a middle layer that needs to be mapped as well. Then this keyword may be
used. The mapping is then done linearly in two parts.

Correct Surface Logical
If this keyword is set to True, a minimum height (see next keyword) is applied to the extrusion.

Minimum Height Real
Sets the constant minimum extrusion height.

Mesh Height Map Real
Assuming that the mesh has height blow the minimum height how should the relative height
to that (j1) be mapped. Allows for smoother geometry deformations avoiding large areas of
constant thickness.

Correct Surface Mask String
This optionally defines a name for a variable where the information on whether a point is part of
a column that has been corrected to the minimum height. It is -1 if it has been corrected and +1
else.

Mesh Velocity Variable String
This keyword is used to give the variable in which mesh velocity will be computed to. The mesh
velocity will be really 1D only so this variable should be a scalar. If the user wants to compute a
vector then the correct component of that should be given as the parameter.

Mesh Update Variable String
This keyword is used to give the variable in which mesh coordinate will be computed to. The
new coordinate will be really 1D only so this variable should be a scalar. If the user wants to
compute a vector then the correct component of that should be given as the parameter.

Displacement Mode Logical
The coordinates resulting from this solver may be either absolute or cumulative. If displacement
mode is not enforced then the coordinates will be treated as absolute values. The default is
False.

Mesh Velocity First Zero Logical
If this keyword is set True then the 1st time this routine is visited the mesh velocity is enforced
to zero. May be attractive if the initial geometry is not really the initial state.

Always Detect Structure Logical
Redetect structure always when visiting solver. Does not really make sense except if the mesh
has changed.

Recompute Stabilization Logical
Mesh deformation may affect the stabilization. This flag activated the stabilization parameters
(that may be used by FlowSolve or HeatSolve, for example). Using this flag enforces that the
parameters are recomputed.
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Mapped Mesh Name File
We may want to save the mapped mesh. This keyword gives the output directory.

Boundary Condition bc id

Top Surface Real
The top surface position may also be given with a boundary condition.

Bottom Surface Real
The bottom surface position may also be given with a boundary condition.

Mid Surface Real
Optionally one may give a mid surface that should be between the top and bottom surfaces. This
is the only method for giving the mid surface since it also specifies the active nodes whereas for
top and bottom they are defined even without the boundary condition.
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Free surface with streamlines

Module name: StructureFlowLine
Module subroutines: StructureFlowLine
Module authors: Peter Riback
Document authors: Peter Riback

44.1 Introduction

There are many different kinds of free surface problems. It is difficult to create a generic algorithm that
would be optimal for all problems. Therefore specific cases may need specific solvers. This solver is
intended for steady-state drawing and pulling problems where the mesh is structured in the direction of the
forced flow. Then it is possible to follow the streamlines of the flow and map element edges with the flow.
When converged the streamlines will then coincide with the element edges providing an optimal solution for
the problem.

The solver can be used by itself as a free surface solver, or together with a mesh adaptation solver so that
the current solver only gives the suggested displacement at the boundaries.

44.2 Theory

Assume that we want to map the coordinates 7; so that they coincide with the streamlines. Then

. S |dr
Ti+1:7‘i+va| ik

(44.1)
|V, k|

where k is the active coordinate direction of the pulling or drawing process. The average velocity may be
computed from
1
U, = 5({)} +9(7 + 1)) (44.2)
or from

1
Ug =0 (2(ﬂ + ml)) : (44.3)

When 7741 is updated the information may be used to derive on improved estimate of ¥,. This requires
as an operation that the velocity must be evaluated within an arbitrary position. For this purpose an octree
structure for the elements is used to speedup the search. Typically even one corrector step will improve the
results significantly.
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44.3 Keywords

Solver solver id

Equation String [StructuredFlowLine]
The name of the equation.

Procedure File "StructuredFlowLine" "StructuredFlowLine"
The name of the procedure.

Velocity Variable Name String
Name of the variable used to define the streamlines.

Active Coordinate Integer
The drawing direction i.e. 1, 2 or 3.

Dot Product Tolerance Real
When determining the structure of the mesh in the active direction this tolerance is used to decide
that an element edge is aligned with the direction of the action.

Displacement Mode Logical
The values may be either used either directly, or saved to a field. If this flag is set True the
coordinate values will be changed directly. The defaultis False.

Hard Displacement Name String
The name of the field for the suggested displacement. These values may be used in a soft way in
mesh deformations in order to avoid singularities that often appear at corners.

True Flow Line Iterations Logical
When computing the drawing shapes the first iterations lead to larger displacements and set
higher demands to the numerical methods. Close to convergence the velocity may be more
accurately defined at the existing flow line. This flag determines the number of the more costly
iterations. The default is zero.

Averaging Order Integer
Order of iterations in evaluating the new position. Default is one.

Averaging Method Integer
Whether to use velocity at the average point (1), or average of the velocity (2).

Nonlinear System Relaxation Factor Real
Relaxation may be used to relax already the suggested displacement field.

Boundary Condition bc id

Flow Line TLogical
By defining this keyword the solver is applied only to the those boundary nodes where the flag
is active. This reduces the computational time required.

Body Force bf id

Flow Line Logical
By defining this keyword the solver is applied only to the those bulk nodes nodes where the flag
is active.

CSC —IT Center for Science (cc



Model 45

Statistics of finite element mesh

Module name: ElementStats
Module subroutines: ElementStats
Module authors: Peter Riback
Document authors: Peter Riback

45.1 Introduction

This module is used to calculate provide information on the mesh. The quality of the mesh will have a great
effect on the solution. This solver may help the user to determine whether the mesh is suitable for the need.
Currently three different operations are performed:

e clement size
This is the metric determinant given by the ElementInfo.

e clement skew
This is the skewness (in degrees) of the mesh, if applicable. Only quadrilaterals, pyramids, wedges
and hexahedrons may be skewed.

e clement ratio
This refers to the ratio between maximum and minimum edge lengths of an element.

The operations are performed separately for bulk and boundary elements.
It is available currently only in serial.

45.2 Keywords

Solver solver id

Equation String ElementStats
Procedure File "ElementStats" "ElementStats"
Create Histogram Logical
When analyzing the mesh the results may be shown also as a histogram with an even distribu-

tion between min and max values. This flag activates the classification of the statistics into a
histogram.

Histogram Intervals Integer
The number of intervals in the histogram when classifying the element properties.

CSC —IT Center for Science [@)BY-nD |



Part VIII

Derived Fields and Quantities

CSC —IT Center for Science

(@) ey-nD___|]



Model 46

Streamline Computation

Module name: StreamSolver

Module subroutines: StreamSolver

Module authors: Mika Juntunen, Peter Raback
Document authors: Mika Juntunen, Peter Rdback

46.1 Introduction

Streamline is a line in flow whose tangent is parallel to velocity field « of the flow in every point Z. It should
be noted that the path of material is generally not the same as streamlines. There is also third set of closely
related lines, namely streak lines. On certain streak lines lie all those flow elements that at some earlier
instant passed through a certain point in domain. Of course, the streak lines are generally different than
streamlines but when the flow is steady all three set of lines coincide.

Streamlines are mainly used in providing a picture of the flow field. Drawing streamlines so that neigh-
bouring streamlines differ by the same amount, gives a picture where direction and magnitude change of
flow are clearly prescribed.

46.2 Theory

We are restricted here to the incompressible, steady flow in 2D geometry. The geometry may be 3D, but it
must effectively be 2D as in axis symmetric geometry.
In 2D Cartesian geometry stream function ) is defined

_w W
oy’ oz

Here the geometry is (z,y) and the corresponding flow is @ = (u, v). Let 2 be the domain of the flow and
¥ a test function for the flow. Definition (46.1) leads to finite element approximation

U (46.1)

V- 7dQ = / at - 7dQ (46.2)

Q Q

In axis symmetric geometry the mass conservation calculated in a different way. This leads to following
definition for stream function.
_low 1o

R (46.3)

where the cylindrical coordinates are (z, r, ¢), velocity components are (u, v, w) and axis of symmetry is z
i.e. r = 0. This function is sometimes called the Stokes stream function and it is not as informative as the
stream function in Cartesian case. Of course the finite element approximation is a bit different.

/ Vi - 7dQ = / at - ordQ (46.4)
Q Q
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Here the ¢ component of the flow is excluded.

From definitions (46.1) and (46.3) it is apparent that stream function is constant along the streamlines.
So drawing the contours of stream function gives the streamlines.

Sometimes setting the Dirichlet node does results to local distortion of the streamline function. To
circumvent this there is an alternative way to fix the level of the streamline. There a implicit penalty ci) is
added to the equation which effectively defines a finite level for the streamfunction. Small values of c are
to be favored in order not to distort the streamline field. Using this penalty method the magnitude of the
streamline may be quite large but after scaling the values should be rather independent on the value of c.

46.3 Limitations

Some limitations of the current implementation:
e The flow field is assumed to be incompressible.

e There is no dependency on time. Solver can be used in transient cases, but it only produces the
streamlines of the current flow field as if it was steady.

e Only 2D Cartesian and axis symmetric coordinate systems are implemented.

e Solver gets the velocity field from user defined variable. In Cartesian case it assumes that first degree
of freedom is the z-component and the second is the y-component of the velocity. In axis symmetric
case it assumes that the first degree of freedom is the r-component and the second is the z-component
of the velocity field.

e User can define the node whose value is first set to zero. This shouldn’t have affect on results if the
normal stream function is used in Cartesian coordinates and Stokes stream function in axis symmetric
coordinates. However, if used stream function is forced to something else, the position of the first node
usually has a large effect on results. This is because the mass conservation is calculated differently.

46.4 Keywords

Simulation

Coordinate System String
The coordinate system should be set to be one of the following options: Cartesian 2D or Axi
Symmetric.

Solver solver-id
All the keywords beginning Linear System can be used. They are explained elsewhere.

Equation String

The name you want to give to the solver, for example St reamSolver.
Procedure File "StreamSolver" "StreamSolver"

The name of the file and subroutine.
Variable String

The name you want to call the solution, for example St reamFunction.

Variable DOFs Integer 1
The degree of freedom of the variable. Stream function is scalar so this must be set to 1.

Stream Function Velocity Variable String
The name of the velocity field variable. FlowSolvers solution is called Flow Solution and
this is also the default value.
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Stream Function First Node Integer
Number of the node that is set to zero. If given, non-positive values are set to 1 and too large
values are set to largest possible i.e. ’the last node’. If not given, then other means are assumed
to be used for setting the level.

Stream Function Penalty Real
When the level of the streamline is defined by a penalty formulation then this keyword is used to
define the penalty factor c. Default is zero.

Stream Function Shifting Logical
Shift the smallest value to zero. Default is True.

Stream Function Scaling Logical
Scale largest absolute value to 1. Defaultis False.

Stokes Stream Function Logical
This keyword forces the stream function type regardless of the coordinate system. If the coordi-
nate system is axis symmetric, then the default is True, else the default is False.

46.5 Example

This example computes the streamlines from a 2D incompressible flow field assuming the default name for
flow field

Solver 4
Exec Solver = after all
Equation = "streamlines"
Procedure = "StreamSolver" "StreamSolver"
Variable = String Stream
Linear System Solver = "Iterative"
Linear System Iterative Method = "cg"
Linear System Preconditioning = ILUO
Linear System Residual Output = 10
Linear System Max Iterations = Integer 500
Linear System Convergence Tolerance = 1.0e-10
Linear System Abort Not Converged = False
End
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Flux Computation

Module name: FluxSolver

Module subroutines: FluxSolver

Module authors: Juha Ruokolainen, Peter Riback
Document authors: Peter Riback

47.1 Introduction

This module is used to calculate the fluxes resulting usually from Poisson kind of equations. These include,
for example, the heat equation, the electrostatic equation, and the pressure equation for Darcy’s flow. There
are also flux computation subroutines that are built in the solvers but this provides a generic approach that
should be easy to combine with most solvers.

47.2 Theory

Given a potential ¢ it is often interesting to know its gradient or the resulting flux. The gradient may be
computed from V¢. The flux resulting from a potential field is assumed to be proportional to the gradi-
ent. The proportionality coefficient ¢ may be conductivity, permeability, diffusivity, etc., depending on the
application field. It may be a scalar or a tensor of second kind. The flux may now be expressed as

7= —cVo. @7.1)
For the heat equation the potential would thus be the temperature and the conductivity would be the heat
conductivity.

The magnitude of a flux (or gradient) may be defined as

lgl =17+ q] = [cV - V| 47.2)

The computation of magnitude may be done before or after the numerical discretization giving slightly
different results.

47.3 Implementation issues

The flux may be computed in many ways. Often for visualization purposes it suffices to take some nodal
average of the element-wise computed fluxes. The most consistent method for flux computation is, however,
using the finite element method to solve the equation (47.1). The Galerkin method creates a diagonally
dominated matrix equation that may be solved easily with iterative methods even with cheap preconditioners.

The flux computation may be done component-wise so that each component g;, where ¢ = 1...dim,
is solved separately. This saves a significant amount of memory even though it slightly complicates the
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47. Flux Computation 249

implementation. In the solver it is also possible to choose just one component as could be sometimes
desirable.

The main limitation of the current version is that it does not take into account any boundary conditions.
Therefore, if there is an internal boundary over which the flux is not continuous, the calculated value does
not make sense.

47.4 Keywords

Solver solver id

Equation String Flux Solver
Procedure File "FluxSolver" "FluxSolver"

Discontinuous Galerkin Logical
For discontinuous fields the standard Galerkin approximation enforces continuity which may be
unphysical. As aremedy for this, the user can enforce Discontinuous Galerkin (DG) formulation.
Then the result may be discontinuous, and may even be visualized as such if the postprocessing
format supports it.

Average Within Materials Logical
This keyword enforces continuity within the same material in the DG discretization using the
penalty terms of the DG formulation.

Calculate Flux Logical
This flag controls the computation of fluxes. The default is False.

Calculate Flux Abs Logical
In conjunction with flux computation this flag may be used to compute the absolute value of the
flux vector. It requires that the previous flag is active.

Calculate Flux Magnitude Logical
This flag can be used to compute the magnitude of the vector field. Basically it is the same in
continuous level as the previous but this requires less memory and solves the matrix equation
only once. The downside is that even negative values may be introduced.

Calculate Grad Logical
This flag turns on gradient computation. The default is False.

Calculate Grad Abs Logical
In conjunction with gradient computation this flag may be used to compute the absolute value of
the gradient. It requires that the previous flag is active.

Calculate Grad Magnitude Logical
This flag can be used to compute the magnitude of the gradient field. Basically it is the same
in continuous level as the previous but this requires less memory and solves the matrix equation
only once. The downside is that even negative values may be introduced.

Enforce Positive Magnitude Logical
If this is active, then the negative values of the computed magnitude fields are a posteriori set to
Zero.

Target Variable String "Temperature"
This gives the name of the potential variable used to compute the gradient. By default the variable
is Temperature.

Flux Coefficient String "Heat Conductivity"
This gives the name of the proportionality coefficient to compute the flux. By default the coeffi-
cient is Heat Conductivity.

The resulting linear system is easily solved even without preconditioning. Fox example, the following
linear system control may be applied.
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47. Flux Computation 250

Linear System Solver "Iterative"

Linear System Iterative Method "BiCGStab"
Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10

47.5 Example

This example computes the diffusive heat flux in the whole domain after the whole solution has been per-
formed.

Solver 3
Exec Solver = after all
Equation = "flux compute"
Procedure = "FluxSolver" "FluxSolver"
Calculate Flux = Logical True
Flux Variable = String Temperature

Flux Coefficient = String "Heat Conductivity"

Linear System Solver = "Iterative"

Linear System Iterative Method = "cg"

Linear System Preconditioning = ILUO

Linear System Residual Output = 10

Linear System Max Iterations = Integer 500

Linear System Convergence Tolerance = 1.0e-10
End
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Model 48

Vorticity Computation

Module name: VorticitySolver
Module subroutines: VorticitySolver
Module authors: Peter Raback
Document authors: Peter Raback

48.1 Introduction

This module is used to calculate the vorticity of vector fields. Vorticity may be of interest mainly in the post-
processing of flow fields or electromagnetic fields. The default name for the vorticity is Curl varname.

48.2 Theory

The vorticity w of a vector field ¥ is obtained simply as the curl of the field,
W=V X1. (48.1)

Component-wise the equations for the vorticity read

Ov, Ovy

— _ Y 48.2

e oy 02 (48:2)
ov,  Ov,

Wy = o T o (48.3)
Ovy,  Ovy

= —v_Z= 484

Wy ar Oy (48.4)

Thus, all three components exist in 3D, while in 2D and axisymmetric cases only the z-component is present

The most consistent method for computing the vorticity in conjunction with the finite elements is to
solve the equations (48.4) using the Galerkin method. The resulting matrix is diagonally dominated and
the linear system may be solved easily with iterative methods even with poor preconditioners. In 3D the
vorticity computation may be done component-wise so that each component w;, where ¢ = 1, 2, 3, is solved
separately. This saves some memory and may also save in the overall time consumption.

48.3 Keywords

Solver solver id

Equation String Vorticity Solver

Procedure File "VorticitySolver" "VorticitySolver"
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Target Variable String "Velocity"
This gives the name of the vector variable used to compute the vorticity. By default the variable
isVelocity

Constant Bulk Matrix Logical
This keyword may be used to activate the saving of the stiffness matrix if the same solver is
called repeatedly. The stiffness matrix depends only on geometric information and is hence the
same if the geometry is unaltered.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "cg"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10

48.4 Example

This example computes the vorticity field after each timestep. Some resources are saved by reusing the same
bulk matrix.

Solver 5
Exec Solver = after timestep
Equation = "vorticity"
Procedure = "VorticitySolver" "VorticitySolver"

Constant Bulk Matrix = True

Linear System Solver = "Iterative"

Linear System Iterative Method = "cg"

Linear System Preconditioning = ILUO

Linear System Residual Output = 10

Linear System Max Iterations = Integer 500
Linear System Convergence Tolerance = 1.0e-10
Linear System Abort Not Converged = False

End
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Model 49

Divergence Computation

Module name: DivergenceSolver
Module subroutines: DivergenceSolver
Module authors: Peter Raback
Document authors: Peter Rdback

49.1 Introduction

This module is used to calculate the divergence of vector fields. Divergence may be of interest mainly in the
postprocessing to check how well incompressibility constraints are honored.

49.2 Theory

The divergence d of a vector field ¢/ is obtained simply from
d=V-17. (49.1)

The most consist ant method for computing the divergence in conjunction with the finite elements is to
solve the equation (49.1) using the Galerkin method. The resulting matrix is diagonally dominated and may
be computed easily with iterative methods even with poor preconditioners.

49.3 Keywords

Solver solver id

Equation String Divergence Solver

v

Procedure File "DivergenceSolver" "DivergenceSolver"

Target Variable String "Velocity"
This gives the name of the vector variable used to compute the divergence. By default the variable
isVelocity.

Constant Bulk Matrix Logical
This keyword may be used to activate the saving of the stiffness matrix if the same solver is
called repeatedly. The stiffness matrix depends only on geometric information and is hence the
same if the geometry is unaltered.

The following keywords are not usually needed as they are set by the initialization procedure of the
solver.
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Variable String
By default the variable is obtained from the divergence variable by adding a prefix Div to the
field name. Naturally the name of the resulting field may also be given as desired.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear
Linear
Linear
Linear

Linear

System Solver "Iterative"
System Iterative Method "cg"
System Preconditioning None
System Max Iterations 500

System Convergence Tolerance 1.0e-10
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Model 50

Scalar Potential Resulting to a Given
Flux

Module name: ScalarPotentialSolver
Module subroutines: ScalarPotentialSolver
Module authors: Peter Raback

Document authors: Peter Raback

50.1 Introduction

This module is an auxiliary solver that may be used to compute the scalar potential that results to a given
flux. The flux is assumed to be a vector field resulting from some computation. This solver is the dual of the
FluxSolver. Computing first the flux of a given potential and thereafter resolving for the potential that
creates the flux should give approximately the original potential.

50.2 Theory

The flux resulting from a potential field is assumed to be proportional to the gradient of the field, ¢. The
proportionality factor is here called conductivity, c. The flux may therefore be expressed as

q=—cVo. (50.1)

For heat equation the potential would be the temperature and the conductivity would be the heat conductivity.
This solver handles the equation in the reverse form, i.e. given the flux the potential is solved. The weak
formulation is created by choosing the test functions to be the gradients of the shape functions. This results
to the standard discretization of the Poisson equation.
The potential is not defined uniquely unless the level is fixed at least at one point. Therefore the user
should set a Dirichlet condition at least at one node.

50.3 Keywords

Solver solver id

Equation String ScalarPotentialSolver
Procedure File "ScalarPotentialSolver" "ScalarPotentialSolver"

Variable String "Scalar Potential"
The desired name of the resulting scalar field.
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50. Scalar Potential Resulting to a Given Flux 256

Flux Variable String
This gives the name of the flux variable used to compute the source term. Note that this must be
the name of a vector field such as Velocity.

Flux Coefficient String
This gives the name of the coefficient used in the computation of the flux. For example, in
thermal analysis it would be Heat Conductivity. If a non-existing material parameter is
given, the coefficient will be assumed to be the unity, i.e. ¢ = 1.

The equation is a Poisson type of equation and defaults for it are set to be cg+ILUO. If these do not
suffice, other linear system options should be defined.

Boundary Condition bc id

Scalar Potential Real
The defined field variable must be set to be a constant at least at one point.

Target Nodes Integer
The user may also define a target node on-the-fly at which the condition is set.
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Model 51

Artificial Compressibility for FSI

Module name: ArtificialCompressibility
Module subroutines: CompressibilityScale
Module authors: Peter Raback

Document authors: Peter Raback

51.1 Introduction

When fluid-structure interaction (FSI) problems are solved with a loosely coupled iteration strategy there is
arisk of applying unphysical boundary conditions that lead to severe convergence problems. The reason for
this is that initially the fluid domain is unaware of the constraint of the structural domain, and vice versa. If
the iteration converges this discrepancy will be settled, but sometimes the initial phase is so ill posed that
convergence is practically impossible to obtain [4, 3].

The problem may be approached by applying the method of artificial compressibility to the fluid-
structure interaction. Previously artificial compressibility has mainly been used as a trick to eliminate the
pressure from the Navier-Stokes equations or to improve the convergence of the solution procedure [2, 6, 1].
Here the compressibility is defined so that it makes the fluid imitate the elastic response of the structure.

The method is best suited for cases where there is a direct correspondence between the pressure and the
volume. Inertial forces and traction forces should be of lesser importance. The method might, for example,
boost up the modeling of human arteries.

51.2 Theory

51.2.1 Fluid-structure interaction

The theoretical model with some results is thoroughly presented in
We look at the time-dependent fluid-structure interaction of elastic structures and incompressible fluid.
The equations of momentum in the structural domain is

2—»
p%:v.7+fin Q. (51.1)

where p is the density, @ is the displacement, f the applied body force and 7 = 7(i) the stress tensor that
for elastic materials may be locally linearized with #. For the fluid fluid domain the equation is

v .
p(£+U'V6):V'U+fian7 (51.2)

where ¢ the fluid velocity and o the stress tensor. For Newtonian incompressible fluids the stress is

o = 2ue(v) — pl, (51.3)
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51. Artificial Compressibility for FSI 258

where p is the viscosity, €(¥) the strain rate tensor and p the pressure. In addition the fluid has to follow the
equation of continuity that for incompressible fluid simplifies to

V-7=0in Q. (51.4)

For later use we, however, recall the general form of the continuity equation,

0 .

a—f+v-(pa)=oln Q5. (51.5)
The fluid-structure interface, I t;, must meet two different boundary conditions. At the interface the fluid

and structure velocity should be the same,

§(F,t) = u(F,t), 7€ Ty, (51.6)

On the other hand, the surface force acting on the structure, g, should be opposite to the force acting on the
fluid, g}, thus
gs(th) = _gf(Fat)a S Ffs~ 517

A widely used iteration scheme in FSI is the following: First, assume a constant geometry and solve the
Navier-Stokes equation for the fluid domain with fixed boundary conditions for the velocity. Then calculate
the surface forces acting on the structure. Using these forces solve the structural problem. Using the resulting
displacement velocities as fixed boundary conditions resolve the fluid domain. Continue the procedure until
the solution has converged.

The above described iteration usually works quite well. However, in some cases the boundary condi-
tions (51.6) and (51.7) lead to problems. The elasticity solver is not aware of the divergence free constraint
of the velocity field. Therefore the suggested displacement velocities used as boundary conditions may well
be such that there is no solution for the continuity equation. A proper coupling method makes the solution
possible even if the velocity boundary conditions aren’t exactly correct. Further, if the Navier-Stokes equa-
tion is solved without taking into account the elasticity of the walls, the forces in equation (51.7) will be
exaggerated. The pathological case is one where all the boundaries have fixed velocities. Then even an in-
finitely small net flux leads to infinite pressure values. A proper coupling method should therefore also give
realistic pressure values even with inaccurate boundary conditions. The method of artificial compressibility
meets both these requirements.

