
ElmerGUI Manual

Mikko Lyly and Saeki Takayuki

April 6, 2023

ElmerGUI Manual

About this document
The ElmerGUI Manual is part of the documentation of Elmer finite element software. Elmer may be used
also without the graphical user interface but for new users ElmerGUI often provides the easiest path to Elmer.

The present manual corresponds to Elmer software version 9.0.
Latest documentations and program versions of Elmer are available (or links are provided) at http:

//www.csc.fi/elmer.

Copyright information
This document is licensed under the Creative Commons Attribution-NonCommercial 3.0 License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/.

External contributions to the tutorials are welcome.

2

http://www.csc.fi/elmer
http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nc/3.0/

Contents

Table of Contents 3

1 Introduction 5

2 Installation from source 6
2.1 Linux . 6

3 Input files 7
3.1 Geometry input files and mesh generation . 7
3.2 Elmer mesh files . 7
3.3 Project files . 8

4 Model definitions 10
4.1 Setup menu . 10
4.2 Equation menu . 10
4.3 Material menu . 11
4.4 Body force menu . 12
4.5 Initial condition menu . 12
4.6 Boundary condition menu . 13

5 Utility functions 18
5.1 Boundary division and unification . 18
5.2 Saving pictures . 18
5.3 View menu . 19

6 Solver input files 20

7 Solution and post processing 22
7.1 Running the solver . 22
7.2 Post processing . 23

A ElmerGUI initialization file 26

B ElmerGUI material database 28

C ElmerGUI definition files 29

D Elmer mesh files 32

E Adding menu entries to ElmerGUI 33

F ElmerGUI mesh structure 34
F.1 GLWidget . 34
F.2 mesh_t . 35
F.3 node_t . 37

3

F.4 Base element class element_t . 38
F.5 Point element class point_t . 39
F.6 Edge element class edge_t . 39
F.7 Surface element class surface_t . 40

Chapter 1

Introduction

ElmerGUI is a graphical user interface for the Elmer software suite [1]. The program is capable of importing
finite element mesh files in various formats, generating finite element partitioning for various geometry input
files, setting up PDE-systems to solve, and exporting model data and results for ElmerSolver.

ElmerGUI can also automatically call Paraview. Previously also ElmerPost and internal VTK based
postprocessors were once supported but these are gradually becoming obsolete.

Figure 1.1: Main window of ElmerGUI.

The menus of ElmerGUI are programmable and it should be relatively easy to strip and customize the
interface for proprietary applications. An example of customizing the menus is provided in appendix A.

ElmerGUI is also the interface to the parallel solver, ElmerSolver_mpi. The GUI hides from the
user many operations that are normally performed from command line with various external tools related
to domain decomposition, launching the parallel processes. This makes it possible to use ElmerSolver with
multi-core processors, even on interactive desktop environments.

ElmerGUI relies on the Qt cross platform framework of Qt Company[4], and it uses the Qwt library by
Josef Wilgen and Uwe Rathman[5] to plot scientific data. The CAD import features are implemented by
the OCE library from Open CASCADE Community Edition developers[3] and Netgen[2] as finite element
mesh generators.

CSC – IT Center for Science

Chapter 2

Installation from source

The source code of ElmerGUI is available from the Git repository hosted at GitHub. The GPL licensed
source code may be downloaded by executing the command

git clone git://www.github.com/ElmerCSC/elmerfem

or

git clone https://www.github.com/ElmerCSC/elmerfem

This will retrieve the current development version of the whole Elmer-suite.

2.1 Linux
Before starting to compile, please make sure that you have the development package of Qt installed on your
system (i.e., libraries, headers, and program development tools). Qt version 4.3 or newer is recommended.
You may also wish to install Qwt 6, VTK version 8.2, and OCE 0.18, for additional functionality.

CMake can be used to generate the makefiles for compilation. The compilation of ElmerGUI is acti-
vated in the first place by setting the corresponding CMake variable as -DWITH_ELMERGUI:BOOL=TRUE.
Other logical variables that affect the compilation of the program and that can similarly be set with -D are
WITH_QWT, WITH_VTK, WITH_OCC, WITH_PYTHONQT, WITH_MATC and WITH_PARAVIEW. WITH_QT5
is also required when compiling with Qt5 instead of Qt4.

Once the build process has finished, it suffices to set up the environment variable ELMERGUI_HOME and
add it to PATH:

$ export ELMERGUI_HOME=/usr/local/bin
$ export PATH=$PATH:$ELMERGUI_HOME

The program is launched by the command

$ ElmerGUI

CSC – IT Center for Science

Chapter 3

Input files

3.1 Geometry input files and mesh generation
ElmerGUI is capable of importing finite element mesh files and generating two or three dimensional finite
element partitioning for bounded domains with piecewise linear boundaries. It is possible to use one of the
following mesh generators:

• ElmerGrid (built-in)

• Tetgen (optional)

• Netgen (built-in)

The default import filter and mesh generator is ElmerGrid. Tetgen is an optional module, which may or may
not be available depending on the installation (installation and compilation instructions can be found from
Elmer’s source tree in trunk/misc)

An import filter or a mesh generator is selected automatically by ElmerGUI when a geometry input file
is opened:

File → Open...

