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1 Overview

This document describes MixTest, a program that can be used to compute a likelihood ratio test to see
whether the difference between two conditions is a “uniform effect” or a “mixture effect”, as defined further
below. The data from the two conditions can be any form of numerical measurements. In addition to
analyzing real data to test for uniform versus mixture effects, the program can also be used to generate
simulated data to explore the statistical properties of the likelihood ratio test under conditions similar to
those present in a particular experimental setting.

2 Detailed Introduction

What does this program do? This section describes the basic statistical scenario and defines some terminology.

Suppose a researcher collects numerical scores from two conditions and finds that the two conditions have
significantly different means. To make the scenario a little more concrete, call the conditions “experimental”
and “control”, and suppose the mean is larger in the experimental condition.

Intuitively, the difference in means might reflect either a “uniform effect” or a “mixture effect”, defined
as follows: With a uniform effect, all of the scores in the experimental condition are increased relative to
what they would have been in the control condition. With a mixture effect, however, only some of the scores
in the experimental condition are affected; the rest of the scores in this condition are the same as they would
have been without the manipulation (i.e., the same as they would have been in the control condition).

To take a traditional sort of example, suppose we want to evaluate the effectiveness of adding a certain
chemical to a standard fertilizer. 100 corn plants are given the standard fertilizer as a control group, and
100 are given the standard fertilizer enhanced with the added chemical as an experimental group. Average
productivity turns out to be higher for the experimental plants than the controls.

One interpretation of the higher scores for the experimental condition is that the added chemical facilitates
growth of corn plants in general, so productivity tends to be larger for each plant in this group than it would
have been without the chemical. This would be an example of a uniform effect.

Another possibility, however, is that the added chemical facilitates growth for only a proportion of the
plants, with other plants being completely unaffected by it (presumably because of some genetic variation).
This would be an example of a mixture effect.

Looking only at the means, there is no way to decide whether there was a uniform effect or a mixture effect.
You might be able to see that there was a mixture effect by looking more closely at the observed distributions
of scores, however. For example, you might find a bimodal frequency distribution in the experimental group;
one mode might match the mode of the control group, and the other mode might be larger. In that case,
you would have strong evidence of a mixture effect. But looking for a bimodal distribution isn’t likely to
be the most powerful approach, because (a) it requires a lot of data, and (b) it can only work for mixture
effects that produce distinct modes.

This program tests between uniform and mixture effects with a likelihood ratio test taking into account
the full distributions of scores in the two conditions. In brief, it works by fitting two different models to the
data—one corresponding to a uniform effect, and the other corresponding to a mixture effect. These two
models will be called the “uniform model” and the “mixture model” throughout this documentation.

Each model is fit via maximum likelihood estimation of its parameters. Roughly speaking, the likelihood
of a data set under a given model is the product of the probabilities (under that model) of all of the actual
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observations. So, maximum likelihood estimation adjusts the model parameters so that the model assigns
the highest likelihood that it can to the actual observed data set.

Once each model has been fit by maximum likelihood estimation, a chi-square likelihood ratio test is
used to decide whether the mixture model fits significantly better than the uniform model. In brief, this
test just looks at whether the data are significantly more likely under the mixture model than under the
uniform model. If so, the researcher can conclude that there is a mixture effect. If not, the null hypothesis
of a uniform effect model cannot be rejected. The uniform model is simpler, so it can never fit better than
the mixture model.

The program can be run in either of two modes, for data analysis or simulation. In the data analysis
mode, it performs the likelihood ratio test on some data supplied by the user. In the simulation mode, the
program iteratively generates random datasets (according to your specifications) and analyzes each one with
the likelihood ratio test, tabulating the results across iterations. The simulation mode can be used to see
how well the test works with a particular type of data that are of interest.

I will next get a bit more technical and introduce a little terminology which is used throughout the
remainder of this documentation.

2.1 Control condition

Both models assume that there is some probability distribution for the observations in the control condition,
call it f.. For example, you might believe that the observations in the control condition have a normal
distribution, so f.(x) is the function giving the normal curve over the region of «’s (data values) of interest.

2.2 Experimental condition, uniform model

According to the uniform model, there is some other probability distribution for the observations in the
experimental condition, call it f.,. For example, if you thought the control distribution was normal, you
would usually think that the observations in the experimental condition also had a normal distribution,
although with a different mean and possibly a different standard deviation too. This other distribution is

feu-

2.3 Experimental condition, mixture model

According to the mixture model, there are two possibilities for each observation in the experimental condition.
Some experimental observations are unaffected by the manipulation, so they simply come from the control
distribution, f.. The rest of the experimental observations are affected by the manipulation, however, so
they come from some other probability distribution, fe.,, representing the distribution of affected scores. (I
will sometimes refer to this as the “effect-present distribution”.) For example, if you thought the control
distribution was normal, you would usually think that the affected observations in the experimental condition
also had a normal distribution, although with a different mean and possibly a different standard deviation.
Finally, the mixture model has one extra parameter, which is the “effect probability”, P. This is the
probability that an observation in the experimental condition is actually affected by the experimental
manipulation—i.e., the probability that it comes from the effect-present distribution rather than the control
distribution. Thus, 1 — P is the probability that the observation is not affected, so it comes from the control
distribution.

2.4 The Likelihood Ratio Test

In brief, MixTest computes a likelihood ratio test to compare the fits of two models to the data from the
experimental and control conditions (see Miller, 2005 for more details). Both models have the distribution
fe in the control condition. The uniform model says that the data in the experimental condition come from
some other distribution f.,, whereas the mixture model says that these data are a mixture of f. amd f,,.
MixTest tries various parameter values for these models and finds the ones that give the maximum likelihood
for your data. Using those maximum-likelihood parameter estimates, it then computes a likelihood ratio
test to evaluate whether the more flexible mixture model fits significantly better than the simpler uniform
model.
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2.5 Distributional Assumptions and Outliers

A limitation of MixTest is that the researcher has to specify the probability distribution family (e.g., normal,
lognormal, gamma) of the observations. In some cases, the correct family may be known on a priori grounds
or from extensive prior research in the area. If not, the researcher must examine the control condition data
carefully to try to determine a reasonable distributional family for this condition before starting MixTest,
and the program DistFit may be helpful in this regard (see section 10). Note that it is probably not a good
idea to examine the experimental condition data in the same fashion, because you don’t know when you
start whether this condition should be fit by a single family or by a mixture.

Another important limitation of MixTest is that it is rather sensitive to the presence of outliers. It is
thus extremely important to check the data carefully for outliers, and exclude any that are found. If there
are some identifiable points that may or may not be outliers—you cannot tell for sure—then it would be
prudent to run MixTest twice (i.e., once with the possible outliers and once without them) and to interpret
the results only if the two runs lead to the same overall conclusion.

3 Installation & Test

Now that you know what MixTest does, perhaps you would like to try it out.

1. Unzip the distribution file. It will be named something like MixTest.ZIP, except that the last few
letters of MixTest will be changed to numbers to reflect the current version (e.g., MixTest11.ZIP is
version 1.1). Note that subdirectories called Examples\MixTest\In and Examples\MixTest\Out.0K
are created; these are for test purposes (see point after next).

2. Move the program file MixTest.EXE to a directory in your path.  This program runs in a CMD
window (also known as a DOS window), at least under Windows 2000 and XP.

3. If you like, you can run some quick tests of the program to make sure that everything is working
properly on your machine and your version of the operating system. To do the quick tests, open
a command window and change its current directory into the subdirectory Examples\MixTest\In.
Then run the batch file Go.Bat. The batch file should run a series of test runs, and it should
produce output files as described later. When the batch file is done, check that every newly created
file in the Examples\MixTest\In subdirectory is identical to the file with the same name in the
Examples\MixTest\Out.OK subdirectory. If the files match, it is likely that everything is OK. If it
fails, contact the author.

4 Starting the Program

MixTest is invoked from the command line of a CMD or DOS window. Parameters controlling its behavior
can be specified on the command line or in Rsp files, as is illustrated in the file Go.Bat. Here are some
examples:

C> MixTest QExampll

C> MixTest Q@Examplla ©@Examplilb

C> MixTest @Exampl2 DataSpacers

C> MixTest @Exampll DataFile MyDataFileName
C> MixTest @Example3(Simulation)

The ampersand (@) character at the beginning of a parameter says that this parameter is the name of a
control file from which parameters should be read. Control files names must end with the extension .Rsp.
In the first MixTest command, for example, the parameter “@Exampll” tells the program to read input
parameters from the file Exampl1.Rsp, starting from the first line in that file.

The first example is all you really need to know for now. The other examples provide additional flexibility
(not additional capability). If you are in a hurry, you may want to skip the rest of this section for now, and
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come back to it when you find you want a little more flexibility in specifying the program control parameters
on the command line.

Here is a description of several other, more advanced options for specifying program control parameters
on the command line:

e You can read program control parameters from two (or more) Rsp files, simply listing all of them on
the command line. In the example on the second line, for instance, program control parameters are
read from both Examplla.Rsp and Examplib.Rsp.

e Parameters may be specified on the command line itself, as in the third and fourth example MixTest
commands shown above. In the third example command, for instance, MixTest reads parameters from
Exampl2.Rsp and then sets one further parameter called DataSpacers (described later).

e Sometimes control parameters in the Rsp file consist of two or more terms separated by white space,
as you will see descriptions of the different control parameters. To specify such parameters on
the command line, use an underscore instead of white space, as shown in the fourth command
(DataFile MyDataFileName).

e You may want to use a single Rsp file to control several slightly different runs, with somewhat different
parameter settings. When the Rsp file name is followed on the command line by an extra parameter in
parentheses [e.g., @Example3(Simulation)], parameters are read from the indicated Rsp file starting
at the point in the file indicated by the label in parentheses, rather than starting at the beginning of
the Rsp file. The method of labelling a point in the Rsp file is explained further in section 7.7.

These options can be combined in all of the various ways that you would expect.

5 Data Analysis Mode

This section describes how to use MixTest in the data analysis mode. The simulation mode is described in
section 6, but that section assumes you are already familiar with this one.

5.1 Input File Formats

MixTest reads the data and analysis options from plain-text (ASCII) files that you create in advance with
an editor (although only one file is needed for simulation options, as is described in section 6). The next
section describes the formats of both input files, and it lists and explains the various parameters. Examples
of both types of files can be found in the In subdirectory, and it may be easier to learn about the parameters
by looking at the examples in the file rather than reading this section of the documentation.

5.1.1 Data File

The data input file should be given a name with the extension “DAT”. As shown in Exampl1.DAT, the basic
data format includes two lines per data set. Scores on the first line are the observations from one condition,
arbitrarily referred to as the “control” condition, listed in any order and separated by spaces. Scores on the
second line are the observations from the other condition, referred to as “experimental”. Observations in
both conditions can be any types of numerical values.

Tabs or spaces can be used to separate the numbers in the data file. The spacing is not significant to the
program as long as different numbers are separated by at least one space or tab, but of course it is easier for
a person to read if the numbers line up in columns.