51.2.2 Artificial compressibility

When a surface load is applied to an elastic container it results to a change in the volume. In many cases of
practical interest the change in volume is mainly due to a pressure variation from the equilibrium pressure
that leads to zero displacements. If the structural domain is described by linear equations the change in
volume dV has a direct dependence on the change in the pressure, d P, or

av
— =cdP. 51.8
Voo (51.8)
This assumption limits the use of the model in highly nonlinear cases.

The change in the volume should be the same as the net volume flux into the domain. As this cannot be
guaranteed during the iteration, some other way to enable the material conservation must be used. A natural
choice is to let the density of the fluid vary so that is has the same pressure response as the elastic walls,

d
&0~ cdp, (51.9)
p

where c is the artificial compressibility. This is interpreted locally and inserted to the continuity equa-
tion (51.5) while neglecting the space derivative of the density, thus
dp

£ T=0 51.10
cdt—l—V U , ( )
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51. Artificial Compressibility for FSI 259

where dp is the local pressure change. Here the time derivative of pressure must be understood as an iteration
trick. A more precise expression is

c
£ (pm _ <m71>) v.5m =g 51.11
AL (p P +V-u ; ( )
where m is the current iteration step related to fluid-structure coupling. When the iteration converges p(™) —
p(™=1) and therefore the modified equation is consistent with the original one. The weak form of the
equation for finite element method (FEM) may easily be written,

/ (V- ,U(m) )op AL+ — / m) (m— 1)) ©pdQ =0, (51.12)
Qf

where ¢, is the test function.

The artificial compressibility may be calculated analytically in simple geometries. For example, for a
thin cylinder with thickness  and radius R the compressibility is ¢ = 2R/Eh [5], where E is the Young’s
modulus, and correspondingly for a sphere ¢ = 3R/ Eh.

In most practical cases the elastic response of the structure cannot be calculated analytically. Then the
compressibility may also be computed from equation (51.8) by applying a pressure change d P to the system,

1dVv
=—=—. 51.13
VdpP ( )
The change in volume may be calculated by comparing it to initial volume, thus
V-W1
= —. 51.14
TV ap CLID

For small deformations ds = 4 - 7i, where 7 is the surface normal. Therefore we may use an alternative
form convenient for numerical computations,

Jp, (@A) dA [ dA
Jo, V[, dpdA’

(51.15)
This way c has a constant value over the domain.

51.2.3 Scaling artificial compressibility

If the artificial compressibility distribution is a priori defined we may use the above equations to scale the
compressibility appropriately. For example, the compressibility could be given only within a limited distance
from the elastic wall. and the functional behavior of ¢(7*) would be user defined. Computing compressibility
becomes then just a matter of scaling,

Jy, @) dA [, dA
fﬂf co(F)dV fl“fs dpdA”

scaling factor

of#) = ol GL16)

A suitable test load for computing compressibility is the current pressure load on the structure. However,
for the first step the compressibility must be predefined. It is safer to over-estimate it since that leads to too
small a pressure increase. Too large a pressure increase might ruin the solution of the elasticity solver and
by that also the computational mesh used by the flow solver would be corrupted. Therefore some sort of
exaggeration factor exceeding unity might be used to ensure convergence.
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51.2.4 Elementwise artificial compressibility

If the displacement field is extended smoothly throughout the whole geometry it may be possible to define
the artificial compressibility separately for each element or node. This is particularly useful for geometries
where the elastic response changes significantly. The equation is now similar to (51.14),
Ve—-Vy 1
=—— 51.17

¢ Ve dP’ (51.17)
where the superscript e refers to the volume of an element. This may also be solved using finite element
strategies to get nodal values for c.

51.3 Keywords

Keywords of FlowSolve

Material mat id
In the material section the compressibility model and the initial artificial compressibility field is given.

Compressibility Model String [Artificial Compressible]
Set the material model of the fluid.

Artificial Compressibility Real
The initial value of artificial compressibility. This may also be a distributed function that is then
scaled by the solver.

Keywords of solver CompressibilityScale

If the artificial compressibility is tuned so that it best imitates the elastic response, a additional solver must
be used to rescale the above mentioned compressibility. The solver computes the total compressibility and
the force acting on the surface. The compressibility is integrated over all volumes that are solved with the
Navier-Stokes equation.

Solver solver id

Equation String CompressibilityScale
The name of the solver.

Procedure File "ArtificialCompressibility"
"CompressibilityScale"
The subroutine in the dynamically linked file.

Steady State Convergence Tolerance Real
How much the relative value of the compressibility may change between iterations, abs(c; —
ci—1)/ci < e.

Nonlinear System Relaxation Factor Real
Relaxation scheme ¢; = A¢; + (1 — A)¢;—1 for the compressibility. By default is A = 1.

Boundary Condition bc id
Force BC Logical
The elastic response is calculated over the surface(s) which has this definition as True.
Keywords of solver CompressibilitySolver

When the compressibility is solved elementwise using this solver there has to usually be a isobaric steady-
state test phase where the compressibility is defined. For this solver all the normal Linear System
keywords also apply.
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Solver solver id

Equation String CompressibilitySolver
Procedure File "ArtificialCompressibility"
"CompressibilitySolver"

Variable String ac
The name of the artificial compressibility field variable.

Displacement Variable Name String "Mesh Update"

The name of the displacement field variable that is used to compute the the volume change.
Displaced Shape Logical True

Flag that defines whether the current shape is the displaced or original shape.
Reference Pressure Real

The value of pressure used for the test loading.

The computed field should then be given as the value in the material section.
Material mat id
Artificial Compressibility Equals ac

The initial value of artificial compressibility given by the solver.

51.3.1 Examples

The examples show a 2D square and a 3D cube being gradually filled. The fluid comes in from one wall and
the opposing elastic wall makes room for the fluid so that the continuity equation is satisfied. Here the value
of artificial compressibility is scaled every timestep to account for the nonlinear elasticity.
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Figure 51.1: Snapshots of an elastic square being gradually filled by incompressible fluid.
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Figure 51.2: Snapshots of an elastic cube being gradually filled by incompressible fluid.
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Model 52

Fluidic Force

Module name: FluidicForce

Module subroutines: ForceCompute

Module authors: Juha Ruokolainen, Antti Pursula
Document authors: Antti Pursula

52.1 Introduction

This module is used to calculate the force that a fluid flow induces on a surface. The fluidic force can
be divided into two main components: force due to pressure and viscous drag force. The fluid can be
compressible or incompressible and also non-Newtonian with the same limitations that there are in the Elmer
Navier-Stokes Equation solver. The force calculation is based on a flow solution (velocity components and
pressure) which has to be present when calling the procedure. Also the torque with respect to a given point
can be requested.

52.2 Theory

The force due to fluid is calculated as a product of the stress tensor and normal vector integrated over the
surface

F = /E.ﬁds. (52.1)
S
The stress tensor is
_ _ 2 = =
T =2uE — g,u(V -a)I — pl, (52.2)
where p is the viscosity, « is the velocity, p is the pressure, ? the unit tensor and ¢ the linearized strain rate
tensor, i.e.
1 811,1' 8uj
= = . 52.3
i 2(axj+axi> 623
The torque about a point @ is given by
7= (F—ad) x F(7r), (52.4)

where 7 is the position vector.
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52.3 Additional output

There is also a feature for saving the tangential component of the surface force i.e. the shear stress elemen-
twise on the boundaries. The shear stress output is written on disk in a file which contains three columns:
1) the value of the shear stress, 2 and 3) the corresponding = and y coordinates. The shear stress is saved
on all boundaries where fluidic force computation is requested. This feature is implemented only for 1D-
boundaries of 2D-geometries.

52.4 Keywords

Solver solver id

Equation String Fluidic Force
Procedure File "FluidicForce" "ForceCompute"
Calculate Viscous Force Logical [True]

Setting this flag to false disables the viscous drag force, and only the surface integral of pressure
is calculated.

Sum Forces Logical [False]
By default the solver calculates the fluidic force by boundaries. Setting this flag to True applies
summing of each individual boundary force in to a resultant force which is the only force vector
in output.

Shear Stress Output Logical [False]
Setting this flag to True activates writing shear stress values on disk.

Shear Stress Output File String [shearstress.dat]
Defines the name of the shear stress file.

Velocity Field Name String
The name of the velocity field variable. This keyword may be necessary if some other flow
solver than the built-in Navier-Stokes solver of Elmer is used. Normally this keyword should be
omitted.

Material mat id
Viscosity Real
Boundary Condition bc id

Calculate Fluidic Force Logical [True]
The fluidic force is calculated for the surfaces where this flag is set to true.

Moment About (dim) Real
Coordinates for the point on which the torque is returned.
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Electrostatic force

Module name: ElectricForce
Module subroutines: StatElecForce
Module authors: Antti Pursula
Document authors: Antti Pursula

53.1 Introduction

This solver calculates the electrostatic force acting on a surface. The calculation is based on an electrostatic
potential which can be solved by the electrostatic solver (see Model 16 of this Manual).

53.2 Theory

The force is calculated by integrating the electrostatic Maxwell stress tensor [1] over the specified surface.
Using the stress tensor 7' the total force on the surface S can be expressed as

ﬁ:/? ds. (53.1)
s
The components of the Maxwell stress tensor for linear medium are
1. = =
Tij = —DiE; + idijD - E, (53.2)
where electric field E and electric displacement field D are obtained from the electric potential ®

E=-V9, (53.3)

and .
D = —¢pe,. VO, (53.4)

where ¢ is the permittivity of vacuum and ¢, is the relative permittivity of the material, which can be a
tensor.

53.3 Keywords

Constants
Permittivity Of Vacuum Real [8.8542e-12]

Solver solver id
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Equation String Electric Force
The name of the equation. Not necessary.

Procedure File "ElectricForce" "StatElecForce"

Exec Solver String After Timestep
Often it is not necessary to calculate force until solution is converged.

Material mat id
Relative Permittivity Real
Boundary Condition bc id

Calculate Electric Force Logical True
This keyword marks the boundaries where force is calculated.
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System Reduction for Displacement
Solvers

Module name: RigidBodyReduction
Module subroutines: RigidBody
Module authors: Antti Pursula
Document authors: Antti Pursula

54.1 Introduction

This module is used to reduce and simplify the computation of a displacement solver when the problem
includes rigid blocks. In such a case, it is often difficult for iterative solvers to find a solution for the full
system, and direct solvers become obsolete when the system is large enough. The convergence and also the
speed of the solution can be substantially improved when the degrees of freedom corresponding to the nodes
belonging in the rigid blocks are reduced onto the 6 DOFs (3 in 2D) of the corresponding rigid body. In the
module, the reduction is achieved via a projection matrix.

Additionally, the routine automatically eliminates the degrees of freedom corresponding to the Dirichlet
boundary conditions. It is also possible to request the elastic regions to be extended into the rigid blocks.
There is also possibility to reorder the reduced matrix elements to decrease its bandwidth.

54.2 Theory

The module starts with normally constructed matrix equation for the unknown displacements x, Az = b.
Let us assume that the nodes are ordered in such a way that the first n elements of the vectors correspond to
the elastic parts of the structure and the remaining m elements correspond to the rigid parts of the structure.
The goal is to reduce the (n + m) x (n + m) matrix A to a (n + ak) X (n + ak) matrix B, where k is 3
for 2D and 6 for 3D problems and « is the number of rigid blocks present. Reductions are made also for the
vectors so that finally the matrix equation reads Bu = f.
The relation between the unknowns is
x = Pu, (54.1)

where the projection matrix P ties the nodes in the rigid bodies to the same displacements in coordinate
directions and the same rotations about the coordinate axis. The rotations are defined with a coordinate
system whose origin is at the center of each rigid body. For the right hand sides we can write

f=0Qb, (54.2)

where the matrix () sums the forces and torques present at the nodes in rigid bodies for a resultant force and
torque of the center point of the corresponding rigid body. In both mappings, the rotations are linearized so
the module is valid only for cases where the rotations are small.
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Using these definitions, we have
Axr = APu=15b (54.3)

and
Bu= f = Qb. (54.4)

Combining the equations gives Bu = Q APu and thus
B =QAP. (54.5)
With a suitable order of the rotations one can write
Q=P'=C, (54.6)

and
B =CACT. (54.7)

The matrix C' has a identity matrix block of size n x n which keeps the elastic nodes intact, and a projection
block of size ak x m.
The reduced order solution w is transformed back to the original nodes by the same mapping

z = CTu. (54.8)

54.3 Applicable cases and limitations

The module works for
e Linear steady-state problems
e Linear transient problems
e FEigen analysis
e Quadratic eigenproblems
There are following limitations:
e Rigid blocks should not have common nodes (there should be elastic nodes in between rigid blocks)

o If a Dirichlet bc is given on a node of a rigid block then the entire rigid block is assumed to be fixed
in all directions

54.4 Keywords
Body body id

Rigid Body Logical
Value True defines the rigid body.

Solver solver id
The module does not need a separate solver but a call in the stress analysis, or the elasticity solver in
the linear mode.
Equation String Stress Analysis
Variable String Displacement

Variable DOFs Integer
It is important to give the DOFs right, either 2 or 3 depending on the dimension.
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Before Linsolve File "RigidBodyReduction" "RigidBody"
The model order reduction is performed after the matrix has been assembled but before the
matrix equation has been solver. The matrix equation is modified to a smaller equation and the
new equation is solved within the subroutine.

Eigen Analysis Logical
It is possible to use the model order reduction with modal analysis, as well as with static and
transient cases.

Eigen System Values Integer
The number of eigen values to be computed.

Eigen System Damped Logical

Eigen System Use Identity Logical [True]
The reduction is possible also with quadratic (damped) eigenproblems.

Optimize Matrix Structure Logical
If true, the matrix structure is optimized. This feature is recommended since the reduced ma-
trix has often very scattered structure. The optimization is performed with the Cutholl-McKee
algorithm.

Reverse Ordering Logical
This flag can be used to reverse the matrix ordering if the matrix structure is optimized, resulting
in reverse Cuthill-McKee ordering.

Extend Elastic Region Logical
If true, the elastic regions of the geometry are extended into the rigid block. This feature allows
taking into account the bending in the joints between elastic and rigid parts.

Extend Elastic Layers Integer
Defines the number of element layers that the elastic regions are extended.

Output Node Types Logical
Writes in the ElmerPost output file a variable describing the status of each node in the geometry.
The variable has value O for elastic nodes, -1 for rigid blocks that are fixed due to a Dirichlet
boundary condition, and a positive integer for separate rigid blocks. The variable may be used
to check that the reduction is performed on the right blocks, and to check how many layers the
elastic regions should be extended, for example.

Additional Info Logical
If true, additional information is written about the performed tasks during the simulation.

54.5 Examples
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Figure 54.1: The cpu time required for the matrix reduction operations depends linearly on the degrees of
freedom in the system.
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54.6 Interpolate, Filter, and Find Data
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Model 55

Filtering Time-Series Data

Module name: FilterTimeSeries
Module subroutines: FilterTimeSeries
Module authors: Peter Raback
Document authors: Peter Riback
Document updated: 13.2.2008

55.1 Introduction

The module includes auxiliary utilities for filtering time-series data. Supported filters include various aver-
aging possibilities and Fourier series, for example. The solver does not introduce any new physics. However,
it may be useful in analyzing time-dependent data to be used in conjunction with time-harmonic models, or
in studying phenomena with different timescales (turbulence).

55.2 Theory

Mean of a function

The solver is built so that an estimate for the filtered data may be obtained at all times i.e. the normalizing
is done after each timestep. As an example let’s consider taking a simple mean over a period of time. The
starting point is the time averaged mean,

1 T
< f>r= T/ f@)dte. (55.1)
0

Its discrete counterpart assuming piecewise constant integration is
1 n
<Fea= g Z fidt;, (55.2)

where T,, = > dt;. Now this may be presented inductively as

Tn—l < f >n—1 +fndtn
n - 55.3
<f> Th-1+dty, ( )

Ty = Thoy +dtn. (55.4)
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Weighted mean

It’s also possible to take a weighted mean with a user defined function g(¢) depending on time only. Then
similarly,

Tn—l < fg >n—1 +fngndtn

55.5
Tnf 1+ dtn ( )

<fg >n=

Fourier series

Using the weighted mean as starting point its possible to present the solution in terms of sine and cosine
series. In order to obtain normalized Fourier series components the function g is internally replaced by sine
and cosine functions defined as 2 sin(2wkwt) and 2 cos(2mkwt), where k is the degree of the term, and w is
the user defined frequency. After each full cycle the inner product then includes the Fourier coefficients and
the transient solution may hence be approximated by

f=~ Z s sin(2rkwt) + Z ¢k cos(2mkwt), (55.6)
k=1 k=1

where ms and m,. are maximum degrees defined by the user.

Continuous average

Sometimes it may be useful that the new solution is given a relatively higher weight than the old solution.
This is achieved by relaxing the weight (elapsed time) related to the old solution by

Ty :=Th_1exp(—dt,/T), (55.7)

where 7 is the time scale when decay to fraction 1/e is desired. If the decay time is short compared to the
overall simulation time this provides a continuous mean that represents only the recent results. The fraction
of the last timestep in solution will always be dt /7.

Computing variances

It is not possible to compute the variance directly with one sweep as computing the variance from the
functional values requires the knowledge of the mean. However, computing the mean of the square of the
solution enables that the variance is computed a posteriori since the following holds for any field variable,

ol =< (f=<f>)?2>=<fi> - < f>2. (55.8)
55.3 Keywords
Solver solver id
Procedure File "FilterTimeSeries" "FilterTimeSeries"

Variable 1 String
The names of the variables to be filtered. There can in principle be up to 99 variables. Note that
the keywords with the same i form a set which define one filtering. If the Variable is not
redefined the previously defined variable with a lower 1 is used.

Operator i String
Normally the variable is treated as its plain value. There are however different options for using
the field value in a modified manner. These include 1ength (L2 norm), abs, and square.

Start Time i Real
The start time for performing the integration. Note that for Fourier series this is used to reset the
zero time i.e. t :=t — tp.
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Stop Time 1 Real
The stop time for performing the integration.

Start Timestep 1 Integer
Sometimes its unpractical to compute the start time. For example, the start of the simulation
could include a starting strategy with a number of timesteps. Then the number of timesteps
that starts the averaging may be given by this keyword. Note that this keyword also activates
timestep-insensitive averaging.

Stop Timestep i Integer
The timestep number that ends the averaging.

Start Cycle i Real
Alternative way to give the start time for sine and cosine series. The start time is the inverse of
this.

Stop Cycle i Real
Alternative way to give the stop time for sine and cosine series.

Start Real Time Real
Start after given real wall-clock-time, rather than physical simulation time.

Start Real Time Fraction Real
Relative way of given start time when the Real Time Max keyword in Simulation block
is given.

Reset Interval i Real
The time interval at which the computation of a mean is reinitialized.

Decay Time i Real
The decay time 7 in computing continuous means.

Decay Timestep i1 Real
The number of timestep needed to perform averaging. If the timestep given is N then the decay of
the previous timesteps is done with exp(—1/N). Note that this keyword also activates timestep-
insensitive averaging.

Time Filter i Real

The function g(t) that may be used in computing the mean.

Sine Series i Integer
The number of terms in the sine series. Note that its possible to make a Fourier series only if the
target variable is a scalar. Its also possible to have only one sine or cosine series at a time.

Cosine Series 1 Integer
The number of terms in the cosine series.
Frequency 1 Integer
If using cosine or sine series the frequency must be given.
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Data to field solver

Module name: DataToFieldSolver
Module subroutines: DataToFieldSolver
Module authors: Peter Riback
Document authors: Peter Riback

56.1 Introduction

This subroutine may be used fit data to a continuous field. In principle just a simple identity equation with
some diffusion for regularization is solved. The origin of the data could be from a particle trace of a Monte-
Carlo simulation, measurement data read from an external file, etc.

56.2 Theory

Galerkin method minimizes the L2 norm of the solution and is therefore a good choice also for problems
where a regular field must be fitted into data. Imagine a case where we have an initial field f and want to a
field f on it. Then we need to solve an equation f = f with the Galerkin method. Now if the initial data
is noisy the fitting should include some regularization. The natural way to introduce regularization in this
context is to add artificial diffusion such that we are really solving for

~V-DVf+f=Ff (56.1)

which is a linear diffusion-reaction equation. The weak formulation for this is

/DVf-deQ—/D%dF/fdQ:/fdQ (56.2)

Now the data could be given already in the integral form i.e. as

F= / fds. (56.3)

Also the user may know the weight w that was accumulated when the data was generated.

The data may not always be accurate or even given. Therefore using the given data in all fields might not
be a good idea. We may introduce a masking field, say p € [0, 1], that picks the values that are considered
as accurate. On the other hand diffusion, might not be needed for those points.

Adding these generalizations we obtain the following form

of

/.(1fp)DVfVdeQf/D(lfp)%wdeL/pwfwdQ:/pf@/)d§2+p]3'. (56.4)

This formulation enables the use of various techniques for data fitting.
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56.3 Keywords

Below are the dedicated keywords for the solver. In addition generic keywords such as many of those related
to Linear System solution methods may be used.

Solver solver id

Equation String [DataToFieldSolver]
The name of the equation.

Procedure File "DataToFieldSolver" "DataToFieldSolver"
The name of the procedure.

Variable String [FieldName]
The name of the resulting field.

Target Variable String A
Name of the scalar field to be used as input data. This is either f or F’

Diffusion Coefficient Real
The value of the diffusion constant used in the regularization.

Normalize by Nodal Weight TLogical
Normalize the particle properties with nodal weight i.e. the standard mass matrix. This would
be a good choice if the right-hand-side is a result of an integral i.e. F'.

Normalize by Given Weight TLogical
Normalize the particle properties i.e. divide the trace with the corresponding weight. Basically
this corresponds to the integral over w. Here an integral data set is assumed such that it is
consistent with the given weight.

Weight Variable String
If there is a weight associated to the data the name of it should be given with this function.

Set Constant Weight Sum Logical
If the weights are provided by the user and this flag is set True then the given weights are
normalized so that their sum is always the same as the sum of nodal weights. The idea is that
the solution will be independent on the given level of the weight, and only depend on the relative
sizes.

Mask Variable T
he data points may selectively chosen to be considered. If a mask variable is given it may have
both lower and upper boundaries. Only if the mask variable is between these bounds will the
data be considered. Effectively p = 1 in the interval, and p = 0 outside the interval.

Max Mask Value Real
Maximum value for the mask interval. Default is +HUGE.

Min Mask Value Real
Minimum value for the mask interval. Default is ~-HUGE, except if the maximum interval is not
given either. Then the default is 0.

Mask Diffusion Logical
If the mask is true, should diffusion be neglected. Default is False.
Boundary Condition bc id
FieldName Real
The user may set Dirichlet conditions for the field to be fitted if they are known.

FieldName Continue Logical
Enforce boundary conditions with constant slope. The default boundary condition is otherwise
the natural boundary condition with zero gradient.
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Projection to plane

Module name: ProjectToPlane

Module subroutines: ProjectToPlane,ParallelProjectToPlane
Module authors: Juha Ruokolainen and Peter Réback
Document authors: Peter Riback

57.1 Introduction

Sometimes the solution of a complex problem calls for a dimensional reduction of some field variables. A
possible scenario for using the solver is in extracting some useful information from DNS or LES type of
flow simulations. This module offers the subroutines needed in such a cases.

There are currently a serial and a parallel version of the subroutine which are both located in this module.
The reason for the fork is that the parallel version uses techniques that are not optimal in the serial problem.
Therefore the user should herself choose the correct version. Optimally these two approaches should of
course be fused.

57.2 Theory

In principle the dimensional reduction is performed taking on average of a 2D (or axisymmetric) nodal point
7ap when it travels through the 3D mesh.

fap(72p) = % /f(FgD)dS. (57.1)

In practice this is implemented with the following steps
1. Create a list of faces for the 3D mesh
2. Loop though each nodal point in the 2D mesh

(a) Loop through each face in the 3D mesh

i. Check if there is an intersection between the integration line and face
ii. If intersection found memorize the point of intersection
(b) Order the intersection points in the integration direction

(c) Take a weighted average over the ordered list, ( f;,7;)

The algorithm is accurate for linear elements. For higher order elements it is suboptimal in accuracy. Also
in axisymmetric mapping the elements should be small enough so that the curvature of the line segment is
not significant. Near the origin there may be few hits and then the averaging is done by just taking a small
number of values around the center axis.
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57.3 Keywords

Solver solver id

Equation ProjectToPlane
The arbitrary name of the equation.

Procedure File "ProjectToPlane" "ProjectToPlane"
or
Procedure File "ProjectToPlane" "ParallelProjectToPlane"

Convert From Equation Name String
The solver needs a 3D mesh which is associated determined by the association to the solver given
by this keyword.

Convert From Variable String
The variable to be converted.

Volume Permutation Integer
The algorithm is build so that integration direction is the second coordinate (y). This is typically
valid for axisymmetric cases, for example. If the integration should be performed with respect
to some other direction the volume coordinates may be permuted by this keyword.

Plane Permutation Integer
Permutation of the plane coordinates.