The selection is based on the input file suffix according to Table 3.1. If two or more generators are
capable of handing the same format, then the user defined “preferred generator” will be used. The preferred
generator is defined in

Mesh → Configure...

Once the input file has been opened, it is possible to modify the mesh parameters and remesh the ge-
ometry for better accuracy or computational efficiency. The mesh parameters can be found from Mesh →
Configure.... The control string for Tetgen has been discussed and explained in detail in Tetgen’s user
guide [6].

The mesh generator is reactivated from the Mesh menu by choosing

Mesh → Remesh

In case of problems, the meshing thread may be terminated by executing

Mesh → Terminate meshing

3.2 Elmer mesh files
An Elmer mesh consists of the following four text files (detailed description of the file format can be found
from Appendix B):

CSC – IT Center for Science

3. Input files 8

Table 3.1: Input files and capabilities of the mesh generators.

Suffix ElmerGrid Tetgen Netgen
.FDNEUT yes no no

.grd yes no no
.msh yes no no

.mphtxt yes no no
.off no yes no
.ply no yes no
.poly no yes no

.smesh no yes no
.stl no yes yes

.unv no yes no
.in2d no no yes

mesh.header
mesh.nodes
mesh.elements
mesh.boundary

Elmer mesh files may be loaded and/or saved by opening the mesh directory from the File menu:

File → Load mesh...

and/or

File → Save as...

3.3 Project files
An ElmerGUI project consists of a project directory containing Elmer mesh files and an xml-formatted
document egproject.xml describing the current state and settings. These files will be generated or
updated when you save your project by choosing

File → Save project

This will save your project to the project directory you already specified. (If no project directory is
specified yet, a window will appear to specify the project directory.) If you want to save your project in
different directory, you can do that by choosing

File → Save project as...

Projects you already saved may be loaded by choosing

File → Load project...

or you can simply select one from

File → Recent projects

Note: Current version of ElmerGUI has a menu to start a new project

File → New project...

and by clicking the menu, a window will appear to specify project directory for the new project. You can
also specify Elmer mesh directory or geometry input file you want to load for the project. Extra equation
definition files can be also specified in the same window. This menu is just for convenience and previous
style of workflow (i.e. open geometry input file, set conditions, then save project) still works.

CSC – IT Center for Science

3. Input files 9

The contents of a typical project directory are the following:

case.sif
egproject.xml
ELMERSOLVER_STARTINFO
mesh.boundary
mesh.elements
mesh.header
mesh.nodes

CSC – IT Center for Science

Chapter 4

Model definitions

4.1 Setup menu
The general setup menu can be found from

Model → Setup...

This menu defines the basic variables for the “Header”, “Simulation”, and “Constants” blocks for a solver
input file. The contents of these blocks have been discussed in detail in the SolverManual of Elmer [1].

Figure 4.1: Setup Window.

4.2 Equation menu
The first “dynamical menu” constructed from the ElmerGUI definition files (see Appendix A) is

CSC – IT Center for Science

4. Model definitions 11

Model → Equation

This menu defines the PDE-system to be solved as well as the numerical methods and parameters used in
the solution. It will be used to generate the “Solver” blocks in a solver input file.

A PDE-system (a.k.a “Equation”) is defined in a Equation Window which shows up by choosing

Model → Equation → Add...

or clicking [Add...] label next to “Equation” item in Object Browser as shown in Figure 4.2.

Figure 4.2: Adding a new Equation.

Once the PDE-system has been defined by activating the individual equations, the numerical methods
and parameters can be selected and tuned in Solver Settings Window (Figure 4.3) which appears by pressing
the “Edit Solver Settings” button. The name of the PDE-system is defined in the line edit box with label
“Name”. After pressing the OK-button, the equation remains visible and editable under the Model menu. It
is also possible to show and edit the Equation Window by double clicking the name of the equation under
“Equation” item in Object Browser.

If some of checkboxes in “Apply to bodies” in the Equation Window are checked, this equation is applied
to these bodies. Another way to apply a equation to a body without using Equation Window is by holding
down the SHIFT-key while double clicking one of its surfaces (or simply double clicking the surface while
“Set body properties” button in the toolbar is pressed down). As shown in Figure 4.4, a Body Property Editor
will then appear, listing all possible attributes that can be apply to the selection. The Body Property Editor
will show up also by double clicking the body name under “Body” item in the Object Browser.

4.3 Material menu
The next menu is related to material and model parameters:

Model → Material

This menu will be used to generate the “Material” blocks in a solver input file.
In order to define a material parameter set and apply it to bodies, choose

Model → Material → Add...

or clicking [Add...] label next to “Material” item in Object Browser. This will open a Material Window
(Figure 4.5).

CSC – IT Center for Science

4. Model definitions 12

Figure 4.3: Solver Settings Window.

