patch-2.3.18 linux/drivers/net/starfire.c

Next file: linux/drivers/net/sun3lance.c
Previous file: linux/drivers/net/rtl8139.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.17/linux/drivers/net/starfire.c linux/drivers/net/starfire.c
@@ -0,0 +1,1431 @@
+/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
+/*
+	Written 1998-1999 by Donald Becker.
+
+	This software may be used and distributed according to the terms
+	of the GNU Public License (GPL), incorporated herein by reference.
+
+	The author may be reached as becker@usra.edu, or
+	Donald Becker
+	312 Severn Ave. #W302
+	Annapolis MD 21403
+
+	Support and updates available at
+	http://cesdis.gsfc.nasa.gov/linux/drivers/starfire.html
+*/
+
+static const char *versionA =
+"starfire.c:v0.12 5/28/99  Written by Donald Becker\n",
+*versionB =" Undates and info at http://www.beowulf.org/linux/drivers.html\n";
+
+/* A few user-configurable values.   These may be modified when a driver
+   module is loaded.*/
+
+/* Used for tuning interrupt latency vs. overhead. */
+static int interrupt_mitigation = 0x0;
+
+static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
+static int max_interrupt_work = 20;
+static int min_pci_latency = 64;
+static int mtu = 0;
+/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
+   The Starfire has a 512 element hash table based on the Ethernet CRC.  */
+static int multicast_filter_limit = 32;
+
+/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
+   Setting to > 1518 effectively disables this feature. */
+static int rx_copybreak = 0;
+
+/* Used to pass the media type, etc.
+   Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
+   The media type is usually passed in 'options[]'.
+*/
+#define MAX_UNITS 8		/* More are supported, limit only on options */
+static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
+static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
+
+/* Operational parameters that are set at compile time. */
+
+/* The "native" ring sizes are either 256 or 2048.
+   However in some modes a descriptor may be marked to wrap the ring earlier.
+   The driver allocates a single page for each descriptor ring, constraining
+   the maximum size in an architecture-dependent way.
+*/
+#define RX_RING_SIZE	256
+#define TX_RING_SIZE	32
+/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
+#define DONE_Q_SIZE	1024
+
+/* Operational parameters that usually are not changed. */
+/* Time in jiffies before concluding the transmitter is hung. */
+#define TX_TIMEOUT  (2*HZ)
+
+#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
+
+#if !defined(__OPTIMIZE__)  ||  !defined(__KERNEL__)
+#warning  You must compile this file with the correct options!
+#warning  See the last lines of the source file.
+#error You must compile this driver with "-O".
+#endif
+
+/* Include files, designed to support most kernel versions 2.0.0 and later. */
+#include <linux/config.h>
+#ifdef MODULE
+#ifdef MODVERSIONS
+#include <linux/modversions.h>
+#endif
+#include <linux/module.h>
+#else
+#define MOD_INC_USE_COUNT
+#define MOD_DEC_USE_COUNT
+#endif
+
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <asm/processor.h>		/* Processor type for cache alignment. */
+#include <asm/bitops.h>
+#include <asm/io.h>
+
+/* Kernel compatibility defines, some common to David Hind's PCMCIA package.
+   This is only in the support-all-kernels source code. */
+
+#define RUN_AT(x) (jiffies + (x))
+
+#ifdef MODULE
+MODULE_AUTHOR("Donald Becker <becker@cesdis.gsfc.nasa.gov>");
+MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
+MODULE_PARM(max_interrupt_work, "i");
+MODULE_PARM(min_pci_latency, "i");
+MODULE_PARM(mtu, "i");
+MODULE_PARM(debug, "i");
+MODULE_PARM(rx_copybreak, "i");
+MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
+MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
+#endif
+
+/*
+				Theory of Operation
+
+I. Board Compatibility
+
+State the chips and boards this driver is known to work with.
+Note any similar chips or boards that will not work.
+
+This driver skeleton demonstrates the driver for an idealized
+descriptor-based bus-master PCI chip.
+
+II. Board-specific settings
+
+No jumpers exist on most PCI boards, so this section is usually empty.
+
+III. Driver operation
+
+IIIa. Ring buffers
+
+The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
+ring sizes are set fixed by the hardware, but may optionally be wrapped
+earlier by the END bit in the descriptor.
+This driver uses that hardware queue size for the Rx ring, where a large
+number of entries has no ill effect beyond increases the potential backlog.
+The Tx ring is wrapped with the END bit, since a large hardware Tx queue
+disables the queue layer priority ordering and we have no mechanism to
+utilize the hardware two-level priority queue.  When modifying the
+RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
+levels.
+
+IIIb/c. Transmit/Receive Structure
+
+See the Adaptec manual for the many possible structures, and options for
+each structure.  There are far too many to document here.
+
+For transmit this driver uses type 1 transmit descriptors, and relies on
+automatic minimum-length padding.  It does not use the completion queue
+consumer index, but instead checks for non-zero status entries.
+
+For receive this driver uses type 0 receive descriptors.  The driver
+allocates full frame size skbuffs for the Rx ring buffers, so all frames
+should fit in a single descriptor.  The driver does not use the completion
+queue consumer index, but instead checks for non-zero status entries.
+
+When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
+is allocated and the frame is copied to the new skbuff.  When the incoming
+frame is larger, the skbuff is passed directly up the protocol stack.
+Buffers consumed this way are replaced by newly allocated skbuffs in a later
+phase of receive.
+
+A notable aspect of operation is that unaligned buffers are not permitted by
+the Starfire hardware.  The IP header at offset 14 in an ethernet frame thus
+isn't longword aligned, which may cause problems on some machine
+e.g. Alphas.  Copied frames are put into the skbuff at an offset of "+2",
+16-byte aligning the IP header.
+
+IIId. Synchronization
+
+The driver runs as two independent, single-threaded flows of control.  One
+is the send-packet routine, which enforces single-threaded use by the
+dev->tbusy flag.  The other thread is the interrupt handler, which is single
+threaded by the hardware and interrupt handling software.
+
+The send packet thread has partial control over the Tx ring and 'dev->tbusy'
+flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
+queue slot is empty, it clears the tbusy flag when finished otherwise it sets
+the 'lp->tx_full' flag.
+
+The interrupt handler has exclusive control over the Rx ring and records stats
+from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
+empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
+clears both the tx_full and tbusy flags.
+
+IV. Notes
+
+IVb. References
+
+The Adaptec Starfire manuals.
+http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
+http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
+
+
+IVc. Errata
+
+*/
+
+
+
+/* This table drives the PCI probe routines.  It's mostly boilerplate in all
+   PCI drivers, and will likely be provided by some future kernel.