Rotate Plane Logical
Should rotation be performed.

Max Relative Radius Real
For the axisymmetric projection the outer radius may be difficult since the 3D mesh typically
may have faces that do not quite extend to the surface. This is a result of finite sized linear
elements. To ease this problem the user may give the maximum relative radius that is used when
trying to find the point of intersection.

Minimum Hits At Radius Integer
The number of hits needed for a accepted integration. The default is one.

Integration Points At Radius Integer
If no minimum number of hits is achieved then a few points around the axis are used to determine
the value. The default is two.
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Structured projection to plane

Module name: StructureProjectToPlane
Module subroutines: StructureProjectToPlane
Module authors: Peter Raback

Document authors: Peter Raback

58.1 Introduction

For structured meshes some operations may be done much more effectively than for generic meshes. One
such operation is mapping some values within the mesh to the reduced dimensional surface of the mesh.
In practice this could mean, for example, mapping the values at the bottom of mesh to the top of mesh to
determine the difference in value. Or to map some isosurface values to the top of the mesh.

58.2 Theory

The algorithm used for the mapping has two sweeps. Assume that we would like to perform mapping
in direction €. At the first sweep over all elements we would deduce pairwise information over nodes
on which nodes are in up and down directions from each other. Then using this directional information
recursively one can easily deduce which nodes are the t op and bot t om representatives of any node in the
mesh. With this information mapping information to top or bottom nodes, or to the whole mesh becomes
extremely cheap.

58.3 Keywords

Solver solver id

Equation String [StructuredProjectToPlane]
The name of the equation.

v

Procedure File "StructuredProjectToPlane'
The name of the procedure.

"StructuredProjectToPlane"

Velocity Variable Name String
Name of the variable used to define the streamlines.

Active Coordinate Integer
The direction in which the structured mapping is performed i.e. 1, 2 or 3.

Project To Bottom Logical
Instead of projecting to the top of the active direction, project to the bottom.
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Projection Mask Variable String
By default the projection is performed assuming that the whole mesh is active. This keyword
may be used to choose the variable that chooses the active set of nodes user in the projections.

Dot Product Tolerance Real
When determining the structure of the mesh in the active direction this tolerance is used to decide
that an element edge is aligned with the direction of the action.

Project to Everywhere Logical
By default the operators height, depth, thickness, distance and index are mapped
to the whole mesh. The other operators are mapped to the top only, if not else specified. This
keyword will always map all operators to the whole mesh.

Variable i1 String
When applying the different projections, the variable to apply the projection to. The resultant
field will obtain as the name the name of the operator followed by the initial variable name.

Operator i String
The operator to apply to the variable or just the geometry. The choices are
e sum: sum over all nodes on the structured line
e int: integral over the structured line using trapezoidal rule
e min: minimum value over the line
e max: maximum value over the line
e bottom: field value at the bottom layer
e top: field value at the top layer
e middle: field value at the middle layer
e thickness: thickness of the object i.e. the length of the line

depth: depth i.e. distance from the top surface
height: height i.e. distance from the bottom surface

distance: minimum distance to either top or bottom surface

index: number of the layer from the bottom

e layer below top: field value at layer below the top

e layer above bottom: field value at layer above bottom

e isosurface: field value at the given value of the isosurface variable
Layer Index i Integer

The number of structured layers from the top or bottom layer when appropriate. The index i
refers to the corresponding variable and operator.

Isosurface Variable i String
The variable used to determine the isosurface position.

Isosurface Value 1 Real
The value for the isosurface position.

Target Variable i String
By default the target variable is created using the name of the variable and operator. However,
the user may also give the target variable using this keyword. Then it should be allocated before.

Target Variable i At Bottom Logical
Create a target variable that is not at top but at bottom instead.

Target Variable i At Middle Logical
Create a target variable that is not at top but at middle instead.

Target Variable i Everywhere Logical
Create a target variable that is not at top but everywhere.
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Internal Cost Function Optimization

Module name: FindOptimum
Module subroutines: FindOptimum
Module authors: Peter Raback
Document authors: Peter Rdback

59.1 Introduction

This solver is an auxiliary solver for optimization problems. As input it requires a cost function computed
with the previous parameter values, and as output it gives the new parameters for which the cost function will
be computed for. Typically the cost function depends on the solution of one or several differential equations.
Based on this solution a measure of goodness for the solution is computed.

The routine is still in its development phase but is provided as a skeleton that may be further developed.

59.2 Theory

The optimization routines must be slightly modified from their standard form since the solver is not in a
ruling position in respect to the simulation. Therefore its difficult to plug in existing optimization packages
to this solver.

Currently the solver includes some very basic optimization routines. Of these the Simplex algorithm
(Nelder-Mead) and the differential GA (Genetic algorithm) are the only ones that may be used for a number
of design variables.

For just one design variables there is the choice of simple scanning, bisection search and the secant
method. Secant method finds roots making it better suited for problems where the target is known i.e. design
problems.

59.3 Keywords

Simulation

Simulation Type String '’'scanning’’
The natural mode used for optimization problems is scanning. If the problem is really time-

dependent the current internal solution is not probably the optimal solution.

Timestep Intervals Integer
The maximum number of optimization rounds is in the case of scanning defined by the timestep
intervals.

Solver solver id
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Equation String FindOptimum
A describing name for the solver.

Variable String OptPar
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer n
Degrees of freedom for the pressure. Here n should be equal to the number of parameters.

Variable Global Logical True
Indicates the variable is a global one i.e. not a field variable. For global variables the number of
unknowns is the same as number of dofs.

Procedure File "FindOptimum" "FindOptimum"
The name of the module and procedure. These are fixed.

Optimization Method String
Choices are currently random, scanning, genetic, bisect, secantandsimplex.

Cost Function Name String
The name of the cost function that is a real stored in the Simulation list structure.

Optimal Restart Logical
Use the previous best set of parameters for the 1st round of cost function computation.

Optimal Finish Logical
Use the best set of parameters for the last round of cost function computation. This may be useful
as the last step is often also saved.

Best File File [best.dat]
The file were the best set of parameters is always saved.

Guess File File [best.dat]
The file were the best set of parameters is read in case of optimal restart.

Fixed Parameter i Logical
Is the i:th parameter fixed. Applies for some optimization routines.

Min Parameter i Real
Minimum value for i:th parameter. Applies for some optimization routines.

Max Parameter i Real
Maximum value for i:th parameter. Applies for some optimization routines.

Initial Parameter i Real
Initial value for i:th parameter if not given by the Optimal restart

Internal history Logical
Save the internal values within the solver.

History File File
The name of the file where the history data is saved.

Cost Function Target Real
If the given cost function is C' use C' — () instead.

Cost Function Absolute Logical
If the given cost function is C use |C| instead.

Cost Function Maximize Logical
If the given cost function is C' use —C' instead.

The following keywords apply to the GA algorithm

Population Size Integer [5n]
Population Coefficient Real [0.7]

Population Crossover Real [0.1]
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The following keywords apply to the simplex algorithm

Simplex Relative Length Scale Real [0.01]
The relative length scale that determines the size of the 1st simplex.

Simplex Restart Interval Integer
The restart interval after which the simulation is restarted if the convergence is poor.

Simplex Restart Convergence Ratio Real
A critical value which is used to define a poor convergence ratio.

The following keywords apply to the secant method

Step Size Real
The step size of the first computations.

Max Step Size M
aximum allowed step size.

Relaxation Factor R
elaxation used in the secant method.

This shows just a couple of examples how the design parameters could be used in the simulation. The
variables may be referred in a similar manner as other global variables such as t ime or timestep size.

Body Force 1
Heat Source = Equals OptPar 1
End

Boundary Condition 1
Heat Flux = Equals OptPar 2
End
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Model 60

Saving Scalar Values to a File

Module name: SaveData

Module subroutines: SaveScalars
Subroutine authors: Peter Rdback
Document authors: Peter Riback
Document updated: January 8th 2008

60.1 Introduction

This subroutine may be used to compute derived quantities and saving scalar values to external file. The
results are easily then utilized by MatLab, Excel or any other program that can read ASCII data. In addition
to the number values also an additional file with the suffix . name is saved. It tells what variables are at each
column.

60.2 Theory

The equations and algorithms needed for the computation of scalar values are relatively simple. Here some
of them are introduced.

When saving statistical information there are two possibilities. We may use normal number statistics
where each node is given an equal weight. Then, for example the mean becomes,

< f>= 227”0 (60.1)

The other possibility is to treat the variable as a continuous function and compute the statistical values as
averages over the domain. Now the mean is

_ [ faQ

= Tao (60.2)

<f>

In addition to the mean we may compute the mean deviation, < |f— < f > | >.and the variance §f =

V< 2> — < f>2
It is possible to compute energy type of lumped quantities by integrating over the domain. The energy
of the field f resulting from a diffusion equation is

1
Ediffzi/Vf-chdQ, (60.3)
Q
where ¢ may a tensor or a scalar. Kinetic energy related to convection is of type

B, == / v - 7 dQ, (60.4)
2 Ja
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and potential type of energy
Epot = / cf dS. (60.5)
Q

Sometimes it may be interesting to compute the fluxes through surfaces. The values may be used in
evaluating the accuracy of the results — what goes in should in steady state also come out. There are two
different fluxes that may be computed. For convective field the flux is of type

Foop = / cf-iidl. (60.6)
T

Currently the code automatically detects the dimension of the given variable. If it is scalar f then ¥ is
assumed to be the velocity computed by Navier-Stokes equation. If the given variable is vector then it is
used as the velocity field and f is not present. Here 7 is the surface normal.

Diffusive fluxes may be computed from

Fdiff = / CVf . ﬁdl“, (60.7)
T

where ¢ may also be a tensor.

60.3 Implementation issues

There are many solvers that internally compute lumped quantities. By convention these are added to the list
structure of the Simulat ion section in the following style

CALL ListAddConstReal( Model % Simulation,’res: capacitance’,Capacitance)

By default the solver looks through quantities starting with prefix res: and saves them to an external file.
Also the user may create new quantities to be saved in similar manner.

60.4 Keywords

Solver solver id

Procedure File "SaveData" "SaveScalars"

Filename String
Name of the file where results are to be saved. If no filename is given then the results will only
be echoed on output.

Output Directory String
Name of the directory where results are to be saved, relative to the case directory. By default the
results are saved in the case directory.

Scalars Prefix String
Save constants starting with this prefix. The default is res:.

Variable 1 String
The names of the variables to be saved. There can be up to 99 variables. In addition to field
variables there are some special variables. The scalar variables. e.g. Time, are saved as is.
There are also variables CPU Time and CPU Memory that may be used to save execution
details.

Target Variable i String
This is an optional keyword that for each entry computed by the subroutine may give an alter-
native name that is placed as a proper variable in the model. This variable may then be used
similarly to t ime in functional expressions. Note that if the operator creates several output val-
ues the numbering of this is not the same as that of Variables. So check the output file for
correct entries when in doubt.

CSC —IT Center for Science (cc



60. Saving Scalar Values to a File 287

Mask Name 1 String
If the operator is such that it can use masks then this keyword may be used to override the default
mask name Save Scalars.

Save Points(n) Integer
Save the specified degrees of freedom in the n nodes specified.

Save Coordinates (n,DIM) Real
Save the degrees of freedom in the nodes nearest to the given n coordinates.

Exact Coordinates Logical
When this keyword is true the coordinates will be looked in an exact manner. Then the degrees
of freedom are linear combinations of the node values of the element that the point belongs to.

Moving Mesh Logical
If this parameter is True the saved points will be defined every time the subroutine is visited.
The defaultis False.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The defaultis False.

Filename Numbering Logical
If set to true a running index is added to the filename so that the next free filename is used to
save the results.

Partition Numbering Logical
Optionally add the number of partitions to the filename. This makes the benchmarking more
convenient since each case may use the same command file without conflicts.

Show Norm Index Integer
The user may choose to output one value of the results as the norm of the solver in a similar
output syntax as ComputeChange shows its norms. This is of course not a real norm but may
be used in monitoring desired convergence measures in ElmerGUI, for example. By default no
norm is shown.

Echo Values Logical
When this is turned on the scalar values will also be echoed to the screen. This is the default
action also when the filename is not given and hence nothing is saved to file.

Cost Function Index T
he user may also choose to save a desired value in the list structure with the name Cost
Function. This may be utilized by the F indOpt imum solver in optimization problems.

Parallel Reduce Logical
By default the output is written independently for each partition in parallel runs. Enabling this,
however, the information is reduced to just one file. The reduction is done using MPI_ALLREDUCE :
MPI MAX, MPI_MIN, MPI_SUM. The defaultisMPI_SUM. Parallel operator is controlled with
keyword Parallel Operator. These are not sufficient for all operators. By default the
value of the 1st partition is written.

Save Eigenvalues Logical
Save the eigenvalues found in any of the variables.

Save Eigenfrequencies Logical
Save the frequencies computed from the eigenvalues found in any of the variables.

Operator i String
There are different operators that may be performed on all the given variables. These include
statistical operators working on the set of numbers, max, min, max abs, min abs,
mean, rms, variance and deviation. Note that these operate directly on the result
vector and do not employ the mesh in anyway.

Different scalar quantities are obtained also by domain integral operators over the mesh. Opera-
tor int gives the integral over a variable, int mean the mean value, int rms the root mean
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square, and int variance the variance of the variable. The volume used by a given variable
is obtained by operator volume. If a name for the coefficient, is given for the operator, the
integral is taken over the coefficient. One can for example obtain the weight from a integral over
Density. Three different energy type of energy quantities may be computed by diffusive
energy, convective energy, potential energy, volume.
By default the statistical and integral operators are performed over the whole mesh. However,
the user may apply the operator only to some parts of the mesh that are related to the logical
entities of the sif file. Currently these entities are body, body force,andmaterial. If the
user wants to select some of these parts then the standard operator should be preceded by the
name of the section. For example, there could be operators body max or body force int.
There are also a number of similar operators that only operate on the boundary. These are invoked
by boundary sum, boundary dofs, boundary mean, boundary max, boundary
min,boundary max abs,boundary min abs,area,boundary int,andboundary
int mean. Also boundary integrals are possible using operators di f fusive flux,convective
flux,boundary int,boundary int mean and area. These require that in the bound-
ary conditions the active boundaries are defined. Also here there may be an optional coefficient.
Some operators do not work on the solution itself but use other info related to that. Operator
dofs simply returns the length of the variable under study. Operator norm returns the last com-
puted norm of the field variable, and operators nonlinear change and steady state
change return the last computed convergence measures at the nonlinear and steady state levels.
Operator nonlin iter returns the number of nonlinear iterations, while operators nonlin
converged and coupled converged which tell whether or not the simulation has con-
verged. Note that these operators most operate on the primary variable for which the matrix
equation is solved for.
Operator bounding box returns the minimum and maximum coordinate value of each coor-
dinate i.e. six values in 3D mesh.
Finally for parallel runs the operator partitions may be useful in creating parallel scaling
results in automated manner.
There is no upper bound to the number of operators or variables. If the variable is a vector the
statistics is performed on its length.

Coefficient i String
Even though only limited number of operators are given almost any energy or flux kind of quan-
tity may be computed since the coefficient ¢ may be defined by the user. The idea is that the
same data that is already used as a material parameter can be simple referred to by its name. The
coefficient may be, Heat Conductivity,Permittivity, Density, for example. Usu-
ally the coefficient is the same that was used in computing the field variable under integration.
For the diffusive energy and diffusive flux the coefficient may even be a matrix.
This parameter is optional and the default is one.

Parallel Operator i String
Sometimes the default parallel reduction method is not the desired one. Therefore the user may
define the parallel reduction method by this keyword. The alternatives are min, max and sum.

Polyline Coordinates (n,DIM) Real
This keyword may be used to create line segments that are defined by points x1, y1, T2, and ys.
For each line different kinds of fluxes through the elements may be computed. This makes it
possible, for example, to check the mass flux even though no boundary has a priori been defined.

Save component results Logical
Save results arising from component sections.

Boundary Condition bc id

Save Scalars Logical
The flag activates the computation of boundary-related information. The results are treated inde-
pendently for each boundary. The keyword replaces the previously used Flux Integrate.
Also if Mask Name is given this arbitrary string may be used instead.
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If the user only wants a basic functionality of SaveScalars it is possible to let the system create
automatically an instance simply by:

Simulation

Scalars File File
Name of the file where the results are saved.

scalars: Keyword Type
Any keyword with the suffix scalars: is passed to the solver instance without the suffix.

By default the solver is executed after saving. With the namespace it is possible to include all keywords
(with the keyword type given) also in the simulation section. At some point the Simulation section will
get crowded making it justified to create a separate solver instance.

60.5 Examples

In the following examples it is assumed that the SaveScalars solver gets the first free index.

Range of solution

The following example shows how to deduce after each converged timestep the minimum and maximum
values of temperature to an external file.

Solver 2
Exec Solver = After Timestep

Equation = SaveScalars

Procedure = "SaveData" "SaveScalars"
Filename = "temprange.dat"

Variable 1 = Temperature

Operator 1 = min

Operator 2 = max

Operator 3 = int mean

End

Force resulting from flow solution

The following example shows how to compute the force resulting from the Navier-Stokes equation on the
boundary 3. It is assumed that for the flow solver is set Calculate Loads = True and that the name
of the solution vector is Flow Solution. Then the force acting on the boundary is obtained by summing
up the nodal forces on the boundary.

Solver 2

Exec Solver = After Timestep
Equation = SaveScalars
Procedure = "SaveData" "SaveScalars"
Filename = "forces.dat"
Variable 1 = Flow Solution Loads 1
Operator 1 = boundary sum
Variable 2 = Flow Solution Loads 2
Operator 2 = boundary sum

End

Boundary Condition 3
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Name = no_slip
Save Scalars = Logical True
End

Benchmark information

The following example shows how benchmark information from the computation of some potential equation
is gathered to one file. Different runs will append the results to the same file and in parallel runs the degrees
of freedom, number of partitions and consumed cpu time will be automatically gathered.

Solver 3
Exec Solver = After all
Equation = SaveScalars
Procedure = "SaveData" "SaveScalars"
Filename = timing.dat

File Append = Logical True
Variable 1 = Potential
Operator 1 dofs

Operator 2 = partitions

Operator 3 = cpu time
Parallel Reduce = Logical True
End
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Saving data along lines to a file

Module name: SaveData

Module subroutines: SaveLine

Subroutine authors: Peter Réback, Ville Savolainen
Document authors: Peter Riback

Document updated: 10.6.2022

61.1 Introduction

The subroutine saves lines that pass through higher dimensional computational meshes. The data is saved
in simple matrix format thereby allowing the easy postprocessing of data by MatLab, Excel or any other
program that can read ASCII data. In addition to the number values also an additional file with the suffix
.name is saved. It tells what variables are at each column.

61.2 Theory

One mildly theoretical problem in saving data comes from the fact that the data should be saved in lines
that were not a priori defined. If there are relatively few points the dummy algorithm where each element
is checked for including the node may be used. For the lines, however, this algorithm might become quite
expensive as there may be many points that constitute the line and faster choices are needed.

Therefore we only look for intersections of element faces and the lines. Each element face is divided
into triangles. The triangle has points €1, €5 and €5. The line is drawn between points 7} and 7. Therefore
the line goes through the point only if

F1+Q(F2—F1) :€1+b(€2—€1)+0(€3—€1) (611)

has a solution for which 0 < a, b, ¢ < 1. This results to a matrix equation

T2z —Tiz €lz — €2z €lx — €3z a €lz — Tix
Toy —Tly €1y — €2y €1y — €3y b | =|ey—riy (61.2)
T2z —T1z €1z — €22 €1z — €32 c €1z — T1z

which may be easily solved with standard methods linear algebra. Because the face element is a triangle
there is an additional condition that b + ¢ < 1.

61.3 Keywords

Solver solver id
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Procedure File "SaveData" "SaveLine"

Filename String
Name of the file where results are to be saved, the default is sides.dat.

Output Directory String
Name of the directory where results are to be saved, relative to the case directory. By default the
results are saved in the case directory.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The defaultis False.

Save Axis Logical
Save all the principal axis. Also keywords Save Axis 1 exist, where 1=1,2,3 defines the axis.

Polyline Coordinates (n,DIM) Real
Save the line consisting of line segments defined by two points (n = 2). There can be more than
one set of points (n = 2,4,6,...) but as a line segment is defined by two points there must be
an even number of points.

Polyline Divisions(n/2,DIM) Integer
The user may give the number of divisions for each polyline. This allows also the proper saving
of discontinuous data. The size of this vector should be such that it is compatible with the number
of lines.

Save Isocurves Logical
Saves isocurves defined on 2D meshes.

Isosurface Variable i String
The variable which isocurve to save, ¢ = 1, 2, . ... This must be a scalar variable.

Isosurface Value i Real
A constant value that defines the value of the isosurface variable at the isocurve to be saved. Note
that for the same variable there may be several values, each with a different keyword.
Variable i String
By default SaveLine saves all the active variables. However, it is possible to save only a
specified list of variables given by this keyword where tt i=1,2,3,... This may be particularly
useful if one wants to save a table of linear dependence, for example Temperature along x-
direction, to be used as a boundary condition in consecutive Elmer runs with a different mesh.

Save Flux Logical
Saves a flux resulting from a gradient of a field by the model h = —xkdT'/On. This may only be
applied to existing boundaries, not lines defined by points.

Flux Variable String
The name of the field variable (default 7" is Temperature).

Flux Coefficient String
The diffusion constant (by default x is Heat Conductivity)

Save Mask String
a By default SaveLine saves only the values that are on boundary marked with Save Line flag.
If the user wants several instances of the SaveLine subroutine, for saving different boundaries to
different files, the mask name may be defined by this keyword. The correspondingly one should
use the same flag in the Boundary Condition and Body section.

Optimize Node Ordering Logical
When saving data on pre-existing boundaries, should we try to optimize the order so that a
continuous line is created. This uses connectivity information that is optimal only when saving
1D data defined on lines. This is defaulted to True only for serial simulations.

Break Line Loop Logical
This is a keyword related to finding optimal node ordering. For loops the connectivity-based
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node ordering does not work properly. However, if we cut the loop at one point, the resulting
connectivity enables us to create a continuous loop. So use this only when you know that your
line creates a full loop.

Parallel Reduce Logical
By default the output is written independently for each partition in parallel runs. By enabling
this, however, the information is reduced to just one file when using predefined lines. The data
is communicated to the partition that owns most data to start with and it does the writing to the
file.

Boundary Condition bc id

Save Line Logical
The flag activates the saving of the boundary condition as a line. The subroutine tries to save
the finite-element lines as a chain of points to enable nice preprocessing with MatLab or similar
tools. The flux may only be saved on lines defined by boundary conditions.

61.4 Examples

In the following examples it is assumed that the Ist solver is the primary solver and the SaveLine solver
gets index two.

The following example shows how to save a line that extends from point (0,0,0) to point (1,2,3) in 3D
mesh after the whole simulation has ended using 100 divisions for both line segments.

Solver 2

Exec Solver = After Simulation
Equation = Saveline
Procedure = "SaveData" "SaveLine"
Filename = "line.dat"
Polyline Coordinates(2,3) = 0.0 0.0 0.0 1.0 2.0 3.0
Polyline Divisions(2) = 100 100
End
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Saving material parameters and
boundary conditions

Module name: SaveData

Module subroutines: SaveMaterials, SaveBoundaryValues
Module authors: Thomas Zwinger

Document authors: Thomas Zwinger, Peter Raback
Document updated: 4.4.2011

62.1 Introduction

These subroutines creates fields from material parameter entries or boundary conditions that normally cannot
accessed as a field, as they are expressions that are evaluated when needed. The SaveMaterials may be

used to create additional field variables from the material parameters. A similar procedure SaveBoundaryValues
stores parameters defined on boundaries as variables for the whole mesh. This can be of help if a boundary
condition that is not directly accessible from the variables (like a normal component of a vector field) should

be evaluated in the post-processing step.

62.2 Keywords

Keywords of subroutine SaveMaterials
Solver solver id

Procedure File "SaveData" "SaveMaterials"

Parameter i String
The user may choose a number of parameters (i=1,...,99) which will be save as variables. This
may be particularly handy if one wants to visualize how the parameters depend on the position
over the domain. Values in bodies with the assigned material list not containing the keyword of
the parameter are set to zero by default.

Keywords of subroutine SaveBoundary Values
Solver solver id

Procedure File "SaveData" "SaveBoundaryValues"

Variable String —-nooutput dummyvar
a dummy variable for the solver that does not show up
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Variable DOFs Integer 1

Parameter 1 String
The user may choose a number of parameters (i=1,...,99) which will be save as variables. These
parameters will then be stored as variables with the values assigned as they were found on the
specific boundary. Bulk values and values on boundaries with the parameter not being defined
are set to zero by default.