Again, it is possible to apply the material to a body by holding down the SHIFT-key while double clicking
one of its surfaces (or simply double clicking the surface while “Set body properties” button in the toolbar is
pressed down). A Body Property Editor will then appear, listing all possible attributes that can be apply to
the selection. The Body Property Editor will show up also by double clicking the body name under “Body”
item in the Object Browser.

Note: The value of density should always be defined in the “General” tab. This field should never be left
undefined.

Note: If you set focus in a line edit box of a dynamical menu and press Enter, a small text edit dialog
will pop up. This allows the input of more complicated expressions than just constants. As an example,
go to Model → Material and choose Add... Place the cursor in the “Heat conductivity” line edit box of
“Heat equation” and press Enter. You can then define the heat conductivity as a function of temperature as a
piecewise linear function. An example is show in Figure 4.6. In this case, the heat conductivity gets value
10 if the temperature is less than 273 degrees. It then rises from 10 to 20 between 273 and 373 degrees, and
remains constant 20 above 373 degrees.

If the user presses SHIFT and F1, a tooltip for the active widget will be displayed as shown in Figure
4.7.

4.4 Body force menu
The next menu in the list is

Model → Body force

This menu is used to construct the “Body force” blocks in a solver input file.
Again, choose

Model → Body force → Add...

to define a set of body forces and apply it to the bodies. It is also possible to click [Add...] label next to
“Body force” item in Object Browser. This will open a Body Force Window (Figure 4.8).

4.5 Initial condition menu
The last menu related to body properties is

CSC – IT Center for Science

4. Model definitions 13

Figure 4.4: Body Property Editor is activated by holding down the SHIFT key while double clicking a
surface.

Model → Initial condition

Once again, choose

Model → Initial condition → Add...

to define a set of initial conditions and apply it to the bodies. It is also possible to click [Add...] label next to
“Initial condition” item in Object Browser. This will open an Initial Condition Window (Figure 4.9).

This menu is used to construct the “Initial condition” blocks in a solver input file.

4.6 Boundary condition menu
Finally, there is a menu entry for setting up the boundary conditions:

Model → Boundary condition

Choose

Model → Boundary condition → Add...

to define a set of boundary conditions and apply them to boundaries. It is also possible to click [Add...]
label next to “Boundary condition” item in Object Browser. This will open a Boundary Condition Window
(Figure 4.10).

It is possible to apply a boundary condition to a boundary by holding down the Alt or AltGr-key
while double clicking a surface or edge. (or simply double clicking the surface or edge while “Set boundary
properties” button in the toolbar is pressed down). As shown in Figure 4.11, a Boundary Property Editor
will appear, listing all possible conditions that can be applied to the selection. The Boundary Property Editor
will show up also by double clicking the boundary name under “Boundary” item in the Object Browser.

Choose a condition from the combo box and finally press Ok.

CSC – IT Center for Science

4. Model definitions 14

Figure 4.5: Material Window.

Figure 4.6: Text edit extension of a line edit box is activated by pressing Enter.

CSC – IT Center for Science

4. Model definitions 15

Figure 4.7: Tooltips are shown by holding down the SHIFT and F1 keys.

Figure 4.8: Body Force Window.

CSC – IT Center for Science

4. Model definitions 16

Figure 4.9: Initial Condition Window.

Figure 4.10: Boundary Condition Window.

CSC – IT Center for Science

4. Model definitions 17

Figure 4.11: Boundary Property Editor activated by holding down the AltGr key while double clicking a
surface.

CSC – IT Center for Science

Chapter 5

Utility functions

5.1 Boundary division and unification
Some of the input file formats listed in Table 3.1 are not perhaps so well suited for FE-calculations, even
though widely used. The .stl format (stereo lithography format), for example, is by definition unable to
distinguish between different boundary parts with different attributes. Moreover, the format approximates
the boundary by disconnected triangles that do not fulfill the usual FE-compatibility conditions.

In order to deal with formats like .stl, ElmerGUI provides a minimal set of tools for boundary division
and unification. The division is based on “sharp edge detection”. An edge between two boundary elements
is considered sharp, if the angle between the normals exceeds a certain value (20 degrees by default). The
sharp edges are then used as a mortar to divide the surface into parts. The user may perform a sharp edge
detection and boundary division from the Mesh menu by choosing

Mesh → Divide surface...

In 2D the corresponding operation is

Mesh → Divide edge...

The resulting parts are enumerated starting from the first free index.
Sometimes, the above process produces far too many distinct parts, which eventually need to be (re)unified.

This can be done by selecting a group of surfaces by holding down the CTRL-key while double clicking the
surfaces and choosing

Mesh → Unify surface...

The same operation in 2D is

Mesh → Unify edge...

The result will inherit the smallest index from the selected group.
The sharp edges that do not belong to a closed loop may be removed by

Mesh → Clean up

This operation has no effect on the boundary division, but sometimes it makes the result look better.

5.2 Saving pictures
The model drawn on the display area may be scanned into a 24-bit RGB image and saved in several picture
file formats:

File → Save picture as...

The function supports .bmp, .jpg, .png, .pbm, .pgm, and .ppm file extensions.