+*/
+enum pci_flags_bit {
+	PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
+	PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
+};
+struct pci_id_info {
+	const char *name;
+	u16	vendor_id, device_id, device_id_mask, flags;
+	int io_size;
+	struct net_device *(*probe1)(int pci_bus, int pci_devfn, struct net_device *dev,
+								 long ioaddr, int irq, int chip_idx, int fnd_cnt);
+};
+
+static struct net_device *starfire_probe1(int pci_bus, int pci_devfn,
+									  struct net_device *dev, long ioaddr,
+									  int irq, int chp_idx, int fnd_cnt);
+
+#if 0
+#define ADDR_64BITS 1			/* This chip uses 64 bit addresses. */
+#endif
+#define MEM_ADDR_SZ 0x80000		/* And maps in 0.5MB(!).  */
+
+static struct pci_id_info pci_tbl[] = {
+	{ "Adaptec Starfire 6915",
+	  0x9004, 0x6915, 0xffff, PCI_USES_MASTER, 128, starfire_probe1},
+	{0,},						/* 0 terminated list. */
+};
+
+
+/* A chip capabilities table, matching the entries in pci_tbl[] above. */
+enum chip_capability_flags {CanHaveMII=1, };
+struct chip_info {
+	char *chip_name;
+	int io_size;
+	int flags;
+	void (*media_timer)(unsigned long data);
+} static skel_netdrv_tbl[] = {
+	{"Adaptec Starfire 6915", 128, CanHaveMII, 0, },
+};
+
+
+/* Offsets to the device registers.
+   Unlike software-only systems, device drivers interact with complex hardware.
+   It's not useful to define symbolic names for every register bit in the
+   device.  The name can only partially document the semantics and make
+   the driver longer and more difficult to read.
+   In general, only the important configuration values or bits changed
+   multiple times should be defined symbolically.
+*/
+enum register_offsets {
+	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
+	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
+	MIICtrl=0x52000, StationAddr=0x50120, EEPROMCtrl=0x51000,
+	TxDescCtrl=0x50090,
+	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
+	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
+	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
+	TxThreshold=0x500B0,
+	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
+	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
+	CompletionQConsumerIdx=0x500C4,
+	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
+	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
+	TxMode=0x55000,
+};
+
+/* Bits in the interrupt status/mask registers. */
+enum intr_status_bits {
+	IntrNormalSummary=0x8000,	IntrAbnormalSummary=0x02000000,
+	IntrRxDone=0x0300, IntrRxEmpty=0x10040, IntrRxPCIErr=0x80000,
+	IntrTxDone=0x4000, IntrTxEmpty=0x1000, IntrTxPCIErr=0x80000,
+	StatsMax=0x08000000, LinkChange=0xf0000000,
+	IntrTxDataLow=0x00040000,
+};
+
+/* Bits in the RxFilterMode register. */
+enum rx_mode_bits {
+	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
+	AcceptMulticast=0x10, AcceptMyPhys=0xE040,
+};
+
+/* The Rx and Tx buffer descriptors. */
+struct starfire_rx_desc {
+	u32 rxaddr;					/* Optionally 64 bits. */
+};
+enum rx_desc_bits {
+	RxDescValid=1, RxDescEndRing=2,
+};
+
+/* Completion queue entry.
+   You must update the page allocation, init_ring and the shift count in rx()
+   if using a larger format. */
+struct rx_done_desc {
+	u32 status;					/* Low 16 bits is length. */
+#ifdef full_rx_status
+	u32 status2;
+	u16 vlanid;
+	u16 csum; 			/* partial checksum */
+	u32 timestamp;
+#endif
+};
+enum rx_done_bits {
+	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
+};
+
+/* Type 1 Tx descriptor. */
+struct starfire_tx_desc {
+	u32 status;					/* Upper bits are status, lower 16 length. */
+	u32 addr;
+};
+enum tx_desc_bits {
+	TxDescID=0xB1010000,		/* Also marks single fragment, add CRC.  */
+	TxDescIntr=0x08000000, TxRingWrap=0x04000000,
+};
+struct tx_done_report {
+	u32 status;					/* timestamp, index. */
+#if 0
+	u32 intrstatus;				/* interrupt status */
+#endif
+};
+
+struct netdev_private {
+	/* Descriptor rings first for alignment. */
+	struct starfire_rx_desc *rx_ring;
+	struct starfire_tx_desc *tx_ring;
+	struct net_device *next_module;			/* Link for devices of this type. */
+	const char *product_name;
+	/* The addresses of rx/tx-in-place skbuffs. */
+	struct sk_buff* rx_skbuff[RX_RING_SIZE];
+	struct sk_buff* tx_skbuff[TX_RING_SIZE];
+	/* Pointers to completion queues (full pages).  I should cache line pad..*/
+	u8 pad0[100];
+	struct rx_done_desc *rx_done_q;
+	unsigned int rx_done;
+	struct tx_done_report *tx_done_q;
+	unsigned int tx_done;
+	struct net_device_stats stats;
+	struct timer_list timer;	/* Media monitoring timer. */
+	/* Frequently used values: keep some adjacent for cache effect. */
+	int chip_id;
+	unsigned char pci_bus, pci_devfn;
+	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
+	unsigned int cur_tx, dirty_tx;
+	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
+	unsigned int tx_full:1;				/* The Tx queue is full. */
+	/* These values are keep track of the transceiver/media in use. */
+	unsigned int duplex_lock:1;
+	unsigned int full_duplex:1,			/* Full-duplex operation requested. */
+		rx_flowctrl:1,
+		tx_flowctrl:1;					/* Use 802.3x flow control. */
+	unsigned int medialock:1;			/* Do not sense media. */
+	unsigned int default_port:4;		/* Last dev->if_port value. */
+	u32 tx_mode;
+	u8 tx_threshold;
+	/* MII transceiver section. */
+	int mii_cnt;						/* MII device addresses. */
+	u16 advertising;					/* NWay media advertisement */
+	unsigned char phys[2];				/* MII device addresses. */
+	u32 pad[4];							/* Used for 32-byte alignment */
+};
+
+static int  mdio_read(struct net_device *dev, int phy_id, int location);
+static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
+static int  netdev_open(struct net_device *dev);
+static void check_duplex(struct net_device *dev, int startup);
+static void netdev_timer(unsigned long data);
+static void tx_timeout(struct net_device *dev);
+static void init_ring(struct net_device *dev);