Body Force Parameters Integer
The user may also save parameters given in body force section by giving the number of these
parameters by this keyword. Note that the body force parameters must be first in the list followed
by the material parameters. The default is zero.
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Result output in different formats

Module name: ResultOutputSolve

Module subroutines: ResultOutputSolver

Module authors: Peter Raback, Erik Edelmann, Mikko Lyly
Document authors: Peter Raback

63.1 Introduction

This subroutine is intended for saving data in other than the native format of Elmer — ElmerPost. The reason
for using another postprocessing tool might be that some feature is missing in ElmerPost, or that the user is
more acquainted with some other visualization software. Currently supported formats include GiD, Gmsh,
VTK legacy, XML coded VTK file bearing the suffix VTU and Open DX.

The recommended 3rd party visualization tool of Elmer results is Paraview and the corresponding format
for it is the Vtu format. The old VTK format is not recommended.

63.2 Keywords

Solver solver id

Equation String "ResultOutput"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ResultOutputSolve" "ResultOutputSolver"
The name of the file and subroutine.

Output File Name File
Specifies the name of the output file.

Output Format String
This keyword the output format of choice. The choices are gid, gsmh, vtk, vtu,and dx.

Gid Format Logical
Gmsh Format Logical
Vtk Format Logical
Vtu Format Logical

Dx Format Logical
The user may also use the above logical keywords to set which of the formats is saved. This
has more flexibility in that there may be several formats that are saved simultaneously where the
Output Format keyword may only be used to activate one solution type.
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Binary Output Logical
For Vtu format (no other format) the data may also be written in binary format which is signifi-
cantly more compact than the ASCII format. Default is True.

Ascii Output Logical
As the default format for Vtu is binary this keyword is more natural for enforcing ascii format.
The defaultis False.

Single Precision Logical
The floating numbers in Vtu format may be saved either in single (32 bits) or double (64 bits)
precision. The single precision saves some disk space. Default is False.

Eigen Analysis Logical
For GiD and Gmsh output format activates the eigenmode writing, and in Vtu format makes the
numbering of the files follow the eigenmodes. Vtu format will still save the eigenmodes without
this keyword but this will be done in the same file just altering the name of the field.

Number Of EigenModes Integer
Maximum number of modes, when supported. Default is that all eigenmodes are saved.

Active EigenModes Integer
List of active eigenmodes to be saved. Supported only in the Vtu format. By default modes are
saved in order (1,2,...).

The following keywords related only to the GiD, Vtu and Gsmh formats. In the other formats all
available degrees of freedom are saved. Also in Vtu format all dofs are saved if none of the list is
given.

Scalar Field i String
The scalar fields to be saved, for example Pressure. Note that the fields must be numbered
continuously starting from one.

Vector Field i String
The vector fields to be saved, for example Velocity
Tensor Field i String
The tensor fields to be saved. The rank of tensor fields should be 3 in 2D and 6 in 3D.

Sometimes when the variables need to be explicitly listed it may be difficult to know what the actual
available variables are. For this purpose there is the following keyword.

Show Variables TLogical
Show all the different variables on output as a list. Default is False.

In the Vtu output format the user may use several various masking operations to choose the elements
to be saved. These cannot be used with other formats. Also the user may choose whether to save
elemental or nodal fields, if applicable.

Save Geometry Ids Logical
Save the index of geometric entities i.e. of the bodies and boundaries. The body index will be
saved as such whereas the boundary index will get a offset of 100 (or always 10 times larger if
not larger than largest body index).

Default Body Id Integer
This may be used to modify the default geometry id for the bodies when saving the geometry ids
in VTU format.

Default BC Id Integer
This may be used to modify the default geometry id for the boundary conditions when saving
the geometry ids in VTU format.

BC Id Offset Integer
This may be used to modify the offset from the default one when saving the geometry ids in
VTU format.
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Save Elemental Fields Logical
There may be some elemental fields present, for example if they have been computed with the
Discontinuous Galerkin method. Then the elementwise nodal information is averaged to ele-
mental field. Elemental fields can present discontinuities better than the nodal fields, whereas
the nodal fields can represent smooth fields better.

Save Nodal Fields Logical
Save the computed nodal fields. Most fields are nodal only.

Lagrange Element Degree Integer

This keyword enables the visualization of results which have been obtained by applying hierar-
chic higher-order finite elements (the p-version of FEM). The value of this keyword defines the
polynomial degree of Lagrange interpolation elements which is used in the visualization. In prin-
ciple, it is reasonable to choose the value to be the same as the polynomial order of the p-solution
(defined by a command "Element = p:..." ina solver section), but the two values can be
chosen independently. At the moment this option works for the values up to 8 for quadrilaterals,
triangles and hexahedra, while tetrahedra and prisms allow values up to 4. Pyramids however
allow at most the second-order visualization.

Save Linear Elements Logical
For higher-order nodal (Lagrange) elements the user has the option to save the data still using
linear basis. This effectively saves only values at the corner nodes of each element. Often the
derived data from quadratic elements is just of linear accuracy and therefore there is no real
benefit in treating the actual quadratic data.

Discontinuous Galerkin Logical
When dealing with elemental fields there is the option to save the field as discontinuous such that
each instance of a node is recreated. This may make the resulting files huge but may still be the
desired option when dealing with discontinuous fields.

Discontinuous Bodies Logical
When dealing with elemental fields one can also create a minimal discontinuous set of nodes
such that the discontinuous information is averaged within shared nodes body-wise. Often the
discontinuity is present only over different bodies so this strategy maintains the essential discon-
tinuous while having only a minor effect on the file size.

Vtu Part Collection Logical
Save each part into a different file and include a file with .pvd suffix that acts as a container for
these individual parts. The parts may be recognized by their entity name.

Vtu Time Collection Logical
Save a time collection file with a .pvd suffix that includes the timestamps for each file in a
transient simulation.

Skip Halo Elements Logical
If halo element are used in the parallel computation this flag can be used to suppress the saving
of these elements. They are basically redundant so this flag could well be set to true for typical
use.

Save Halo Elements Only Logical
If halo elements are used then this flag can be used to save only the halo elements. This would
probably have mainly uses in debugging or demonstrating the halo elements.

Save Bulk Only Logical
Save the bulk elements only.

Save Boundaries Only Logical
Save the boundary elements only. This could be useful if one is interested of the results only at
the boundaries. This flag would also often save considerable amount of disk space.

Mask Variable String
The user may give a variable for masking. If this flag is given then only the elements where the
permutation vector associated with this variable is positive for all nodes are saved.
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Mask Name String
The user may give a logical name of the mask. This mask will then be checked for in body force
and boundary condition lists and the active elements are determined on-the-fly.

Mask Condition String
The user may give a real valued condition for the mask. This mask condition will be check in
body for and boundary condition lists and the results will be saved only where the value of the
mask condition is positive. This could easily be used to save results only within a sphere, for
example.

Body body id

Geometry Id Integer
May be used to remap the default body index to a new value for VTU output.

Boundary Condition bc id

Geometry Id Integer
May be used to remap the default boundary condition index to a new value for VTU output.

If the user only wants a basic functionality of VtuOutput Solver itis possible to let the system create
automatically an instance of the solver simply by adding a Post File with suffix . vtu to the Simulation
section.

Simulation

Post File File [filename.vtu]
Name of the file where the unstructured XML based VTK results are to be saved.

vtu: Keyword Type
Any keyword with the suffix vtu: is passed to the solver instance without the suffix.

By default the solver is executed after saving. With the help of the namespace it is possible to include
any keyword (with the keyword type given) also in the Simulation section. At some point the section
will get crowded making it justified to create a separate solver instance.

63.3 Example

This example saves the results of a computation in binary unstructured VTK XML format following the
Output Intervals definitioninthe Simulat ion section. The variables to be saved are hand-selected.

Solver 3
Exec Solver = after saving
Equation = "result output"”
Procedure = "ResultOutputSolve" "ResultOutputSolver"
Output File Name = "case"

Vtu Format = Logical True
Binary Output = Logical True ! binary format is the default
Single Precision = Logical True ! double precision is the default

! In the Vtu format all fields are saved if the user does not list them explicitly.
Scalar Field 1 String Temperature
Scalar Field 2 = String Pressure
Vector Field 1 String Velocity

End

CSC —IT Center for Science (cc



Model 64

Saving data on uniform Cartesian grid

Module name: SaveGridData
Module subroutines: SaveGridData
Module authors: Peter Riback
Document authors: Peter Riback

64.1 Introduction

This subroutine is intended for saving data in a uniform grid. One possible use of the feature is to combine a
boundary representation and a glyph representation (velocity vectors) in the same visualization. This routine
would then save the data for the glyphs. The routine may also be used so that the resolution in two other
directions is set to a high value which will then effectively create uniform line plots.

The algorithm goes through all the elements and checks whether the element could include some of the
uniform grid nodes. If so then these are tested for. The algorithm should scale linearly with mesh size.
Optionally one may check for duplicates to eliminate the same nodes being repeatedly saved. Currently no
particular order is guaranteed for the nodes.

The routine works currently only in VTU, VTI and ASCII table formats, but other format may be possible
in the future.

64.2 Keywords

Solver solver id

Equation String "SaveGridData"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.
Procedure File "SaveGridData" "SaveGridData"
The name of the file and subroutine.
Filename Prefix File
Specifies the name of the output file. A appropriate suffix is added to the given name.

Output Format String
This keyword the output format of choice. The choices are vtu, vti and table.

Vtu Format Logical

Vti Format Logical

Table Format Logical
The user may also use the above logical keywords to set which of the formats is saved. This
has more flexibility in that there may be several formats that are saved simultaneously where the
Output Format keyword may only be used to activate one solution type.
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Fileindex Offset Integer
By default the files are numbered starting from one. However, for some restarted simulations the
offset may be defined to be something else. The default is zero.

Check for Duplicates Logical
This flag activates the checking of duplicates. This is usually advisable but may for peculiar
geometries require a large logical table and is therefore not defaulted to be true.

Grid dx Real
The grid size in direction x (i.e. Coordinate 1). Similarly we have Grid dy and Grid
dz, if applicable. If the density in directions y or z is not defined, it is assumed to be the same
as for z.

Grid nx Integer
The number of cells in direction x. This is only required if the previous keyword is not given.
Then the resolution is defined by the size of the bounding box. Similarly we have Grid ny and
Grid nz,

Grid Origin i Real
The mesh is by default located so that there is a node at (0, 0,0). If the origin should not reside
here then this keyword may be used to transform the origin ( = 1, 2, 3).

Min Coordinate i Real
The bounding box may be limited by this keyword (z = 1, 2, 3). If not given the minimum values
of the mesh are used.

Max Coordinate i Real
The bounding box may be limited by this keyword (+ = 1,2,3). If not given the maximum
values of the mesh are used.

Scalar Field i String
The scalar fields to be saved, for example Pressure. Note that the fields must be numbered
continuously starting from one. If no fields are given then an attempt is made to save all the
relevant fields.

Vector Field i String
The vector fields to be saved, for example Velocity

Mask Name String [MyMask]
The user may provide a mask that is used to determine the active elements. If the elements are
lower dimensional then it is assumed that the last coordinate is eliminated from the gridded data.
So if the full mesh is 3D and a mask is given for a boundary only then the data is saved on x-y
plane.

Filename Timestep Numbering Logical
Use this keyword in transient case to number the files by the timesteps. Applies only to the table
format.

Filename Particle Numbering Logical
Use this keyword in transient case to number the files by particles indexes. Applies only to the
table format.

Boundary Condition bc id

MyMask Logical True
The mask define in the solver section may be set True in the BC or Body Force section.

64.3 Example

The following example saves the results in the VTK XML image data format at the end of simulation. A
mesh parameter h = 0.1 is used for every direction and the lower left corner is taken as the base of the finite
uniform mesh.
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Solver 5
Exec Solver = after all
Equation = SaveGrid

Procedure = "SaveGridData" "SaveGridData"

Grid dx = Real 0.1
Grid Origin At Corner = Logical True
Check For Duplicates = Logical True
Binary Output = Logical True
Single Precision = Logical True
Filename Prefix = String glyphs
Vti Format = Logical True

End
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Model 65

Isosurface extraction for reduced output

Module name: Isosurface

Module subroutines: IsosurfaceSolver

Module authors: Juha Ruokolainen, Peter Riback
Document authors: Peter Riback

65.1 Introduction

This subroutine extract isosurfaces from 3D meshes or isolines from 2D meshes. The intended use of the
routine is in heavy simulations where the standard output could result to an I/O bottle-neck. If the desired
isosurface is known in advance then this can be used to reduce the amount of data to be written. The solver
does not itself write the data. It is expected that there is some external strategy for writing the data. It could,
for example, be the ResultOutputSolver for VTK XML output.

65.2 Keywords

Solver solver id

Equation String "Isosurface"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "Isosurface" "IsosurfaceSolver"
The name of the file and subroutine.

Output Directory File
Specifies the name of the output directory. Output file name will be determined in the normal
manner.

Isosurface Variable String
The name of the variable for which the isosurface is determined. This must be a scalar variable.

Isosurface Values Real
The isosurface values used to extract the surfaces. If this is a vector then a number of isosurfaces
will be defined.

Isosurface Values Real
The isosurface value used to extract the surfaces. For constant values this is the scalar variant
of the previous keyword. However, this may also have a functional dependency on some scalar
variable, such as time, for example.

Variable i String
Name of the variable to be outputted on the isosurface (or isoline), 1=1,2,3, ...
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65.3 Example

This solver extracts the 1D isolines from 2D temperature field and stores them to a mesh called i sosurf at
the three given isosurface values. If the original mesh would be 3D then the resulting isosurface mesh would
be 2D. Note that if saving of results is desired then this solver should be performed prior to the saving of
results.

Solver 8
Exec Solver = after all
Equation = "isoline"
Procedure = "Isosurface" "IsosurfaceSolver"
IsoSurface Variable = Temperature
IsoSurface Values(3) = 0.25 0.5 0.75
Output Directory = isoline
Variable 1 = Temperature
Variable 2 = stream
Variable 3 = vorticity

End
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Model 66

Coupling Elmer with OpenFOAM via
file 10

Module name: Elmer2OpenFoamlO,0penFOAM2EImerlO
Module subroutines: Elmer20OpenFoamlO,0OpenFOAM?2EImerFit
Module authors: Peter Raback

Document authors: Peter Raback

66.1 Introduction

These solver modules provides the possibility to transfer field values from Elmer into OpenFOAM and
back. The data transfer is done via file IO and has therefore some limitations regarding speed of operation.
However, the approach also has some flexibility since it does not set any additional constraints to how Elmer
and OpenFOAM have been compiled.

The solvers assume a working Elmer case and OpenFOAM case directory. The solvers assume that the
OpenFOAM directory O includes the cell centers computed with writeCellCenters in file C. For a
multiblock case the mesh directory will include subdirectories and then the cell centers should be available
at least in one subdirectory. Note that the Elmer field will only be mapped if the cell center file C is provided.

The Elmer20OpenFoamlO solver first reads the cell centers, then creates a temporal mesh structure from
them, and interpolates the desired field using the standard interpolation routines within Elmer. The interpo-
lation uses octree search tree and therefore it should be rather fast — in serial. The interpolated field is written
into the same directory where cell centers C were found. The format is a one that can be used to initialize
object from class volScalarField.

The coupling from OpenFOAM to Elmer is performed with the OpenFOAM2ElImerFit routine. It again
read the cells centers from files C. The solution with a given name is not fetched from directory 0 but rather
from the time step given by the user. The resulting values are not interpolated using the basis function since
there is no OpenFOAM mesh available at Elmer. Rather a procedure similar to DataToFieldSolver
is used. There diffusivity may be given as a regularization parameter. A good choice may be the physical
diffusivity related to the solver. l.e. if you’re reading in temperatures they may be regularized by heat
conductivity.

In case the performance of the routines is not satisfactory or one needs parallel operation then the MPI
coupler EOF library mainly written by Juris Vencels could be a better choice for the problem.

66.2 Keywords for module ElImer20penFoamlO

Solver solver id
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Equation String [Elmer20penFoamIO]
The name of the equation.

Procedure File "ElmerZ20penFoamIO" "Elmer20penFoamWrite"
The name of the procedure for writing Elmer fields to be read by OpenFOAM.

Filename File
Full name of the target file (with the suffix).

Target Variable String
Name of the Elmer field to be mapped for OpenFOAM. Currently only one field is supported.

OpenFoam Directory File
Name of the OpenFOAM directory that includes the whole OpenFOAM case tree.

OpenFoam File File
Name of the OpenFOAM file that will include the exported field from Elmer interpolated to the
cell centers.

OpenFoam Mesh 1 File
If the OpenFOAM mesh directory cannot be retrieved automatically for some reason the user
may define the OpenFOAM meshes to be treated. This could be the case in Windows where the
system commands might not be available.

66.3 Keywords for module OpenFoam2EImerlO

Solver solver id

Equation String [OpenFoam2ElmerIO]
The name of the equation.

Procedure File "OpenFoam2ElmerIO" "OpenFoam2ElmerFit"
The name of the procedure for importing fields from OpenFOAM to Elmer.

OpenFoam Directory File
Name of the OpenFOAM directory that includes the whole OpenFOAM case tree.

OpenFoam Mesh i File
If the OpenFOAM mesh directory cannot be retrieved automatically for some reason the user
may define the OpenFOAM meshes to be treated. This could be the case in Windows where the
system commands might not be available.

OpenFoam Field String
Name of the OpenFOAM field to be read from the directory tree. Currently only one scalar field
is supported. Typical files are T (temperature) and p (pressure).

OpenFoam Timestep Integer
Name timestep number to define the subdirectory where the field is read from. Zero refers to the
initial state.

Fit Coefficient Real
This constant gives the factor that is used to weight the data when performing the fitting. This
has a relevance only with respect to the diffusivity used for regularization. Default value is one.

Diffusion Coefficient Real
This constant gives the diffusivity used for regularization.

Diffusivity Name String
The user may give an existing material parameter for the diffusivity. Then this is the name which
is searched in Material section.

Passive OpenFOAM Coordinate Integer 3
In case the initial file is 3D and we want to interpolate the results into a 2D mesh we may
give the passive coordinate index that will be used in dimensional reduction. If not given, 3D
interpolation will be assumed.
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66.4 Example

This example is used to map the field joule heating from Elmer to the OpenFOAM initialization file
fieldSolidHS.dat to be used in temperature distribution computations.

Solver 2
Equation = ElmerToOpenFOAM
Procedure = "Elmer20penFoamIO" "Elmer2OpenFoamWrite"

! The variable to be mapped
Target Variable = joule heating

The OpenFOAM project directory containing the mesh etc.
OpenFOAM Directory = FILE "ofdir"

! The file to write the OpenFOAM sources to.
OpenFOAM File = File "fieldSolidHS.dat"
End
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Model 67

Read fields from Gmsh results file

Module name: GmshOutputReader
Module subroutines: GmshOutputReader
Module authors: Peter Raback
Document authors: Peter Rdback

67.1 Introduction

This subroutine can read results provided in simple Gmsh ASCII output format and use the results to initial-
ize Elmer fields. Gmsh format is handy as it is relatively simple and has supporting software that can deal
with it. Also the Gmsh result format includes both the mesh geometry, topology and results. Hence it can be
used to read old results and interpolate them into a new mesh

This solver is not intended to replace the fully fledged restart format of Elmer. However, this tool may be
nice if we need to interpolate results in a workflow in a flexible manner. Note that the ResultOutputSolver
includes also a Gmsh writer and may therefore be used in conjunction with this module in workflows coupled
via saving and reading files.

67.2 Keywords

Solver solver id

"

Equation String "GmshReader"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "GmshOutputReader" "GmshOutputReader"
The name of the file and subroutine.

Filename File
Filename to read the results from. This file should currently be in Gmsh 2.2. format ASCII file.

Align Coordinate Logical
When reading the mesh into ElmerSolver should we align the mesh with some coordinate direc-
tion. The possible values are 1, 2, 3 to align in maximum coordinate direction. If negative value
is used then the mesh will be aligned with the minimum coordinates.

Mask Name String
If we want to interpolate results only on part of the mesh we may use a mask. Only where the
mask is present interpolation will be performed. The possible sections where the mask should
exist are Body Force and Boundary Condition.
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Reload Existing Simulation Results

Module name: ReloadData

Module subroutines: ReloadSolution
Module authors: Antti Pursula
Document authors: Antti Pursula

68.1 Introduction

This subroutine is intended for repeated loading of existing results during simulation. An example of a
typical application is to use previously computed fluid flow as a convection field for the transfer of a passive
scalar variable. The module is implemented as a dummy solver which is defined in the command file just as
the 'normal’ solvers.

This module offers extended features compared to the Restart File option in the Simulation
section. The module reads a new solution step from the solution file on each timestep, whereas the restart
file option reads only the initial state for a simulation.

The module reads in all the available variables from the solution file. The solution file should be in the
mesh directory. If the simulation takes more than a single steady state iteration per time step it is advisable
touse Exec Solver = Before Timestep for this module.

68.2 Keywords

Solver solver id

Equation String "Reload Data"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadData" "ReloadSolution"
The name of the file and subroutine.

Reload Solution File String "flow-data.dat”
The name of the old solution data file, eg. flow-data.dat

Reload Starting Position Integer
The index of the timestep where to start reading. If the keyword is not given the reading is started
from the first step in the file, or from the beginning of the reload range, if specified.

Reload Range Minimum Integer

Reload Range Maximum Integer
The beginning and the end of the reading range. The timesteps on the range are read in cyclically
if the current simulation has more timesteps than what there are on the range.
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Reload Reading Intervals Integer
Defines the interval for reading in old results, defaults to 1. An integer ¢ larger than 1 defines that
results are read in only on every ith timestep. However, consecutive steps are read in regardless
of the value of i.

Continuous Reading Logical True
When set to True the reload solution file is kept open also between the timesteps. However,
when reading is not started at the first solution step, or when the old solution is read in cyclically,
it is advisable to switch this feature off. Defining False will slow down reading especially from
large ASCII files.
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Runtime Control of the Input Data

Module name: ReloadIlnput
Module subroutines: ReloadInput
Module authors: Juha Ruokolainen
Document authors: Peter Raback

69.1 Introduction

This subroutine is intended for cases where the user wants to have run-time control over the solution. The
control is obtained by reloading the command file (.sif-file) during the solution. This is done with an addi-
tional solver that is called similarly as any other solver during the solution process.

The most likely usage of the solver is in cases where the user realizes during the solution process that
the some parameters were not optimally chosen. For example, the convergence criteria may have been set
too tight for optimal performance. Then the user may set looser criteria by editing the command file during
the computation. Once the new value is read the solver will apply the new criteria thereafter.

69.2 Limitations

The solver should not be used for things that need allocation. For example, the number of solvers or bound-
aries may not change. Also the computational mesh must remain the same.

69.3 Keywords

Solver solver id

Equation String "Reload"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadInput" "ReloadInput"
The name of the file and subroutine.

CSC —IT Center for Science (cc



Model 70

Reading NetCDF data into FE mesh

Module name: GridDataReader

Module subroutines: GridDataReader
Module authors: Peter Réiback, Vili Forsell
Document authors: Peter Riback

70.1 Introduction

This solver provides the possibility to read in data in uniform grid into Elmer mesh. The supported format
includes currently only NetCDF.
Currently following features are supported:

e Bilinear (in 2D) or trilinear (in 3D) interpolation

e Possibility to have a multiplier and offset in the target field
e Linear interpolation in time

e Multiple possibilities to define the time instant or index

The module requires the netcdf library. Because of this, it has been isolated from the main build system.
The source code for XdmfWriter can be found from the source tree in misc/netcdf2 and it should be
compiled by the user as follows:

elmerf90 -ISHDF5/include -LS$SHDF5/l1ib -o GridDataReader.so GridDataReader.f90 -lnetcdff -lnetcdf

The environment variable $SNETCDF defines the installation directory for the NetCDF-library.

70.2 Theory

In structured data the finding of grid cell where a certain node belongs to is trivial. Assume that the grid is
defined by coordinates a; and b; so that any coordinate x; is presented by

r; = a;n; +0b; (70.1)

where n; € [1,N;] and ¢ € [1,DIM]. Now the finite element node with coordinate &; may be interpolated
using the cell with indexes m; = ceiling((Z; — b;)/a;) and m; + 1 using linear interpolation with weighing
factor ¢; = m; — (&; — b;)/a;.

f = Q’ifmi + (1 - Qi)f'rni—&-l- (70.2)
This generalizes into multiple dimensions using recursion. For example, in 2D the bilinear interpolation
reads

fxi,22) = g fur + (1 — q)ga for + 1 (1 — q2) fiz + (1 — q1) (1 — q2) fo2. (70.3)
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The current implementation provides bilinear and trilinear interpolation in space, and linear interpolation in
time.

The algorithmic complexity of the reader and interpolation routine is linear in time. However, the current
implementation assumes that each partition do their own interpolation routines which means that there may
be a large number of files open in parallel runs introducing potential bottle-necks.

70.3 Keywords

Solver solver id

Equation String [GridDataReader]
The name of the equation.

Procedure File "GridDataReader" "GridDataReader"
The name of the procedure.

Filename File
Full name of the target file (with the suffix).

X Name String

Name of the 1st coordinate.
Y Name String

Name of the 2nd coordinate.
Z Name String

Name of the 3rd coordinate.