CSC – IT Center for Science

5. Utility functions 19

5.3 View menu
The View menu provides several utility functions for controlling the visual behavior of ElmerGUI. The
function names should be more or less self explanatory.

CSC – IT Center for Science

Chapter 6

Solver input files

The contents of the Model menu are passed to the solver in the form of a solver input file. A solver input file
is generated by choosing

Sif → Generate

The contents of the file are editable in Solver Input File Window which shows up by choosing

Sif → Edit...

As shown in Figure 6.1, two types of syntax highlighting are available in Solver Input File Window from
the menu on it:

Preference → Syntax highlighting

Font can be also changed by

Preference → Font

Figure 6.1: Syntax highlighting in Solver Input File Window

The new sif file needs to be saved before it becomes active. The recommended method is

File → Save project

In this way, also the current mesh and project files get saved in the same directory, avoiding possible incon-
sistencies later on.

Note: The previous versions of ElmerGUI automatically generated (i.e. overwrote) solver input file when
saving or loading the project or mesh and it was inconvenient when manually modifying solver input file.
Current version of ElmerGUI does not generate solver input file automatically when saving/loading project

CSC – IT Center for Science

6. Solver input files 21

or mesh.

CSC – IT Center for Science

Chapter 7

Solution and post processing

7.1 Running the solver
Once the solver input file has been generated and the project has been saved, it is possible to actually solve
the problem:

Run → Start solver

This will launch either a single process for ElmerSolver (scalar solution) or multiple MPI-processes for
ElmerSolver_mpi (parallel solution) depending on the definitions in

Run → Parallel settings...

Figure 7.1: Parallel Settings Window.

As shown in Figure 7.1, the parallel menu has three group boxes. Usually, the user is supposed to touch
only the “General settings” group and select the number of processes to execute. The two remaining groups
deal with system commands to launch MPI-processes and external tools for domain decomposition. The
parallel menu is greyed out if ElmerSolver_mpi is not present at start-up.

When the solver is running, there is a log window and a convergence monitor from which the iteration
may be followed. In case of divergence or other troubles, the solver may be terminated by choosing

Run → Kill solver

CSC – IT Center for Science

7. Solution and post processing 23

Once the solver has started, Solver Log Window will appears to show the log. Solver Log Window also
has menus for syntax highlighting and font selection like Solver Input File Window.

The solver will finally write a result file for postprocessor in the project directory. The name of the result
file is defined in

Model → Setup...

It may be tiresome to generate solver input file, save the project then run solver every time you make a
slight modification in conditions. “Generate, save and run” button (a button with green doubled triangle) in
the toolbar enables these three actions by one clicking of the button. This will be helpful to quickly run the
case modified via GUI. A similar button - “Save and run” button (a button with single green triangle) is also
in Solver Input File Window. This button saves the solver input file and the project then runs the solver. This
will be helpful to quickly run the case manually modified via Solver Input File Window. These buttons are
shown in Figure 7.2.

Figure 7.2: Buttons for quick run.

7.2 Post processing
If the path settings are set properly, ElmerGUI can call Paraview directly from

Run → Start ParaView

Note that you may always open Paraview also independently from ElmerGUI.
ElmerGUI still also includes calling possibility of the obsolete ElmerPost visualization tool. It will with

time be eliminated also from the GUI.
The first alternative is activated from

Run → Start ElmerPost

This will launch ElmerPost, which will read in the result file and displays a contour plot representing the so-
lution. If the results were produced by the parallel solver, the domain decomposition used in the calculations
will be shown. Because ElmerPost can handle only “.ep” file, you should specify the Post file in Simulation
section of Setup Window with extension of “.ep” such like “case.ep” while it is “case.vtu” by default.

The second post processor is based on the Visualization Toolkit, VTK. It is activated from

Run → ElmerVTK

A new window will then pop up, providing methods for drawing surfaces, contours, vectors, and stream
lines.

In the toolbar of ElmerGUI main window, there is a button for launching postprocessor. The postproces-
sor to be launched can be selected by long pressing the button as shown in Figure 7.3.

CSC – IT Center for Science

7. Solution and post processing 24

Figure 7.3: Selecting postprocessor in toolbar.

CSC – IT Center for Science

Bibliography

[1] Elmer web pages: https://www.csc.fi/elmer.

[2] Netgen/ngsolve web pages: https://ngsolve.org.

[3] Oce github pages: https://github.com/tpaviot/oce.

[4] Qt web pages: https://www.qt.io/jp.

[5] Qwt web pages: https://qwt.sourceforge.io.

[6] Tetgen web pages: http://wias-berlin.de/software/tetgen.