As shown in Exampl2.DAT, the program can also process several data sets in a given run (these will be
referred to as different “CASEs”). If multiple pairs of lines are included in the data file, MixTest will process
each pair separately and then perform an aggregation across pairs, as is described in section 5.2.3. To input
multiple cases, the same pair of lines simply repeats for each new case. By default, it is assumed that there
are just two lines per case in the input file. In Exampl2.Dat, however, a blank line has been inserted between
cases to improve readability. This departure from the default is specified with the “DataSpacers” command
in the RSP file (see below).
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5.1.2 Control File

The control file is used to specify various optional aspects of the data analysis (or simulation), and it should
be given the extension “.RSP”. RSP stands for “response”, because these files convey the responses that you
would give if you were controlling the program with a more traditional on-screen interface.

The control files (*.RSP) convey all of the desired option settings to MixTest. There are many options,
and a complete list of them is given in section 5.3. In this section, I will just try to take you through a
simple example, shown in Table 1, to get a basic idea of how to set up the program.

Table 1: Example option specification lines used in the file Exampl1.RSP.

Title Exampll Test Run
ControlFit Normal(0,1)
ExptlFitMix Normal(2,1)
StartingP 0.5

ExptlFitUni Normal(1,2)
AddExpt1FitUni Normal(0,1)
AddExpt1FitUni Normal(2,1)

Here is a detailed explanation of the lines in Table 1:

e The first line simply gives the program a title to be shown at the top of the output. This can be
omitted.

e The second line (“ControlFit”) indicates that the data from the control condition should be fit to a
normal distribution, with 0 and 1 as the starting values for the mean and standard deviation of this
distribution. This is the starting point for the f. distribution, although the parameters will be adjusted
to maximize the likelihood of the observations.

e The third line (“ExptlFitMix”) indicates that, for the experimental condition, the effect-present observations
should be fit to a normal distribution with 2 and 1 as the starting values for the mean and standard
deviation. This is the starting point for the f.,, distribution. Together, the second and third lines
imply that the full set of the observations in the experimental condition should be fit to a mixture of
two normals, with one normal starting at mean 0 and the other starting at mean 2.

e The fourth line indicates that the search should starting with a value of 0.5 for the probability that
the effect is present (i.e., P).

e The final three lines determine the starting points for fitting the version of the model with a uniform
effect. The “ExptlFitUni” line gives one of the search starting points. This line must be present and
must appear before any “AddExptlFitUni” lines.

e The “AddExptlFitUni” lines are optional. These give additional starting points, so for this example a
total of three starting points are specified. The program takes the best fit that it finds, but the option
of multiple starting points is useful to try to combat the problem of stopping the search in a local
minimum. Note that it is completely arbitrary in what order the different starting points are specified
(here, the three different normals) although it is necessary for the “ExptlFitUni” line to appear first.

Some explanation of the concept of “starting values” may be useful. Starting values should be your
ballpark guesses as to what the true values of the parameters might be. For example, if you are assuming
normal distributions, then you should pick starting values for its p and o that would be realistic for the
type of data you actually have. It doesn’t matter much exactly which starting values you choose. The
maximum-likelihood parameter search routine will always try to adjust the parameters from the starting
values that you give it, in order to find parameters that give an even better fit to your data. So, for example,
it probably won’t matter whether you start with © = 100 and ¢ = 20 or = 95 and o = 18; these are similar
enough that the parameter search routine fill find the same maximum-likelihood point from either one of
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them. But the parameter search routine can get stuck if your initial guesses are really far off the mark, so
it is pretty important to have reasonably good starting values. For example, if you started with . = 0 and
o = 1 where something like the actual values were more like 100 and 20, then there is a good chance that
the parameter search routine would not converge on the best values. If you are totally unsure of the starting
values, you should try many different ones and see which ones give the best fits.

Quite a few different analysis options can be controlled from the RSP control file, and these are described
in detail in section 5.3. First, however, I describe the program’s output.

5.2 Output File Format

Tables 2 and 3 show an example output file with the analysis for an input data file with four cases. The
case-by-case part of the output file is too wide to fit on a single page, so it is here broken up into two parts
(left half in Table 2, right half in Table 3) for readability. See file Exampl2.txt to see both halves on the
same lines.

5.2.1 Case-by-Case Output

For each case, the first output (column 2) is a classification of the effect as either “Uni” or “Mix” for that
case. This is simply an easy-to-read summary of the analysis for that case. The next six columns provide
descriptive information about the data in the control and experimental conditions, respectively: i.e., the
sample sizes (N), observed mean (Mn), and observed standard deviation (SD).

“MixP” is the maximum likelihood estimate of P for each case.

“ChiSq” is the chi-square value of the likelihood ratio test.

Continuing on the right side of the page, “p” is the significance level of the observed ChiSq value, judged
against a chi-square distribution with one degree of freedom. (The mixture probability is the one extra
parameter in the mixture model, corresponding to the one df of the chi-square test.)

Most of the remaining columns on the right side of the page show the estimated values of the parameters
for each condition (control, experimental) and each model (uniform, mixture). In this example the assumed
distributions were normal, so Parm1 is the mean of the distribution and Parm?2 is its standard deviation. In
other examples, the distribution might have different parameters (e.g., rate of an exponential).

To elaborate a little bit on the meanings of these parameter estimates, those for the experimental condition
correspond to the estimates for the distributions fe, and fe, within the uniform and mixture models,
respectively. The estimates for the control distribution are estimates for f., but note that these estimates
differ across the two models. In the uniform model, the estimates of f. are influenced only by the scores in the
control condition. In the mixture model, the estimates of f. are influenced by the scores in the experimental
condition as well.

The right-most two columns in the table are the -Ln(Likelihood) values corresponding to the best-fitting
pure and mixed models, respectively. Each of these is the negative of the natural log of the likelihood of
the data, under the particular model. Note that smaller values indicate higher likelihood (i.e., better fit to
the model), because of the minus sign. If you analyze the same data set in several different runs (e.g., with
different starting parameter values), you should use as the “final” parameter estimates the run that gives
the smallest -Ln(L) value across all of the different runs for that data set.

5.2.2 Results Summary

The results summary section summarizes the results across all cases. If you only analyze a single case, this
section will not be produced.

The first three lines of the summary are simply counts. The number of good cases is generally the number
of cases analyzed, although it is possible to exclude cases based on wild parameter estimates or inappropriate
effect sizes, as is described later. If any cases are excluded for these reasons, they are counted in the next
two N lines.

The next three lines show the proportion of cases in which the observed chi-square value was significant
at the indicate p-level, .1, .05, or .01. This provides one way of describing the overall results across a number
of cases (e.g., “75% yielded significant evidence for a mixture model”).

The “ChiSqObs” line summarizes the mean and standard deviation, across cases, of the ChiSq values.
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Table 2: Example data analysis output shown in file Exampl2.txt. The case-by-case lines in the file are too
long to fit on a single page, and these are the left halves of the lines. The right halves are in Table 3.

Title:
Exampl2 Test Run

Case Class N_C N_E Mn_C SD_C Mn_E SD_E MixP  ChiSq
1 Mix 20 20 0.100 1.369 2.404 4.690 0.15000 63.649
2 Mix 20 20 0.120 1.374 2.424 4.673 0.15001 64.482
3 Mix 20 20 0.085 1.376 2.389 4.697 0.15001 63.665
4 Mix 20 20 0.100 1.369 17.404 41.219 0.14984 522.308

Results Summary:

N good cases: 4

N bad parm ests: 0

N bad effects: 0

Pr(ChiSqObs sig .10): 1.00000

Pr(ChiSqObs sig .05): 1.00000

Pr(ChiSqObs sig .01): 1.00000

ChiSqObs Mn, SD: 178.526 229.188

Mixture P Mn, SD: 0.150 0.000

Control Distribution: Mean SD Min Max
Uni Parm 1: 0.101 0.014 0.085 0.120
Uni Parm 2: 1.338 0.004 1.335 1.342
Mix Parm 1: 0.300 0.016 0.282 0.320
Mix Parm 2: 1.253 0.008 1.241 1.259

Exptl Distribution:
Uni Parm 1: 1.938 0.936 0.534 2.424
Uni Parm 2: 3.710 1.716 1.135 4.578
Mix Parm 1: 38.010 50.000 13.010 113.010
Mix Parm 2 0.015 0.000 0.015 0.015

Aggregated Results:
Total ChiSqObs(4) = 714.104 p = 0.0000

Fitting Conditions:
Starting Control RV: Normal(0,1)
Starting Exptl Uni RV: Normal(1,2)
and: Normal(0,1)
and: Normal(2,1)
Starting Exptl Mix RV: Normal(2,1)
Starting P: 0.5000
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Table 3: Example data analysis output shown in file Exampl2.txt. The case-by-case lines in the file are too
long to fit on a single page, and these are the right halves of the lines. The left halves are in Table 2. Note
that the -Ln(Likelihood) values “-Ln(L)” are only written if WriteMaxLikelihood is specified.

Cntrl  Cntrl Cntrl Cntrl Exptl  Exptl Exptl Exptl
ce Uni Uni Mix Mix Uni Uni Mix Mix Uni Mix
Case... p Parml Parm2 Parml Parm2 Parml Parm2 Parml Parm2 -Ln(L) -Ln(L)
1...0.00000 0.100 1.335 0.298 1.255 2.404 4.571 13.010 0.015 92.928 61.103
..0.00000 0.120 1.340 0.320 1.241 2.424 4.554 13.010 0.015 92.927 60.686
..0.00000 0.085 1.342 0.282 1.259 2.389 4.578 13.010 0.015 93.058 61.226
..0.00000 0.100 1.335 0.298 1.255 0.534 1.135 113.010 0.015 322.258 61.104

S ow N

The “Mixture P” line summarizes the mean and standard deviation, across cases, of the estimated P
values.

The remaining lines summarize the parameter estimates that were shown on the right-hand side of the
case-by-case analysis, showing the mean, standard deviation, minimum, and maximum (across cases) for
each parameter.

5.2.3 Aggregated Results

The total chi-square value is simply the sum of the observed chi-square values across all cases. Assuming
that the cases are independent, this sum should have a chi-square distribution with degrees of freedom equal
to the number of cases. The associated p value is thus computed by looking up the computed total relative
to that chi-square distribution. If this p is less than the chosen significance level (e.g., p < .05), then the
data as a whole (i.e., aggregating across cases) provide evidence for a mixture effect.

5.2.4 Fitting Conditions

This section just reiterates the input parameters controlling the conditions of the analysis—i.e., the specifications
used in fitting the uniform and mixture models.

5.3 Data Analysis Options

Numerous aspects of MixTest’s behavior can be controlled by the user via a set of analysis options. This
section lists analysis options that are needed for data analysis, and section 6.1 lists options that are needed
mainly or exclusively for running simulations.! In addition, section 7 lists advanced options that may be
used in either mode. Within each section, I have attempted to list the options approximately in order from
most-frequently to least-frequently used.

All analysis options are specified by including one or more lines in the RSP file. An option is specified
by typing its name as the first word on a line of the input RSP file (preceding blank space on the line is
ignored). If the option requires further information, that information is typed as successive words on the
same line (i.e., separated by one or more blank spaces) or, in a few cases to be described, on successive lines.
Within an RSP file, the asterisk character (*) is used to indicate comment material: anything following an
asterisk on the same line is ignored.

Here are some general comments about the parameters:

e Most parameters are optional and have reasonable defaults.
e The parameters can appear in (almost) any order.
e No parameters are case-sensitive.

e With some crucial exceptions, one parameter is specified on each line of the input file.