Time Name String
Name of the time coordinate.

X Epsilon A
ccuracy of the 1st coordinate assumed in interpolation. Default is machine epsilon.

Y Epsilon A
ccuracy of the 2nd coordinate assumed in interpolation. Default is X Epsilon.

Z Epsilon A
ccuracy of the 3rd coordinate assumed in interpolation. Defaultis X Epsilon.

Time Epsilon A
ccuracy of time assumed in interpolation. Default is machine epsilon.

Time Point Real
Value of time used in this calling. If this is not found the Elmer time will be used.

Time Offset Real
Offset used to add to the Elmer time.

Time Multiplier Real
Coefficient used to multiply the Elmer time.

Is Time Index Real
If this flag is turned on then the time instance given with the previous keywords will be under-
stood as being the index of time in the NetCDF file (starting from 1) rather than actual time.

Is Time Counter Logical
If this flag is turned on, the time index of the NetCDF file will be increased by one each time the
routine is called. This makes it ideal for looping over each timestep.

Coordinate Transformation String
Optional coordinate transformation that is applied on the Elmer coordinate prior to finding its
value on the grid.

Enable Scaling Logical
If this flag is turned on the bounding box of Elmer mesh will be made compatible with that of
the grid.
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Variable 1 String
Variable of the NetCDF file. There is no upper limit to the number of variables.

Target Variable i String
Optional name for the target variable. If this is not given then the Variable i value will be
used for the FE variable as well. If the target variable is not present it will be created the first
time it is needed. Also, if different variables that follow each other have the same target variable
these will be summed up. With the multiplication and offset features this makes it possible to
derive new variables as a linear combination of any fields given in the NetCDF file.

Interpolation Offset Real
A constant that will be added to the value of the interpolated field. If there are many fields with
different offsets use Interpolation Offset 1 instead.

Interpolation Multiplier Real
A constant that will be used to multiply the interpolated field. The default value is one. If there
are many fields with different offsets use Interpolation Multiplier i instead.
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Model 71

Lithium-Ion Battery Model

Module name: BatterySolver

Module subroutines: SolidPhaseCons, ElectrolyteCons, SolidPhasePot, ElectrolytePot, BatteryPost
Module authors: Peter Riback, Timo Uimonen

Document authors: Timo Uimonen, Joel Songok, Peter Raback

Document edited: March 2nd 2020

71.1 Introduction

This module can be used to solve a set of conservation equations that govern lithium-ion battery cycling
behaviour. The macroscopic model follows multiphase porous electrode and concentrated solutions theories
that describe the transfer of mass and charge between solid electrodes and liquid electrolyte [2] [3].

The current implementation provides perhaps a starting point for continued work. There is still some
challenges in the robustness of the solver. It has been verified against literature but the number of coupled
system iterations needed seems often excessive.

If you’re interested in continuing the work, please contact the authors for more details. In the partial
differential equations we have followed closely the references while the numerical solution is very different,
probably both in good and bad.

71.2 Theory

For the equations we mainly follow the Master’s Thesis of A. Borakhadikar [1]. For other relevant references
see, for example, [3].

The model for the battery includes two coupled equations for both electrostatic potential and concentra-
tion. These are closed by chemical kinetics described by the Butler-Volmer equation. The special feature
of the equations is that the solid phase concentration is to be solved within each solid phase particle. The
multiscale nature is captured by solving the 1D diffusion equation in spherical coordinates in each node of
the distributed system. The other equations follow pretty much standard procedures.

Conservation of species in solid phase is written as

Ocs Dy 0 p0cs\
m‘ﬁm(r 8r> =0, b

where ¢s(Z,r,t) is the concentration, Dy is solid phase Li diffusion coefficient. At the boundary of each
sphere the flux condition is given by

des) L, (71.2)
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where a; = 3¢,/ R, is the active interfacial surface area, F' is Faraday constant and R is the radius of the
solid particle. Jr; is the lithium ion flux between the solid and electrolyte phases. The coupling to other
fields takes place only at the surface where we define C(Z,t) = ¢ (&, ro, t).

Conservation of species in electrolyte phase leads to a diffusion equation

0
. peff _
—Et(eeCe) -V De VC, =

1—t,

JiLi, (71.3)

where ¢ is transference number of lithium ions and sz f is effective electrolyte phase Li T diffusion coeffi-
cient. The effective diffusivity depends on the electrode porosity which is described by Bruggeman relation
D¢ff = D_eP where ¢, is electrolyte phase volume fraction. At the current collectors, no-flux boundary
conditions are imposed,

aC, oC,
oz ’z:O = ox ’z:L =

Conservation of charge in solid phase defines the solid phase potential,

0. (71.4)

— V-0V, = —Jp, (71.5)

where the o¢/7 refers to effective conductivity of an electrode. It is defined as o¢ff = ge, where ¢, is active
particle volume fraction. The boundary condition for solid phase potential at the current collectors reads as

D5 deps I
e S22 = (71.6)

- oz ’x:O =0y oz ‘I:L = A’

where I(t) is applied current and A is the plate area of an electrode. The boundary conditions at the
electrode-electrolyte interface are defined as follows,

dps | _ Ops |
Ox '#=Lneg 9 '&=LNeg+Lsep

=0. (71.7)
Conservation of charge in electrolyte phase defines the potential in the electrolyte phase,
—V &IV, =V -k TV (l0g C.) = Jps, (71.8)

where k7 is the effective ionic conductivity, which is calculated by using Bruggeman’s relation ¢/ =
keP. The electrolyte phase ionic conductivity < can respectively be defined as

C,
— 15.8¢1C, 85(—= )14y 1.
k = 15.8¢"*Ce exp(0 85(1000) ) (71.9)

The second term of the equation gives rise to numerical challenges since it may be difficult to evaluate
accurately. Here nflf T is effective diffusional conductivity which is evaluated as

. 2RTkeTf
k! = Tﬂ(“ —1), (71.10)

where R is gas constant and 7" is ambient temperature. At the current collectors, the boundary conditions
are defined as

Ope ’ _ 0pe |
Oz '*=0 Ox '==L

The system of equation is closed by Butler-Volmer kinetic equation

. aqF aF
Jri = asip [exp (RT”) — exp <RT17>} . (71.12)

In the equation, 7 is the exchange current density given by

=0. (71.11)

io = kOC?"' (Cs,max — CS)QO’CSC, (7113)
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where k is kinetic rate constant, C 4, is the maximum solid phase concentration of an electrode while
the a, and «, are anodic and cathodic charge coefficients. Overpotential 7 may be written as

n=s—pe—U, (71.14)

where empirical expressions are used for the equilibrium potential U. The equilibrium potential is a material
property and for the particular material used in this module, the potential for negative electrode it given by

1
U, (z) =8.0029 + 5.0647 z — 12.578 27 — 8.6322¢-4 ~ + 217655 z?
—0.46016 exp(15(0.06 — x)) — 0.55364 exp(—2.4326(z — 0.92)) (71.15)

and for positive, correspondingly, by

Uy(z) =85.681 2% — 357.72° + 613.89 2* — 555.65 2° 4 281.06 x>
— 76.648 z — 0.30987 exp(5.657 z11°) 4- 13.1983, (71.16)

where = C/Cs mag-

71.2.1 Postprocessing

Once the conservation equations have been solved, the solution can be transformed into more readable
format. The cell voltage of the battery can be expressed as

R
Veett = 61(t, L) = 6 (t,0) = =L I(1), (71.17)
where ¢5(t, L) and ¢,(t, 0) are solid phase potentials at cathode and anode current collectors, Ry is resis-
tance of current collectors and A is electrode plate area.

The battery state of charge can be estimated in variety of ways. In this module, the SOC is evaluated by

default as
(g&su,r'f ) — Zon
SOC(t) = —"~=———— (71.18)

L100% — L0%

where xqy, and 21y are stoichiometric coefficients at 0% and 100% state of charge. Alternatively, the state

of charge can also be calculated by Coulomb counting which goes as follows

t
SOC(t) = SOC(0) — Ql / I(t)dt, (71.19)
rated J0O

where Qqteq 1S rated cell capacity. The cell capacity during cycling is given by

t
Qcent = / I(t)dt. (71.20)
0

71.3 Keywords

The module includes five different solvers. Usually order of solvers is arbitrary. However, here a specific
order is given that has been found to be most successful.

Solver 1
Poisson equation for the solid phase potential, 5. The equation is solved in both anode and cathode.

Equation String SolidPhasePot
The name of the equation.

Procedure File "BatterySolver" "SolidPhasePot"
The name of the solver file and subroutine.
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Variable String [Phis]
This is the default name for ¢, assumed by other solvers.

Linearize Flux Logical [True]
Linearize the flux Jr; with respect to ¢s. This is needed since the equation does not otherwise
set the potential levels. This keyword may be applied for any of the potential and concentration
solvers.

Skip Butler Volmer Logical [False]
The strategy when Butler-Volmer equation is computed affects the convergence. It may some-
times be advantageous to skip the re-computation. This keyword may also be applied for any of
the solvers.

Fixed Overpotential Logical [False]
The strategy when the overpotential in Butler-Volmer equation is computed affects the con-
vergence. It may sometimes be advantageous to skip the re-computation overpotential. This
keyword may also be applied for any of the solvers.

Use Time Average Flux Logical [False]
Whether to use instantaneous flux Jz; or average the flux over the timestep. When activated it is
applied in all the solvers.

Use Mean Flux Logical [False]
Whether to use instantaneous flux or average flux over iterations. Cannot be used together with
time-averaged flux.

Use Time Average Diffusion Logical [False]
Whether to use instantaneous diffusion or average diffusion over the timestep. When activated it
is applied in all the solvers.

The following keywords are related to the library functionality but are nevertheless explained briefly
also here. For more details look at the ElmerSolver manual.

Linear System Solver String [Direct]
The type of linear solver used can be specified here.

Linear System Direct Method String [banded]
The type of direct linear system solver can be specified here. Banded is chosen by default.

Linear System Scaling False
For 1D equation the direct banded solver without any scaling is the fastest strategy. For 2D and
3D geometries, other strategies should be used.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. The factor
might speed up the convergence.

Nonlinear System Convergence Tolerance Real
A set value which specifies criterion for relative change between iterations in the nonlinear solver.

Nonlinear System Convergence Measure Real
There is a interplay between nonlinear and steady state convergence criteria. Usually speed is
optimized by iterating mainly at the steady state level. However, here we need to iterate also on
the nonlinear level to achieve convergence.

Steady State Convergence Tolerance Real
This relates to the overall convergence of the system.

Solver 2
Poisson equation for the electrolyte potential, .. This is solved in the whole domain.

Equation String ElectrolytePot
The name of the equation.
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Procedure File "BatterySolver" "ElectrolytePot"
The name of the solver file and subroutine.

Variable String [Phie]
This is the default name for . assumed by other solvers.

Linearize Flux Logical True
Linearize the flux Jp; with respect to ..

Quadratic Electrolyte Diffusion Logical [False]
This enables to toggle between the two different formulations for electrolyte diffusion. The
quadratic form requires higher order elements whereas the standard weak formulation is also
applicable to linear elements.

Ignore Electrolyte Diffusion Logical [False]
This enables to toggle off the effects of Li™ diffusion in the electrolyte during computation.

Use Time Average Diffusion Logical [False]
Whether to use instantaneous diffusion or average diffusion over the timestep.

Fixed Overpotential TLogical [False]
The strategy when the overpotential in Butler-Volmer equation is computed affects the con-
vergence. It may sometimes be advantageous to skip the re-computation overpotential. This
keyword may also be applied for any of the solvers.

Calculate Ce sensitivity Logical [False]
If set to True, the solver calculates C., sensitivity for solver 2.

Correct Source Disbalance Logical
This keyword toggles an option to correct the flux imbalance in the ¢, solver.

Solver 3
Diffusion equation for the solid phase concentration, Cs. This is always 1D equation utilizing an
internal 1D mesh as a submodel in every node.

Equation String SolidPhaseCons
The name of the equation.

Procedure File "BatterySolver" "SolidPhaseCons"
The name of the solver file and subroutine.

Variable String [Cs onedim]
This is the default name for C an 1D stride assumed by other solvers.

Solid Phase Relaxation Factor Real
The value of relaxation factor used by solid phase solver.

Maximum Global Change Speed Real
Sets the value of the largest allowed change in solid phase concentration in one iteration.

Number of Passive Visits Integer
Specifies the number of solid phase iterations for only electrostatic solver.

Linearize Flux Logical True
Linearize the flux J; with respect to Cs.

Fixed Overpotential Logical [False]
The strategy when the overpotential in Butler-Volmer equation is computed affects the con-
vergence. It may sometimes be advantageous to skip the re-computation overpotential. This
keyword may also be applied for any of the solvers.

Check Material Balance Logical
A toggle to check for flux imbalance in 1D solution.

Save Solid Phase Average Logical True
Toggle to save average flux between solid and electrolyte phase.

CSC —IT Center for Science (cc



71. Lithium-Ion Battery Model 322

Save Solid Phase Diff TLogical True
Toggle to save the difference in flux between solid and electrolyte phase.

Visualize Node Index Integer
A toggle to visualize a given node with 1D solution.

The following keywords are used by 1D submeshes located in the nodes of the main mesh.

1D Mesh Create Logical [True]
Creates 1D submesh if set to True.

1D Element Order Integer
The order of elements in 1D submesh can be specified here.

1D Number Of Elements Integer
The number of elements in 1D submesh can be specified here.

1D Mesh Ratio Real
Here the ratio of 1st and last element in the 1D submesh can be specified.

1D Mesh Length Real
This keywords is used to specify the length of the 1D submesh.

1D Active Direction Integer
Specifies the direction of the 1D submesh. This is set to 1 by default.

1D Body Id Integer
This keyword is used to set the body id.

Solver 4
Diffusion equation for the electrolyte concentration, Cl. It is solved in the whole domain.

Equation String ElectrolyteCons
The name of the equation.

Procedure File "BatterySolver" "ElectrolyteCons"
The name of the solver file and subroutine.

Variable String [Ce]
This is the default name for C, assumed by other solvers.

Linearize Flux Logical [False]
Linearize the flux Jr; with respect to c..

Number of Passive Visits Integer
Specifies the number of solid phase iterations for only electrostatic solver.

Use Solid Phase Relaxation Logical [True]
If set to True, the solver inherits relaxation factor from solid phase concentration solver.

Fixed Overpotential Logical [True]
The strategy when the overpotential in Butler-Volmer equation is computed affects the con-
vergence. It may sometimes be advantageous to skip the re-computation overpotential. This
keyword may also be applied for any of the solvers.

Skip Butler Volmer Logical [True]
The strategy when Butler-Volmer equation is computed affects the convergence. It may some-
times be advantageous to skip the re-computation.

Use Effective Diffusion Logical [False]
It can sometimes be advantageous to use non-effective diffusion where the electrolyte volume
fraction is not taken into account. This is due to numerical difficulties risen from the second term
in solver 2.

Calculate Cs sensitivity Logical [False]
If set to True, the solver calculates C sensitivity for solver 4.
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Use Time Average Diffusion Logical [False]
Whether to use instantaneous diffusion or average diffusion over the timestep.

Correct Butler Volmer Fluxes Logical
Sometimes there might exist an imbalance of fluxes between the electrodes. This toggle is used

to add a correction coefficient to adjust the imbalance.

Solver ©5
Solver for performing postprocessing information after convergence is obtained.

Equation String BatteryPost
The name of the postprocessing equation.

Procedure File "BatterySolver"
The name of the solver file and subroutine.

"BatteryPost"

Study Jli Balance Logical
This keyword is used to toggle on an option to save error values in the C solution to study Jri

balance.

Soc Model String
State of charge model to be used. The De fault model evaluates SOC in terms of the solid phase

concentration while taking the stoichiometric coefficients into account. Selecting Simplified,
on the other hand, makes the model to ignore them. Alternatively, selecting Coulomb evaluates

SOC using Coulomb counting method.

SOC on surface Logical
If set to True, the solver uses the surface values for SOC instead of true average.

Initial SOC Real
The initial SOC can be specified here if the simulation starts in conditions other than fully

charged or discharged.

Cutoff Voltage Real
This keyword is used to set a lower-limit for the cell voltage at which the battery cell is considered
fully discharged.
Stoichiometric Limit Real
This keyword is used to set a lower-limit for solid phase concentration after which a warning is
issued.

Applied Current Real
This keyword is used to define the value of applied current that is only used in postprocessing.

Here, negative sign refers to charge current and vice versa.

Cell Capacity Real
This keyword is used to define value of rated capacity of the battery cell, which is used in
evaluation of state of charge by Coulomb counting method.

Use Average Cell Voltage Logical
We may either use extremum potential to compute the cell voltage or take average over anode

and cathode. The first one is the default.

Calculate Charges Logical
Toggle to calculate addition information about the charges and potentials of anode, cathode and
electrolyte.
Constants

Gas Constant Real
The universal gas constant K. In SI units the value is 8.314 J/K mol.

Faraday Constant Real
Specific charge in mole, F'. In SI units the value is 96485.3 C/mol.

(@) ey-nD___|]
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Transference Number Real
This keyword is used to define the Li* transference number, £ .

Electrode Plate Area Real
This keyword is used to define the electrode plate area, A.

Ambient Temperature Real
This keyword is used to define the ambient temperature, 7.

Current Collector Resistance Real
This keyword is used to define the contact resistance of a current collector, Ry.

Material mat id
Materials parameters for anode and cathode.

Anode Logical
If material is anode set True, otherwise False.

Cathode Logical
If material is cathode set True, otherwise False (default).

Particle Radius Real
This keyword is used to define the radius of the solid phase particles, R.

Active Particle Volume Fraction Real
This keyword is used to define the volume fraction of particles in an electrode, €.

Maximum solid phase concentration Real
This keyword is used to define the value of maximum lithium concentration in an electrode,

Cs,maz~

Kinetic Constant Real
This keyword is used to define the value of kinetic rate constant, k.

Anodic charge transfer coefficient Real
This keyword is used to define the anodic charge transfer coefficient, a,.

Cathodic charge transfer coefficient Real
This keyword is used to define the cathodic charge transfer coefficient, c..

Solid Phase Diffusion Coefficient Real
The value of lithium diffusivity in solid phase, D;.

Solid Phase Electrical Conductivity Real
This keyword is used to define the electrical conductivity of an electrode in solid phase, o.

Stoichiometry at Full Charge Real
Stoichiometry when the battery cell is considered fully charged, x1gv.

Stoichiometry at Nill Charge Real

Stoichiometry when the battery cell is considered fully discharged, (.
Material parameters for electrolyte.
Electrolyte Volume Fraction Real

This keyword is used to define the volume fraction of electrolyte, €.

Electrolyte Diffusion Coefficient Real
The value of Li* diffusivity in electrolyte phase, D..

Initial Condition ic id
Initial conditions are used to set the state of the battery at start of the simulation. We may initialize
CS, Ces Pss Pe and JLi'
Cs Real
Ce Real
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Phis Real
Phie Real
Jli Real

Boundary Condition bc id

Current Density Real
Neumann boundary condition for the current density. During discharge, current density has a
positive sign at anode current collector and negative sign at cathode current collector.
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Richards equation for variably
saturated porous flow

Module name: RichardsSolver

Module subroutines: RichardsSolver, RichardsFlux
Module authors: Peter Raback

Document authors: Serge-Etienne Parent and Peter Raback

72.1 Introduction

Richards equation is a non-linear partial differential equation that represents the movement of fluids through
porous media.

The current implementation of the Richards equation uses normal Lagrange elements and therefore the
conservation of flux cannot be guaranteed. Dense meshes are required if the variations in the permeability
are high.

This version should not yet be considered a production version. However, it provides a suitable starting
case for more serious testing and further development.

72.2 Theory

The transient, incompressible, variably saturated, isotropic flow of water in non-swelling porous media is
expressed by the combination of Darcy’s law and the continuity equation, i.e. Richards equation. The
modern form of Darcy’s law can be written as

G=—koVH (72.1)

where ¢'is the unit flux, or Darcy velocity (L/T), k,, is the fluid hydraulic conductivity of water (L/T), and H
is the total head (L). Since the velocity component of total head can be treated as negligible in porous media,
and air pressure can be considered as constant, total head can be expressed as = p+ z where p is pressure
(F/L?) (note that p = —1) = u, — Uy ), ¥ is matric suction (F/L?), u,, is the water pressure in pores (F/L?),
u, is the air pressure in pores (F/L?), z is elevation from a datum (depth coordinate of the geometry).

The continuity equation is expressed as

00
— =-V -7+ Sy, 72.2
ot q+ (72.2)
where 6 is the volumetric water content (L/L), ¢ is time (T), S, is a source/sink term (L/T). Richards equation
may now be written as,
00

a =-V. (kaH) + Sw; (723)
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since @ = f(¢) and k,, = f(¢) the latter equation can be expressed using a pressure form,

00 oy

ot —V - (kwVH) + Sy, (72.4)
Or, developing total head,
06 0
500t~ —V - (kwV (=t + 2)) + Sw, (72.5)

The volumetric water content and the hydraulic conductivity are non-linear functions related to pres-
sure head. Both are commonly expressed by van Genuchten (1980)’s equations. Volumetric water content
function yields

05 %7 if >0
0(y) = T rarge)mee : (G 6
957 lf 1/) < 0
And the hydraulic conductivity function is
(17(a'qu)n1’Gm“G(1+(a,UG'¢))"vG)muG)2 .
kuw(¥) = 201 (+aygd) e’ Y >0 (72.7)
kw,sat7 1f,¢) < 0

where 6 is the volumetric water content (L/L), 6,. is the residual volumetric water content (L/L), 8, is the sat-
urated volumetric water content, equal to the porosity (L/L), a,a, nug, My are fitting parameters without
any units.

72.3 Implementation issues

The current implementation is carried out for the total head, H. This results to a weak form where the fluxes
occur naturally. The total head is intuitive since it gives directly the ground water level. Since the time
derivative of the elevation is zero, we may use the following equation to solve the total head,

OH
Gwﬁ +V . (k,£wWVH) = 85,. (72.8)
From the total head the matrix suction will be automatically computed, v» = z — H. This makes it possible
to have material laws that depend on it.
For transient problems the first term requires special attention. In the current version the sensitivity of 0
to v is computed from

6(w(£:)—0((t)—e) (72.9)

€

otherwise.

0(p(ti))=0((ti1)) ;
0, — { oy i [Ut) —tio)] > €

This way the effective sensitivity is smeared over the whole timestep, dt = t; — ¢;_1.

The values of the material parameters in the Richards equation vary a great deal depending on the sat-
uration level and type of medium. Therefore it is important to evaluate the water content and hydraulic
conductivity at the Gaussian integration points using the relevant formulas, rather than computing them at
nodal points and thereafter evaluating the values at the Gaussian integration points using a weighted sum
over the nodal values.

72.4 Keywords

The module includes two different solvers. RichardsSolver solves the primary differential equation
while RichardsFlux solves the resulting flux from the computed solution. The second solver only makes
sense when the pressure field has already been computed with the first one. The second solver uses the same
material parameters as the first one.
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Keywords for RichardsSolver
Solver solver id

Equation String RichardsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsSolver"
Name of the solver subroutine.

Variable String TotalHead
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Saturated Initial Guess Logical
Use saturated material parameters when computing the first equation for the total head.

Active Coordinate Integer
The coordinate corresponding to the depth z in the Richards equation. By default the last coor-
dinate is the active one.

Calculate Matrix Suction Logical
Whether to compute the matrix suction from the total head.

Bubbles Logical
Use stabilization by residual free bubbles.

Nonlinear System Convergence Tolerance Real
The Richards equation is always nonlinear and hence keywords related to the nonlinear system
control are needed. The iteration of the nonlinear system is continued till the relative change in
the norm falls under the value given by this keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Nonlinear System Relaxation Factor Real
Keyword related to the relaxation of the nonlinear system.

Material mat id

Porosity Model String
Currently the choices are van Genuchten and Default. The latter does not estimate the
functional forms on gaussian points and hence may have inferior accuracy. Also, currently the
computation of water content derivative is not supported for it limiting its usability to steady
state problems.

Saturated Hydraulic Conductivity Real
Saturated Water Content Real
Residual Water Content Real

van Genuchten Alpha Real

van Genuchten N Real

van Genuchten M Real
The parameters above are the material parameters of the van Genuchten material law that are
used to compute the hydraulic conductivity and water content.

Hydraulic Conductivity Real

Water Content Real
In case the porosity model is constant then the hydraulic conductivity and water content are
given with this keyword.

CSC —IT Center for Science [@)BY-nD |



72. Richards equation for variably saturated porous flow

329

Body Force bf id

Richards Source Real
The source term, S, of the equation.

Boundary Condition bc id
Richards Flux Real

The given flux at the boundary.

Keywords for RichardsPostprocess

This solver uses largely the same keywords that are already defined above. Only the Solver section has its

own keyword settings. This solvers should be active in the same bodies than the RichardsSolver.

Solver solver id
Equation String RichardsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsPostprocess"
Name of the solver subroutine.