CSC – IT Center for Science

Appendix A

ElmerGUI initialization file

The initialization file for ElmerGUI is located in ELMERGUI_HOME/edf. It is called egini.xml:

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE egini>
<egini version="1.0">

Show splash screen at startup:
<splashscreen> 1 </splashscreen>

Show system tray icon:
<systrayicon> 1 </systrayicon>

Show system tray messages:
<systraymessages> 1 </systraymessages>

System tray message duration in milliseconds:
<systraymsgduration> 3000 </systraymsgduration>

Check the presence of external components:
<checkexternalcomponents> 0 </checkexternalcomponents>

Hide toolbars:
<hidetoolbars> 0 </hidetoolbars>

Plot convergence view:
<showconvergence> 1 </showconvergence>

Draw background image:
<bgimage> 1 </bgimage>

Background image file:
<bgimagefile> :/images/bgimage.png </bgimagefile>

Align background image to the bottom right corner of the screen:
<bgimagealignright> 0 </bgimagealignright>

Stretch background image to fit the display area (overrides align):
<bgimagestretch> 1 </bgimagestretch>

Maximum number of solvers / equation:
<max_solvers> 10 </max_solvers>

Maximum number of equations:
<max_equations> 10 </max_equations>

Maximum number of materials:
<max_materials> 10 </max_materials>

Maximum number of bodyforces:
<max_bodyforces> 10 </max_bodyforces>

CSC – IT Center for Science

A. ElmerGUI initialization file 27

Maximum number of initial conditions:
<max_initialconditions> 10 </max_initialconditions>

Maximum number of bodies:
<max_bodies> 100 </max_bodies>

Maximum number of bcs:
<max_bcs> 500 </max_bcs>

Maximum number of boundaries:
<max_boundaries> 500 </max_boundaries>

</egini>

You may change the default behavior of ElmerGUI by editing this file. For example, to turn off the splash
screen at start up, change the value of the tag <splashscreen> from 1 to 0. To change the background
image, enter a picture file name in the <bgimagefile> tag. You might also want to increase the default
values for solvers, equations, etc., in case of very complex models.

CSC – IT Center for Science

Appendix B

ElmerGUI material database

The file ELMERGUI_HOME/edf/egmaterials.xml defines the material database for ElmerGUI. The
format of this file is the following:

<!DOCTYPE egmaterials>
<materiallibrary>

<material name="Air (room temperature)" >
<parameter name="Density" >1.205</parameter>
<parameter name="Heat conductivity" >0.0257</parameter>
<parameter name="Heat capacity" >1005.0</parameter>
<parameter name="Heat expansion coeff." >3.43e-3</parameter>
<parameter name="Viscosity" >1.983e-5</parameter>
<parameter name="Turbulent Prandtl number" >0.713</parameter>
<parameter name="Sound speed" >343.0</parameter>

</material>

<material name="Water (room temperature)" >
<parameter name="Density" >998.3</parameter>
<parameter name="Heat conductivity" >0.58</parameter>
<parameter name="Heat capacity" >4183.0</parameter>
<parameter name="Heat expansion coeff." >0.207e-3</parameter>
<parameter name="Viscosity" >1.002e-3</parameter>
<parameter name="Turbulent Prandtl number" >7.01</parameter>
<parameter name="Sound speed" >1497.0</parameter>

</material>
...

</materiallibrary>

The values of the parameters may be either constant, or functions of time, temperature, etc. A tempera-
ture dependent parameter may be defined e.g. as

<parameter name="A" >Variable Temperature; Real; 2 3; 4 5; End</parameter>

In this case, A(2) = 3 and A(4) = 5. Values between the points are interpolated linearly, and extrapolated
in the tangent direction outside the domain. The number of points defining the interpolant may be arbitrary.

CSC – IT Center for Science

Appendix C

ElmerGUI definition files

The directory ELMERGUI_HOME contains a subdirectory called “edf”. This is the place where all ElmerGUI
definition files (ed-files) reside. The definition files are XML-formatted text files which define the contents
and appearance of the Model menu.

The ed-files are loaded iteratively from the edf-directory once and for all when ElmerGUI starts. Later,
it is possible to view and edit their contents by choosing

File → Definitions...

An ed-file has the following structure:

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE edf>
<edf version="1.0">

[PDE block]
[PDE block]
...
[PDE block]

</edf>

The structure of a [PDE block] is the following:

<PDE Name="My equation">
<Name>

My equation
</Name>
...
<Equation>

[Widget block]
</Equation>
...
<Material>

[Widget block]
</Material>
...
<BodyForce>

[Widget block]
<BodyForce>
...
<InitialCondition>

[Widget block]
</InitialCondition>
...
<BoundaryCondition>

[Widget block]
</BoundaryCondition>

</PDE>

Note that the name of the PDE is defined redundantly in two occurrences.
The basic structure of a [Widget block] is the following:

CSC – IT Center for Science

C. ElmerGUI definition files 30

<Parameter Widget="Label">
<Name> My label </Name>

</Parameter>
...
<Parameter Widget="Edit">

<Name> My edit box </Name>
<Type> Integer </Type>
<Whatis> Meaning of my edit box </Whatis>

</Parameter>
...
<Parameter Widget="CheckBox">

<Name> My check box </Name>
<Type> Logical </Type>
<Whatis> Meaning of my check box </Whatis>

</Parameter>
...
<Parameter Widget="Combo">

<Name> My combo box </Name>
<Type> String </Type>
<Item> <Name> My 1st item </Name> </Item>
<Item> <Name> My 2nd item </Name> </Item>
<Item> <Name> My 3rd item </Name> </Item>
<Whatis> Meaning of my combo box </Whatis>

</Parameter>

There are four types of widgets available:

• Label (informative text)

• CheckBox (switches)

• ComboBox (selection from list)

• LineEdit (generic variables)

Each widget must be given a name and a variable type: logical, integer, real, or string. It is also a good
practice to equip the widgets with tooltips explaining their purpose and meaning as clearly as possible.