+static int  start_tx(struct sk_buff *skb, struct net_device *dev);
+static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
+static void netdev_error(struct net_device *dev, int intr_status);
+static int  netdev_rx(struct net_device *dev);
+static void netdev_error(struct net_device *dev, int intr_status);
+static void set_rx_mode(struct net_device *dev);
+static struct net_device_stats *get_stats(struct net_device *dev);
+static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
+static int  netdev_close(struct net_device *dev);
+
+
+
+/* A list of our installed devices, for removing the driver module. */
+static struct net_device *root_net_dev = NULL;
+
+/* Ideally we would detect all network cards in slot order.  That would
+   be best done a central PCI probe dispatch, which wouldn't work
+   well when dynamically adding drivers.  So instead we detect just the
+   cards we know about in slot order. */
+
+static int pci_etherdev_probe(struct net_device *dev, struct pci_id_info pci_tbl[])
+{
+	int cards_found = 0;
+	int pci_index = 0;
+	unsigned char pci_bus, pci_device_fn;
+
+	if ( ! pcibios_present())
+		return -ENODEV;
+
+	for (;pci_index < 0xff; pci_index++) {
+		u16 vendor, device, pci_command, new_command;
+		int chip_idx, irq;
+		long pciaddr;
+		long ioaddr;
+
+		if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index,
+								&pci_bus, &pci_device_fn)
+			!= PCIBIOS_SUCCESSFUL)
+			break;
+		pcibios_read_config_word(pci_bus, pci_device_fn,
+								 PCI_VENDOR_ID, &vendor);
+		pcibios_read_config_word(pci_bus, pci_device_fn,
+								 PCI_DEVICE_ID, &device);
+
+		for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++)
+			if (vendor == pci_tbl[chip_idx].vendor_id
+				&& (device & pci_tbl[chip_idx].device_id_mask) ==
+				pci_tbl[chip_idx].device_id)
+				break;
+		if (pci_tbl[chip_idx].vendor_id == 0) 		/* Compiled out! */
+			continue;
+
+		{
+			struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn);
+
+			pciaddr = pdev->resource[0].start;
+#if defined(ADDR_64BITS) && defined(__alpha__)
+			pciaddr |= ((long)pdev->base_address[1]) << 32;
+#endif
+			irq = pdev->irq;
+		}
+
+		if (debug > 2)
+			printk(KERN_INFO "Found %s at PCI address %#lx, IRQ %d.\n",
+				   pci_tbl[chip_idx].name, pciaddr, irq);
+
+		if ((pci_tbl[chip_idx].flags & PCI_USES_IO)) {
+			if (check_region(pciaddr, pci_tbl[chip_idx].io_size))
+				continue;
+			ioaddr = pciaddr;
+		} else if ((ioaddr = (long)ioremap(pciaddr&~0xf, MEM_ADDR_SZ)) == 0) {
+			printk(KERN_INFO "Failed to map PCI address %#lx.\n",
+				   pciaddr);
+			continue;
+		}
+
+		pcibios_read_config_word(pci_bus, pci_device_fn,
+								 PCI_COMMAND, &pci_command);
+		new_command = pci_command | (pci_tbl[chip_idx].flags & 7);
+		if (pci_command != new_command) {
+			printk(KERN_INFO "  The PCI BIOS has not enabled the"
+				   " device at %d/%d!  Updating PCI command %4.4x->%4.4x.\n",
+				   pci_bus, pci_device_fn, pci_command, new_command);
+			pcibios_write_config_word(pci_bus, pci_device_fn,
+									  PCI_COMMAND, new_command);
+		}
+
+		dev = pci_tbl[chip_idx].probe1(pci_bus, pci_device_fn, dev, ioaddr,
+									   irq, chip_idx, cards_found);
+
+		if (dev  && (pci_tbl[chip_idx].flags & PCI_COMMAND_MASTER)) {
+			u8 pci_latency;
+			pcibios_read_config_byte(pci_bus, pci_device_fn,
+									 PCI_LATENCY_TIMER, &pci_latency);
+			if (pci_latency < min_pci_latency) {
+				printk(KERN_INFO "  PCI latency timer (CFLT) is "
+					   "unreasonably low at %d.  Setting to %d clocks.\n",
+					   pci_latency, min_pci_latency);
+				pcibios_write_config_byte(pci_bus, pci_device_fn,
+										  PCI_LATENCY_TIMER, min_pci_latency);
+			}
+		}
+		dev = 0;
+		cards_found++;
+	}
+
+	return cards_found ? 0 : -ENODEV;
+}
+
+int starfire_probe(struct net_device *dev)
+{
+	if (pci_etherdev_probe(dev, pci_tbl) < 0)
+		return -ENODEV;
+	printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB);
+	return 0;
+}
+
+
+static struct net_device *
+starfire_probe1(int pci_bus, int pci_devfn, struct net_device *dev,
+				long ioaddr, int irq, int chip_id, int card_idx)
+{
+	struct netdev_private *np;
+	int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0;
+
+	dev = init_etherdev(dev, sizeof(struct netdev_private));
+
+	printk(KERN_INFO "%s: %s at 0x%lx, ",
+		   dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr);
+
+	/* Serial EEPROM reads are hidden by the hardware. */
+	for (i = 0; i < 6; i++)
+		dev->dev_addr[i] = readb(ioaddr + EEPROMCtrl + 20-i);
+	for (i = 0; i < 5; i++)
+			printk("%2.2x:", dev->dev_addr[i]);
+	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
+
+#if ! defined(final_version) /* Dump the EEPROM contents during development. */
+	if (debug > 4)
+		for (i = 0; i < 0x20; i++)
+			printk("%2.2x%s", readb(ioaddr + EEPROMCtrl + i),
+				   i % 16 != 15 ? " " : "\n");
+#endif
+
+	/* Reset the chip to erase previous misconfiguration. */
+	writel(1, ioaddr + PCIDeviceConfig);
+
+	dev->base_addr = ioaddr;
+	dev->irq = irq;
+
+	/* Make certain the descriptor lists are aligned. */
+	np = (void *)(((long)kmalloc(sizeof(*np), GFP_KERNEL) + 15) & ~15);
+	memset(np, 0, sizeof(*np));
+	dev->priv = np;
+
+	np->next_module = root_net_dev;
+	root_net_dev = dev;
+
+	np->pci_bus = pci_bus;
+	np->pci_devfn = pci_devfn;
+	np->chip_id = chip_id;
+
+	if (dev->mem_start)
+		option = dev->mem_start;
+
+	/* The lower four bits are the media type. */
+	if (option > 0) {
+		if (option & 0x200)
+			np->full_duplex = 1;
+		np->default_port = option & 15;
+		if (np->default_port)
+			np->medialock = 1;
+	}
+	if (card_idx < MAX_UNITS  &&  full_duplex[card_idx] > 0)
+		np->full_duplex = 1;
+
+	if (np->full_duplex)
+		np->duplex_lock = 1;
+
+	/* The chip-specific entries in the device structure. */
+	dev->open = &netdev_open;
+	dev->hard_start_xmit = &start_tx;
+	dev->stop = &netdev_close;
+	dev->get_stats = &get_stats;
+	dev->set_multicast_list = &set_rx_mode;
+	dev->do_ioctl = &mii_ioctl;
+
+	if (mtu)