Target Variable String

The name of the total head field solved by the Richards equation. The default name is Total

head.
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Outlet Boundary Condition for Arterial
Flow Simulations

Module name: ArteryOutlet

Module subroutines: OutletCompute, OutletInit, OutletPres, OutletdX, OutletdY
Module authors: Esko Jirvinen, Mikko Lyly, Peter Raback

Document authors: Esko Jirvinen

73.1 Introduction

Arterial elasticity is a fundamental determinant of blood flow dynamics in arteries, such as the aorta and
its daughter vessel, that face the largest displacements and which takes care of the cushioning of the stroke
volume. Simulation of such a phenomenon requires simultaneous solving of the equations governing both
the fluid flow and wall elasticity. To be able to perform accurate fluid-structure interaction (FSI) simulations,
only a segment of the circulatory system can be studied at a time. For these artificially truncated segments,
which are naturally unbounded domains and in interaction with the rest of the circulation domain, one should
construct in the numerical models boundary conditions which do not exhibit any unphysical behaviour,
which operates transparently, and are also capable to transport a sufficient amount of information over the
boundary.

A natural boundary condition at the outlet of a numerical FSI flow model of an artery is not a proper
choice because it does not exhibit enough correct physiological behavior of the flow, and from the point of
view of numerical approximation, it causes non-physiological reflections of the wave at the boundary. If
measured data of both the pressure (or velocity) and the wall displacement at the outlet boundary are not
available, the only way to get the outlet boundary of a higher order, 2D or 3D model sufficiently specified is
to combine the model with some lower order model, such as a 1D or lumped model.

In order to get the outlet of the arterial FSI model to behave transparently in such cases when only
forward travelling waves are considered, a simple characteristic equation of the of the one dimensional FSI
model can be combined with the higher order model.

73.2 Theory

The conservation equations for a flow in an elastic artery in one dimension may be expressed as

OA 0Q __
94498 =0
, (73.1)
9 o]
87?"_@((2 )+A b — ),
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where () is the volume flow, A the cross section area of the artery, p is the pressure and « is the axial
coordinate [3]. In order to get the system (73.1) close, an equation relating the area A to the pressure
p = p(A) is derived applying the theory of thin shell structures. Assuming a cylindrical shell, and neglecting
the rotation on the shell cut plane, and the movements of the structure in the axial and circumferential
directions, as well as applying the Kirchhoff-Love assumption, the energy balance equations is reduced to

E R Eh 1
AR N CO R
20— " T a2 g2

where R, is the radius to the midplane of the wall, F, v and dp are the Young modulus, the Poisson
ratio and the radial displacement of wall, respectively. Assuming that the first term on the left side in the
equation (73.2) is much smaller than the second term, we can give the pressure-area relation in the form

JThE
(1—2)Ag

The pressure is scaled to be equal to external pressure p.,; with corresponding reference artery cross
sections area Ajg.

The equations (73.1) and (73.3) form a closed system for the simulations of flow in an elastic tubes. The
equations may be written in conservative form which is strictly hyperbolic with two distinct real eigenvalues

M2 = @ =+ ¢, where & = Q/A is the average axial velocity, ¢ = /(A/p;)(Op/0A) = \/BVA/(2py) is
the speed of sound, and py is the density of blood. The system can be further decomposed into a set of the

equations for the characteristic variables W;, which are the components of the vector W = T~1U (% =
T-Y,U = [A,Q]" [2]. These equations are

dr =, (73.2)

P = Pext + 6(\/2 - \/A>0)7 B = (733)

6;@ + A Wi _ 0, (73.4)

ox
2

WLQZQiQ — + BV A.
AT\ oy

When considering a pulse propagation in a straight, infinitely long homogeneous conduit, without any
bifurcations or other objects which might cause reflections of the pulse, i.e. any backward travelling waves
does not exists, the computations can be done using only the first of equations in (73.4), i.e.

and the characteristic variables are

oW (U) + M (U) oW, (U)

ot Ox
This equation is solved in this Elmer outlet boundary condition for arterial flow simulations solver. The
connection of the one dimensional model to the test models at the their outlets is done applying the following
coupling [1]

=0.

dR™ =dR*

o” =pT
Wl = gl(Aia Q77p7)7

where dR and o are radial displacement of the artery wall and fluid traction, respectively. The superscript
’—” denotes the values in the higher order models, and superscript *+’ to the values in the 1D model.

73.3 Keywords

Keywords of FlowSolve

Initial Condition ic id
For making the initial guess for the characteristic variable W
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Wnodal Variable Coordinate
Real Procedure "ArteryOutlet" "OutletInit"

Material mat id
Material properties for the one dimensional section.

Density Real
Density of blood
Artery Wall Youngs Modulus Real
Young’s modulus of the artery
Artery Radius Real
Radius of the artery to the midplane of the artery wall
Artery Wall Thickness Real
Wall thickness of the artery
Artery Poisson Ratio Real
Poisson ratio of the artery

Solver solver id
Keywords for the one dimensional solver. Note that all the keywords related to linear solver (starting
with Linear System) may be used in this solver as well. They are defined elsewhere.

Equation String [Artery Outlet Solver]

Variable [Wnodal]
The variable which is solved

Variable DOFs [1]

Procedure File "ArteryOutlet" "OutletCompute"
The name of the file and the subroutine

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies

Artery Outlet Solver Logical [True]
If set True, the solver is used. The name of the solver must match with the name in the Solver
section

Boundary Condition boundary id
The pressure of the given coordinate direction i at the artery outlet of the higher order model is set to
correspond the value given by the 1D model.

Pressure 1 Variable Time
Real Procedure "ArteryOutlet" "OutletPres"

The diameter of the artery in the appropriate direction at the outlet of the higher order model is set to
correspond the value given by the outlet boundary condition solver. The subroutines Out letdX and
Outletdy are located in the module ArteryOutlet

Displacement i Variable Time
Real Procedure "./ArteryOutlet" "OutletdX"

This is the inlet boundary of the one dimensional section which is coupled with both, the fluid and the
solid outlet boundary of the higher order model

Fluid Coupling With Boundary Integer
Structure Coupling With Boundary Integer
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Figure 73.1: An example of the model results: pressure pulse propagation in a 2D axisymmetric model
combined with an 1D model.
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BEM Solver for Poisson Equation

Module name: PoissonBEM

Module subroutines: PoissonBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen

74.1 Introduction

This module solves the Laplace equation by boundary element method (BEM), where the differential equa-
tion is transformed to integral equation along the boundaries. On the boundaries either potential or normal
flux may be defined. A source term may be included (Poisson equation), but the source term remains a
volume integral.

This is an old module which has limited use since the BEM matrix is assembled in full. This means
that the memory consumption and speed of solution grow rather unfavorably with problem size. Efficient
BEM solvers never create the full matrix but use iterative multilevel methods instead, such as the multi-
pole expansion. Also, the solver only works in serial so parallel computing is not available to resolve the
bottleneck.

74.2 Theory
The Poisson equation is mathematically described as
—Ad— f=0,in , (74.1)

where f is the given source.
In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

— / Adw d) = / Vo .- Vw d) — / a—q)w dl. (74.2)
Q Q r on
Similarly we may write an equation reversing the roles of ® and w
ow
— / Awd dQ) = / Vw- - Vo dQ) — / —o dl'. (74.3)
Q Q r on
Subtracting the two equations we have
P
—/A(I)wdQ:—/Aw@dQ—/a—wdf—i—/a—w@dF (74.4)
Q Q T 371 T 5‘n
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Next we choose the weight w as follows:

— Aw = §,(r"), (74.5)
so that
— / Awd dQ = D(r), (74.6)
Q
The weight w chosen this way is the Green’s function for the Laplace operator, i.e.
1 -7 1
w(r,r') = % in2d ,w(r,r) = yr e in3d. (74.7)
Finally we add the source term, and we have the equation
0P 0
o) — [ Cwdr+ [ o dF—/ fw dQ = 0. (74.8)
T on T on Q

Only the source term is now integrated over the volume. This equation may now be discretized by standard
methods.

74.2.1 Boundary Conditions

Boundary conditions may be set for either potential
®=>0ronl, (74.9)

or normal flux

82
on

=gonT. (74.10)

74.3 Keywords

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [PoissonBEM]

The name of the equation.
Procedure File ["PoissonBEM" "PoissonBEMSolver"]

This keyword is used to give the Elmer solver the place where to search for the equation solver.
Variable String [Potential]

Give a name to the field variable.

Variable DOFs Integer [1]
This keyword must be present, and must be set to the value 1.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [1]
This keyword must be present if Flux values are to be computed, and must be set to the value 1.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

PoissonBEM Logical
if set to True, solve the Poisson equation, the name of this parameter must match the Equation
setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Poisson
equation is activated, the value of the potential is computed for these elements as a postprocessing
step. Note that the computation of potential is not a trivial task, so large number of volume elements
may result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Poisson
(BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Potential Real
Known potential value at boundary.

Flux Real
Known normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.

Body Force bf id
The source term for the Poisson equation may be given here. The volume integral is computed on a
body with a volume mesh and the PoissonBEM equation set to true.

Source Real
The source term for the Poisson equation.
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BEM Solver for Helmholtz Equation

Module name: HelmholtzBEM

Module subroutines: HelmholtzBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen

75.1 Introduction

This module solves the Helmholtz equation by boundary element method (BEM), where the differential
equation is transformed to integral equation along the boundaries. On the boundaries either pressure or
normal flux may be defined.

This is an old module which has limited use since the BEM matrix is assembled in full. This means
that the memory consumption and speed of solution grow rather unfavorably with problem size. Efficient
BEM solvers never create the full matrix but use iterative multilevel methods instead, such as the multi-
pole expansion. Also, the solver only works in serial so parallel computing is not available to resolve the
bottleneck.

75.2 Theory
The Helmholtz equation is mathematically described as
(k> + A)® =0, in Q. (75.1)

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts

0P
/(k2 + A®)w dQ) = / Ew®dQ — / Vo - Vw d2 + / —wdl. (75.2)
Q Q Q r on
Similarly we may write an equation reversing the roles of ® and w
0
/(k:2 + A)wd dQ) = / E2w®d — / Vw- -V dQ + / g ar. (75.3)
Q Q Q r on
Subtracting the two equations we have
0P 0
/ (k% + A)Dw dQ = / (k% + A)wd dQ — / Cwdr+ [ Lo ar (75.4)
Q Q T 311 r 8n
Next we choose the weight w as follows:
(B* + A)w = §,(r"), (75.5)
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so that
/ (k% + A)wd dQ = &(r), (75.6)
Q
The weight w chosen this way is the Green’s function for the Helmholtz operator, i.e.
1 1 : /
w(r,r’) = ,—4Ho(k(r —7"))in2d ,w(r,r’") = o exp~ (=) in 3d | (75.7)
1 ™
where Hj is the Hankel function.
Finally we have the equation
0P ow
&(r)— | —wdl —®dl'=0. 75.8
) /F oan " + /F on (75.8)
75.2.1 Boundary Conditions
Boundary conditions may be set for either pressure
® =®ronl, (75.9)
or normal flux 50
— —=gonl. (75.10)
on

75.3 Keywords

Simulation

Angular Frequency Real
Give the value of the angular frequency for the simulation.

Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [HelmholtzBEM]
The name of the equation.

Procedure File ["HelmholtzBEM" "HelmholtzBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [2]
This keyword must be present if Flux values are to be computed, and must be set to the value 2.

Equation eqg id

The equation section is used to define a set of equations for a body or set of bodies:

HelmholtzBEM Logical
if set to True, solve the Helmholtz equation, the name of this parameter must match the
Equation setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Helmholtz
equation is activated, the value of the pressure is computed for these elements as a postprocessing step.
Note that the computation of potential is not a trivial task, so large number of volume elements may
result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmbholtz (BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Pressure 1 Real
Known real part of pressure at boundary.

Pressure 2 Real
Known imaginary part of pressure at boundary.

Flux 1 Real
Known real part of normal flux at boundary.

Flux 2 eal
Known real part of normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.
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Model 76

Magnetoquasistatic approximation for
axial symmetry

Module name: StatMagSolve

Module subroutines: StatMagSolver

Module authors: Juha Ruokolainen, Ville Savolainen, Jussi Heikonen, Peter Raback, Antti Pursula
Document authors: Ville Savolainen, Peter Raback, Antti Pursula, Mika Malinen

76.1 Introduction

Note: This solver is obsolete!

Maxwell’s equations may generally be expressed by employing a scalar potential and a vector potential.
The magnetic flux density is then the curl of the vector potential. In some cases the effect of the scalar
potential vanishes and the system is fully described by the vector potential. These cases include magne-
tostatics problems where time-independent magnetic fields may be created by electromagnets with given
current distributions or permanent ferromagnets. The solver considered here allows the first option, with
non-homogeneous and non-linear magnetic materials.

The scalar potential may also be ignored in two-dimensional magnetoquasistatic cases when the current
density acts in a direction orthogonal to the plane considered. Then eddy current effects relating to a sinu-
soidal evolution of the current density may also be considered at low frequencies. If there are no conductors
in the system, this approximation reduces to the equations of magnetostatics.

This solver was historically developed for the axially symmetric cases and it should only be used in
those. For handling problems in orthogonal Cartesian coordinates, see the modules MagnetoDynamics
and MagnetoDynamics2D for 3-D and 2-D versions, respectively.

76.2 Theory

When there are no hard ferromagnets, a magnetostatics problem may be expressed using the magnetic vector
potential A that gives the magnetic flux density as B =V x A. It is obtained directly using the Ampere’s
law, so that

V x (;v X E) =7 (76.1)

Here p is the magnetic permeability of the material. The equation may be non-linear through the magnetic
permeability curve of a ferromagnetic material. The solver discussed is intended for handling the axially
symmetric version of (76.1).

The axially symmetric version of (76.1) may also employed to handle magnetoquasistatic problems
where the effect of the displacement current is ignored. If there are conductors in the system, the current
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density is then written as 7’'= oE + Jo where ¢ is the electric conductivity and the electric field Eis given
by
- 04
— 5
In the time-harmonic case the source current density 7y is considered to be jo(z,t) = Jp(x)e’?, where
w = 27 f is the angular frequency. Using a trial A(x,t) = Ay(z)e!, we then obtain an equation for the
amplitude:

1 - —
V x (uV X Ao) + iwaAo = j@.

In the axially symmetric case, the magnetic flux density B has only r- and z-components, while the
current density 7'and the vector potential A have only ¢-components, so that the equation to be solved is

1
V x (V X A¢g¢> + iwaA¢é’¢ = j¢€¢.. (76.2)
i

The vector potential satisfies now automatically the Coulomb gauge. After the solution the heat generation
in the conductors may be computed from

h = 1o—w2|,afo|2.
2

In contrast to the stationary case where A is real and the equation has only one unknown, in the har-
monic case the equation has two unknowns — the in-phase and the out-of-phase component of the vector po-
tential. The magnetic flux density may generally be calculated from the vector potential as a post-processing
step. Both the vector potential and the magnetic flux density components are then provided. The vari-
able names in the result file are magnetic vector potential and magnetic flux density
i, with i=1 and i=2.

76.2.1 Boundary Conditions

For the magnetostatics equation one can apply either Dirichlet or homogeneous natural boundary conditions.
In both cases, one must check that the computational domain is extended far enough to avoid numerical
errors.

The Dirichlet boundary condition for A is

Ay = AL (76.3)

In practice, when the Dirichlet condition is used, one usually takes AZ) = 0. If a Dirichlet condition is not
specified, the homogeneous natural boundary condition is used.

76.3 Keywords

Simulation

Frequency Real
Frequency f if harmonic simulation is used.
Angular Frequency Real
Angular frequency w = 27 f if harmonic simulation is used, alternative to the previous one.
Constants

Permeability of Vacuum Real [4710 [

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.
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Equation String [Static Magnetic Field]
The name of the equation.

Variable String [Aphi]
The name of the variable.

Variable Dofs Integer
Number of dofs in the field, this should be one for the steady-state case and two for time-
harmonic analysis.

Procedure File ["StatMagSolve" "StatMagSolver"]
The name of the file and subroutine.

Harmonic Simulation Logical
Assume time-harmonic simulation.

Calculate Magnetic Flux Logical [True]
By this flag the computation of the magnetic flux is activated. The default is False.

Calculate Magnetic Flux Abs Logical [True]
Sometimes it is useful to have the absolute magnetic flux available for nonlinear material laws.
Then this flag can be turned on. The default is False.

Calculate Joule Heating Logical [True]
In large computations the automatic computation of the Joule heating may be turned off by this
keyword. The default is False. The keyword is only applicable for the harmonic case. The
computation results to two additional variables. Joule Heating gives the absolute heating
and Joule Field the field that gives the heating when multiplied by the electric conductivity.
This may be needed if the electric conductivity is discontinuous making also the heating power
discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active, then the
Joule Heatingand Joule Field are multiplied by the ratio of the desired and computed
heating powers.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

k—
145 — AgTHI < ell 4G,

where ¢ is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear and
this should be set to be 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

Ay =ML+ (1 - NAET,

where ) is the factor given with this keyword. The default value for the relaxation factor is unity.

Equation eg id
The equation section is used to define a set of equations for a body or set of bodies:

Static Magnetic Field Logical
If set to True, solve the magnetostatics equation.
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Body Force bf id
The body force section may be used to give additional force terms for the equations.

Current Density Real
Specifies the azimuthal component of the current density. It may be a positive or negative con-
stant, or a function of a given variable.

Current Phase Angle Real
Specifies the phase angle of the current density in degrees. The default phase angle is zero.
Applies only to the time-harmonic case.

Joule Heat Logical
If this flag is active, the heat equation will automatically include the computed Joule heating as
a heat source. Then it is assumed that Joule heating field ¢ is named Joule field. If thereis
no heat equation, this flag has no effect.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variable is active:

Aphi Real
The azimuthal component of the magnetic vector potential.

Material mat id
The material section is used to give the material parameter values. Material parameter available for
the magnetostatics equation are.

Relative Permeability Real
The relative magnetic permeability p is set with this keyword, defining the material relation B=
Lo ,uoﬁ . By default the relative magnetic permeability is one, but it may also be set otherwise or
be a function of a given variable, typically given by the relation p, = ur(|§|) The value of the
magnetic flux density \é | is available by the variable named Absolute Magnetic Flux.

Electric Conductivity Real
The electric conductivity defines the relation 7’ = oF. Only isotropic case is possible. The
parameter is needed only in the time-harmonic case.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. A
Dirichlet boundary condition may be set for the vector potential. The one related to the the axially
symmetric magnetostatics problem is

Aphi Real
The azimuthal component of the magnetic vector potential.
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Model 77

Linear Constraints

Module name: included in solver (SolverUtils)
Module subroutines: SolveWithLinearRestriction
Module authors: Mika Juntunen

Document authors: Mika Juntunen

77.1 Introduction

This subroutine allows user to solve problems with linear constraints. Here constraints are forced with
Lagrange multipliers. This method, however, does not always lead to a well-posed problem. Conditions
that ensure a (unique) solution are excluded here, but the conditions are found in many books (check for
example [1]).

77.2 Theory

The problem at hand is
min 27 Az — 2T f (77.1)

xT

Let’s assume that we can solve this. Now we also want that the solution solves the system Bz = g. This
gives constraints to our solution. The rank of B should be less or equal to the rank of A. Loosely speaking,
the number of rows in B should be less or equal to the number of rows in A. The method of Lagrange
multipliers fixes these two equations together and gives a new functional to minimize.

min z7 Az — 27 f + \T(Bx — g) (77.2)

If A is symmetric, then simple variational approach leads to solving z out of system

(5 %) ()=) ™3

Symmetry of A is not always needed, but then more powerful methods have to be used to get to the above
system.

77.3 Limitations

e General usage of the subroutine
This subroutine can not be used by just adding keywords to solver input file. You must somehow
create the constraint matrix and then call for SolveWithLinearRestriction in your own subroutine or
function. The reader is encouraged to check for details in ElmerTutorials.
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o EMatrix-field
The EMatrix-field of the solved system matrix is used passing constraint matrix to SolveWithLinear-
Restriction. This will be a problem if some other function or subroutine tries to use the EMatrix-field.
EMatrix-field of the constraint-matrix is internally used by SolveWithLinearRestriction and should
therefore be left alone.

e Exported Multipliers
The length of the vector that holds the multipliers is limited to be a multiply of the number of nodes
in mesh. This means that the vector usually has extra entries. These entries are set to zero. This leads
to problems in extracting the correct values from the result file. Also post processing with ElmerPost
is at least tricky.

e Parallel solving is not yet implemented.

77.4 Keywords

Solver solver—id

Export Lagrange Multiplier Logical
If the multiplier has some physical meaning, you can save it to result file and to post file. This
feature has certain drawbacks, check subsection Limitations. Default is False.

Lagrange Multiplier Name String
The name you want to call the exported multipliers. This keyword has no meaning if the previous
keyword is set to False. Default name is LagrangeMultiplier.

Bibliography
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York, Berlin, Heidelberg, 1986.
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Model 78

Density Functional Theory

Module name: DFTSolver

Module subroutines: Poisson, WaveFunctionSolver, ChargeDensitySolver, xc
Module authors: Olli Mali, trad (xc)

Document authors: Olli Mali

78.1 Introduction

This is an instructional text for using Elmer solvers I created for DFT calculations during the year 2006 while
preparing my Master’s Thesis [7]. These Solvers are rather experimental and I would not recommend their
use for highly complicated problems. Nevertheless they provide nice backbone for creating own DFT-solvers
with finite element method.

78.2 Theory

In DFT, Kohn-Sham equations [1, 2] play central role. They are set of highly nonlinear equations which
define uniquely the exact ground state charge density. From charge density the total energy of the system in
ground state can be calculated, which is unfortunately not implemented in present code.

The Kohn-Sham equations have a form

(= 38+ Vi () + Velo(r)] + Vaalp(r)] Jun(r) = exun(r)
N
plr) = Ypoi (),
where KS-orbitals 5 (r) are normalized, [y (r)%dr = 1, foreack k = 1,2,..., N . Vyxq is the exter-
nal potential caused by the nuclei, V. is the non-interacting Coulomb potential and V. is the exchange
correlation potential that includes all the complicated many body effects, at least approximates. Nice expla-

nation from the widely used Local Density Approximation can be found from [3]. Nonlinearity occurs in
eigenvalue problem, where the operator depends on the solution of the eigen problem.

(78.1)

Self-Consistent iteration

The equations (78.1) are solved with self-consistent iteration (fixed point iteration). In this iteration Coulomb
and external potentials are solved from Poisson equation. The iteration steps are as follows:

1. Begin with previous or initial guess for charge density p’

2. Solve new electric potential from Poisson equation,

— AV () = Lpi(r) =D Zid(r —ry) (78.2)

— 4m
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where 9 refers to Dirac’s delta distribution (point load).

3. Solve eigenvalue problem,
( — A+ VI (r) + V}Zil(r))wk(r) = ex(r) (78.3)

where V& is calculated via some function W from point values of charge density p/. Vit (r) =

W(p? (r)))-

4. Sum new charge density,
N
P =) wpr(r)® (78.4)
k=1

where the weight coefficients w; depend on the numbers of electrons in orbitals. Extensive overview
of calculation of molecular orbitals can be found from [4, 5].

The point load at the nuclei location requires, that exactly at each nuclei there has to be a node in the
mesh. For the functionality of the solvers no other requirements exists for the mesh or domain.

Unfortunately convergence of this iteration procedure is not guaranteed. For simple atoms (Z = 1,2,3,4)
code converges within any tolerance limits but for more complicated molecules or atoms usually not. Sensi-
ble tolerances were found to between 1075 or 10%.

Boundary Conditions

In theory the zero level of the potential can be set arbitrarily and often in practice one uses condition V (r) —
0, when |r| — oo. Of course in real calculations the domain €2 is finite and we set, V (r) = 0if » € 9. One
also assumes ) to be large enough, so that charge density vanishes on the boundary, p(r) = 0 if r € 99, so
we set Y (r) = 0if r € OQ.

In Kohn-Sham -equations in order to obtain positive definite coefficient matrix on the left-hand side of
eigenvalue problem (78.1), one sets V(r) — C, when |r| — oco. The constant C' has to be large enough, so
the eigenvalues are shifted positive. But too large value slows the convergence of the eigenvalue solver.

78.3 Keywords

From the structure of the self-consistent iteration it was natural to divide the solution procedure for three
solvers, Poisson solver, eigensolver and charge density summation. For each solver some keywords to
control the solution procedure were added.

Poisson Solver

Poisson Solver demands knowledge about the locations of the nuclei and their atomic numbers. There has to
be nodes in the mesh at the nuclei locations, or else error will occur. Following example demonstrates how
nuclei of the water molecule with two atoms of atomic numbers Z = 1 (Hydrogen) and single with Z = 8
(Oxygen) are set to the coordinates (0.0,0.0,0.0) (Oxygen) and (—1.43,1.11,0.0) and (1.43,1.11,0.0)
(Hydrogens). The rows beginning with ! are comments.

|
I NOFnuclei is the number of nuclei in the structure.
|

NOFnuclei = Integer 3

! NucleiTable is an array of the form

CSC —IT Center for Science [@)BY-nD |



78. Density Functional Theory 348

! NucleiTable( NOFnuclei, 4 ) where each row
! includes the information of one nucleus.
! The columns are from left to right

! atomic number, x-coordinate, y-coordinate and z-coordinate.