IThe division into analysis versus simulation options is somewhat arbitrary, because some options apply in both cases. So,
if you think an option listed in the analysis section should apply to simulation, or vice versa, you are probably right. Try it
and see what happens.
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e Parameters can be followed on the same line by comments. By default, the asterisk is used to start a
comment, but this can be changed.

e Indenting (leading whitespace) is almost always optional (i.e., it is optional unless clearly noted
otherwise). It is used in the examples to improve readability and indicate grouping.

5.3.1 DataFile
This option is used to specify the name of the input data file. It should be followed on the same line by a
file name, like DataFile MyInFilel.

5.3.2 Setting the Output File Name

MixTest tries to generate a unique and reasonable file name for its output file(s). It does this by using the
name of the first Rsp files that is read or the first goto label that is referenced. For example, if you invoke
the program with

MixTest @Testl(Gotol)
then by default the output files will be called Gotol.*. Or, if you invoke it with
MixTest Q@Testl

then by default the output files will be called Test1.*.
The default name of the output file can be overridden by specifying the parameter:

Outfile foo2

Now the output files will be called foo2.txt and foo2.tab.
You can build up the output file name in stages, too, with a command like this:

AppendOutfile MLEa
This appends MLEa to the current output file name. So, the sequence

Outfile foo2
AppendOutfile MLEa

produce output file names foo2MLEa. *. Of course this is a silly example—you might as well just say Outfile
foo2MLEa—Dbut the “AppendOutfile” command can actually be quite useful when using multiple Rsp files
and/or labels within Rsp files.

By default, MixTest will overwrite an existing output file of the same name when run in data analysis
mode, but it will append to an existing output file of the same name when run in simulation mode. To
override these defaults, you can specify the option AppendFile to make it append in data analysis mode or
the option Overwrite to make it overwrite in simulation mode.

5.3.3 DataSpacers

This option is used to indicate that the input data file has a blank line at the end of each pair of data lines
to improve readability. If you don’t include blank lines in the data file, simply omit this option.

5.3.4 ControlFit, ExptlFitUni, ExptlFitMix

These three commands are used to specify the probability distributions to which the data are fit. As
illustrated in the file exampl1.RSP, each of these options is followed by a distribution name to use in fitting
the uniform and mixture models. Starting parameter values are also specified for each distribution. These
are the starting points for the simplex routine that searches for the maximum-likelihood parameter values,
and it is at least useful—and possibly essential—for these parameter values to be close to the true values.
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The “ControlFit” distribution is the distribution to be used in fitting the data from the control condition.
The same distribution is used for both the uniform model and the mixture model, although the parameter
values are estimated separately for the two models.

The “ExptlFitUni” distribution is the distribution to be used in fitting the experimental condition within
the uniform model.

The “ExptlFitMix” distribution is the distribution to be used in fitting the effect-present trials in the
experimental condition within the mixture model. The unaffected trials within this model are of course fit
to the ControlFit distribution.

The complete list of probability distributions that can be specified for fitting within MixTest, along
with their parameters, can be found in section 8. The distribution options include not only dozens of
standard distributions but also various transformations of these distributions (e.g., linear, log, power) and
other distributions formed by taking convolutions, mixtures, order statistics, and so on, as derived from
CUPID (Miller, 1998). In fact, MixTest is itself merely an extension of CUPID for this particular type of
data analysis. The same distributions can also be used for generating data when the program is used for
simulations.

In most applications that I can think of, I would expect the same distributional family (e.g., normal) to be
used for all three types of fits (i.e., control, experimental within uniform model, effect-present experimental
within mixture model). The program does not require this, however. It does require that the total number
of parameters in the mixture model be one more than the number of parameters in the uniform model,
however.

Section 7.2 describes further options allowing constrained fitting of distributions. As covered in that
section, it is possible to have MixTest compute maximum-likelihood fits holding constant certain distributional
parameters or restricting them to integer values.

5.3.5 StartingP

This option is used to specify the starting value (i.e., at the start of the maximum-likelihood search) for
the mixture probability within the mixture model. For example, StartingP 0.35 indicates that the search
should start with a mixture model in which the effect is present 35% of the time. Of course the final value at
the end of the search is whatever value maximizes likelihood. To prevent division by zero, you may not use
a StartingP value of 0 or 1. The program checks for these cases and automatically adjusts them to starting
values of nearly zero and nearly one, respectively.

5.3.6 AddExptlFitUni

A well-known problem with iterative parameter search routines, like the simplex, is that they can get stuck
at local minima—parameter combinations that are best within a certain region of the parameter space but
not best overall (see section 5.4 for further discussion of this problem). One way to combat that problem is
to try starting the parameter search from different points in the parameter space, hoping that it will find
the real overall minimum from at least one of the starting points.

Using the AddExptlFitUni option, MixTest lets you specify additional starting points for the search for
optimal parameter values of the uniform model. If you do specify additional starting points, MixTest will
carry out the search separately for each starting point, and it will of course use the best overall result (i.e.,
parameter values yielding maximum likelihood).

The AddExptlFitUni option must be specified after the ExptlFitUni option. For example, it would be
correct to specify the sequence

ExptlFitUni Normal(O0,1)
AddExptl1FitUni Normal(0.2,1)

but it would not be correct to specify these in the reverse order.

5.3.7 Title

This option is just used to generate a title that is included like a header line at the beginning of the summary
output file.
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5.3.8 MissingValue

If your input data includes missing scores, you can instruct MixTest to skip over those by using this option to
set a numeric value indicating a missing score. By default, the value -999999.9999 is assumed to be missing.
You can change it to any real number via a command like MissingValue 999.99.

5.4 Search Modes

MixTest obtains all parameter estimates with the simplex search algorithm (Rosenbrock, 1960). Like all
numerical search algorithms, this algorithm may fail to find the best parameter estimates, because it may
get trapped by a set of estimates that are the best within a certain region of the parameter space but are
not the best overall (the so-called “local minimum” problem, referring to minimum error). In that case, the
best parameters actually provide a somewhat better fit than the one given by the program.

This section describes some steps that you can take to diagnose and overcome the local minimum problem,
thereby increasing your chances of getting the true best parameter estimates.

The best way to find out whether your parameter estimations suffer from the local minimum problem is
to run MixTest several times and use widely different starting parameter values for the different runs. If the
search always produces the same parameter estimates regardless of the starting guesses, then the values it
finds probably really are the best estimates. If the search produces different parameter estimates when you
use different starting guesses, however, that is a sure sign that there are local minimum problems.

When you find that your parameter estimation task suffers from the local minimum problem, there are
a few things that you can do to increase your chances of getting MixTest to find the actual best estimates.
One approach is to improve your starting guesses; as those get closer to the true values, the local minimum
problem is less likely to arise. Unfortunately, this is not always a very helpful strategy in practice, because
often you just don’t have a good idea what the true parameter values are.

The other approach is to run the simplex search from many different starting guesses. The best result
across all of the different searches is obviously more likely to be the overall best result than is the result of
any individual search. MixTest provides “grid search” and “random search” modes to automate this process
(i.e., carrying out many simplex searches from different starting values), as described in this section. Of
course, grid searches and random searches slow down the program considerably, so you have to be prepared
to wait hours or even days to get the best estimates if you want to go all out with these options.

MixTest has three search modes:

Simplex This search mode uses the simplex algorithm of Rosenbrock (1960).

Grid search This search mode tries all combinations of parameter values on a user-defined grid, possibly
starting a new simplex search from each of the grid points.

Random search This search mode tries randomly generated combinations of parameter values within user-
defined bounds, possibly starting a new simplex search from each randomly generated combinations.

The default search mode is simplex. To get one of the other two modes, you need to include specifications
for it, as described in the next two subsections. Both the grid search and random search modes can optionally
perform a simplex search starting at some or all of the parameter combinations considered by the search.

5.4.1 Specifying the Grid Search Mode

To use the grid search mode, you need to include a set of specifications like those shown in Table 4. Here is
an explanation of the lines in that table:

The “GridSearch” word on the first line is simply the keyword to indicate that you want to use the grid
search option. The integer “1” on that same line indicates that you want to specify this grid search for the
control condition with the uniform model. Alternatively, you can use “2” here to specify grid (or random—see
below) searches for the experimental condition with the uniform model, or “3” to indicate that you want
grid or random searches for the mixture model. If you want to specify all three types of searches to be grid
or random searches, you need to include three blocks of the sort shown in the table—one for each search
type.

The second line has three numbers with these meanings:
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Table 4: Example of specifications for grid search mode.

GridSearch 1 * Use a grid search for search type 1.

3 0.51.1 * Special line: See notes below at @Q

100 500 10 * Parameter 1 should range from 100 to 500 in 10 steps.
10 200 10 * Parameter 2 should range from 10 to 200 in 10 steps.
1 400 10 * Parameter 3 should range from 1 to 400 in 10 steps.

@@ Notes for the above special line:
3 indicates that there are three free parameters in this distribution.
0.5 indicates that a simplex search should sometimes be started from a grid point.
The alternatives are:
0.0 Never start simplex search from a grid point.
1.0 Always start simplex search from a grid point.
1.1 indicates that the simplex search should start from a grid point if the error
at that grid point is no more than CurrentBestError*1.1, where CurrentBestError
is the best error found so far.

* X X X X X X X %

e The first number specifies the number of parameters to be varied in the search (more generally, the
number of free parameters in the distribution being fitted to the data).

e The second number is used to specify whether the simplex search should be called at each of the grid
points. There are three possible cases:

1. If this value is less than or equal to 0, simplex is never called for any grid point.
2. If this value is greater than or equal to 1, simplex is always called for every grid point.

3. If this value is between 0 and 1, simplex is sometimes called, depending on the third number on
this line.

e The third number, which will be called “ErrorFactor” is only used when the second number is between
0 and 1. In those cases, MixTest first evaluates the error associated with the current combination of
parameters; call this error value “CurrentError”. It then computes the ratio of CurrentError divided by
ErrorFactor. If this ratio is less than the best error obtained previously, then MixTest starts a simplex
search at the current point; otherwise, it skips the simplex for this point. I usually use ErrorFactor
values of around 1.1-1.5, with higher values doing more simplex searches (thus, taking more time, but
also giving a better chance of finding the best overall result). Intuitively, what is going on here? Well,
CurrentError measures the error at the current parameter combination. If that is fairly small, then it
seems like we might be close to the right parameter combination so it would be worthwhile to start
a simplex search from this point to refine it further. How small is “fairly small”? That is defined by
comparing the current error to the best error score so far.

The last three lines in Table 4 correspond to the three parameters varied in the search (one line per
parameter). The first number on each line is the minimum value for the parameter, and the second number
on each line is the maximum value for the parameter. The third number is the number of steps on the grid
going from the minimum value to the maximum value. For example, for a parameter with a minimum of 100,
a maximum of 500, and 10 steps, the search routine will try values of 100, 144.44, 188.88, 233.33, ... 455.56,
500. The order of the parameter lines must correspond to the order of the parameters within the distribution
being fit. For example, suppose you are specifying a grid search for the control condition in the uniform
model, and suppose the ControlFit distribution is Normal(0,1). Then the first parameter line corresponds
to the normal mean, and the second parameter corresponds to the normal standard deviation. Similarly if
you specify a search for the experimental condition in the uniform model. The trickiest case is the one where
you specify a search for the mixture model. In that case, the first parameter is the mixture probability.
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This is then followed by all of the parameters for the control distribution, and all of the parameters for the
effect-present experimental distribution come last.