Below is a working example of a minimal ElmerGUI definition file. It will add “My equation” to the
equation tabs in the Model menu, see Figure C.1. The file is called “sample.edf” and it should be placed in
ELMERGUI_HOME/edf.

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE edf>
<edf version="1.0">

<PDE Name="My equation">
<Name> My equation </Name>
<Equation>

<Parameter Widget="Label">
<Name> My label </Name>

</Parameter>
<Parameter Widget="Edit">

<Name> My edit box </Name>
<Type> Integer </Type>
<Whatis> Meaning of my edit box </Whatis>

</Parameter>
<Parameter Widget="CheckBox">

<Name> My check box </Name>
<Type> Logical </Type>
<Whatis> Meaning of my check box </Whatis>

</Parameter>
<Parameter Widget="Combo">

<Name> My combo box </Name>
<Type> String </Type>
<Item> <Name> My 1st item </Name> </Item>
<Item> <Name> My 2nd item </Name> </Item>
<Item> <Name> My 3rd item </Name> </Item>
<Whatis> Meaning of my combo box </Whatis>

CSC – IT Center for Science

C. ElmerGUI definition files 31

</Parameter>
</Equation>

</PDE>
</edf>

Figure C.1: Equation tab in Model menu produced by the sample ed-file.

More sophisticated examples with different tags and attributes can be found from the XML-files in
ELMERGUI_HOME/edf.

CSC – IT Center for Science

Appendix D

Elmer mesh files

mesh.header

nodes elements boundary-elements
types
type1 elements1
type2 elements2
...
typeN elementsN

mesh.nodes

node1 tag1 x1 y1 z1
node2 tag2 x2 y2 z2
...
nodeN tagN xN yN zN

mesh.elements

element1 body1 type1 n11 ... n1M
element2 body2 type2 n21 ... n2M
...
elementN bodyN typeN nN1 ... nNM

mesh.boundary

element1 boundary1 parent11 parent12 n11 ... n1M
element2 boundary2 parent21 parent22 n21 ... n2M
...
elementN boundaryN parentN1 parentN2 nN1 ... nNM

CSC – IT Center for Science

Appendix E

Adding menu entries to ElmerGUI

As ElmerGUI is based on Qt4, it should be relatively easy to customize the menus and dialog windows. A
new menu item, for example, is added as follows.

First, we declare the menu action and a private slot in src/mainwindow.h:

private slots:
...
void mySlot();
...

private:
...
QAction *myAct;
...

Then, in src/mainwindow.cpp, we actually create the action, connect an appropriate signal from
the action to the slot, and add the action in a menu:

void MainWindow::createActions()
{

...
myAct = new QAction(tr("*** My menu entry ***"), this);
connect(myAct, SIGNAL(triggered()), this, SLOT(mySlot()));
...

}

and

void MainWindow::createMenus()
{

...
meshMenu->addSeparator();
meshMenu->addAction(myAct);
...

}

It finally remains to define the slot to which the triggering signal is connected. All processing related to
the action should be done here:

void MainWindow::mySlot()
{

cout << "Here we go!" << endl;
}

CSC – IT Center for Science

Appendix F

ElmerGUI mesh structure

The finite element mesh generated by ElmerGUI is of class mesh_t (declared in src/meshtype.h). The
mesh is private to the class GLWidget (declared in src/glwidget.h), which is responsible of drawing
and rendering the model.

F.1 GLWidget
The class GLWidget provides the following public methods for accessing the mesh:

mesh_t* GLWidget::getMesh()

Get the active mesh.

void GLWidget::newMesh()

Allocate space for a new mesh.

void GLWidget::deleteMesh()

Delete the current mesh.

bool GLWidget::hasMesh()

Returns true if there is a mesh. Otherwise returns false.

void GLWidget::setMesh(mesh_t* myMesh)

Set active mesh to myMesh.
The mesh can be accessed in MainWindow for example as follows (see previous section for more

details):

void MainWindow::mySlot()
{

if(!glWidget->hasMesh()) return;
mesh_t* mesh = glWidget->getMesh();
cout << "Nodes: " << mesh->getNodes() << endl;
cout << "Edges: " << mesh->getEdges() << endl;
cout << "Trias: " << mesh->getSurfaces() << endl;
cout << "Tetras: " << mesh->getElements() << endl;

}

CSC – IT Center for Science

F. ElmerGUI mesh structure 35

F.2 mesh_t
The class mesh_t provides the following public methods for accessing and manipulating mesh data:

bool mesh_t::isUndefined()