NucleiTable (3,4) = Real

The self-consistent iteration requires heavy (under) relaxation to avoid divergence. Relaxation means
linear mixing of present solution with previous one(s). It is possible to use Guaranteed Reduction Pulay -
method [6, 7] where the mixing constants are calculated every time as a solution of a minimization problem,
it’s sensible to begin GR Pulay after some steps of linear mixing.

In following example the exponential relaxation scheme is changed to GR Pulay after 5 steps or if the
mixing parameter exceeds value 0.5 . Use of constant mixing parameter instead of increasing one can be
easily done by commenting out the first four uncommented lines and removing the comment sign ! from
following two lines.

! Select the relaxation method used, possibilities are
! constant mixing parameter a(k) = A or varying parameter
! with scheme a(k) = C + 1- A x Exp( B x k )

Relaxation Method = String "Exponential mixing"
Relaxation Parameter A = Real 1.0

Relaxation Parameter B Real 0.05

Relaxation Parameter C = Real 0.005

! Relaxation Method = String "Constant mixing"
! Relaxation Parameter A = Real 0.01

Start GRPulay after iterations = Integer 5
Start GRPulay if relaxation factor is more than = Real 0.5

Eigenproblem Solver

Eigenproblem solver demands knowledge about the type of exchange correlation approximation used. Namely
the expression of W in third self-consistent iteration step. In module xc . £90 there are several different for-
mulae for LDA approximations. Some of them include spin directions and are to be used with different
solver composition where KS-orbitals for up- and down-spins are calculated separately.

! Choose the type of the XC Potential, possible choices are:
! "None"

! "Perdew-Zunger"

! "Von Barth-Hedin"

! "Gunnarsson-Lundgvist"

! "Perdew-Wang"
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XC Potential type = String "Perdew-Zunger"

Charge Density Solver

Charge density solver demands knowledge about the number of KS-orbitals to be summed and the weights
of each orbital. These are the N and wy’s in fourth self-consistent iteration step. In following example one
sets N =5and wy, = 2,forall k =1,...,5.

! Define the number of eigenmodes included on the
! calculation of charge density. Set weights for the
! eigen states. By default they are all 1.

Number of Eigenmodes Included = Integer 5
Weights of Eigen States(5,1) = Real 2.0 2.0 2.0 2.0 2.0

Weights of the Eigen States table has to be size (NN, 1). Naturally V has to be equal or less
for the number of eigenstates to be solved in eigenvalue solver.
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Parallel 1/0 using HDFS library

Module name: XdmfWriter
Module subroutines: XdmfWriter
Module authors: Mikko Lyly
Document authors: Mikko Lyly

79.1 Introduction

This subroutine is intended for saving parallel results in Xdmf/HDF5 format. The advantages of the Xdmf{/HDF5-
format over the native parallel ep-format are the following:

o All results are stored in only two files (results.xmf and results.h5)
e The results are stored in a binary format with reduced storage requirements
e The results can be visualized on the fly during the solution

The result files written by XdmfWriter can be opened and visualized e.g. with Paraview.

At the moment, the module is available for the parallel version of Elmer only. Because of this, it has
been isolated from the main build system. The source code for XdmfWriter can be found from the source
tree in misc/xdmf and it should be compiled by the user as follows:

elmerf90 —-ISHDF5/include -LSHDF5/1ib -o XdmfWriter XdmfWriter.f90 -1hdf5_fortran —-1hdf5

The environment variable $HDF'5 defines the installation directory for the HDF5-library.

79.2 Keywords

Solver solver id

Equation String "Xdmf"
The name of the equation.

Procedure File "XdmfWriter" "XdmfWriter"
The name of the file and subroutine.

Base File Name String
Specifies the base file name of the output files. The default is results.

Single Precision Logical
This keyword specifies the output precision (4 byte single precision floating point numbers vs. 8
byte double precision floating point numbers). The default is false.

The following keywords define the scalar and vector fields to be saved:
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Scalar Field i String

The scalar fields to be saved, for example Pressure.
Vector Field i String

The vector fields to be saved, for example Velocity.

The number i must be in the range 1...1000.

79.3 Example

The following SIF-block saves results in Xdmf/HDF5-format for the Navier-Stokes equations:

Solver 1
Equation = String "Xdmf"
Procedure = File "XdmfWriter" "XdmfWriter"
Base File Name = String "MyResults"
Single Precision = Logical True
Scalar Field 1 String "Pressure"
Vector Field 1 = String "Velocity"
End
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Index

1D Active Direction, 322

1D Body Id, 322

1D Element Order, 322

1D Mesh Create, 322

1D Mesh Length, 322

1D Mesh Ratio, 322

1D Number Of Elements, 322

Absorbing BC, 141

Absorptivity, 18

accumulation, 200

Active Coordinate, 228, 238, 242, 279, 328

Active EigenModes, 297

Active Particle Volume Fraction, 324

Additional Info, 269

Advect DG, 224

Advect Elemental, 224

Advect IP, 224

Advection Diffusion Equation Varname, 38

AdvectionDiffusionSolver, 35

AdvectionReactionSolver, 41

ALE, 10, 28

ALE Formulation, 202

Align Coordinate, 309

Always Detect Structure, 239

Ambient Temperature, 324

Angular Frequency, 92, 99, 128, 129, 140, 142, 166,
338, 341

Angular Velocity, 31

Angular Velocity i, 126

Anode, 324

Anodic charge transfer coefficient, 324

Aphi, 343

Applied Current, 323

Applied Magnetic Field i, 32, 154

Apply BCs Only, 228

Apply Conservation of Charge, 142

Apply Dirichlet, 202

Apply Limiter, 13, 48

Arbitrary Lagrangian-Eulerian, 10, 28

Artery Outlet Solver, 332

Artery Poisson Ratio, 332

Artery Radius, 332

Artery Wall Thickness, 332

Artery Wall Youngs Modulus, 332

ArteryOutlet, 330

Artificial Compressibility, 260, 261
artificial compressibility, 257

Artificial Compressibility, 257

Ascii Output, 297

Assembly Solvers, 88

Automated Source Projection BCs, 125
AV, 127

AV {e} j, 127

Average Within Materials, 150, 165, 249
Averaging Method, 242

Averaging Order, 242

Base File Name, 350

BatteryPost, 317

BatterySolver, 317

BC Id Offset, 297

BDF Order, 12, 37, 42

BeamSolver3D, 84

Before Linsolve, 269

BEM, 334, 337

Best File, 282

Binary Output, 297

bisection, 281

Block Diagonal A, 185

Block Preconditioning, 101, 185, 191

Body, 209, 214, 268, 299

Body Force, 31, 49, 57, 65, 76, 82, 87, 93, 104, 108,
112, 116, 126, 128, 134, 141, 145, 149,
150, 153, 162, 180, 186, 191, 196, 203,
225,236, 242, 329, 336, 343

Body Force i, 108, 191

Body Force k, 87

Body Force Parameters, 295

Body Forces, 17, 38, 43

Body ID, 203

Body Id, 210, 336, 339

Boltzmann Constant, 161

Boltzmann distribution, 159

Bottom Surface, 240

Bottom Surface Level, 239

Bottom Surface Variable Name, 239

Boundary Condition, 19, 33, 39, 44, 49, 58, 66, 76,
82, 87, 89, 93, 100, 105, 112, 116, 126,
128, 141, 145, 149, 154, 157, 162, 172,
176, 180, 186, 191, 199, 203, 206, 209,
214, 222, 226, 231, 234, 237, 240, 242,
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256, 260, 264, 266, 276, 288, 293, 299, Calculate Mesh Velocity, 236

301, 325, 329, 332, 336, 339, 343 Calculate Nodal Fields, 129
boundary element method, 334, 337 Calculate Nodal Forces, 129
boundary integral, 288 Calculate Nodal Heating, 116, 129
Boundary Layer Thickness, 34 Calculate Nodal Losses, 166
Boussinesq, 31 Calculate PAngle, 65
Boussinesq approximation, 27 Calculate Pangle, 56
Box Contact Directions, 220 Calculate Poynting Vector, 143
Box Particle Collision, 220 Calculate Principal, 56, 65
Box Particle Contact, 220 Calculate Strains, 56, 65
Box Particle Periodic, 220 Calculate Stresses, 56, 65
Box Periodic Directions, 220 Calculate Viscous Force, 264
Break Line Loop, 292 Calculate Volume Current, 116
BSolver, 147 Capacitance Bodies, 112
Bubbles, 13, 38, 92, 328 Capacitance Body, 113
Bubbles in Global System, 99 capacitance matrix, 111
Bulk Modulus, 49 Capacitance Matrix Filename, 112
Bulk Viscosity, 100, 108 Cathode, 324

Cathodic charge transfer coefficient, 324

Calculate Acoustic Impedance, 101 Ce, 324
Calculate Capacitance Matrix, 112 Cell Capacity, 323
Calculate Ce sensitivity, 321 Cfix diffusion, 171
Calculate Charges, 323 Charge Density, 112, 162
Calculate Coil Cu.rr.erllt, 171 Charge Number, 162
Calculate Cs sensitivity, 322 ChargeDensitySolver, 346
Calculate Current Density, 129 Check for Duplicates, 301
Calculate Div of Poynting Vector, 143 Check Material Balance, 321
Calculate Electric Energy, 112, 161 CircuitsAndDynamics, 131
Calculate Electric Field, 112, 129, 161 CircuitsAndDynamicsHarmonic, 131
Calculate Electric field, 143 CircuitsOutput, 131
Calculate Electric Flux, 112, 161 coating, 204
Calculate Electric Force, 266 Coefficient i, 288
Calculate Elemental Fields, 129, 142, 146, 166 Coil Anisotropic, 171
Calculate Energy Functional, 143 Coil Bandwidth, 171
Calculate Fluidic Force, 264 Coil Center(3), 171
Calculate Flux, 49, 249 Coil Closed, 171
Calculate Flux Abs, 249 Coil Conductivity Fix, 171
Calculate Flux Dim, 50 Coil Cross Section, 171
Calculate Flux Magnitude, 249 Coil End, 172
Calculate Force, 49 Coil Normal(3), 171
Calculate Force Dim, 50 Coil Start, 172
Calculate Grad, 249 Coil Type, 133
Calculate Grad Abs, 249 CoilSolver, 168
Calculate Grad Magnitude, 249 Component, 130, 133
Calculate Harmonic Loss, 129 Compressibility Model, 18, 32, 39, 49, 260
Calculate Heating, 49 CompressibilityScale, 257
Calculate Joule Heating, 116, 129, 150, 342 CompressibleNS, 106
Calculate Magnetic Field Strength, 129, 142 Compute Nodal Average, 43
Calculate Magnetic Flux, 342 Compute Radiator Factors, 14
Calculate Magnetic Flux Abs, 342 Concentration Units, 38
Calculate Magnetic Flux Density, 142 Conserve Volume, 198
Calculate Magnetic Force, 130 Conserve Volume Relaxation, 198
Calculate Magnetic Torque, 130 Constant Bulk Matrix, 252, 253
Calculate Matrix Suction, 328 Constant Bulk System, 56
Calculate Maxwell Stress, 129
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Constant Weights, 112, 116, 161

Constant-Viscosity Start, 184

Constants, 12, 29, 112, 124, 139, 145, 148, 157, 161,
175, 265, 323, 341

continuity equation, 258

Continuous Reading, 311

Convection, 17, 31, 38, 43, 203

Convection Velocity i, 18, 39, 44, 93, 179, 209

Convective, 185, 190

Convert From Equation Name, 278

Convert From Variable, 278

Coordinate Condition Variable Name, 220

Coordinate Initialization Method, 218, 224

Coordinate System, 12, 37, 42, 64, 74, 86, 99, 107,
246

Coordinate Transformation, 314

Correct Butler Volmer Fluxes, 323

Correct Source Disbalance, 321

Correct Surface, 239

Correct Surface Mask, 239

Cosine Series i, 274

Cost Function Absolute, 282

Cost Function Index, 287

Cost Function Maximize, 282

Cost Function Name, 282

Cost Function Target, 282

Create Histogram, 243

Critical Shear Rate, 32

Cross Section Area, 86

Cs, 324

Cumulative Displacements, 233, 236

Current Collector Resistance, 324

Current Control, 116

Current Density, 116, 127, 149, 325, 343

current density, 114

Current Density ¢, 141

Current Density BC, 116, 172

Current Density i, 126

Current Density Im, 150

Current Density im 7, 141

Current Density Im i, 128

Current Density Rate ¢, 145

Current Phase Angle, 343

Current Source, 116

curvature, 196

Curvature Coefficient, 198

Curvature Diffusion, 198

Cutoff Voltage, 323

Damping, 58, 82

Darcy’s law, 28
DataToFieldSolver, 275, 305
Dead Loads, 77

Decay Time i, 274

Decay Timestep i, 274

Default BC Id, 297

Default Body Id, 297

Deflection 1, 82

Delete Wall Particles, 219

delta function, 195

Density, 18, 31, 39, 57, 64, 75, 82, 86, 93, 176, 184,
190, 209, 214, 332

Desired Coil Current, 171

Desired Current Density, 171

Desired Heating Power, 150, 342

DFTSolver, 346

dielectric layer, 157

Diffusion Coefficient, 276, 306

Diffusivity Name, 306

Dirichlet boundary condition, 11, 26, 36, 42, 148,
152, 341

Discontinuous Bodies, 298

Discontinuous Galerkin, 41, 43, 150, 165, 249, 298

Displace Mesh, 56, 75

Displaced Shape, 261

Displacement i, 57, 58, 332

Displacement Mode, 238, 239, 242

Displacement Variable Eigenmode, 93

Displacement Variable Frequency, 93

Displacement Variable Name, 89, 93, 261

Div Discretization, 30

DivergenceSolver, 253

DNU i, 76

domain integral, 287

Dot Product Tolerance, 228, 239, 242, 280

Draw Velocity, 227

drawing, 204

Drilling DOFs, 75

Drilling Stabilization Parameter, 76

Dx Format, 296

E {e}i, 145

Eim {e} i, 141

Ere {e}i, 141

Echo Values, 287

effective parameters, 80

Eigen Analysis, 55, 75, 81, 269, 297

Eigen System Damped, 269

Eigen System Use Identity, 269

Eigen System Values, 55, 82, 269

ElasticSolve, 60

ElasticSolver, 60

Electric Conductivity, 116, 125, 140, 145, 148, 154,
343

Electric Conductivity Im, 128, 140

Electric Conductivity im, 149

Electric Current Density, 127, 141

Electric Current Density Im, 128, 142

Electric Damping Coefficient, 145

Electric Field , 175
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Electric Flux, 113

Electric Flux BC, 162

Electric Infinity BC, 113

Electric Potential, 126

Electric Robin Coefficient, 141

Electric Robin Coefficient im, 141

Electric Transfer Coefficient, 127, 142

Electric Transfer Coefficient Im, 128, 142

ElectricForce, 265

Electrode Area, 134

Electrode Plate Area, 324

Electrode Potential, 113

Electrokinetics, 174

electrokinetics, 29

Electrolyte Diffusion Coefficient, 324

Electrolyte Volume Fraction, 324

ElectrolyteCons, 317

ElectrolytePot, 317

Element, 99, 107, 125, 180, 185

ElementStats, 243

Elmer20OpenFoamlO, 305

Emissivity, 18, 19

EMWaveCalcFields, 144

EMWaveSolver, 144

Enable Scaling, 314

Energy Accommodation Coefficient, 101

energy conservation, 9

energy method, 80

Enforce Positive Magnitude, 249

Enthalpy, 18

EO Mobility, 176

Equation, 12, 17, 29, 31, 37, 38, 43, 48, 49, 55, 56,
64, 65, 75, 81, 87, 92, 99, 104, 107, 112,
116, 125, 127, 129, 133, 134, 140, 142,
145, 146, 149, 150, 152, 153, 161, 165,
170, 175, 179, 184, 190, 196-198, 202,
205, 208, 213, 218, 224, 227, 231, 236,
238, 242, 243, 246, 249, 251, 253, 255,
260, 261, 264, 266, 268, 276, 278, 279,
282, 296, 300, 303, 305, 306, 309, 310,
312, 314, 319-323, 328, 329, 332, 335,
338, 342, 350

Equilibrium Density, 100, 107

Equilibrium Temperature, 100, 107

Eulerian, 194

Exact Coordinates, 287

Excess Pressure, 105

Exec Solver, 266

Export Lagrange Multiplier, 134, 345

Exported Variable 1, 152, 197, 202, 335, 338

Exported Variable 1 DOFs, 202, 335, 338

Extend Elastic Layers, 269

Extend Elastic Region, 269

External Concentration, 39

External Pressure, 33
External Temperature, 19
Extract Interval, 197

Faraday Constant, 323
FieldName, 276

FieldName Continue, 276

File Append, 197, 287, 292
Fileindex Offset, 301
Filename, 197, 286, 292, 306, 309, 314
Filename Numbering, 287
Filename Particle Numbering, 221, 301
Filename Prefix, 221, 300
Filename Timestep Numbering, 221, 301
FilmPressure, 49

FilmPressure Lower Limit, 49
filtering, 272

FilterTimeSeries, 272
FindOptimum, 281

Fit Coefficient, 306

Fix Displacement, 56

Fix Input Current Density, 125
Fixed Boundary, 237

Fixed Overpotential, 320-322
Fixed Parameter i, 282

Flow Admittance, 49

Flow BodyForce i, 31, 186
Flow Force BC, 33

Flow Interface, 93

Flow Line, 242

Flow Model, 30

FlowSolve, 25

FlowSolver, 25

Fluid Coupling With Boundary, 332
fluid-structure interaction, 257
FluidicForce, 263

Flux, 336

Flux 1, 339

Flux 2, 339

Flux Coefficient, 249, 256, 292
Flux Variable, 256, 292
FluxSolver, 248

Force BC, 260

Force 1, 58

Force i Im, 58

Fourier Integrate Cycles, 166
Fourier Loss Filename, 166
Fourier series, 272

Fourier Series Components, 166
Fourier Series Output, 166
Fourier Start Cycles, 166
Fourier Start Time, 166
Fourier Start Timestep, 166
FourierLossSolver, 163

Free Moving, 34
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Free Surface, 33

free surface, 194

Free Surface Bottom, 206
Free Surface Number, 206
Free Surface Reduced, 206
FreeSurfaceReduced, 204
FreeSurfaceSolver, 200
Frequency, 55, 92, 99, 166, 341
Frequency i, 274

Friction Heat, 17

FSIBC, 66

Gap Height, 48, 158

Gas Constant, 323

Gebhart factors, 11

Gebhart Factors Fixed After Iterations, 16
Gebhart Factors Fixed Tolerance, 16
Genetic algorithm, 281

Geometric Stiffness, 56

Geometry Id, 299

GiD, 296

Gid Format, 296

Gmsh, 296

Gmsh Format, 296
GmshOutputReader, 309

Good Conductor BC, 142

GPA Coeff, 57

Gradp Discretization, 31

Grashof convection, 26
Gravitational Prestress Advection, 57
Gravity, 29

Green’s function, 338

Grid dx, 301

Grid nx, 301

Grid Origin i, 301

GridDataReader, 313

Guess File, 282

H-B Curve, 149

Hard Displacement Name, 242
Harmonic Analysis, 55

Harmonic Loss Coefficient i, 166
Harmonic Loss Field Exponent(K), 166

Harmonic Loss Frequency Exponent(K), 166

Harmonic Loss Linear Coefficient, 130
Harmonic Loss Quadratic Coefficient, 130
Harmonic Simulation, 342

Heat Capacity, 18, 39

Heat Conductivity, 18, 100, 108, 209
Heat Equation, 17, 153

Heat Expansion Coefficient, 32, 58
Heat Flux, 19

Heat Flux BC, 19

Heat Source, 17

Heat Transfer Coefficient, 19

HeatSolve, 9

HeatSolver, 9
HeatSolveVec, 9

Heaviside function, 195
HelmholtzBEM, 338
HelmholtzBEMSolver, 337
HelmholtzSolver, 91
Histogram Intervals, 243
History File, 282

Hole Correction, 82

Hole Depth, 158

Hole Fraction, 82, 158
Hole Size, 82, 158

Hole Type, 158

Hydraulic Conductivity, 328

Ignore Electrolyte Diffusion, 321

ILU Order for Schur Complement, 102

ILU Order for Velocities, 102

Im Body Force i, 100

Im Heat Source, 100

Im Reference Wall Velocity i, 101

Im Specific Acoustic Impedance, 100

Im Specific Thermal Impedance, 101

Im Surface Traction i, 100

Im Temperature, 100

Im Velocity i, 100

Impedance Target Boundary, 101

Implicit Gebhart Factor Fraction, 15

Impose Body Force Current, 129

Incompressible, 56

induction equation, 151

Inertial Bodyforce j, 65

Inexact Integration, 165

Infinity BC, 149

inflow boundaries, 42

Initial Condition, 18, 31, 39, 43, 57, 104, 153, 203,
324, 331, 343

Initial Coordinate, 218

Initial Coordinate Search, 219

Initial Parameter i, 282

Initial SOC, 323

Initial Sphere Center, 218

Initial Sphere Radius, 218

Initial Velocity, 218

Initial Velocity Amplitude, 218

Initial Velocity Time, 219

Initial Volume, 198

Initialization Condition Variable, 218

Initialization Mask Variable, 218, 224

Initialize State Variables, 65

integral equation, 334, 337

Integral Heat Source, 17

Integration Points At Radius, 278

Internal history, 282
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Internal Mesh Movement, 214
Interpolation Multiplier, 315
Interpolation Offset, 315

Ion Density, 162

Is Time Counter, 314

Is Time Index, 314
Isosurface, 303

Isosurface Value i, 280, 292
Isosurface Values, 303
Isosurface Variable, 303
Isosurface Variable i, 280, 292

Ifix, 127

Jli, 325

Joule Heat, 17, 116, 153, 343
Joule heating, 10, 115

KEC1, 32

KE C2, 32

KE Cmu, 32

KE SigmaE, 32

KE Sigmak, 32

Kinetic Constant, 324

Kinetic Energy, 31

Kinetic Energy Dissipation, 31
Knudsen number, 46

Lagrange Element Degree, 298
Lagrange Gauge Penalization Coefficient, 126
Lagrange Multiplier Name, 345
Lagrange multipliers, 344
Lagrangian, 194

Large Deflection, 75

Latent Heat, 209, 214

Latent heat, 207

Layer Charge Density, 113

Layer Electric Conductivity, 128, 142
Layer Electric Conductivity Im, 142
Layer Index i, 280

Layer Permittivity, 158

Layer Relative Permeability, 128
Layer Relative Permittivity, 113
Layer Relative Reluctivity, 142
Layer Relative Reluctivity Im, 142
Layer Thickness, 113, 142, 158
level-set method, 194

LevelSet, 194

LevelSet Bandwidth, 198

Levelset bandwidth, 199

LevelSet Convect, 197

LevelSet Courant Number, 199
Levelset Curvature BC, 199
LevelSet Flux, 196

LevelSet Timestep Directional, 199
LevelSet Variable, 197, 198

LevelSet Velocity 1, 197

LevelSet Velocity 2, 197

LevelSet Velocity i, 196

LevelSetCurvature, 194

LevelSetDistance, 194

LevelSetIntegrate, 194

LevelSetSolver, 194

LevelSetTimestep, 194

Limit Solution, 43

Linear Constraints, 344

Linear System Adaptive Tolerance, 185

Linear System Base Tolerance, 186

Linear System Convergence Tolerance, 75, 102, 185,
191, 250, 252, 254

Linear System Direct Method, 320

Linear System GCR Restart, 186

Linear System Iterative Method, 126, 250, 252, 254

Linear System Max Iterations, 102, 186, 191, 250,
252,254

Linear System Preconditioning, 126, 250, 252, 254

Linear System Preconditioning Damp Coefficient, 92,
140

Linear System Preconditioning Damp Coefficient Im,
92

Linear System Preconditioning Damp Coefficient im,
140

Linear System Refactorize, 126

Linear System Relative Tolerance, 185

Linear System Scaling, 320

Linear System Solver, 250, 252, 254, 320

Linearize Flux, 320-322

Liquid, 209, 214

Lorentz Force, 31, 153

Lorentz force, 26

Lorentz Velocity i, 126, 149

Lumped Acceleration After Iterations, 213

Lumped Acceleration Limit, 213

Lumped Acceleration Mode, 213

Magnetic Bodyforce i, 153
Magnetic Boundary Load 7, 141
Magnetic Boundary Load ¢ im, 141
Magnetic Boundary Load i, 145
Magnetic Field i, 153, 154
Magnetic Field Strength i, 127
Magnetic Field Strength Im i, 128
Magnetic Flux Density {n}, 127
Magnetic Flux Density i, 127
Magnetic Flux Density Im {n}, 128
Magnetic Flux Density Im i, 128
Magnetic Induction, 31, 153
Magnetic Permeability, 154
Magnetic Transfer Coefficient, 127
Magnetic Transfer Coefficient Im, 128
MagneticSolve, 151
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MagneticSolver, 151