+		dev->mtu = mtu;
+
+	if (skel_netdrv_tbl[np->chip_id].flags & CanHaveMII) {
+		int phy, phy_idx = 0;
+		for (phy = 0; phy < 32 && phy_idx < 4; phy++) {
+			int mii_status = mdio_read(dev, phy, 1);
+			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
+				np->phys[phy_idx++] = phy;
+				np->advertising = mdio_read(dev, phy, 4);
+				printk(KERN_INFO "%s: MII PHY found at address %d, status "
+					   "0x%4.4x advertising %4.4x.\n",
+					   dev->name, phy, mii_status, np->advertising);
+			}
+		}
+		np->mii_cnt = phy_idx;
+	}
+
+	return dev;
+}
+
+
+/* Read the MII Management Data I/O (MDIO) interfaces. */
+
+static int mdio_read(struct net_device *dev, int phy_id, int location)
+{
+	long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2);
+	int result, boguscnt=1000;
+	/* ??? Must add a busy-wait here. */
+	do
+		result = readl(mdio_addr);
+	while ((result & 0xC0000000) != 0x80000000 && --boguscnt >= 0);
+	return result & 0xffff;
+}
+
+static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
+{
+	long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2);
+	writel(value, mdio_addr);
+	/* The busy-wait will occur before a read. */
+	return;
+}
+
+
+static int netdev_open(struct net_device *dev)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	long ioaddr = dev->base_addr;
+	int i;
+
+	/* Do we need to reset the chip??? */
+
+	if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev))
+		return -EAGAIN;
+
+	/* Disable the Rx and Tx, and reset the chip. */
+	writel(0, ioaddr + GenCtrl);
+	writel(1, ioaddr + PCIDeviceConfig);
+	if (debug > 1)
+		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
+			   dev->name, dev->irq);
+	/* Allocate the various queues, failing gracefully. */
+	if (np->tx_done_q == 0)
+		np->tx_done_q = (struct tx_done_report *)get_free_page(GFP_KERNEL);
+	if (np->rx_done_q == 0)
+		np->rx_done_q = (struct rx_done_desc *)get_free_page(GFP_KERNEL);
+	if (np->tx_ring == 0)
+		np->tx_ring = (struct starfire_tx_desc *)get_free_page(GFP_KERNEL);
+	if (np->rx_ring == 0)
+		np->rx_ring = (struct starfire_rx_desc *)get_free_page(GFP_KERNEL);
+	if (np->tx_done_q == 0  ||  np->rx_done_q == 0
+		|| np->rx_ring == 0 ||  np->tx_ring == 0)
+		return -ENOMEM;
+
+	MOD_INC_USE_COUNT;
+
+	init_ring(dev);
+	/* Set the size of the Rx buffers. */
+	writel((np->rx_buf_sz<<16) | 0xA000, ioaddr + RxDescQCtrl);
+
+	/* Set Tx descriptor to type 1 and padding to 0 bytes. */
+	writel(0x02000401, ioaddr + TxDescCtrl);
+
+#if defined(ADDR_64BITS) && defined(__alpha__)
+	writel(virt_to_bus(np->rx_ring) >> 32, ioaddr + RxDescQHiAddr);
+	writel(virt_to_bus(np->tx_ring) >> 32, ioaddr + TxRingHiAddr);
+#else
+	writel(0, ioaddr + RxDescQHiAddr);
+	writel(0, ioaddr + TxRingHiAddr);
+	writel(0, ioaddr + CompletionHiAddr);
+#endif
+	writel(virt_to_bus(np->rx_ring), ioaddr + RxDescQAddr);
+	writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr);
+
+	writel(virt_to_bus(np->tx_done_q), ioaddr + TxCompletionAddr);
+	writel(virt_to_bus(np->rx_done_q), ioaddr + RxCompletionAddr);
+
+	if (debug > 1)
+		printk(KERN_DEBUG "%s:  Filling in the station address.\n", dev->name);
+
+	/* Fill both the unused Tx SA register and the Rx perfect filter. */
+	for (i = 0; i < 6; i++)
+		writeb(dev->dev_addr[i], ioaddr + StationAddr + 6-i);
+	for (i = 0; i < 16; i++) {
+		u16 *eaddrs = (u16 *)dev->dev_addr;
+		long setup_frm = ioaddr + 0x56000 + i*16;
+		writew(eaddrs[0], setup_frm); setup_frm += 4;
+		writew(eaddrs[1], setup_frm); setup_frm += 4;
+		writew(eaddrs[2], setup_frm); setup_frm += 4;
+	}
+
+	/* Initialize other registers. */
+	/* Configure the PCI bus bursts and FIFO thresholds. */
+	np->tx_threshold = 4;
+	writel(np->tx_threshold, ioaddr + TxThreshold);
+	writel(interrupt_mitigation, ioaddr + IntrTimerCtrl);
+
+	if (dev->if_port == 0)
+		dev->if_port = np->default_port;
+
+	dev->tbusy = 0;
+	dev->interrupt = 0;
+
+	if (debug > 1)
+		printk(KERN_DEBUG "%s:  Setting the Rx and Tx modes.\n", dev->name);
+	set_rx_mode(dev);
+
+	check_duplex(dev, 1);
+
+	dev->start = 1;
+
+	/* Set the interrupt mask and enable PCI interrupts. */
+	writel(IntrRxDone | IntrRxEmpty | IntrRxPCIErr |
+		   IntrTxDone | IntrTxEmpty | IntrTxPCIErr |
+		   StatsMax | LinkChange | IntrNormalSummary | IntrAbnormalSummary
+		   | 0x0010 , ioaddr + IntrEnable);
+	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
+		   ioaddr + PCIDeviceConfig);
+
+	/* Enable the Rx and Tx units. */
+	writel(0x000F, ioaddr + GenCtrl);
+
+	if (debug > 2)
+		printk(KERN_DEBUG "%s: Done netdev_open().\n",
+			   dev->name);
+
+	/* Set the timer to check for link beat. */
+	init_timer(&np->timer);
+	np->timer.expires = RUN_AT(3*HZ);
+	np->timer.data = (unsigned long)dev;
+	np->timer.function = &netdev_timer;				/* timer handler */
+	add_timer(&np->timer);
+
+	return 0;
+}
+
+static void check_duplex(struct net_device *dev, int startup)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	long ioaddr = dev->base_addr;
+	int mii_reg5 = mdio_read(dev, np->phys[0], 5);
+	int duplex, new_tx_mode ;
+
+	new_tx_mode = 0x0C04 | (np->tx_flowctrl ? 0x0800:0) | (np->rx_flowctrl ? 0x0400:0);
+	if (np->duplex_lock)
+		duplex = 1;
+	else
+		duplex = (mii_reg5 & 0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
+	if (duplex)
+		new_tx_mode |= 2;
+	if (np->full_duplex != duplex) {
+		np->full_duplex = duplex;
+		if (debug)
+			printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
+				   " partner capability of %4.4x.\n", dev->name,
+				   duplex ? "full" : "half", np->phys[0], mii_reg5);
+	}
+	if (new_tx_mode != np->tx_mode) {
+		np->tx_mode = new_tx_mode;
+		writel(np->tx_mode | 0x8000, ioaddr + TxMode);
+		writel(np->tx_mode, ioaddr + TxMode);
+	}
+}
+
+static void netdev_timer(unsigned long data)
+{
+	struct net_device *dev = (struct net_device *)data;
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	long ioaddr = dev->base_addr;
+	int next_tick = 60*HZ;		/* Check before driver release. */