Notice that the total number of grid points considered is the product of the number of grid points on
each parameter. So, for example, if you ask for 100 grid points on each of four parameters, MixTest will
attempt as many as 100* = 100, 000, 000 searches. That’s going to take some time!

5.4.2 Specifying the Random Search Mode

As is shown in Table 5, the specifications for a random search are quite similar to those of a grid search, so
I will just describe the differences.

Table 5: Example of specifications for random search mode.

RandomSearch 1

3 0.5 1.1 1000 * See notes below at Q@
100 500 * Parameter 1 should range from 100 to 500.
10 200 * Parameter 2 should range from 10 to 200.
1 400 * Parameter 3 should range from 1 to 400.

* Q0@ Notes for the above line:
* 3 indicates that there are three free parameters in this distribution.
* 0.5 indicates that a simplex search should sometimes be started from a grid point.
* The alternatives are:
* 0.0 Never start simplex search from a grid point.
* 1.0 Always start simplex search from a grid point.
* 1.1 indicates that the simplex search should start from a grid point if the error
* at that grid point is no more than CurrentBestError*1.1, where CurrentBestError
* is the best error found so far.
* 1000 indicates that 1000 starting points are to be randomly generated.

One difference is that there is a fourth number on the second line, here “1000”. This is the number of
random parameter combinations to generate and test.

The other difference is that you don’t need to specify the number of steps between the minimum and
maximum values for each parameter. Random parameter values are generated anywhere within the legal
range, using a uniform distribution without reference to any steps.

Note that the control of simplex searching from parameter combinations generated randomly is just like
the control from parameter combinations generated from a grid. Only the source of starting combination
(grid versus random) is different.

5.4.3 Special Output with Grid and Random Searches

When you request that a search be carried out using a grid or random search, the program produces a little
extra output information that may be informative, on a line that looks like this:

Results: 620 searches & 68 new bests found.

The number of searches (620, in this example) indicates the number of times that a simplex search was
carried out. If you ask for a simplex search from every combination of parameter values, then this is simply
the number of combinations generated (i.e., the number of grid combinations, or the number of random
points generated). If you ask for a simplex search only sometimes, however, this number may be helpful to
you in revealing the consequences of your particular value of ErrorFactor.

The “number of new bests found” (68, in this example) indicates the number of times that a simplex
search resulted in a better parameter combination than any previously-tried parameter combination. This
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number can give you some indication of how serious the local minimum problem is, with lower numbers
tending to indicate less serious problems.

For example, suppose that your search problem is so well-behaved that the simplex search process will
always find the best solution regardless of the starting parameter values. In that case, the very first simplex
search will find the best solution, regardless of where you start it from. That search will automatically
increment the “number of new bests found” to 1, because it is necessarily the best search so far. Critically,
no subsequent search will do better, no matter how many subsequent searches are carried out, so the “number
of new bests” will remain at 1. This suggests that there are no local minimum problems at all.

On the other hand, suppose that your search problem is so badly-behaved that the simplex search process
settles on a different final solution from every different set of starting parameter values. (This situation
corresponds to the worst case of lots of local minima.) In this case, the first simplex search process is very
unlikely to give the best result, and later searches will tend to do better. You might wonder exactly how
many times a new best is likely to be found (me too!), but for the present argument all that matters is that it
is likely to increase with the number of local minima in the search space. So, larger numbers of new bests will
tend to indicate more local minima, meaning that you need to be more cautious about concluding that you
have found the overall best set of parameter values. And that means you want to put more computational
effort into the problem, perhaps by increasing the number of grid points or the number of random searches
across several runs until it appears that you have really found the best overall parameter estimates.

5.4.4 Simplex Search Parameters

Finally, some further options provide control over the simplex parameter search algorithm used to find the
parameter estimates. These options apply in the same fashion whether the simplex procedure is used by the
plain simplex search mode or as an augmentation of the grid search mode or random search mode.

MinStepSize This option is used to control the minimum step size used by the simplex parameter search
algorithm. For example:

MinStepSize 0.00001

The default is 1.0e-8.

SimplexStartingStep This option is used to control the starting step size used by the simplex parameter
search algorithm. For example:

SimplexStartingStep 0.01

The default is 0.2.

SimplexMaxIteration This option is used to restrict the maximum number of points examined by the
simplex parameter search algorithm. For example:

SimplexMaxIteration 10000

would allow up to 10000 points in the parameter space to be examined in a given simplex search. The
default is 5000.

5.4.5 Specifying Constraints on the Parameters of the Mixture Model

In some cases, it may be desirable to constrain the parameters of the mixture model. For example, with some
datasets the search procedure may determine that the effect-present distribution component of the best-fitting
mixture model has zero variance, and this may be an unacceptable model on theoretical grounds. To address
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such problems, MixTest provides some rudimentary facilities for constraining the parameters of the mixture
model. You will only need to use these facilities if you are getting unreasonable estimated distributions.?

Specifically, you can use the ForceEP option to specify a constraint between the parameters of the control
distribution and the effect-present distribution within the mixture model. An example is

ForceEP Mean Larger 0.9

which indicates that MixTest should only consider mixture distributions in which the mean of the effect-
present distribution is larger than 0.9 times the mean of the control distribution. Another example is

ForceEP Variance Smaller 2.0

which indicates that MixTest should only consider mixture distributions in which the variance of the effect-
present distribution is smaller than 2.0 times the variance of the control distribution.

In general, the ForceEP option takes three parameters: (a) Mean or Variance, depending on which
parameter is to be constrained; (b) Larger or Smaller, depending on the desired value of the effect-present
distribution (c) a multiplier for the value of the control distribution, relative to which the parameter of the
effect-present distribution is judged. The selected parameter (i.e., mean or variance) of the effect-present
distribution is then forced to satisfy the desired relation (larger or smaller) relative to the product of the
multiplier and the control distribution’s parameter.

You can specify up to a maximum of four ForceEP options to constrain both the mean and variance of
the effect-present distribution to be both larger than a certain fraction of the control value and smaller than
some other fraction of it, as in this example:

ForceEP Mean Smaller 2.0 * Effect present mean < 2.0*control mean
ForceEP Mean Larger 0.5 * Effect present mean > 0.5*%control mean
ForceEP Variance Smaller 2.0 * Effect present variance < 2.0*control variance
ForceEP Variance Larger 0.1 * Effect present variance > 0.1*control variance

It is also worth noting that the mixture model may not necessarily be at least as good as the uniform
model when constraints are used. Although the uniform model is mathematically a special case of the
mixture model in general, it is not a special case when mixture parameters are constrained (because uniform
model parameters are unconstrained). Thus, if you use constraints, you may find some cases where the
mixture model does not fit as well as the uniform model.

6 Simulation Mode

MixTest can also be used to generate simulated data of the sort that it analyzes, and you might want to
do this to test the statistical properties of the likelihood ratio test under conditions similar to those you
are studying. In particular, researchers in the planning phase of an experiment may wish to run computer
simulations of a proposed design to estimate its statistical power, biases, etc.

For each iteration in simulation mode, the program (a) generates a set of data (experimental and control
conditions), and (b) performs the maximum likelihood test for that data set. Tabulating the results across
many iterations, you can study the statistical properties of the test (e.g., its power) under known conditions
of interest to you.

21t is not really necessary to understand why the estimated effect-present distribution sometimes has zero variance, but I
will attempt to explain it anyway: Within the mixture model, the likelihood of each data point in the experimental condition
is the weighted sum of its likelihood in the control distribution and its likelihood in the effect-present distribution, weighted
by the mixture probability. For any given experimental condition data point (say, z4), then, the likelihood under the mixture
model can be made arbitrarily large by picking an effect-present distribution whose mean is the same as that data point and
whose variance is arbitrarily small. Given that the likelihood of the whole data set is just the product of the likelihoods of
the individual data points, this means that it may also be possible to make the overall likelihood (i.e., of the whole data set)
arbitrarily large by increasing the likelihood of 4. Whether or not this is really possible depends on how fast the likelihoods of
the other data points decrease as the likelihood of x4 increases, which depends on the full data set, but it is sometimes possible,
so effect-present distributions are sometimes estimated to have zero variance.
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6.1 Additional Control Options for Simulation

The simulation parameters are set with a control *.RSP file with the same basic format as the RSP files used
to control data analysis. This section describes options that are used mainly or exclusively for simulation.
Note that:

e the data fitting options described previously are relevant for simulation too, because in simulation
mode the program also has to fit the uniform and mixture models to the generated data.

e the “DataFile” option is not used, because the data are generated by the simulation process.

e examples are given in the files SimExamplx*.

6.1.1 ControlGen, ExptlGen,TrueP

These three options allow you to specify the underlying distributions from which the data are randomly
generated.

ControlGen Normal (10,2) specifies that the data for the control condition should be random samples
from a normal distribution with a mean of 10 and a standard deviation of 2. You can specify here any
distribution and set of parameters known to CUPID.

ExptlGen Normal(12,3) specifies that the data for the effect-present observations in the experimental
condition should be generated from a normal distribution with 4 =12 and o = 3.

Finally, TrueP 0.88 specifies that the effect should be present with a true probability of 0.88. That
is, in the long run 88% of the observations in the experimental condition come from the effect-present
distribution specified by Expt1Gen, whereas the remaining 12% come from the control distribution specified
by ControlGen.

Beware: These options are involved in one of the rare cases in which the order of specifying options is
important. When ControlGen, ExptlGen, or TrueP is specified, MixTest sets the corresponding fitting
parameters (i.e., ControlFit, ExptlFit, and StartingP) to matching values. Therefore, if you want
mismatching values, you have to specify the fitting option after the generating option.

6.1.2 SampleSizes

This option is used to specify the number of observations to generate for each condition (i.e., experimental
and control). For equal sample sizes (say 150), you can simply specify the number with SampleSizes 150.
If you want different sample sizes in the two conditions, specify each one individually using SampleSizeC
150 and SampleSizeE 50, where C and E denote the control and experimental conditions, respectively.

6.1.3 Nlterations

This option is used to specify the number of iterations of the simulation, with a command such as NIterations
3000. Each iteration involves generating the control and experimental condition data sets, and then
performing the likelihood ratio test on them.

6.1.4 Controlling Simulation Output

By default, in simulation mode MixTest writes two output files (see section 6.2 for details). One file contains
the results of each iteration in a tab-delimited format, and the other file contains a plain-text summary of
the results computed after all iterations are completed. There are some options to modify this behavior.

The option NoTabulate indicates that MixTest should not compute the plain-text summary file, presumably
because you want to summarize the results on your own.

The option TabulateOnly tells MixTest not to compute any further simulations but only to tabulate the
results in the existing tab-delimited file.

The option SaveIlterationResults tells MixTest to write a summary of the results of each iteration to
the tab-delimited output file (this is also the default), and the option NoSaveIterationResults tell it not
to do so.
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Table 6: Example of specifications to restrict acceptable parameter values when each distribution is normal
with mean, sigma.