Returns true if the mesh is undefined. Otherwise returns false.

void mesh_t::clear()

Clears the current mesh.

bool mesh_t::load(char* dir)

Loads Elmer mesh files from directory dir. Returns false if loading failed. Otherwise returns true.

bool mesh_t::save(char* dir)

Saves the mesh in Elmer format in directory dir. Returns false if saving failed. Otherwise returns true.

double* mesh_t::boundingBox()

Returns bounding box for the current mesh (xmin, xmax, ymin, ymax, zmin, zmax, xmid, ymid, zmid, size).

void mesh_t::setCdim(int cdim)

Set coordinate dimension to cdim.

int mesh_t::getCdim()

Get coordinate dimension for the current mesh.

void mesh_t::setDim(int dim)

Set mesh dimension to dim.

int mesh_t::getDim()

Get mesh dimension.

void mesh_t::setNodes(int n)

Set the number of nodes to n.

int mesh_t::getNodes()

Get the number of nodes.

void mesh_t::setPoints(int n)

Set the number of point elements to n.

int mesh_t::getPoints()

Get the number of point elements.

void mesh_t::setEdges(int n)

Set the number of edge elements to n.

int mesh_t::getEdges()

Get the number of edge elements.

void mesh_t::setSurfaces(int n)

Set the number of surface elements to n.

CSC – IT Center for Science

F. ElmerGUI mesh structure 36

int mesh_t::getSurfaces()

Get the number of surface elements.

void mesh_t::setElements(int n)

Set the number of volume elements to n.

int mesh_t::getElements()

Get the number of volume elements.

node_t* mesh_t::getNode(int n)

Get node n.

void mesh_t::setNodeArray(node_t* nodeArray)

Set node array point to nodeArray. Useful, if the user wants to take care of memory allocation by him/her
self.

void mesh_t::newNodeArray(int n)

Allocate memory for n nodes.

void mesh:t::deleteNodeArray()

Delete current node array.

point_t* mesh_t::getPoint(int n)

Get point element n.

void mesh_t::setPointArray(point_t* pointArray)

Set point element array point to pointArray. Useful, if the user wants to take care of memory allocation by
him/her self.

void mesh_t::newPointArray(int n)

Allocate memory for n point elements.

void mesh_t::deletePointArray()

Delete current point element array.

edge_t* mesh_t::getEdge(int n)

Get edge element n.

void mesh_t::setEdgeArray(edge_t* edgeArray)

Set edge element array point to edgeArray. Useful, if the user wants to take care of memory allocation by
him/her self.

void mesh_t::newEdgeArray(int n)

Allocate memory for n edge elements.

void mesh_t::deleteEdgeArray()

Delete current edge element array.

surface_t* mesh_t::getSurface(int n)

Get surface element n.

CSC – IT Center for Science

F. ElmerGUI mesh structure 37

void mesh_t::setSurfaceArray(surface_t* surfaceArray)

Set surface element array point to surfaceArray. Useful, if the user wants to take care of memory allocation
by him/her self.

void mesh_t::newSurfaceArray(int n);

Allocate memory for n surface elements.

void mesh_t::deleteSurfaceArray()

Delete surface element array.

element_t* mesh_t::getElement(int n)

Get volume element n.

void mesh_t::setElementArray(element_t* elementArray)

Set volume element array point to elementArray. Useful, if the user wants to take care of memory allocation
by him/her self.

void mesh_t::newElementArray(int n)

Allocate memory for n volume elements.

void mesh_t::deleteElementArray()

Delete current volume element array.

F.3 node_t
The class node_t has been declared in src/meshtypes.h. It provides the following public methods
for accessing node data:

void node_t::setX(int n, double x)

Set component n of the position vector to x.

double node_t::getX(int n)

Get component n of the position vector.

void node_t::setXvec(double* v)

Set the position vector to v.

double* node_t::getXvec()

Get the position vector.

void node_t::setIndex(int n)

Set the index of the node to n.

int node_t::getIndex()

Get the index of the node.

CSC – IT Center for Science

F. ElmerGUI mesh structure 38

F.4 Base element class element_t
The class element_t provides the following methods for accessing element data:

void element_t::setNature(int n)

Set element nature to n (either PDE_UNKNOWN, PDE_BOUNDARY, or PDE_BULK).

int element_t::getNature()

Get the element nature.

void element_t::setCode(int n)

Set element code to n (202 = two noded line, 303 = three noded triangle, ...)

int element_t::getCode()

Get the element code.

void element_t::setNodes(int n)

Set the number of nodes to n.

int element_t::getNodes()

Get the number of nodes.

void element_t::setIndex(int n)

Set element index to n.

int element_t::getIndex()

Get the element index.

void element_t::setSelected(int n)

Set the selection state (1=selected, 0=unselected).

int element_t::getSelected()

Returns 1 if element is selected. Otherwise returns 0.

int element_t::getNodeIndex(int n)

Get the index of node n.

void element_t::setNodeIndex(int m, int n)

Set the index of node m to n.

int* element_t::getNodeIndexes()

Get the indexes of all nodes.

void element_t::newNodeIndexes(int n)

Allocate space for n node indexes.

void element_t::deleteNodeIndexes()

Delete all node indexes.