+
+	if (debug > 3) {
+		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x.\n",
+			   dev->name, readl(ioaddr + IntrStatus));
+	}
+	check_duplex(dev, 0);
+#if ! defined(final_version)
+	/* This is often falsely triggered. */
+	if (readl(ioaddr + IntrStatus) & 1) {
+		int new_status = readl(ioaddr + IntrStatus);
+		/* Bogus hardware IRQ: Fake an interrupt handler call. */
+		if (new_status & 1) {
+			printk(KERN_ERR "%s: Interrupt blocked, status %8.8x/%8.8x.\n",
+				   dev->name, new_status, readl(ioaddr + IntrStatus));
+			intr_handler(dev->irq, dev, 0);
+		}
+	}
+#endif
+
+	np->timer.expires = RUN_AT(next_tick);
+	add_timer(&np->timer);
+}
+
+static void tx_timeout(struct net_device *dev)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	long ioaddr = dev->base_addr;
+
+	printk(KERN_WARNING "%s: Transmit timed out, status %8.8x,"
+		   " resetting...\n", dev->name, readl(ioaddr + IntrStatus));
+
+#ifndef __alpha__
+	{
+		int i;
+		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
+		for (i = 0; i < RX_RING_SIZE; i++)
+			printk(" %8.8x", (unsigned int)le32_to_cpu(np->rx_ring[i].rxaddr));
+		printk("\n"KERN_DEBUG"  Tx ring %p: ", np->tx_ring);
+		for (i = 0; i < TX_RING_SIZE; i++)
+			printk(" %4.4x", le32_to_cpu(np->tx_ring[i].status));
+		printk("\n");
+	}
+#endif
+
+  /* Perhaps we should reinitialize the hardware here. */
+  dev->if_port = 0;
+  /* Stop and restart the chip's Tx processes . */
+
+  /* Trigger an immediate transmit demand. */
+
+  dev->trans_start = jiffies;
+  np->stats.tx_errors++;
+  return;
+}
+
+
+/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
+static void init_ring(struct net_device *dev)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	int i;
+
+	np->tx_full = 0;
+	np->cur_rx = np->cur_tx = 0;
+	np->dirty_rx = np->rx_done = np->dirty_tx = np->tx_done = 0;
+
+	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
+
+	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
+	for (i = 0; i < RX_RING_SIZE; i++) {
+		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
+		np->rx_skbuff[i] = skb;
+		if (skb == NULL)
+			break;
+		skb->dev = dev;			/* Mark as being used by this device. */
+		/* Grrr, we cannot offset to correctly align the IP header. */
+		np->rx_ring[i].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid);
+	}
+	writew(i-1, dev->base_addr + RxDescQIdx);
+	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
+
+	/* Clear the remainder of the Rx buffer ring. */
+	for (  ; i < RX_RING_SIZE; i++) {
+		np->rx_ring[i].rxaddr = 0;
+		np->rx_skbuff[i] = 0;
+	}
+	/* Mark the last entry as wrapping the ring. */
+	np->rx_ring[i-1].rxaddr |= cpu_to_le32(RxDescEndRing);
+
+	/* Clear the completion rings. */
+	for (i = 0; i < DONE_Q_SIZE; i++) {
+		np->rx_done_q[i].status = 0;
+		np->tx_done_q[i].status = 0;
+	}
+
+	for (i = 0; i < TX_RING_SIZE; i++) {
+		np->tx_skbuff[i] = 0;
+		np->tx_ring[i].status = 0;
+	}
+	return;
+}
+
+static int start_tx(struct sk_buff *skb, struct net_device *dev)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	unsigned entry;
+
+	/* Block a timer-based transmit from overlapping.  This could better be
+	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
+	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
+		if (jiffies - dev->trans_start < TX_TIMEOUT)
+			return 1;
+		tx_timeout(dev);
+		return 1;
+	}
+
+	/* Caution: the write order is important here, set the field
+	   with the "ownership" bits last. */
+
+	/* Calculate the next Tx descriptor entry. */
+	entry = np->cur_tx % TX_RING_SIZE;
+
+	np->tx_skbuff[entry] = skb;
+
+	np->tx_ring[entry].addr = cpu_to_le32(virt_to_bus(skb->data));
+	/* Add  |TxDescIntr to generate Tx-done interrupts. */
+	np->tx_ring[entry].status = cpu_to_le32(skb->len | TxDescID);
+	if (debug > 5) {
+		printk(KERN_DEBUG "%s: Tx #%d slot %d  %8.8x %8.8x.\n",
+			   dev->name, np->cur_tx, entry,
+			   le32_to_cpu(np->tx_ring[entry].status),
+			   le32_to_cpu(np->tx_ring[entry].addr));
+	}
+	np->cur_tx++;
+#if 1
+	if (entry >= TX_RING_SIZE-1) {		 /* Wrap ring */
+		np->tx_ring[entry].status |= cpu_to_le32(TxRingWrap | TxDescIntr);
+		entry = -1;
+	}
+#endif
+
+	/* Non-x86: explicitly flush descriptor cache lines here. */
+
+	/* Update the producer index. */
+	writel(++entry, dev->base_addr + TxProducerIdx);
+
+	if (np->cur_tx - np->dirty_tx >= TX_RING_SIZE - 1)
+		np->tx_full = 1;
+	if (! np->tx_full)
+		clear_bit(0, (void*)&dev->tbusy);
+	dev->trans_start = jiffies;
+
+	if (debug > 4) {
+		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
+			   dev->name, np->cur_tx, entry);
+	}
+	return 0;
+}
+
+/* The interrupt handler does all of the Rx thread work and cleans up
+   after the Tx thread. */
+static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
+{
+	struct net_device *dev = (struct net_device *)dev_instance;
+	struct netdev_private *np;
+	long ioaddr, boguscnt = max_interrupt_work;
+
+#ifndef final_version			/* Can never occur. */
+	if (dev == NULL) {
+		printk (KERN_ERR "Netdev interrupt handler(): IRQ %d for unknown "
+				"device.\n", irq);
+		return;
+	}
+#endif
+
+	ioaddr = dev->base_addr;
+	np = (struct netdev_private *)dev->priv;
+#if defined(__i386__)
+	/* A lock to prevent simultaneous entry bug on Intel SMP machines. */
+	if (test_and_set_bit(0, (void*)&dev->interrupt)) {
+		printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
+			   dev->name);
+		dev->interrupt = 0;	/* Avoid halting machine. */
+		return;
+	}
+#else
+	if (dev->interrupt) {
+		printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name);
+		return;
+	}
+	dev->interrupt = 1;
+#endif
+
+	do {
+		u32 intr_status = readl(ioaddr + IntrClear);
+
+		if (debug > 4)
+			printk(KERN_DEBUG "%s: Interrupt status %4.4x.\n",
+				   dev->name, intr_status);
+
+		if (intr_status == 0)
+			break;
+
+		if (intr_status & IntrRxDone)
+			netdev_rx(dev);
+
+		/* Scavenge the skbuff list based on the Tx-done queue.