ParmBound 1 1 1 -100 100 * Control, uniform, mean must be between -100 and +100
ParmBound 1 1 2 0 500 * Control, uniform, sigma must be between O and +500
ParmBound 1 2 1 -100 100 * Control, mixture, mean must be between -100 and +100
ParmBound 1 2 2 0 500 * Control, mixture, sigma must be between O and +500
ParmBound 2 1 1 -100 100 * Exptl, uniform, mean must be between -100 and +100
ParmBound 2 1 2 0 500 * Exptl, uniform, sigma must be between O and +500
ParmBound 2 2 1 -100 100 * Exptl, mixture, mean must be between -100 and +100
ParmBound 2 2 2 0 500 * Exptl, mixture, sigma must be between O and +500

The option WriteSimulatedObservations tells MixTest to write the simulated data of each iteration
(i.e., observations in the control and experimental conditions) to the tab-delimited output file. By default,
these data are not written. This option has no effect if NoSaveIterationResults has been specified.

The option WriteMaxLikelihood tells MixTest to write the maximum likelihood values associated with
the estimated parameters to the tab-delimited output file. By default, these values are not written.

6.1.5 Excluding Iterations

Sometimes it is desirable to exclude unrealistic iterations from the overall tabulation, and three options
provide some flexibility in doing this.

One possibility is to exclude iterations where the difference between the experimental and control means
is too small to be of interest or too large to be realistic. The former could be done by specifying something like
MinEffect 10, and the latter could be done with MaxEffect 100. These options just specify the minimum
and maximum differences in the means (experimental minus control) needed for an iteration to be included
in the tabulation.

Another possibility is to exclude iterations where the estimated parameter values are out of reasonable
bounds. It can happen with the simplex parameter search method (or any other search method) that
occasionally an unusual dataset is obtained where the maximum likelihood parameter lie in some absurd
region of the parameter space, and it may be reasonable to exclude such datasets from consideration. This
can be done with a specification like

ParmBound 1 1 1 0 9999

“ParmBound” indicates that this specification defines an acceptable region for a parameter. Following that,
the five numbers have the following meanings:

1. This number is either “1” to indicate a parameter estimate for the control condition or “2” to indicate
a parameter estimate for the experimental condition.

2. This number is either “1” to indicate a parameter estimate for the uniform model or “2” to indicate a
parameter estimate for the mixture model.

3. This number is 1, 2, 3, ... to indicate which parameter (i.e., 1st, 2nd, 3rd, ...) of the selected
distribution (e.g., control, uniform) is being constrained.

4. This number is the smallest acceptable value for the parameter.

5. This number is the largest acceptable value for the parameter.

As an example, Table 6 shows a set of ParmBound specifications that might be used when the control and
experimental distributions are normal, to include only iterations where the estimated means are between
-100 and 4100 and the estimated sigmas are between 0 and 500.

In principle, MinEffect, MaxEffect, and ParmBound could also be used in data analysis mode, as well
as simulation mode. In that case, they would only influence the summed value produced in the aggregation
analysis.
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6.1.6 Aggregation Analyses

In addition to investigating the behavior of the maximum likelihood test one dataset at a time, it may also
be of interest to investigate the properties of the test when aggregated across a number of datasets. For
example, a psychologist might plan to compare two conditions separately for each of 20 experimental subjects
(with, for example, 100 data points per condition per subject), and wonder about the power of the planned
mixture test aggregating across 20 subjects.

The option NumNCasesToAggregate is used to tell MixTest how many likelihood ratio tests are to be
aggregated. It is a little tricky, because several different numbers can be examined in the same run. For
example,

NumNSubsToAggregate 3
10 20 40

tells MixTest to summarize the properties of the test aggregated over 10 individual tests, over 20 tests, and
over 40 tests. The initial “3” on the same line as NumNSubsToAggregate indicates that three numbers will
follow on the next line, and a separate aggregation analysis is computed for each of these numbers.

In the simulation, the aggregation analysis works by randomly selecting (without replacement) the
appropriate number of individual simulated tests, and treating those tests as one set to be aggregated.
The option NAggregationIterations controls how many such random sets are selected. This is really fast,
so use lots (the default is 10,000).

6.1.7 Controlling the Seed of the Random Number Generator

By default, the program starts its random number generator with a randomly generated seed each time it is
run. This section describes options provided for controlling the seed of the random number generator.

SEED SAVE START filename

saves the starting value random number seed into the specified file. This starting value can be retrieved for
another program run so that the subsequent run can be carried out with the identical sequence of random
numbers, if desired.

SEED SAVE END filename

also saves the random number seed into the specified file. With this option, however, saving is done at the
end of the program. If the seed is then retrieved in another program run, the subsequent run will be carried
out starting from the ending point of the previous sequence of random numbers, eliminating the possibility
of overlap in the random sequences.

SEED START filename

causes the program to start by reading the seed from the indicated file (which should previously have been
written with the SEED SAVE START or SEED SAVE END option already described).
Examples:

* With this command, successive runs will give identical random numbers:

* Seedfile should already have been written by using a SEED SAVE

* command in a previous run of MixTest.

SEED START seedfile

* With these 2 commands, successive runs will ‘‘continue on’’ the random number
* generator, guaranteeing no repetition of the random number generator

* until it reaches the end of its period.

SEED START seedfile

SEED SAVE END seedfile
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By default, the random number seed is also saved into the *.dat file for the first iteration of each
simulation run. This default can be turned off with the option NoSaveIterationSeeds.
Optionally, the additional command

SaveEverySeed

causes the program to save out the seed at the beginning of each iteration of the simulation. This can be used
to allow restarting of the program at a specific seed value in order to get right to a problematic sample—e.g.,
one that gives unsatisfactory parameter estimates.

6.2 Simulation Output

By default, simulations produce two output files. One, called *.dat, is a report of the results for each
iteration of the simulation. The other, called *.txt, is a summary of the results. Options described later
allow you to suppress production of either of these output files.

6.2.1 The Output DAT File

This file is a tab-delimited file with one line per iteration of the simulation. The values in the first seven
columns of the file are as follows:

1. The mean of the observations in the control condition.
2. The standard deviation of the observations in the control condition.

The mean of the observations in the experimental condition.

- oW

The standard deviation of the observations in the experimental condition.
5. The estimated mixture probability.

6. The observed value of the chi-square likelihood ratio test statistic.

7. The significance level of the chi-square likelihood ratio test statistic.

The values in the next set of columns—usually all of the remaining columns—are parameter estimates.
These are written out in the same order as their summaries produced in connection with data analysis (see
Table 2). That is, all of the parameter estimates for the control condition come first, and all of the parameter
estimates for the experimental condition come after. Within each of these two, the parameter estimates for
the uniform model come first, and the parameter estimates for the mixture model come second. And for
each distribution (e.g., control, uniform), the parameters are written in the order in which they appear in
the distribution name (e.g., u then o for a normal distribution).

Finally, if the option SaveIterationSeeds has been specified (see below), an extra set of columns is
written after the aforementioned columns for the first iteration of each run of the program. This set of lines
is a representation of the starting point of the random number generator, which can be useful for debugging.

6.2.2 The Output Summary TXT File

Most of the simulation summary output file is analogous to the data analysis summary output file described
in section 5.2.2, with cases of course corresponding to iterations of the simulation.

An additional component of the simulation summary output is a brief summary of the “Simulation
Conditions”, which is basically just a recap of the model used to generate the data.

If aggregations are requested, another additional component of the simulation summary output file looks
like Table 7. The first column shows the number of simulated cases over which the results are aggregated,
and the three probability columns to the right show the probability of a significant aggregated result, with
significance at the .05, .01, or .10 level, as indicated.
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Table 7: Aggregation output from a simulation summary file.

Aggregation Results:
NCasesToAggregate Pr(Sig .05) Pr(Sig .01) Pr(Sig .10)

10: 0.99280 0.98860 0.99390
20: 0.99993 0.99983 0.99997
40: 1.00000 1.00000 1.00000

7 Miscellaneous Advanced Options

This section describes some additional advanced options that may be included in *.RSP files, both for data
analysis mode and for simulation mode.

7.1 AppendName

This option is used to append a certain string to the current name of the output file. For example, if you
first specify the option OutFile Versionl, and later specify the option AppendName PartA, the output files
would be named “VersionlPartA.*”. You can use AppendName repeatedly to build up a file name from
multiple components. This is useful mainly when you want to combine the same components in different
ways within a set of simulation runs.

7.2 ParmCodes

In some situations, it may be desirable to fix one or more parameters of one or more of the distributions
being fit.

For example, you might know on a priori grounds that the mean of the underlying normal distribution was
0 and you might want to allow only the standard deviation to vary during maximum likelihood estimation.
MixTest provides this capability through a mechanism called “ParmCodes”, which allows you to specify
whether each parameter of a distribution is Fixed, Real, or an Integer.

To constrain one or more parameters of a fitted distribution, you enter an optional extra string of letters
(F, R, and I) after the name of the distribution (and separated from the name by at least one space). This
extra string is called the “ParmCodes” string. Note that:

e The ParmCodes string should have exactly one character for each parameter in the distribution.
e Each character in the ParmCodes string should be either F, R, or I, with no other characters allowed.

e The order of the characters in the string should match the left-to-right order of the parameters in the
distribution name.

e there is more complete information on ParmCodes setting in the documentation for CUPID.
For example,
ControlFit Normal(0,1) FR

indicates that the parameter search routine should fit the control condition data to a normal distribution,
starting at the values of 4 = 0 and o = 1, and that the mean is fized at 0. You can specify a ParmCodes string
after the distribution name with any or all of ControlFit, ExptlFitUni, AddExptlFitUni, and ExptlFitMix.

7.3 FieldWidth and DecPlace

These two separate options are used to control the format in which numerical values are written out. For
example:

FieldWidth 14 * Allow 14 spaces for each number.
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Decplace 8 * Give 8 decimal places for each number.

The defaults are 7 and 3, respectively.

7.4 Controlling the Accuracy of Numerical Integration and Inversion

One limitation of MixTest (as well as all of the other CUPID-related programs—see section 10) is that
all distributions are represented numerically, with finite limits. MixTest’s version of the standard normal
distribution, for example, goes from about -5.6 to 5.6, not from —oo to co. Similarly, there are numerical
bounds for all distributions. (You can find out what bounds MixTest is using by running CUPID and using
the functions minimum and maximum). In addition, MixTest sometimes has to change bounds of naturally
bounded distributions in order to avoid numerical errors. MixTest’s Gamma distributions, for example, start
at 0.00001 instead of 0.0, because the Gamma PDF cannot be evaluated at 0.0.

It is also important to realize that MixTest computes values by numerical integration and approximation
in many cases where explicit formulas do not exist or have not been programmed in. You have some control
over the accuracy of these numerical procedures via parameter settings described in this section. These
settings are relevant when the affected numerical procedures are being used, and you have no real way to
determine whether they are except by trial and error.

The speed and accuracy of the numerical integration procedure are controlled by a parameter called
IntegralPrecision, which may be set with a command like

IntegralPrecision 0.00001

Larger values give faster convergence but less accuracy. The default is 1.0e-7.

Similarly, when MixTest must find the inverse of a CDF for a distribution with no explicit InverseCDF
function built in, it uses a numerical search algorithm to find the desired X value corresponding to the
specified P. You may control the accuracy required for the search to stop with commands like:

InverseprecisionX 0.001 * Compute inverses to within an X value of .001 (lenient).
InverseprecisionP  0.001 * Compute inverses to within a P value of .001 (lenient).

The IntegralPrecisionX parameter controls the required accuracy of computing inverse CDF's by searching:
how close to the desired X value does the program have to get before it stops searching? There is an analogous
parameter called InversePrecisionP, which controls how close the program has to get to the desired P value.
The defaults are 1.0e-7 for InverseprecisionP and 1.0e-3 for InverseprecisionX; larger values will give faster
runs but less accuracy.