CSC – IT Center for Science

F. ElmerGUI mesh structure 39

F.5 Point element class point_t
The class point_t inherits all public members from class element_t. In addition to this, it provides the
following methods for accessing and manipulating point element data:

void setSharp(bool b);

Mark the point element “sharp” (b=true) or not (b=false).

bool isSharp();

Returns true if the point element is “sharp”. Otherwise returns false.

void setEdges(int n);

Set the number of edges elements connected to the point to n.

int getEdges();

Get the number of edge elements connected to the point.

void setEdgeIndex(int m, int n);

Set the index of m’th edge element to n.

int getEdgeIndex(int n);

Get the index of n’th connected edge element.

void newEdgeIndexes(int n);

Allocate space for n edge element indexes.

void deleteEdgeIndexes();

Delete all edge element indexes.

F.6 Edge element class edge_t
The class edge_t inherits all public methods from element_t. It also provides the following methods
for accessing and manipulating edge element data:

void edge_t::setSharp(bool b)

Mark the edge sharp (b=true) or not (b=false).

bool edge_t::isSharp()

Returns true if the edge is sharp.

void edge_t::setPoints(int n)

Set the number of point elements connected to the edge to n.

int edge_t::getPoints()

Get the number of point elements connected to the edge.

void edge_t::setPointIndex(int m, int n)

Set the index of point element m to n.

int edge_t::getPointIndex(int n)

Get the index of point element n.

CSC – IT Center for Science

F. ElmerGUI mesh structure 40

void edge_t::newPointIndexes(int n)

Allocate space for n point element indexes.

void edge_t::deletePointIndexes()

Delete all point element indexes.

void edge_t::setSurfaces(int n)

Set the number of surface elements connected to the edge to n.

int edge_t::getSurfaces()

Get the number of surface elements connected to the edge.

void edge_t::setSurfaceIndex(int m, int n)

Set the index of surface element m to n.

int edge_t::getSurfaceIndex(int n)

Get the index of m’th surface element connected to the edge.

void edge_t::newSurfaceIndexes(int n)

Allocate space for n surface element indexes.

void edge_t::deleteSurfaceIndexes()

Delete all surface element indexes.

F.7 Surface element class surface_t
Finally, the class surface_t provides the following public methods for accessing and manipulating sur-
face element data, besides of those inherited from the base element class element_t:

void surface_t::setEdges(int n)

Set the number of edge elements connected to the surface to n.

int surface_t::getEdges()

Get the number of edge elements connected to the surface element.

void surface_t::setEdgeIndex(int m, int n)

Set the index of m’th edge element to n.

int surface_t::getEdgeIndex(int n)

Get the index of n’th edge element connected to the surface element.

void surface_t::newEdgeIndexes(int n)

Allocate space for n edge element indexes.

void surface_t::deleteEdgeIndexes()

Delete all edge element indexes.

void surface_t::setElements(int n)

Set the number of volume elements connected to the surface element to n.

CSC – IT Center for Science

F. ElmerGUI mesh structure 41

int surface_t::getElements()

Get the number of volume elements connected to the surface element.

void surface_t::setElementIndex(int m, int n)

Set the index of m’th volume element to n.

int surface_t::getElementIndex(int n)

Get the index of n’th volume element connected to the surface.

void surface_t::newElementIndexes(int n)

Allocate space for n volume element indexes.

void surface_t::deleteElementIndexes()

Delete all volume element indexes.

void surface_t::setNormalVec(double* v)

Set the normal vector to the surface element.

double* surface_t::getNormalVec()

Get the normal vector for the surface element.

double surface_t::getNormal(int n)

Get component n of the normal vector.

void surface_t::setNormal(int n, double x)

Set component n of the normal to x.

void surface_t::setVertexNormalVec(int n, double* v)

Set the normal vector for vertex n to v.

void surface_t::addVertexNormalVec(int m, double* v)

Add vector v to the normal in vertex n.

void surface_t::subVertexNormalVec(int m, double* v)

Subtract vector v from the normal in vertex n.

double* surface_t::getVertexNormalVec(int n)

Get the normal vector in vertex n.

CSC – IT Center for Science

	Table of Contents
	Introduction
	Installation from source
	Linux

	Input files
	Geometry input files and mesh generation
	Elmer mesh files
	Project files

	Model definitions
	Setup menu
	Equation menu
	Material menu
	Body force menu
	Initial condition menu
	Boundary condition menu

	Utility functions
	Boundary division and unification
	Saving pictures
	View menu

	Solver input files
	Solution and post processing
	Running the solver
	Post processing

	ElmerGUI initialization file
	ElmerGUI material database
	ElmerGUI definition files
	Elmer mesh files
	Adding menu entries to ElmerGUI
	ElmerGUI mesh structure
	GLWidget
	mesh_t
	node_t
	Base element class element_t
	Point element class point_t
	Edge element class edge_t
	Surface element class surface_t