+		   There are redundant checks here that may be cleaned up when
+		   after the driver has proven reliable. */
+		{
+			int consumer = readl(ioaddr + TxConsumerIdx);
+			int tx_status;
+			if (debug > 4)
+				printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
+					   dev->name, consumer);
+#if 0
+			if (np->tx_done >= 250  || np->tx_done == 0)
+				printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x, "
+					   "%d is %8.8x.\n", dev->name,
+					   np->tx_done, le32_to_cpu(np->tx_done_q[np->tx_done].status),
+					   (np->tx_done+1) & (DONE_Q_SIZE-1),
+					   le32_to_cpu(np->tx_done_q[(np->tx_done+1)&(DONE_Q_SIZE-1)].status));
+#endif
+			while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
+				if (debug > 4)
+					printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x.\n",
+						   dev->name, np->tx_done, tx_status);
+				if ((tx_status & 0xe0000000) == 0xa0000000) {
+					np->stats.tx_packets++;
+				} else if ((tx_status & 0xe0000000) == 0x80000000) {
+					u16 entry = tx_status; 		/* Implicit truncate */
+					entry >>= 3;
+					/* Scavenge the descriptor. */
+					dev_kfree_skb(np->tx_skbuff[entry]);
+					np->tx_skbuff[entry] = 0;
+					np->dirty_tx++;
+				}
+				np->tx_done_q[np->tx_done].status = 0;
+				np->tx_done = (np->tx_done+1) & (DONE_Q_SIZE-1);
+			}
+			writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
+		}
+		if (np->tx_full && np->cur_tx - np->dirty_tx < TX_RING_SIZE - 4) {
+			/* The ring is no longer full, clear tbusy. */
+			np->tx_full = 0;
+			clear_bit(0, (void*)&dev->tbusy);
+			mark_bh(NET_BH);
+		}
+
+		/* Abnormal error summary/uncommon events handlers. */
+		if (intr_status & IntrAbnormalSummary)
+			netdev_error(dev, intr_status);
+
+		if (--boguscnt < 0) {
+			printk(KERN_WARNING "%s: Too much work at interrupt, "
+				   "status=0x%4.4x.\n",
+				   dev->name, intr_status);
+			break;
+		}
+	} while (1);
+
+	if (debug > 4)
+		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
+			   dev->name, readl(ioaddr + IntrStatus));
+
+#ifndef final_version
+	/* Code that should never be run!  Remove after testing.. */
+	{
+		static int stopit = 10;
+		if (dev->start == 0  &&  --stopit < 0) {
+			printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
+				   dev->name);
+			free_irq(irq, dev);
+		}
+	}
+#endif
+
+#if defined(__i386__)
+	clear_bit(0, (void*)&dev->interrupt);
+#else
+	dev->interrupt = 0;
+#endif
+	return;
+}
+
+/* This routine is logically part of the interrupt handler, but seperated
+   for clarity and better register allocation. */
+static int netdev_rx(struct net_device *dev)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
+	u32 desc_status;
+	if (np->rx_done_q == 0) {
+		printk(KERN_ERR "%s:  rx_done_q is NULL!  rx_done is %d. %p.\n",
+			   dev->name, np->rx_done, np->tx_done_q);
+		return 0;
+	}
+
+	/* If EOP is set on the next entry, it's a new packet. Send it up. */
+	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
+		if (debug > 4)
+			printk(KERN_DEBUG "  netdev_rx() status of %d was %8.8x.\n",
+				   np->rx_done, desc_status);
+		if (--boguscnt < 0)
+			break;
+		if (! (desc_status & RxOK)) {
+			/* There was a error. */
+			if (debug > 2)
+				printk(KERN_DEBUG "  netdev_rx() Rx error was %8.8x.\n",
+					   desc_status);
+			np->stats.rx_errors++;
+			if (desc_status & RxFIFOErr)
+				np->stats.rx_fifo_errors++;
+		} else {
+			struct sk_buff *skb;
+			u16 pkt_len = desc_status;			/* Implicitly Truncate */
+			int entry = (desc_status >> 16) & 0x7ff;
+
+#ifndef final_version
+			if (debug > 4)
+				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
+					   ", bogus_cnt %d.\n",
+					   pkt_len, boguscnt);
+#endif
+			/* Check if the packet is long enough to accept without copying
+			   to a minimally-sized skbuff. */
+			if (pkt_len < rx_copybreak
+				&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
+				skb->dev = dev;
+				skb_reserve(skb, 2);	/* 16 byte align the IP header */
+#if HAS_IP_COPYSUM			/* Call copy + cksum if available. */
+				eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
+				skb_put(skb, pkt_len);
+#else
+				memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail,
+					   pkt_len);
+#endif
+			} else {
+				char *temp = skb_put(skb = np->rx_skbuff[entry], pkt_len);
+				np->rx_skbuff[entry] = NULL;
+#ifndef final_version				/* Remove after testing. */
+				if (bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr) & ~3) != temp)
+					printk(KERN_ERR "%s: Internal fault: The skbuff addresses "
+						   "do not match in netdev_rx: %p vs. %p / %p.\n",
+						   dev->name, bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr)),