Important note: If you want to alter IntegralPrecision or InversePrecision, it is best to do so before you
define any probability distributions.

7.5 Checking MixTest

Although it is very general, MixTest is not always very accurate. Because many values are obtained through
numerical integration, the results can be substantially off in some pathological cases, due to the vagaries of
numerical approximations with finite-precision math. It is therefore important that you check the values that
you care most about. One good check is to make very minor changes in data values and make sure that the
program’s results change only slightly. An even better check, if possible, is to carry out some runs of MixTest
where you know exactly what the results should be. It is especially important to perform checks when using
any new desired distribution for the first time, since different distributions have different susceptibilities to
numerical problems, and I have by no means tested all of the distributions.

7.6 Comment Character

The comment character (asterisk, by default), can be changed to any ASCII character. For example:
COMMENT ! * Change takes place starting with next line.

would change the comment character to an exclamation point.
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Table 8: Exampl3.RSP file illustrating the use of labels and goto.

Analysis

DataFile Exampll
ControlFit Normal(0,1)
ExptlFitUni Normal(1,2)
ExptlFitMix Normal(2,1)
StartingP 0.5

Goto Common

Simulation

ControlGen Normal(0,1)
ExptlGen Normal(2,1)
TrueP 0.5

NIterations 50

Goto Common

* The following options are used for both analysis and simulation.
Common * This is the label

FieldWidth 8

DecPlaces 5

7.7 Flow of Control

MixTest normally read its control parameters line by line through the RSP file. Two commands will alter
this behavior, and these are useful in preparing a single control file to carry out several different analyses or
simulations in different runs.

END If this command is encountered, processing of the input control file stops.

GOTO label If this command is encountered, processing of the input control file skips to a line on which
the indicated label appears, and continues on from the next line following that.

As an example, one might prepare the following file TwoDists.RSP for use with both data analysis and
simulation: generate simulated data from both a normal and a uniform distribution:

7.8 Start Simplex with Estimates from Moments

Although the simplex procedure ordinarily attempts only to find maximume-likelihood parameter estimates,
as are needed for the likelihood ratio test, MixTest provides an option to start each parameter search by
looking first for parameter values that provide moments matching those of the to-be-fit distribution—i.e., to
start with estimation by the method of moments. For some distributions, moment-based estimation is much
faster than likelihood-based estimation, and starting with parameter estimates yielding the right moments
can sometimes quickly get the simplex search procedure into the vicinity of the best parameter estimates,
thus speeding the overall search.

To instruct MixTest to start with moment-based estimation for each estimation process, use a command
like this:

StartMomentEstimates 2

The number (2, here) indicates the number of moments for the estimation process to match. For example, 1
signals that the mean should be matched, 2 signals that the mean and variance should be matched, 3 signals
that the mean, variance, and third central moment should be matched, etc.

As far as I know, only trial and error will tell whether moment-based estimation will be helpful in any
particular situation.
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8 Available Probability Distributions

8.1 Continuous Distributions

Here are the primitive continuous distributions that have been at least partially implemented so far:

Beta(A, B) The Beta distribution is defined over the interval from zero to one, and its shape is determined
by its two parameters A and B. Its PDF is

f(z) = m:ﬁ“l(l —o)P7l o<z <1

The mean is A/(A + B), and the variance is AB(A+ B)"2(A+ B+ 1)L
Cauchy (L, S) This distribution is defined in terms of location and scale parameters L and S > 0, respectively.

Its PDF is 1

%) = S [1 + {””gL}ﬂ

ChiSquare(df) This is a generalization of the distribution of the sum of df independent squared standard
normals. Its parameter is df — a positive real number.

Chi(df) This is the distribution of the positive square root of a ChiSquare random variable. Its parameter
is df — a positive real number.

Cosine For 0 < x <TI/2, f(z) = cos(z) and F(z) = sin(x).

ExGaussian(u, 0, A) This is the distribution of the sum of independent Normal and Exponential random
variables. Its parameters are the p and o of the Normal, and the rate A of the Exponential.

ExGaussMn(u, o, 1) This is a reparameterization of the ExGaussian. Its parameters are the p and o of
the Normal, and the mean of the exponential, ..

ExGaussRat(u, o,r) This is just a reparameterization of the ExGaussian. Its parameters are the p and o
of the Normal, and the ratio, r, of the mean of the exponential to the sigma of the normal.

Exponential()\) This distribution is well-known. By default, the parameter is the rate A; the mean is 1/\.

ExpSum(r1l,72) This is the sum (convolution) of two exponentials with different rates. The two parameters
are the two rates, which must be different enough to avoid numerical errors. For the convolution of
exponentials with the same rates, of course, you should use the Gamma.

ExpSumT(rl,72,Cutoff) This is the sum (convolution) of two exponentials with different rates truncated
at a given cutoff value. The first two parameters are the two rates, which must be different enough
to avoid numerical errors; the third parameter is the upper truncation point. For the convolution of
exponentials with the same rates, of course, you should use the Gamma.

ExpoNo(u,0) I just invented this as an ad-hoc solution for a problem I was working on one time. I don’t
know whether it has ever been considered before or will ever be useful again, and I certainly don’t
know whether I gave it a reasonable name. In any case, it is a transformation of a normal random
variable X. Specifically, it is the distribution of

eX

Tt exX

where X has a normal distribution with mean p and standard deviation o. The two parameters of this
distribution are the p and o of the underlying normal X.
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ExtremeVal(a, 3) Extreme-value Type I distribution (a.k.a. Fisher-Tippett distribution, Gumbel distribution,
sometimes also called the double exponential distribution, to be confused with the Laplace distribution),
with parameters « and 3 > 0. The CDF is

F(x) =exp {—e_(w—a)/ﬁ}

ExWald(u, o,a,A) This is the distribution of the sum of two independent random variables: one from a
three-parameter Wald distribution with parameters (u, o, a); and one from an exponential distribution
with rate A\. Schwarz (2001, 2002) describes the ex-Wald distribution in detail.

ExWaldMn(u, 0, a, 1) This is a reparameterization of the ExWald. The first three parameters are the
same as in the plain ExWald, and the fourth parameter is the mean of the exponential, ., instead of
the rate.

ExWaldMSM (p, sd, i) This is a further reparameterization of the ExWald. The first two parameters are
the mean and standard deviation (not o!) of the Wald component, and the third parameter is the
mean of the exponential, y.. The Wald parameter a is set to 1.0.

F(dfNumer,dfDenom) This is Fisher’s distribution of the ratio of two independent normed Chi-square
distributions, as commonly used in linear models (e.g., analysis of variance). The two integer parameters
are the degrees of freedom of the numerator and denominator, respectively.

Gamma(N, \) This is the distribution of the sum of N exponentials, each with rate A. In this distribution,
N must be a positive integer. In the RNGamma distribution (see below), N is any positive real.

Geary(SampleSize) The Geary statistic arises in testing to see whether a set of observations come from
a normal distribution (D’Agostino, 1970).

GenErr(Mu,Scale,Shape) This is the general (a.k.a. “generalized”) error distribution (e.g., Evans,
Hasting, & Peacock, 1993, p. 57), also known as Subbotin’s distribution (e.g., Johnson, Kotz, &
Balakrishnan, 1995, 2nd Ed., Vol 2, p. 195). The correct PDF is

exp [—|:v — Mu[ShaPe /(2. Scale)

flz) =
Scale!/Shave . 9(1+1/Shape) . I'(1 + 1/Shape)

although both EHP and JKB give it with incorrect exponents of the Scale parameter in the denominator.
This version uses the shape parameter denoted A by Evans et al. Note that the Laplace, normal, and
uniform distributions are special cases of this distribution with this shape parameter equal to 1, 2, and
approaching co, respectively. In practice, lots of combinations of parameter values give overflow errors,
especially if the shape parameter is more than approximately 3.

HypTan(Scale) This is the Hyperbolic Tangent distribution, whose PDF and CDF are
4.0

[e8% 4 e—B2]?

e

ePr 4 e—h

where [ is the scale parameter. This distribution arises as a model of psychometric functions (e.g.,
Strasburger, 2001).

Inverse Gaussian See the Wald3 distribution.

Laplace(L,S) Also known as the double exponential. In terms of location and scale parameters, L and
S > 0, respectively, the PDF is

1
— = —l==LI/S
fl@) = 5ze
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Logistic(u,3) This distribution is defined in terms of a location parameter p and a scale parameter 3. The
cumulative form of the distribution is

1

—(z—p)
B

F(z) =
1+e

LogNormal(u, o) This is the distribution of X such that In(X) is normally distributed. The parameters
are the p and o of the normal.

Naka-Rushton(Scale) This is the distribution of X > 0 such that

2.z a?
0= T taapr
F(z) = 7(04.%)2

1+ (a-x)?

where « is the scale parameter. In the actual distribution, moments above the first do not exist; they
do exist in MixTest’s truncated version of the distribution, however.

NoncentralF (dfNumer,dfDenom,Noncentrality) This is the distribution of the ratio of independent
noncentral and central chi-squares, with the former in the numerator. It is most often used in the
computation of power of the F' test. The noncentrality parameter is defined in terms of the dfNumer
normal random variables whose sum of squares is yields the chi-square in the numerator. Specifically,

dfNumer
A= > A7
i=1
where A; is the expected value of the ith random variable contributing to this sum of squares.

Normal(u, o) T'll bet you know this one already. Parameters are y and o, not o2.

Paretol(K,A) This is a Pareto distribution of the first kind, as defined by Johnson, Kotz, and Balakrishnan
(1994, vol 1, p 574), with PDF and CDF

f(CL') = A. KA .x—(A-i-l)
K A
- (%)

where K >0, A > 0, and z > K. This is a model for income, where K is some minimum income and
F(z) is the probability that a randomly selected income is less than or equal to x.

=
&
I

Quantal(Threshold) This distribution is related to the Poisson. This is the distribution of X > 0 such
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This distribution arises as a model of psychometric functions in visual psychophysics (e.g., Gescheider,
1997, p. 85). The threshold parameter, T > 1, represents an observer’s fixed threshold for the number
of quanta of light that must be detected before saying “Yes, I saw the stimulus.” Quanta are assumed
to be emitted from the stimulus according to a Poisson distribution with parameter x. Then, F(z)
is the psychometric function for the probability of saying “Yes” as a function of the mean number of
quanta, x, emitted by the stimulus. Note that it makes no real sense to think of x as a random variable
in this example, but the probability distribution provides a useful model anyway.
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Quick(Scale,Shape) This is the distribution of X > 0 with PDF and CDF

x

2=(5)". (2)7. 3. 1m(2)
Fz) = 1-27()

flz

where « is the scale parameter and 3 is the shape parameter. This distribution arises as a model of
psychometric functions (e.g., Quick, 1974; Strasburger, 2001).

Rayleigh(c) If Y7 and Y3 are independent normal random variables with mean 0 and standard deviation
o, then X = /Y + Y has a Rayleigh distribution with scale parameter . The PDF is

— /@) T
f(I) =e ‘ 7 0,2
RNGamma(RN, \) See “Gamma”. In this version, the shape parameter RN is a real number rather than
an integer.

rPearson(SampleSize) This is the sampling distribution of Pearson’s  (correlation coefficient) under the
null hypothesis that the true correlation is zero (and assuming the usual bivariate normality). The
parameter is SampleSize, the number of pairs of observations across which the correlation is computed.