Magnetization i, 126, 149

Magnetization i Im, 150

Magnetization Im i, 128

MagnetoDynamics, 117

MagnetoDynamics2D, 147

MagnetoDynamics2DHarmonic, 147

MagnetoDynamicsCalcFields, 117

magnetohydrodynamics, 151

magnetostatics, 340

Mapped Mesh Name, 240

Mask Condition, 299

Mask Diffusion, 276

Mask Name, 299, 301, 309

Mask Name i1, 287

Mask Variable, 276, 298

mass conservation, 204

Mass 1, 77, 89

Mass Transfer Coefficient, 39

Mass-proportional Damping, 141

Master Bodies, 130, 133

Master Boundaries, 130

Material, 18, 31, 39, 43, 48, 57, 64, 74, 82, 86, 93,
99, 104, 107, 112, 116, 124, 128, 130, 139,
145, 148, 149, 154, 161, 166, 176, 179,
184, 190, 196, 197, 199, 209, 214, 228,
231, 234, 260, 261, 264, 266, 324, 328,
332,343

Material Constants, 64

Material Coordinates Unit Vector 1(3), 58

Material Coordinates Unit Vector 2(3), 58

Material Coordinates Unit Vector 3(3), 58

Material Parameter, 179

Material Tensor(3,3), 179

Matrix Topology Fixed, 15

Max Characteristic Speed, 219

Max Coordinate i, 301

Max Cumulative Time, 219

Max Initial Coordinate i, 218

Max Inner GCR Iterations, 101

Max Integration Time, 225

Max Mask Value, 276

Max Outer Iterations, 101

Max Output Level, 134

Max Parameter i, 282

Max Relative Radius, 278

Max Step Size, 283

Max Timestep Intervals, 219, 225

Max Timestep Size, 219

Maximum Displacement, 202

Maximum Global Change Speed, 321

Maximum solid phase concentration, 324

Maxwell Material, 56

Maxwell stress tensor, 265

Maxwell’s equations, 110
Mean Free Path, 49

Melting Point, 214

Melting point, 207

Mesh Coefficient 1, 234

Mesh Deform i, 234

Mesh Displace i, 237

Mesh Force 1, 234

Mesh Height Map, 239

Mesh Matrix(dim,dim), 236
Mesh Normal Force, 234
Mesh Origin, 236

Mesh Penalty Factor, 234
Mesh Relax, 237

Mesh Relax Normalize, 236
Mesh Relax Source, 237
Mesh Reparameterization, 76
Mesh Rotate, 236

Mesh Rotation Axis Order(dim), 236
Mesh Scale, 236

Mesh Translate, 236

Mesh Update, 231

Mesh Update i, 203, 231
Mesh Update Variable, 239
Mesh Velocity 1, 58

Mesh Velocity 2, 58

Mesh Velocity 3, 58

Mesh Velocity First Zero, 239
Mesh Velocity Variable, 239
MeshSolver, 230, 233

MHD Velocity i, 154

Mid Surface, 239, 240

Min Coordinate i, 301

Min Initial Coordinate i, 218
Min Mask Value, 276

Min Parameter i, 282

Min Timestep Size, 219
Minimum Gebhart Factor, 15
Minimum Height, 239
Minimum Hits At Radius, 278
Minimum View Factor, 14
Mixed Formulation, 65
MixedPoisson, 178

Model Lumping, 56

Model Lumping Boundary, 59
Model Lumping Filename, 56
ModelMixedPoisson, 178
Moment About(dim), 264
Momentum Accommodation Coefficient, 101
Mortar BC, 149

Moving Boundary, 237
Moving Mesh, 234, 287
Moving Wall, 222

MyMask, 301
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Name, 64 OpenFoam File, 306
Narrow Band, 197 OpenFoam Mesh i, 306
Narrow Interface, 172 OpenFoam Timestep, 306
natural convection, 26 OpenFOAM2EImerFit, 305
Navier-Stokes, 31, 153 OpenFOAM2EImerlO, 305
Navier-Stokes equation, 25 Operator i, 225, 273, 280, 287
Nelder-Mead, 281 Optimal Finish, 282
Neo-Hookean Material, 65 Optimal Restart, 282
Neumann boundary condition, 11 Optimization, 281
Newmark Beta, 12, 37, 42 Optimization Method, 282
Newton iteration, 27 Optimize Matrix Structure, 269
Newtonian, 25 Optimize Node Ordering, 292
No Matrix, 133 orthotropic, 80
Nodal Penalty Factor, 234 Outflow Boundary, 105
Nominal Shear Rate, 33 Outflow boundary, 191
non-Newtonian, 25 OutletCompute, 330
Nonlinear Iteration Method, 191 Output Directory, 286, 292, 303
Nonlinear System Convergence Measure, 320 Output File Name, 296
Nonlinear System Convergence Tolerance, 12, 30, Output Format, 221, 296, 300

37, 43, 48, 75, 149, 152, 161, 185, 191, Output Interval, 221

202, 206, 209, 227, 320, 328, 342 Output Node Types, 269
Nonlinear System Max Iterations, 13, 30, 38, 43, 48,

149, 153, 161, 171, 185, 191, 209, 227, P2-P1 Approximation, 185

320, 328, 342 Parabolic Model, 228
Nonlinear System Newton After Iterations, 13, 30, Parallel Operator i, 288

161, 185, 191, 213 Parallel Reduce, 287, 293
Nonlinear System Newton After Tolerance, 13, 30, ParallelProjectToPlane, 277

161, 185, 191, 213 Parameter i, 294, 295
Nonlinear System Relaxation Factor, 13, 30, 38, 153, Particle Accumulation, 222

191, 205, 213, 242, 260, 320, 328, 342 Particle Accumulation Max Shear, 222
Norm Variable Index, 225 Particle Accumulation Max Speed, 222
Normal Force, 58 Particle Accurate At Face, 225
Normal Force Im, 58 Particle Bounciness, 220
Normal Pressure, 76 Particle Cell Fraction, 218
Normal Surface Traction, 66, 186 Particle Cell Radius, 218
Normal Tangential Velocity, 176 Particle Charge, 220
Normal Target Body, 40, 336, 339 Particle Damping, 220
Normal Variable, 209 Particle Decay Distance, 221
Normal Velocity, 48 Particle Decay Time, 221
Normal-Tangential Displacement, 58 Particle Distance Integral Source, 225
Normal-Tangential Velocity, 33 Particle Drag Coefficient, 220
Normalize by Given Weight, 276 Particle Element Fraction, 218
Normalize by Nodal Weight, 276 Particle Fixed Condition, 225, 226
Normalize Coil Current, 171 Particle Gravity, 220
Number Of EigenModes, 297 Particle Info, 221, 225
Number of Material Constants, 64 Particle Lift, 220
Number of Particles, 218 Particle Mass, 220
Number of Passive Visits, 321, 322 Particle Node Fraction, 218, 224
Number of State Variables, 64 Particle Particle Collision, 219

Particle Particle Contact, 219

Ohm’s law, 114 Particle Radius, 220, 324
Open DX, 296 Particle Release Fraction, 219
Open Side, 49 Particle Release Number, 219
OpenFoam Directory, 306 Particle Save Fraction, 222
OpenFoam Field, 306 Particle Spring, 220
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Particle Time Integral Source, 225
Particle To Field, 221

Particle To Field Mode, 221

Particle Trace, 222

Particle Wall, 226

ParticleAdvector, 223
ParticleDynamics, 215

Partition Numbering, 287

Passive OpenFOAM Coordinate, 306
Passive Steps, 214

perforated plate, 80

Perform Mapping, 205

Perfusion Density, 17

Perfusion Heat Capacity, 18
Perfusion Rate, 17

Perfusion Reference Temperature, 17
Permeability, 125, 148

Permeability of Vacuum, 124, 139, 145, 148, 341
Permittivity Of Vacuum, 112, 157, 161, 175, 265
Permittivity of Vacuum, 139, 145
Phase Change, 214

Phase Change Model, 17

Phase Change Side, 210

Phase Change Variable, 208, 213
Phase Velocity i, 214
PhaseChangeSolve, 207, 211

Phie, 325

Phis, 325

Physical Units, 39, 40

Picard iteration, 27

Plane Permutation, 278

Plane Stress, 56, 64

Plane Wave BC, 93

Poisson, 346

Poisson Boltzmann Alpha, 162
Poisson Boltzmann Beta, 162
Poisson Ratio, 57, 64, 75, 82, 231, 234
Poisson-Boltzmann equation, 29, 159
PoissonBEM, 335
PoissonBEMSolver, 334
PoissonBoltzmannSolve, 159
Polyline Coordinates(n,DIM), 288, 292
Polyline Divisions(n/2,DIM), 292
Population Coefficient, 282
Population Crossover, 282
Population Size, 282

Porosity Model, 328

Porous Media, 33

porous media, 28

Porous Resistance, 33

Post File, 299

Potential, 113, 116, 149, 162, 172, 336
Potential Coefficient, 31

Potential Difference, 112, 158

Potential Field, 31

Potential Force, 31

Potential Variable, 129

Potential Variable Name, 220

Power Control, 116

Pre Strain, 58

Pre Stress, 57

Pressure, 31, 33, 82

Pressure 1, 339

Pressure 2, 339

Pressure 1, 33, 93, 332

Pressure Source 1, 93

Principal Direction 2(3), 86

Procedure, 12, 29, 37, 43, 48, 49, 55, 65, 75, 81, 87,
92,99, 104, 107, 112, 116, 125, 128, 129,
133, 134, 140, 142, 145, 146, 149, 150,
152, 158, 161, 165, 171, 179, 184, 190,
196-198, 202, 205, 208, 213, 218, 224,
227, 231, 233, 236, 238, 242, 243, 246,
249, 251, 253, 255, 260, 261, 264, 266,
273, 276, 278, 279, 282, 286, 292, 294,
296, 300, 303, 306, 309, 310, 312, 314,
319, 321-323, 328, 329, 332, 335, 338,
342,350

Project To Bottom, 279

Project to Everywhere, 280

Projection Mask Variable, 280

projection matrix, 267

ProjectToPlane, 277

Pseudo-Traction, 66

Pull Rate Control, 209

Q{f}j, 180
Quadratic Approximation, 125, 140, 145
Quadratic Electrolyte Diffusion, 321

Radiation, 19

Radiation Boundary, 19

Radiation Boundary Open, 19
Radiation External Temperature, 19
Radiation Target Body, 19

radiation: Linear System Keyword, 16
radiation: Linear System Positive Definite, 17
radiation: Linear System Solver, 16
radiation: Linear System Symmetric, 17
Radiator Absorptivity, 19

Radiator BC, 19

Radiator Coordinates(n,3), 14

Radiator Power, 14

Radiator Temperature, 14

Radiosity Model, 16

Ratio of Convergence Tolerances, 101
Rayleigh Damping, 57

Rayleigh Damping Alpha, 57, 75, 87
Rayleigh Damping Beta, 57
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Re Body Force i, 100 RichardsSolver, 326
Re Heat Source, 100 Rigid Body, 268
Re Reference Wall Velocity i, 101 RigidBodyReduction, 267
Re Specific Acoustic Impedance, 100 RigidMeshMapper, 235
Re Specific Thermal Impedance, 101 Rotate DOFs, 75
Re Surface Traction i, 100 Rotate Elasticity Tensor, 58
Re Temperature, 100 Rotate Plane, 278
Re Velocity i, 100 run-time control, 312
reaction rate, 41 Runge Kutta, 225
Recompute Stabilization, 239
reduced order model, 267 Saturated Hydraulic Conductivity, 328
Reference Pressure, 18, 32, 39, 49, 261 Saturated Initial Guess, 328
Reference Temperature, 32, 58, 161 Saturated Water Content, 328
Reference Wall Temperature, 101 Save Axis, 292
reinitialization, 194 Save Boundaries Only, 298
Reinitialize Field, 221 Save Bulk Only, 298
Reinitialize Interval, 197 Save Coil Index, 171
Reinitialize Particles, 219, 224 Save Coil Set, 171
Reinitialize Passive, 197 Save component results, 288
Relative Permeability, 125, 145, 148, 343 Save Coordinates(n,DIM), 287
Relative Permittivity, 112, 140, 145, 158, 161, 176, Save Eigenfrequencies, 287

266 Save Eigenvalues, 287
Relative Permittivity im, 140 Save Elemental Fields, 298
Relative Reluctivity, 140 Save Flux, 292
Relative Reluctivity im, 140 Save Geometry Ids, 297
Relaxation Factor, 202, 283 Save Halo Elements Only, 298
Reload Range Maximum, 310 Save Isocurves, 292
Reload Range Minimum, 310 Save Line, 293
Reload Reading Intervals, 311 Save Linear Elements, 298
Reload Solution File, 310 Save Mask, 292
Reload Starting Position, 310 Save Nodal Fields, 298
ReloadData, 310 Save Points(n), 287
ReloadInput, 312 Save Scalars, 288
ReloadSolution, 310 Save Solid Phase Average, 321
Reluctivity, 125, 149 Save Solid Phase Diff, 322
Reluctivity Im, 128 SaveBoundary Values, 294
Reset Interval i, 274 SaveData, 285, 291, 294
Residual Reduction Ratio, 101 SaveGridData, 300
Residual Water Content, 328 SaveLine, 291
Resistance, 133 SaveMaterials, 294
Restart File, 310 SaveScalars, 285
Result Variable i, 225 Scalar Field, 180
Resultant Couple i, 76 Scalar Field i, 222, 297, 301, 351
Resultant Force i, 76 Scalar Potential, 256
ResultOutputSolve, 296 ScalarPotentialSolver, 255
Reverse Ordering, 269 Scalars File, 289
Reynolds equation, 45 Scalars Prefix, 286
Reynolds Pressure Variable Name, 49 scalars: Keyword, 289
ReynoldsHeatingSolver, 45 Schur Complement Convergence Tolerance, 102
ReynoldsSolver, 45 secant method, 281
Richards equation, 326 Second Kind Basis, 180
Richards Flux, 329 Second Moment of Area 2, 86
Richards Source, 329 Second Moment of Area 3, 87
RichardsFlux, 326 Separate Loss Components, 165

Set Constant Weight Sum, 276
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Shear Modulus, 86

Shear Stress Output, 264

Shear Stress Output File, 264

Shell Thickness, 74

ShellSolver, 67

Show Norm Index, 287

Show Variables, 297

signed distance, 194

Simplex Relative Length Scale, 283

Simplex Restart Convergence Ratio, 283

Simplex Restart Interval, 283

Simpsons Rule, 165

Simulation, 12, 37, 42, 64, 74, 86, 92, 99, 107, 134,
199, 246, 281, 289, 299, 338, 341

Simulation Timestep Sizes, 219, 225

Simulation Type, 12, 37, 42, 99, 281

Sine Series i, 274

Single Precision, 297, 350

Skip Butler Volmer, 320, 322

Skip Halo Elements, 298

Skip Surface Reconstruction, 76

Slip Boundary, 101

Slip Coefficient i, 186

Smart Heater Boundary, 20

Smart Heater Control, 17

Smart Heater Control After Tolerance, 13

Smart Heater Temperature, 20

SmitcSolver, 78

Soc Model, 323

SOC on surface, 323

Solid, 209, 214

Solid Phase Diffusion Coefficient, 324

Solid Phase Electrical Conductivity, 324

Solid Phase Relaxation Factor, 321

SolidPhaseCons, 317

SolidPhasePot, 317

Solver, 12, 29, 37, 42, 48, 49, 55, 65, 75, 81, 87, 89,
92,99, 101, 104, 107, 112, 116, 125, 127,
128, 133, 134, 140, 142, 145, 146, 149,
150, 152, 161, 165, 170, 179, 184, 190,
196-198, 202, 205, 208, 213, 218, 224,
227, 231, 233, 236, 238, 242, 243, 246,
249, 251, 253, 255, 260, 261, 264, 265,
268, 273, 276, 278, 279, 281, 286, 291,
294, 296, 300, 303, 305, 306, 309, 310,
312, 314, 319-323, 328, 329, 332, 335,
338, 341, 345, 350

SolveWithLinearRestriction, 344

Sound Damping, 93, 104

Sound Reaction Damping, 104

Sound Source, 105

Sound Speed, 93, 104

Source, 336

Source Acceleration, 105

Source Field, 180

Source Gradient Correction, 225

Source Name, 134

Specific Heat, 100, 107

Specific Heat Ratio, 18, 32, 39, 49, 100, 108

Spectral Dt, 16

Spectral Model, 16

Spring, 59, 66, 82

Spring i, 59, 66, 77, 89

SpringAssembler, 88

SpringAssembly, 88

Stability Analysis, 56

Stabilization Method, 202

Stabilize, 13, 30, 38, 196

Start Cycle 1, 274

Start Real Time, 274

Start Real Time Fraction, 274

Start Time i, 273

Start Timestep i, 274

StatCurrentSolve, 114

StatCurrentSolver, 114

StatElecBoundary, 155

StatElecBoundaryCharge, 155

StatElecBoundaryEnergy, 155

StatElecBoundaryForce, 155

StatElecBoundarySpring, 155

StatElecForce, 265

StatElecSolve, 110

StatElecSolver, 110

Static Conductivity, 125

Static Magnetic Field, 342

Statistical Info, 221

StatMagSolver, 340

Steady State Convergence Tolerance, 13, 30, 38, 43,
153, 260, 320

Stefan Boltzmann, 12

Stefan-Boltzmann constant, 11

Steinmetz loss model, 163

Step Size, 283

Stoichiometric Limit, 323

Stoichiometry at Full Charge, 324

Stoichiometry at Nill Charge, 324

Stokes Stream Function, 247

Stokes stream function, 245

Stop Cycle i, 274

Stop Time i, 274

Stop Timestep i, 274

Strain Load, 57

Strain Reduction Operator, 76

Stream Function First Node, 247

Stream Function Penalty, 247

Stream Function Scaling, 247

Stream Function Shifting, 247

Stream Function Velocity Variable, 246
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Streamline, 245

StreamSolver, 245

Stress Analysis, 56

Stress Bodyforce 1, 57

Stress Bodyforce 1 im, 57
Stress Bodyforce 2, 57

Stress Bodyforce 2 im, 57
Stress Bodyforce 3, 57

Stress Bodyforce 3 im, 57
Stress Bodyforce j, 65

Stress Load, 57, 59
StressSolve, 52

StressSolver, 52

Structure Coupling With Boundary, 332
Structure Interface, 93
StructuredMeshMapper, 238
StructureFlowLine, 227, 241
StructureProjectToPlane, 279
Study Jli Balance, 323
substantial surface, 200

Sum Forces, 264

Surface Charge, 162

Surface Charge Density, 113
surface tension, 196

Surface Tension Coefficient, 33
Surface Tension Expansion Coefficient, 33
Surface Traction i, 186

Surface Traction k, 66

Surface Velocity i, 48

Table Format, 221, 300

Tangent Velocity i, 48

Target Field, 234

Target Nodes, 256

Target Variable, 150, 165, 249, 252, 253, 276, 306,
329

Target Variable AV, 165

Target Variable Direct, 165

Target Variable i, 280, 286, 315

Target Variable i At Bottom, 280

Target Variable i At Middle, 280

Target Variable i Everywhere, 280

TEM Potential, 141

TEM Potential im, 141

Temperature, 18, 19

Temperature Lower Limit, 17

Temperature Upper Limit, 17

Tension, 82

Tensor Field i, 297

Theta i, 87

Theta i Load, 87

Thickness, 82

Time Derivative Order, 104

Time Epsilon, 314

Time Filter i, 274

Time Multiplier, 314

Time Name, 314

Time Offset, 314

Time Order, 224

Time Point, 314

Timestep Courant Number, 219
Timestep Distance, 219
Timestep Intervals, 281
Timestep Size, 219, 224
Timestepping Method, 12, 37, 42
TimoshenkoSolver, 84

Top Surface, 240

Top Surface Level, 239

Top Surface Variable Name, 239
Torque Axis(3), 130

Torque Origin(3), 130
Torsional Constant, 86
Transference Number, 324
Transient Speedup, 209
Translate Before Rotate, 236
Transmissivity, 18, 19

Triple Point Fixed, 209, 213
True Flow Line Iterations, 242

Ui, 76, 87

Ui Load, 87

UMAT Subroutine, 64

Unit Charge, 161

Update Gebhart Factors, 15
Update Radiator Factors, 14
Update Transient System, 56
Update View Factors, 14

Use Average Cell Voltage, 323
Use Effective Diffusion, 322
Use Gauss Law, 140

Use Lagrange Gauge, 126

Use Linear Elements, 202

Use Mean Flux, 320

Use Nodal Loads, 209

Use Piola Transform, 125, 140, 145
Use Solid Phase Relaxation, 322
Use Time Average Diffusion, 320, 321, 323
Use Time Average Flux, 320
Use Tree Gauge, 126

Use Velocity Laplacian, 185
Use Wall Distance, 171

User Defined Velocity, 153
Utilize Previous Solution, 99

van Genuchten Alpha, 328

van Genuchten M, 328

van Genuchten N, 328

Variable, 12, 30, 37, 43, 48, 75, 81, 87, 92, 99, 104,
107, 112, 116, 125, 128, 140, 145, 149,
150, 152, 161, 165, 180, 184, 190, 196,

CSC —IT Center for Science

(@) ey-nD___|]



INDEX

364

198, 202, 205, 208, 213, 227, 231, 233,
236, 246, 254, 255, 261, 268, 276, 282,
294, 320-322, 328, 332, 335, 338, 342

Variable DOFs, 48, 75, 81, 87, 92, 104, 107, 112,
116, 152, 161, 180, 185, 190, 202, 205,
208, 213, 246, 268, 282, 295, 328, 332,
335, 338

Variable Dofs, 99, 342

Variable Global, 282

Variable i, 225, 273, 280, 286, 292, 303, 315

Variable_name, 43, 44

Variable_name Gamma, 44

Variable_name Lower Limit, 44

Variable_name Source, 43

Variable_name Upper Limit, 44

variational inequality, 201

Varname, 39, 203

Varname Accumulation, 203

Varname Accumulation Flux i, 203

Varname Diffusion Source, 38

Varname Diffusivity, 39

Varname Flux, 39

Varname Maximum Solubility, 39

Varname Solubility Change Boundary, 40

Varname Soret Diffusivity, 39

Varname: Reaction Coefficient, 228

Varname: Source, 228

Varname: Time Derivative Coefficient, 228

Vector Field 1, 222, 297, 301, 351

VectorHelmholtz, 136

VectorHelmholtzCalcFields, 136

VectorHelmholtzSolver, 136

Velocity 1, 176

Velocity 2, 176

Velocity 3, 176

Velocity Assembly, 102

Velocity Condition Variable Name, 220

Velocity Convergence Tolerance, 102

Velocity Field Name, 264

Velocity Gradient Correction, 220, 225

Velocity i, 31, 33

Velocity Implicitness, 202

Velocity Initialization Method, 218, 224

Velocity Relaxation Factor, 209

Velocity Smoothing Factor, 209

Velocity Variable Name, 92, 220, 224, 242, 279

view factors, 14

View Factors Fixed After Iterations, 14

View Factors Fixed Tolerance, 14, 16

View Factors Geometry Tolerance, 14

Viewfactor Area Tolerance, 15

Viewfactor Combine Elements, 15

Viewfactor Divide, 15

Viewfactor Factor Tolerance, 15

Viewfactor Number Of Rays, 15

Viewfactor Symmetry x, 14

Viscosity, 18, 32, 48, 100, 108, 176, 184, 190, 199,
264

Viscosity Difference, 32, 199

Viscosity Exponent, 32

Viscosity Model, 32, 48, 184, 199

Viscosity Temp Exp, 33

Viscosity Temp Offset, 33

Viscosity Temp Ref, 33

Viscosity Transition, 32

Visualize Node Index, 322

Volume Permutation, 278

VorticitySolver, 251

VTI, 300

Vti Format, 300

VTK, 296

Vtk Format, 296

VTU, 296, 300

Vtu Format, 221, 296, 300

Vtu Part Collection, 298

Vtu Time Collection, 298

vtu: Keyword, 299

Wall Law, 34

‘Wall Particle Bounciness, 221
Wall Particle Collision, 222
Wall Particle Radius, 221
Wall Particle Spring, 221
Water Content, 328

Wave Flux i, 93

Wave Impedance i, 93
WaveFunctionSolver, 346
WaveSolver, 103

Weight Variable, 276
WhitneyAVHarmonicSolver, 117
WhitneyAVSolver, 117
Wnodal, 332

X Epsilon, 314
X Name, 314
XdmfWriter, 350

Y Epsilon, 314

Y Name, 314

Yasuda Exponent, 33

Youngs Modulus, 57, 64, 75, 82, 86, 231, 234

Z Epsilon, 314
7Z Name, 314
Zeta Potential, 176
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