+						   skb->head, temp);
+#endif
+			}
+#ifndef final_version				/* Remove after testing. */
+			/* You will want this info for the initial debug. */
+			if (debug > 5)
+				printk(KERN_DEBUG "  Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
+					   "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x "
+					   "%d.%d.%d.%d.\n",
+					   skb->data[0], skb->data[1], skb->data[2], skb->data[3],
+					   skb->data[4], skb->data[5], skb->data[6], skb->data[7],
+					   skb->data[8], skb->data[9], skb->data[10],
+					   skb->data[11], skb->data[12], skb->data[13],
+					   skb->data[14], skb->data[15], skb->data[16],
+					   skb->data[17]);
+#endif
+			skb->protocol = eth_type_trans(skb, dev);
+#ifdef full_rx_status
+			if (le32_to_cpu(np->rx_done_q[np->rx_done].status2) & 0x01000000)
+				skb->ip_summed = CHECKSUM_UNNECESSARY;
+#endif
+			netif_rx(skb);
+			dev->last_rx = jiffies;
+			np->stats.rx_packets++;
+		}
+		np->cur_rx++;
+		np->rx_done_q[np->rx_done].status = 0;
+		np->rx_done = (np->rx_done + 1) & (DONE_Q_SIZE-1);
+	}
+	writew(np->rx_done, dev->base_addr + CompletionQConsumerIdx);
+
+	/* Refill the Rx ring buffers. */
+	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
+		struct sk_buff *skb;
+		int entry = np->dirty_rx % RX_RING_SIZE;
+		if (np->rx_skbuff[entry] == NULL) {
+			skb = dev_alloc_skb(np->rx_buf_sz);
+			np->rx_skbuff[entry] = skb;
+			if (skb == NULL)
+				break;			/* Better luck next round. */
+			skb->dev = dev;			/* Mark as being used by this device. */
+			np->rx_ring[entry].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid);
+		}
+		if (entry == RX_RING_SIZE - 1)
+			np->rx_ring[entry].rxaddr |= cpu_to_le32(RxDescEndRing);
+		/* We could defer this until later... */
+		writew(entry, dev->base_addr + RxDescQIdx);
+	}
+
+	if (debug > 5
+		|| memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1))
+		printk(KERN_DEBUG "  exiting netdev_rx() status of %d was %8.8x %d.\n",
+			   np->rx_done, desc_status,
+			   memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1));
+
+	/* Restart Rx engine if stopped. */
+	return 0;
+}
+
+static void netdev_error(struct net_device *dev, int intr_status)
+{
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+
+	if (intr_status & LinkChange) {
+		printk(KERN_ERR "%s: Link changed: Autonegotiation advertising"
+			   " %4.4x  partner %4.4x.\n", dev->name,
+			   mdio_read(dev, np->phys[0], 4),
+			   mdio_read(dev, np->phys[0], 5));
+		check_duplex(dev, 0);
+	}
+	if (intr_status & StatsMax) {
+		get_stats(dev);
+	}
+	/* Came close to underrunning the Tx FIFO, increase threshold. */
+	if (intr_status & IntrTxDataLow)
+		writel(++np->tx_threshold, dev->base_addr + TxThreshold);
+	if ((intr_status &
+		 ~(IntrAbnormalSummary|LinkChange|StatsMax|IntrTxDataLow|1)) && debug)
+		printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
+			   dev->name, intr_status);
+	/* Hmmmmm, it's not clear how to recover from PCI faults. */
+	if (intr_status & IntrTxPCIErr)
+		np->stats.tx_fifo_errors++;
+	if (intr_status & IntrRxPCIErr)
+		np->stats.rx_fifo_errors++;
+}
+
+static struct enet_statistics *get_stats(struct net_device *dev)
+{
+	long ioaddr = dev->base_addr;
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+
+	/* We should lock this segment of code for SMP eventually, although
+	   the vulnerability window is very small and statistics are
+	   non-critical. */
+#if LINUX_VERSION_CODE > 0x20119
+	np->stats.tx_bytes = readl(ioaddr + 0x57010);
+	np->stats.rx_bytes = readl(ioaddr + 0x57044);
+#endif
+	np->stats.tx_packets = readl(ioaddr + 0x57000);
+	np->stats.tx_aborted_errors =
+		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
+	np->stats.tx_window_errors = readl(ioaddr + 0x57018);
+	np->stats.collisions = readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
+
+	/* The chip only need report frame silently dropped. */
+	np->stats.rx_dropped	   += readw(ioaddr + RxDMAStatus);
+	writew(0, ioaddr + RxDMAStatus);
+	np->stats.rx_crc_errors	   = readl(ioaddr + 0x5703C);
+	np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
+	np->stats.rx_length_errors = readl(ioaddr + 0x57058);
+	np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
+
+	return &np->stats;
+}
+
+/* The little-endian AUTODIN II ethernet CRC calculations.
+   A big-endian version is also available.
+   This is slow but compact code.  Do not use this routine for bulk data,
+   use a table-based routine instead.
+   This is common code and should be moved to net/core/crc.c.
+   Chips may use the upper or lower CRC bits, and may reverse and/or invert
+   them.  Select the endian-ness that results in minimal calculations.