StudRng(df,NSamples) Distribution of Studentized range statistic with df degrees of freedom for error
and N Samples samples. Because both parameters are integers, automatic program-based estimation
of these parameters is rarely successful.

t(df) Student’s t-distribution, with degrees of freedom equal to df .

Triangular(B,T) In this distribution the density function has the shape of an equilateral triangle across
some range. The parameters are the bottom (B) and the top of the range (T'). The PDF is then:

) = (x—B)xH, ifB<z<ZL
T\ T—2)xH, ifEL<a<T

where H,, is the height of the PDF at its peak, adjusted to so that the total area of the triangle is 1.0.

TriangularG(B, P,T) In this (more general triangular) distribution, the density function has the shape of
a not-necessarily-equilateral triangle across some range. The parameters are the bottom of the range
(B), the point at which the triangle reaches its maximum (P), and the top of the range (7). The PDF
is then:
P—B
Loty §tp<a<T
where H,, is the height of the PDF at its peak, adjusted to so that the total area of the triangle is 1.0.

f@) {m ifB<z<P
xr) =

Uniform(B,T) This is the distribution in which all values are equally likely within some range. The
parameters are the bottom and the top of the range, B and T.

UniGap(7) This is an equal-probability mixture of two uniform distributions, one extending from —7 to
0 and the other extending from T to 2-T. Tt is “model 4” of Sternberg and Knoll (1973). The median
is somewhat arbitrarily defined as T'/2.

Wald3(1,0,a) This is the general, three-parameter version of the Wald distribution. Specifically, assume
a one-dimensional Wiener diffusion process starting at position 0 at time 0 and drifting with average
rate 4 and variance o2, and consider X to be the first passage time through position a. The PDF of

X is )
a (a — px)
0= [_27]

where all three parameters and x must be positive. Note: By default, the sigma parameter is fixed in
all parameter searches.
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Weibull(Scale,Power,Origin) As defined by Johnson & Kotz (1970, p. 250): “X has a Weibull distribution
if there are values of the parameters ¢(> 0), a(> 0), and v such that

r-[52]

(67

has the exponential distribution with rate = 1”. Here, the parameters ¢, «, and vy are referred to as
the “scale,” “power,” and “origin” parameters, respectively.

The CDF of the Weibull is therefore
F(z) =1—exp(—[(z —1)/c]?)

Computations are increasingly inaccurate for powers less than about 0.9, however.

8.2 Discrete Distributions

Here are the primitive discrete distributions that have been at least partially implemented so far:

Binomial(N,p) The distribution of the number of successes in N Bernoulli trials, with probability p of
success on each trial.

NegativeBinomial(NV,p) The distribution of the number of failures before reaching N successes in a
sequence of Bernoulli trials, with probability p of success on each trial.

NeymanA (p1, u2) This is the Neyman type A distribution, with mass on the nonnegative integers. It has
mean p - o and variance pg - g - (1 + p2). The PDF is defined by:

Pr(X =0) = exp[—p {1 —exp(—pu2)}]
k P
Pr(X =k) = %87“2 Zué% for k>0

Jj=1

Constant(C) This is a degenerate distribution that always takes on the same value. Its parameter is that
value. Perhaps surprisingly, it can be convenient to have this distribution available. Warning: For
technical reasons, the constant distribution does not work well in many of the derived distributions
discussed in the next section. Thus, it should be avoided whenever possible. For example, you should
always use:

LinearTrans (Gamma(2,.01),1,100)
rather than the equivalent
Convolution(Gamma(2,.01),Constant(100))

Geometric(P) The distribution of the trial number of the first success in a sequence of Bernoulli trials,
where P is the probability of success on each try.

Poisson(U) X has a Poisson distribution with parameter U if

—UUac
Pr(X =) = < L 2=0,1,2,....U>0

z!

The mean and variance both equal U.

UniformInt(Low,High) This is the distribution of equally likely integer values between the two integer
parameters, Low and High, inclusive.
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8.3 Transformation Distributions

MixTest can form a new random variable (Y') by taking a mathematical transformation of an existing one
(X). The following table lists the transformations recognized by MixTest, illustrating the syntax for each.
Also listed are the constraints on the values of X.

Transformation Example of Syntax Constraints on Values of X
ArcSin (Y = /(#(X/2))) ArcSinT(Uniform(.5,1))

Exponential (Y = eX) ExpTrans(Uniform(.5,1)) X not too far from 0.
Inverse (Y =1/X) InverseTrans(Uniform(.5,1)) X not too close to 0.
Linear (Y = Ax X + B) LinearTrans(Uniform(.5,1),2,10)

Natural Log (Y =1In[X]) LnTrans(Uniform(0.5,1)) X>0

Power (Y = X?) PowerTrans (Uniform(.5,1),2) X>0

where ¢(Z) is the probability that a standard normal random variable is less than Z.

8.4 Derived Distributions

MixTest also knows about various sorts of distributions that can be derived from one or more primitive or
“basis” distributions. In most cases, MixTest can compute moments, PDF’s, CDF’s, random numbers, etc,
for the derived distribution just as it can for the primitive distributions defined above.

Convolution(RV1,RV2) This is the distribution of a sum of independent random variables, RV1 and RV2,
where RV1 and RV2 are each legal distributions in their own right. For example,

Convolution(Normal(0,1) ,Uniform(0,1))
specifies the convolution of these normal and uniform distributions, and
Convolution(Normal(0,1),Uniform(0,1),Gamma(3,0.01))

specifies the convolution of the three indicated distributions.

In general, to define a convolution, the user types something of the form:
Convolution(BasisDist1(Parms),...,BasisDistK(Parms))

where Parms stands for the parameters associated with each of the distributions. There are K random
variables summed together, and the distributions of these summed variables are simply listed, separated
by commas.

MixTest is not very smart about convolutions. At this point, it only knows how to compute means,
variances, and random numbers in an intelligent way. Everything else is computed using (recursive)
numerical integration, which tends to be pretty slow. Also, MixTest does not “realize” that some
convolutions result in a new distribution about which it already knows (e.g., convolution of two normals
is normal). Thus, computations involving these convolutions proceed via numerical integration even
though direct computation would be possible.

The current version can handle convolutions where all distributions are discrete, all are continuous,
or some are is discrete and some continuous, but it cannot handle convolutions in which one or more
distributions are mixed (i.e., partly discrete and partly continuous).

I would be very happy for suggestions on how to augment MixTest’s handling of convolutions, especially
those accompanied by Pascal code.

ConvolutionIID(N,RV) This is just an easier way to specify a convolution when all N summed random
variables have the same distribution, RV.

ConvolutionIID(3,Uniform(0,1))
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is the same as
Convolution(Uniform(0,1),Uniform(0,1) ,Uniform(0,1))

Difference(RV1,RV2) This is the distribution of the difference of two independent random variables, RV1
minus RV2, where RV1 and RV2 are each legal distributions in their own right. For example,

Difference(Uniform(0,1) ,Uniform(0,1))

specifies a difference between two standard uniform distributions, which ranges from -1 to 1 (not
uniformly). MixTest handles difference distributions dumbly, like convolutions. The current version
can handle differences where both distributions are discrete, both are continuous, or one is discrete
and one continuous, but it cannot handle differences in which one or both distributions are mixed (i.e.,
partly discrete and partly continuous).

Mixture(pl,RV1,p2,RV2,...,pk,RVk) Mixtures are distributions formed by randomly selecting one of
a number of random variables. For example, Mixture (0.5,Normal (0,1),0.5,Uniform(0,1)) defines
a random variable that comes from a standard normal half the time and a standard uniform the other
half of the time. In general, the format of this distribution is:

Mixture(p;,BasisDist1(Parms),ps,BasisDist1(Parms),...,pr,BasisDistK(Parms))

and the p;’s must sum to one (it is also legal to omit py).

InfMix(RV1,MixParm,RV2(Parms)) The InfMix distribution is an infinite mixture, formed when a
parameter of one distribution is itself randomly distributed according to another distribution. For
example,

InfMix(Normal(0,5),1,Uniform(10,20))

defines a random variable that comes from a normal distribution with standard deviation 5. The first
parameter of that distribution (as signified by the “1” between the two distribution names) follows a
uniform distribution from 10 to 20. As another example, InfMix (Normal (0,5),2,Uniform(10,20))
defines a random variable that comes from a normal distribution with mean zero and standard deviation
varying uniformly from 10 to 20. In general, the format of this distribution is:

InfMix(ParentDist (Parms) ,MixParm,ParmDist (Parms))

where ParentDist is a distribution, MixParm is an integer indicating whether the first, second, ...,
parameter of the ParentDist varies randomly, and ParmDist is the distribution of that parameter.

InfMix may be used recursively. For example,
InfMix(InfMix(Normal(0,5),1,Uniform(0,2)),2,Uniform(4,6))

defines a normal distribution in which the mean is uniform(0,2) and the standard deviation is uniform(4,6).

Limitations: (1) At present, computations of the upper and lower bounds of InfMix distributions
assume that the largest and smallest values of the random variable are obtained when the underlying
ParmDist is at its two extremes. (2) Extreme caution is needed with these distributions because
problems often arise in numerical integration. I have found it helpful to increase the IntegralMinSteps
to 10, which was enough in most of the cases I've looked at, but you may need to adjust this up (for
precision) or down (for speed) in your cases.

Truncated(RV,Min,Max) A truncated distribution is a conditional distribution, conditioning on the
random variable RV falling within the interval from Min to Max. For example, Truncated (Normal (0,1) ,-1,1)
defines a random variable that is always between -1 and 1, and which within that interval has relative
probabilities defined by the PDF of the standard normal. In general, the format of this distribution is:
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Truncated(BasisDistribution(Parms) ,Min,Max)

It is sometimes convenient to specify the truncation boundaries in terms the probabilities you want to
cut off rather than the scores themselves. For example, you might want to look at the middle 90% of
a normal distribution but might not immediately know which scores cut off the top and bottom 5%.
For this reason, there is a variant of the command that takes probabilities instead of values for min
and max, like this:

TruncatedP (BasisDistribution(Parms),0.05,0.95)

With TruncatedP, MixTest will use its InverseCDF function to find the score values that correspond
to the cumulative probabilities that you specify, and then truncate at those score values.

Bounded(RV,Min,Max) I do not know if this is a standard type of distribution or not, and would
appreciate any comments on it from those in the know. A bounded distribution is similar to a truncated
distribution in that the random variable must fall within the range of Min to Max. The difference is
that all values less than Min are converted to Min, and all values less than Max are converted to Max.
Thus, there are discrete masses of probability at Min and Max, and the probability density function
between Min and Max is not conditionalized.

For example, consider the distribution Bounded (Normal (0,1),-1,1). This is really a mixture of these
three distributions:

Distribution Mixture Probability
Constant(-1) 0.1587
Truncated(Normal(0,1),-1,1) 0.6826
Constant(1) 0.1587

Note that 0.1587 is the probability that a normal(0,1) score is less than -1, and also the probability
that it is greater than 1. Bounding the distribution thus means taking all of the probability density
higher than the upper value and massing it at that value.