+*/
+static unsigned const ethernet_polynomial_le = 0xedb88320U;
+static inline unsigned ether_crc_le(int length, unsigned char *data)
+{
+	unsigned int crc = 0xffffffff;	/* Initial value. */
+	while(--length >= 0) {
+		unsigned char current_octet = *data++;
+		int bit;
+		for (bit = 8; --bit >= 0; current_octet >>= 1) {
+			if ((crc ^ current_octet) & 1) {
+				crc >>= 1;
+				crc ^= ethernet_polynomial_le;
+			} else
+				crc >>= 1;
+		}
+	}
+	return crc;
+}
+
+static void set_rx_mode(struct net_device *dev)
+{
+	long ioaddr = dev->base_addr;
+	u32 rx_mode;
+	struct dev_mc_list *mclist;
+	int i;
+
+	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
+		/* Unconditionally log net taps. */
+		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
+		rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptAll|AcceptMyPhys;
+	} else if ((dev->mc_count > multicast_filter_limit)
+			   ||  (dev->flags & IFF_ALLMULTI)) {
+		/* Too many to match, or accept all multicasts. */
+		rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptMyPhys;
+	} else if (dev->mc_count <= 15) {
+		/* Use the 16 element perfect filter. */
+		long filter_addr = ioaddr + 0x56000 + 1*16;
+		for (i = 1, mclist = dev->mc_list; mclist  &&  i <= dev->mc_count;
+			 i++, mclist = mclist->next) {
+			u16 *eaddrs = (u16 *)mclist->dmi_addr;
+			writew(*eaddrs++, filter_addr); filter_addr += 4;
+			writew(*eaddrs++, filter_addr); filter_addr += 4;
+			writew(*eaddrs++, filter_addr); filter_addr += 8;
+		}
+		while (i++ < 16) {
+			writew(0xffff, filter_addr); filter_addr += 4;
+			writew(0xffff, filter_addr); filter_addr += 4;
+			writew(0xffff, filter_addr); filter_addr += 8;
+		}
+		rx_mode = AcceptBroadcast | AcceptMyPhys;
+	} else {
+		/* Must use a multicast hash table. */
+		long filter_addr;
+		u16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
+
+		memset(mc_filter, 0, sizeof(mc_filter));
+		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
+			 i++, mclist = mclist->next) {
+			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23, mc_filter);
+		}
+		/* Clear the perfect filter list. */
+		filter_addr = ioaddr + 0x56000 + 1*16;
+		for (i = 1; i < 16; i++) {
+			writew(0xffff, filter_addr); filter_addr += 4;
+			writew(0xffff, filter_addr); filter_addr += 4;
+			writew(0xffff, filter_addr); filter_addr += 8;
+		}
+		for (filter_addr=ioaddr + 0x56100, i=0; i < 32; filter_addr+= 16, i++)
+			writew(mc_filter[i], filter_addr);
+		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
+	}
+	writel(rx_mode|AcceptAll, ioaddr + RxFilterMode);
+}
+
+static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+	u16 *data = (u16 *)&rq->ifr_data;
+
+	switch(cmd) {
+	case SIOCDEVPRIVATE:		/* Get the address of the PHY in use. */
+		data[0] = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f;
+		/* Fall Through */
+	case SIOCDEVPRIVATE+1:		/* Read the specified MII register. */
+		data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
+		return 0;
+	case SIOCDEVPRIVATE+2:		/* Write the specified MII register */
+		if (!capable(CAP_NET_ADMIN))
+			return -EPERM;
+		mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
+		return 0;
+	default:
+		return -EOPNOTSUPP;
+	}
+}
+
+static int netdev_close(struct net_device *dev)
+{
+	long ioaddr = dev->base_addr;
+	struct netdev_private *np = (struct netdev_private *)dev->priv;
+	int i;
+
+	dev->start = 0;
+	dev->tbusy = 1;
+
+	if (debug > 1) {
+		printk(KERN_DEBUG "%s: Shutting down ethercard, status was Int %4.4x.\n",
+			   dev->name, readl(ioaddr + IntrStatus));
+		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
+			   dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
+	}
+
+	/* Disable interrupts by clearing the interrupt mask. */
+	writel(0, ioaddr + IntrEnable);
+
+	/* Stop the chip's Tx and Rx processes. */
+
+	del_timer(&np->timer);
+
+#ifdef __i386__
+	if (debug > 2) {
+		printk("\n"KERN_DEBUG"  Tx ring at %8.8x:\n",
+			   (int)virt_to_bus(np->tx_ring));
+		for (i = 0; i < 8 /* TX_RING_SIZE */; i++)
+			printk(KERN_DEBUG " #%d desc. %8.8x %8.8x -> %8.8x.\n",
+				   i, le32_to_cpu(np->tx_ring[i].status),
+				   le32_to_cpu(np->tx_ring[i].addr),
+				   le32_to_cpu(np->tx_done_q[i].status));
+		printk(KERN_DEBUG "  Rx ring at %8.8x -> %p:\n",
+			   (int)virt_to_bus(np->rx_ring), np->rx_done_q);
+		if (np->rx_done_q)
+			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
+				printk(KERN_DEBUG " #%d desc. %8.8x -> %8.8x\n",
+					   i, le32_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
+		}
+	}
+#endif /* __i386__ debugging only */
+
+	free_irq(dev->irq, dev);
+
+	/* Free all the skbuffs in the Rx queue. */
+	for (i = 0; i < RX_RING_SIZE; i++) {
+		np->rx_ring[i].rxaddr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
+		if (np->rx_skbuff[i]) {
+#if LINUX_VERSION_CODE < 0x20100
+			np->rx_skbuff[i]->free = 1;
+#endif
+			dev_kfree_skb(np->rx_skbuff[i]);
+		}
+		np->rx_skbuff[i] = 0;
+	}
+	for (i = 0; i < TX_RING_SIZE; i++) {
+		if (np->tx_skbuff[i])
+			dev_kfree_skb(np->tx_skbuff[i]);
+		np->tx_skbuff[i] = 0;
+	}
+
+	MOD_DEC_USE_COUNT;
+
+	return 0;
+}
+
+
+#ifdef MODULE
+int init_module(void)
+{
+	if (debug)					/* Emit version even if no cards detected. */
+		printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB);
+#ifdef CARDBUS
+	register_driver(&etherdev_ops);
+	return 0;
+#else
+	if (pci_etherdev_probe(NULL, pci_tbl)) {
+		printk(KERN_INFO " No Starfire adapters detected, driver not loaded.\n");
+		return -ENODEV;
+	}
+	return 0;
+#endif
+}
+
+void cleanup_module(void)
+{
+	struct net_device *next_dev;
+
+#ifdef CARDBUS
+	unregister_driver(&etherdev_ops);
+#endif
+
+	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
+	while (root_net_dev) {
+		struct netdev_private *np =
+			(struct netdev_private *)root_net_dev->priv;
+		next_dev = np->next_module;
+		unregister_netdev(root_net_dev);
+		iounmap((char *)root_net_dev->base_addr);
+		if (np->tx_done_q) free_page((long)np->tx_done_q);
+		if (np->rx_done_q) free_page((long)np->rx_done_q);
+		kfree(root_net_dev);
+		root_net_dev = next_dev;
+	}
+}
+
+#endif  /* MODULE */
+
+/*
+ * Local variables:
+ *  compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
+ *  SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
+ *  simple-compile-command: "gcc -DMODULE -D__KERNEL__ -O6 -c starfire.c"
+ *  c-indent-level: 4
+ *  c-basic-offset: 4
+ *  tab-width: 4
+ * End:
+ */

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)