As with the truncated distribution, there is a form of the Bounded distribution based on probabilities,
as in:

BoundedP (Normal(0,1),0.1,0.9)

Order(k,RV1,RV2,RV2,...,RVn) The distribution of this order statistic is the distribution of the k’th
largest observation in a sample of n independent observations from the n indicated random variables.
For example,

Order (2,Normal(0,1) ,Uniform(0,1) ,Exponential (1))

defines a random variable that is the median (2nd largest) in a sample containing one score from the
standard normal, one from the uniform from 0-1, and one from the exponential with rate 1. In general,
the format of this distribution is:

Order(k,BasisDisti1(Parms),...,BasisDistN(Parms))

In the special case where the basis distributions are all identical, it is more convenient to use the
OrderlID distribution, described next.

OrderIID(k,n,RV) This is the special case of the order distribution in which the basis distributions are
identical as well as independent. In general, the format of this distribution is:
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OrderIID(k,N,BasisDist(Parms))

It is only necessary to specify the basis distribution once, since all are identical; instead, you have to
specify how many there are (N).

OrdExp(i,n,A) This is the special case of OrderIID in which the basis distribution is an exponential with
rate A, and you want the ¢’th order statistic in a sample of n (1 < i < n). For this case there are nice
fast closed forms for the mean and variance that were given to me by Rolf Ulrich.

OrdBinary(i,n1,RV1,n2,RV2) This is an order distribution with two types of underlying RVs. For
example,

OrdBinary(2,5,Normal(0,1),7,Uniform(0,1))

specifies the distribution of the second order statistic in samples of 12 made up of five standard normals
and seven standard uniforms.

MinBound(RV1,RV2) Counsider two arbitrary random variables X and Y, which may or may not be
independent, and let Z = min(X,Y). The CDFs of these three random variables must obey the
inequality

F.(t) < Fy(t)+ Fy(t) forall ¢
because
F.(t) = F,(t) + F,(t) - Pr(X < t&Y <1t)

Thus, for any two basis RVs X and Y, we can construct the random variable Z which is a lower bound
on the distribution of min(X,Y):

Fuot) + Fy(t) if Fu(t)+F,(t) <1
Fz(t):{ 1 if F,(t) + F,(t) > 1

MinBound implements this lower bound distribution for any two arbitrary random variables X and Y.

Because distributions are constructed recursively, it is legal within MixTest to construct weird distributions
by any combination of the above. For example, this would be legal:

Truncated (Mixture(.5,Normal(0,1),.5,0rderIID(4,5,Normal(0,1))),-1,1)

and it indicates a truncated mixture of a normal distribution and an order statistic.
It does not appear to me that there will ever be any ambiguity about what distribution is requested
within the syntax of MixTest, but let me know if you find such a case!

8.5 Approximation Distributions

MixTest can use bin-based distributions can also be used as “approximation distributions,” the purpose of
which is to speed up computations with complicated underlying “basis” distributions (e.g., convolutions).
These approximations are particularly useful when (a) you are interested in a basis distribution for which
it is time-consuming to compute values, and (b) you want to compute lots of different values from this
distribution without changing its parameters. In these cases, initializing the approximation distribution will
be a little slower than initializing the basis distribution, but then all further computations will be much
faster with the approximation.

Some terminology and notation is used in common across all approximation distributions. Each approximation
uses “bins”, which are small, nonoverlapping ranges of the dependent variable. For example, a beta
distribution is defined over the range from 0.0 to 1.0, and it might be approximated using 100 bins: 0.00-0.01,
0.01-0.02, ..., 0.99-1.00. The number of bins (100 in this example) will be referred to as “NBins,” and the
width of each bin will be referred to as “W.” Of course, the approximation are slower to compute but more
accurate with a larger number of bins (smaller W). I find that 200-300 bins is usually enough, and that with
approximately symmetric distributions it is generally better to use an odd number of bins.

In practice, it may be somewhat tricky to decide which is the best approximation to use with a given
basis distribution. I know of no sure strategy other than trial and error, but offer some comments on the
different approximations based on my limited experience with them.
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ApprPolygon(RV,NBins) This is a continuous approximation that can be used only for a continuous
basis distribution, RV. In brief, the PDF of the approximation distribution is a set of NBins straight
lines, matched to the height of the basis distribution’s PDF at the bin’s edges (further detail is given
below). For example,

ApprPolygon(Convolution(Normal(0,1) ,Beta(2,2)),201)

approximates the specified convolution with a set of 201 straight lines.

ApprFreqPolygon(RV,NBins) This is a continuous approximation that can be used only for a continuous
basis distribution, RV. In brief, the PDF of the approximation distribution is a set of NBins straight
lines, matched to the height of the basis distribution’s PDF at the bin’s centers. For example,

ApprFreqPolygon(Convolution(Normal(0,1) ,Beta(2,2)),201)

approximates the specified convolution with a set of 201 straight lines.

This is my preferred type of approximation. It is generally quite accurate, and it is often much faster
than the other approximations.

Details of construction.

Step 1: The first line starts at X;=minimum (of the basis distribution) with height PDF at that
point and goes to Xy=minimum+W /2 with height PDF=Basis.PDF(X3). The second line
continues from the end of the first line to the point with X3=minimum+1.5*W and height
PDF=Basis.PDF(X3). And so on, with the final line segment ending at the maximum of the
basis distribution and PDF at the maximum.

Step 2: The PDF just constructed is integrated, and the heights are scaled up or down appropriately
so that the total area is 1.00.

ApprHistogram(RV,NBins) This is a continuous approximation that can be used for either a discrete
or a continuous basis distribution, RV. In brief, the PDF is of the approximation distribution is a set
of NBins flat lines, as if the basis distribution were uniform within each bin (like in a histogram). For
example,

ApprHistogram(Convolution(Normal(0,1),Beta(2,2)),201)

approximates the specified convolution with a set of 201 bins with equal probability within each bin.

This approximation is more general than ApprPolygon, because it can be used with discrete distributions,
and it is less sensitive to abruptly-changing PDFs. But it is usually slower to construct initially, and it
is often much slower to do any computations with. The PDF has discontinuities at the bin boundaries
(unlike ApprPolygon), and these make numerical integrations converge more slowly.

Details of construction. The CDF of the basis distribution is computed at the top and bottom of each
bin, and from these the bin probability is computed. Then, the height of the uniform approximation
PDF within that bin is adjusted to give this bin probability.

ApprBinCen(RV,NBins) This is a discrete approximation, and it can be used to approximate either a
discrete or a continuous basis distribution, RV. In brief, the approximation assumes that all of the
probability mass is concentrated in a single point at the center point of each bin; moreover, any value
in the bin is treated as if it were that center point.

Details of construction. The CDF of the basis distribution is computed at the top and bottom of each
bin, and from these the bin probability is computed. All of this probability mass is assigned to the
value at the center of the bin. For purposes of PDF and CDF computations, all values within a bin
are treated as equivalent to the center.
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8.6 Distributions Arising in Connection with Signal Detection Theory

In addition to the above standard and derived distributions, I have added a few distributions that corresponded
to particular projects I happened to be working on. The distributions described in this section arise in
connection with signal detection theory experiments, and will be of interest to some psychophysicists and
perhaps engineers. If you don’t know what signal detection theory is, then it is unlikely that you will
care about these. Note: These are all discrete distributions, as each reflects the outcome of one or two
binomial-type conditions with a finite number of trials.

ZfromP (SampleSize,TrueP,Adjust) This is the discrete distribution of Z, which is derived from the
binomial distribution as follows:

1. For any sample from a Binomial(V, P), convert the number of successes k to the probability of
success, p = k/N. If p = 0, set p = Adjust/N; if p =1, set p = 1 — Adjust/N. “Adjust” is a
parameter between 0 and 1, specified by the user, to indicate how the extreme data values should
be treated.

2. Find Z such that p = Pr(z < Z), where z is a random variable having the standard normal
distribution.

APrime(NSignalTrials,PrHit,NNoiseTrials,PrFalseAlarm) This is the distribution of the sample A’
computed from an experiment with NSignalTrials signal trials each having the specified true probability
of a hit, and NNoiseTrials noise trials each having the specified true probability of a false alarm.
Specifically, A’ is the distribution-free estimate of the area under the ROC curve computed using
Equations 2 and 9 of Aaronson and Watts (1987).

APrimeSym(NTrials,PC) This is a shortcut for the previous distribution that can be used when there
are equal numbers of signal and noise trials and when the probability of a correct response (hit or
correct rejection) is the same for both signal and noise trials.

YNdPrime(NSignalTrials,PrHit,NNoiseTrials,PrFalseAlarm,Adjust) This is the distribution of the
sample d computed from an experiment with NSignalTrials signal trials each having the specified true
probability of a hit, NNoiseTrials noise trials each having the specified true probability of a false alarm,
and using the Adjust factor (between 0 and 1) to correct cases with 0% or 100% hits or false alarms
(e.g., replace 0 hits with Adjust hits, and replace NSignalTrials hits with [NSignalTrials - Adjust] hits).
Programming note: If PDFs are requested, this distribution is implemented using the List (smaller
samples) and AppApprCen (larger samples) random variables.

YNdPrimeSym (NTrials, TrueDP,Adjust) This is the special case of YNdPrime in which NSignalTrials
= NNoiseTrials and Pr(Hit) = 1 - Pr(FA). Note that the second parameter is the true d’ rather than
the hit probability.

9 Release History

Version 1.0 was released in August 2005.
Beta version 0.91 was released in March 2005 with added search modes.
Beta version 0.9 was released in January 2005.

10 Related Programs

MixTest is one of a family of programs built from the same core code defining an object-oriented implemention
of probability distributions. If this program is useful to you, you may also be interested in one or more of
the others. Here is a complete list:

Cupid Interactive computations (pdf, cdf, moments, etc) with probability distributions. Can be used (for
example) as an on-line table for distributions.
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RandGen Generates random values from a specified probability distribution.
DistFit Estimates best-fitting parameters of a given probability distribution for a given data set.

MixTest Computes a likelihood ratio test to see whether the difference between two conditions (say
“experimental” versus “control”) is a “uniform effect” or a “mixture effect”. With a uniform effect,
all of the scores in the experimental condition are increased relative to what they would have been in
the control condition. With a mixture effect, however, only some of the scores in the experimental
condition are affected; the rest of the scores in this condition are the same as they would have been
without the manipulation (i.e., the same as they would have been in the control condition).

Pmetric Estimates the parameters of a probability distribution from a data set relating the proportion of a
certain (binary) response to a physical quantity. This type of analysis is often called “probit” analysis,
and it is used (for example) in bioassay (analysis of dose/response curves) and psychophysics (analysis
of psychometric functions).

11 Author Contact Address

I welcome bug reports and suggestions for improvement (regarding the software and/or the documentation).
I would also welcome suggestions for further probability distributions to be added, although I can’t promise
any fast action on those.

I would also really like to receive feedback on who is using this software, and for what purposes. So,
please e-mail me at miller@psy.otago.ac.nz if you found this software useful. If you do, I will add your name
to my mailing list and let you know about any new versions, bugs, or new programs that might interest you.
If you use this software for any published research, I would greatly appreciate it if you would acknowledge
the software in your article (e.g., in a footnote) and email me a citation to the article or, better yet, send
me a reprint.

Here is how to contact me:

Prof Jeff Miller
Department of Psychology
University of Otago
Dunedin, New Zealand

email: miller@psy.otago.ac.nz
FAX: (64-3)-479-8335
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14 Software License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.
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14.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

14.2 Terms of License

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a "work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:
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a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.
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5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”ASIS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
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THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS



