
What’s new in the DBI
(since the book)

DBI-1.14-1.52.diff

by Tim Bunce

July 2006 - DBI 1.52

Profiling DBI Performance

Time flies like an arrow

(fruit flies like a banana)

2

What’s new in the DBI
© Tim Bunce

July 2006

3

How fast was that?

! The DBI has performance profiling built in

! Overall summary:
$ DBI_PROFILE=1 ex/profile.pl

DBI::Profile: 0.190639s 20.92% (219 calls) profile.pl @ 2006-07-24 15:47:07

! Breakdown by statement:
$ DBI_PROFILE=’!Statement’ ex/profile.pl

DBI::Profile: 0.206872s 20.69% (219 calls) profile.pl @ 2006-07-24 15:44:37

'' =>

 0.001403s / 9 = 0.000156s avg (first 0.001343s, min 0.000002s, max 0.001343s)

'CREATE TABLE ex_profile (a int)' =>

 0.002503s

'INSERT INTO ex_profile (a) VALUES (?)' =>

 0.193871s / 100 = 0.001939s avg (first 0.002119s, min 0.001676s, max 0.002251s)

'SELECT a FROM ex_profile' =>

 0.004776s / 108 = 0.000044s avg (first 0.000700s, min 0.000004s, max 0.003129s)

What’s new in the DBI
© Tim Bunce

July 2002

$ DBI_PROFILE='!Statement:!MethodName' ex/profile.pl

DBI::Profile: 0.203922s (219 calls) profile.pl @ 2006-07-24 15:29:29

'' =>

 'FETCH' =>

 0.000002s

 'STORE' =>

 0.000039s / 5 = 0.000008s avg (first 0.000019s, min 0.000002s, max 0.000019s)

 'connect' =>

 0.001336s

'CREATE TABLE ex_profile (a int)' =>

 'do' =>

 0.002324s

'INSERT INTO ex_profile (a) VALUES (?)' =>

 'do' =>

 0.192104s / 100 = 0.001921s avg (first 0.001929s, min 0.001520s, max 0.002699s)

'SELECT a FROM ex_profile' =>

 'execute' =>

 0.000082s

 'fetchrow_array' =>

 0.000667s / 101 = 0.000007s avg (first 0.000010s, min 0.000006s, max 0.000018s)

 'prepare' =>

 0.000122s

 'selectall_arrayref' =>

 0.000676s

 'selectall_hashref' =>

 0.003452s
4

What’s new in the DBI
© Tim Bunce

July 2006

5

Profile of a Profile

! Profiles ‘top level’ calls from application into DBI

! Profiling is controlled by, and collected into, $h->{Profile} attribute

! Child handles inherit reference to parent $h->{Profile}
– So child handle activity is aggregated into parent

! When enabled by DBI_PROFILE env var
– uses a single $h->{Profile} is shared by all handles

– so all activity is aggregated into a single data tree

! Data is dumped when the $h->{Profile} object is destroyed

What’s new in the DBI
© Tim Bunce

July 2006

Profile Path ! Profile Data

• The Path determines where each sample is accumulated within the Data

$h->{Profile}->{Path} = []

$h->{Profile}->{Data} = [...accumulated sample data...]

$h->{Profile}->{Path} = [“!MethodName”]

$h->{Profile}->{Data} = { “prepare” } -> [...]

 { “execute” } -> [...]

 { ... } -> [...]

$h->{Profile}->{Path} = [“!Statement”, “!MethodName”]

$h->{Profile}->{Data} = { “INSERT ...” } -> { “prepare” } -> [...]

 -> { “execute” } -> [...]

 { “SELECT ...” } -> { “prepare” } -> [...]

 -> { “execute” } -> [...]

6

What’s new in the DBI
© Tim Bunce

July 2006

Profile Path Elements

7

Kind Examples Results

“{AttributeName}” “{Statement}”

“{Username}”

“{AutoCommit}”

“{private_attr}”

“SELECT ...”

“timbunce”

“1”

“the value of private_attr”

“!Magic” “!Statement”

“!MethodName”

“!MethodClass”

“!File”

“!Caller2”

“SELECT ...”

“selectrow_array”

“DBD::Pg::db::selectrow_array”

“MyFoo.pm”

“MyFoo.pm line 23 via Bar.pm line 9”

\&code_ref sub { “bar” } “bar”

“&subname”

anything else “foo” “foo”

What’s new in the DBI
© Tim Bunce

July 2006

“!Statement” vs “{Statement}”

! “{Statement}” is always the value of the Statement attribute
– Fine for statement handle

– For database handles it’s the last statement executed

– That’s often not useful, or even misleading, for profiling

! “!Statement” is smarter
– Is an empty string for methods that are unrelated to current statement

! ping, commit, rollback, quote, dbh attribute FETCH & STORE, etc.

– so you get more accurate separation of profile data using “!Statement”

! Statement tracking can’t be perfect
– but is certainly good enough for profiling

8

What’s new in the DBI
© Tim Bunce

July 2006

Profile Leaf Node Data

! Each leaf node is a ref to an array:

 [

 106, # 0: count of samples at this node

 0.0312958955764771, # 1: total duration

 0.000490069389343262, # 2: first duration

 0.000176072120666504, # 3: shortest duration

 0.00140702724456787, # 4: longest duration

 1023115819.83019, # 5: time of first sample

 1023115819.86576, # 6: time of last sample

]

" First sample to create the leaf node populates all values

" Later samples reaching that node always update elements 0, 1, and 6

" and may update 3 or 4 depending on the duration of the sampled call

9

What’s new in the DBI
© Tim Bunce

July 2006

Working with profile data

! To aggregate sample data for any part of the tree
– to get total time spent inside the DBI

– and return a merge all those leaf nodes

$time_in_dbi = dbi_profile_merge(my $totals=[], @$leaves);

! To aggregate time in DBI since last measured
– For example per-httpd request

my $time_in_dbi = 0;

if (my $Profile = $dbh->{Profile}) { # if profiling enabled

 $time_in_dbi = dbi_profile_merge([], $Profile->{Data});

 $Profile->{Data} = undef; # reset the profile Data

}

add $time_in_dbi to httpd log

10

What’s new in the DBI
© Tim Bunce

July 2006

Profile something else

! Adding your own samples

use DBI::Profile (dbi_profile dbi_time);

my $t1 = dbi_time(); # floating point high-resolution time

 ... execute code you want to profile here ...

my $t2 = dbi_time();

dbi_profile($h, $statement, $method, $t1, $t2);

11

What’s new in the DBI
© Tim Bunce

July 2006

12

Profile specification

! Profile specification
" <path> / <class> / <args>

" DBI_PROFILE='!Statement:!MethodName/DBI::ProfileDumper::Apache/arg1:arg2:arg3'

" $h->{Profile} = '...same...';

! Class
" Currently only controls output formatting

" Other classes should subclass DBI::Profile

! DBI::Profile is the default
" provides a basic summary for humans

" large outputs are not easy to read

" can’t be filtered or sorted

What’s new in the DBI
© Tim Bunce

July 2006

13

dbiprof

! DBI::ProfileDumper

" writes profile data to dbi.prof file for analysis

! DBI::ProfileDumper::Apache

" for mod_perl, writes a file per httpd process/thread

! DBI::ProfileData
" reads and aggregates dbi.prof files

" can remap and merge nodes in the tree

! dbiprof

" reads, summarizes, and reports on dbi.prof files
" by default prints nodes sorted by total time

" has options for filtering and sorting

What’s new in the DBI
© Tim Bunce

July 2006

Managing statement variations

! For when placeholders aren’t being used or there are tables with numeric suffixes.

! A ‘&norm_std_n3’ in the Path maps to ‘!Statement’ edited in this way:

 s/\b\d+\b/<N>/g; # 42 -> <N>

 s/\b0x[0-9A-Fa-f]+\b/<N>/g; # 0xFE -> <N>

 s/'.*?'/'<S>'/g; # single quoted strings (doesn't handle escapes)

 s/".*?"/"<S>"/g; # double quoted strings (doesn't handle escapes)

 # convert names like log20001231 into log<N>

 s/([a-z_]+)(\d{3,})\b/${1}<N>/ieg;

 # abbreviate massive "in (...)" statements and similar

 s!((\s*<[NS]>\s*,\s*){100,})!sprintf("$2,<repeated %d times>",length($1)/2)!eg;

! It’s aggressive and simplistic but usually very effective.

! You can define your own subs in the DBI::ProfileSubs namespace 14

Other stuff...

a random assortment

What’s new in the DBI
© Tim Bunce

July 2006

Unicode Tools

! Unicode problems can have many causes

! The DBI provides some simple tools to help:

! neat($value)
" Unicode strings are shown double quoted, else single

! data_string_desc($value)
" Returns ‘physical’ description of a string, for example:

UFT8 on but INVALID ENCODING, non-ASCII, 4 chars, 9 bytes

! data_string_diff($value1, $value2)
" Compares the logical characters not physical bytes

" Returns description of logical differences, else an empty string

! data_diff($value1, $value2)

" Calls data_string_desc and data_string_diff
" Returns description of logical and physical differences, else an empty string 16

What’s new in the DBI
© Tim Bunce

July 2006

Keep track of your kids!

! Handles now keep (weak) references to their children

$kids = $dbh->{ChildHandles};

for my $sth (@$kids) {

next unless $sth; # ignore destroyed handles

print “$sth->{Statement}\n”;

}

17

What’s new in the DBI
© Tim Bunce

July 2006

Brain Surgery

! Swap the inner handle of two DBI handles

$h1->swap_inner_handle($h2)

– Enables a dead handle to effectively be resuscitated

– Used by DBIx::HA module

! Cryogenics for handle brains

$frozen = $dbh1->take_imp_data();

$dbh2 = DBI->connect(..., { dbi_imp_data => $frozen });

– Powerful voodoo. Needed for DBI::Pool 18

What’s new in the DBI
© Tim Bunce

July 2006

19

Fetching one row in one call

! Extra do-it-all-in-one-call utility methods:

$aref = $dbh->selectrow_arrayref($select, \%attr, @bind)

$href = $dbh->selectrow_hashref($select, \%attr, @bind)

! The $select parameter can be a prepared statement handle for extra speed

What’s new in the DBI
© Tim Bunce

July 2006

20

Fetching all rows in one call

! Want all the rows in a single hash?

$href = $dbh->selectall_hashref(

 "select id, name, country from …", "id");

{

 42 => { id=>42, name=>'Tim', country=>'Ireland' },

 43 => { id=>43, name=>'Jim', country=>'USA' },

 …

}

! There's also a $sth->fetchall_hashref($keyfield) method.

What’s new in the DBI
© Tim Bunce

July 2006

Fetching Multiple Keys

• fetchall_hashref() now supports multiple key columns

$sth = $dbh->prepare(“select state, city, ...”);

$sth->execute;

$data = $sth->fetchall_hashref([‘state’, ‘city’]);

$data = {

CA => {

LA => { state=>’CA’, city=>’LA’, ... },

SF => { state=>’CA’, city=>’SF’, ... },

},

NY => {

NY => { ... },

}

• Also works for selectall_hashref()
21

What’s new in the DBI
© Tim Bunce

July 2006

22

Batch fetching

! How to bulk fetch more rows than fit in memory?

while ($rows = $sth->fetchall_arrayref(undef, 10_000) && @$rows) {

while ($row = shift @$rows) {

…

}

}

! Or

while ($row = shift(@$cache)

 || shift @{$cache=$sth->fetchall_arrayref(undef, 10_000)}

) {

 …

}

What’s new in the DBI
© Tim Bunce

July 2006

23

Do it in bulk...

$sth = $dbh->prepare("insert into foo (a, b) values (?, ?)");

$sth->execute_array({ ArrayTupleStatus => \@tuple_status },

\@array_a,

\@array_b,

);

$sth->execute_for_fetch(sub { ... }, \@tuple_status);

! Works for all drivers now

! Some drivers implement optimized methods (DBD::ODBC, DBD::Oracle,…)

What’s new in the DBI
© Tim Bunce

July 2006

24

Do it in parallel...

! DBI supports iThreads

! But...
" Like all extensions using tied magic, handles can't be cloned or shared

! So…
" Each thread/interpreter needs to make it's own connection

! However...
" DBI::Pool module is partly implemented, needs a volunteer

What’s new in the DBI
© Tim Bunce

July 2006

25

Information and Warnings

! Drivers can indicate Information and Warning states in addition to Error states
" Uses false-but-defined values of $h->err and $DBI::err

" Zero "0" indicates a "warning"

" Empty "" indicates "success with information" or other messages from database

! Drivers should use $h->set_err(…) method to record info/warn/error states
" implements logic to correctly merge multiple info/warn/error states

" info/warn/error messages are appended to errstr with a newline

" $h->{ErrCount} attribute is incremented whenever an error is recorded

! The $h->{HandleSetErr} attribute can be used to influence $h->set_err()

" A code reference that's called by set_err and can edit its parameters

" So can promote warnings/info to errors or demote/hide errors etc.

" Called at point of error from within driver, unlike $h->{HandleError}

! The $h->{PrintWarn} attribute acts like $h->{PrintError} but for warnings

" Default is on

What’s new in the DBI
© Tim Bunce

July 2006

26

Error Handling

! $dbh->{Statement} is copy of most recent $sth->{Statement}

! $h->{ShowErrorStatement} = 1;

appends Statement text to the RaiseError / PrintError message:

DBD::foo::db do failed: errstr [for statement "…"]

! $sth->{ParamValues} ==> { hash of bound placeholder values };

if driver supports ParamValues then it'll be included in ShowErrorStatement:

DBD::foo::db ... [for statement "…" with 1='foo', 2='bar']

What’s new in the DBI
© Tim Bunce

July 2006

27

Custom Error Handling

! Don’t want to just Print or Raise an Error?

$h->{HandleError} = sub { … };

! The HandleError code

" is called just before PrintError/RaiseError are handled

" is passed the error message, handle, and return value

" if it returns false then RaiseError/PrintError are checked and acted upon as normal

! The hander code can
" alter the error message text by changing $_[0]

" use caller() or Carp::confess() or similar to get a full stack trace

" use Exception or a similar module to throw a formal exception object

What’s new in the DBI
© Tim Bunce

July 2006

28

Tweaked Tracing

! Trace level 1 made more useful
" doesn’t show nested DBI calls
" shows just the first and last fetch calls

" shows first two parameters of all methods

! Trace for fetch methods now shows row number

! Can now set/get trace level via handle attribute
local $h->{TraceLevel} = N;

$dsn = “dbi:Driver(TraceLevel=2):dbname=foo”;

! Trace level 3 and over includes some extra call stack information
<- prepare= DBI::st=HASH(0x8367760) at DBI.pm line 1287 via test.pl line 11

What’s new in the DBI
© Tim Bunce

July 2006

29

More Metadata

! $sth = $dbh->column_info(...)

! $sth = $dbh->primary_key_info(...)

! @ary = $dbh->primary_key(...)

! $sth = $dbh->foreign_key_info(...)

! $sth = $dbh->statistics_info(...)

! $foo = $dbh->get_info(...)

! $id = $dbh->quote_identifier(...)

What’s new in the DBI
© Tim Bunce

July 2006

Other Stuff

! $dbh->last_insert_id()

! $dbh2 = $dbh1->clone()

! %drhs = DBI->installed_drivers()

! DBI->installed_versions()

! ($scheme, $driver, $attr_string, $attr_hash, $driver_dsn)

= DBI->parse_dsn($dsn)

30

What’s new in the DBI
© Tim Bunce

July 2006

31

DBD::PurePerl

! Need to use the DBI somewhere where you can’t compile extensions?

! The DBI::PurePerl module is an emulation of the DBI written in Perl
" Works with pure-perl drivers, including: AnyData, Excel, LDAP, mysqlPP, etc.

" plus DBD::Proxy

! Enabled via the DBI_PUREPERL environment variable:

1 = Automatically fall-back to DBI::PurePerl if DBI extension can’t be bootstrapped

2 = Force use of DBI::PurePerl

! Reasonably complete emulation - enough for the drivers to work well
" See DBI::PurePerl documentation for the small-print if you want to use it

What’s new in the DBI
© Tim Bunce

July 2006

32

DBI::SQL::Nano

! The DBI now includes an SQL parser module: DBI::SQL::Nano

– Has an API compatible with SQL::Statement

! If SQL::Statement is installed

– then DBI::SQL::Nano becomes an empty subclass of SQL::Statement

! Existing DBD::File module is now shipped with the DBI
– base class for simple DBI drivers

– modified to use DBI::SQL::Nano.

! New DBD::DBM driver now shipped with the DBI

– An SQL interface to DBM and MLDBM files using DBD::File and DBI::SQL::Nano.

! Thanks to Jeff Zucker

What’s new in the DBI
© Tim Bunce

July 2006

33

DBI::SQL::Nano

! Supported syntax
DROP TABLE [IF EXISTS] <table_name>

CREATE TABLE <table_name> <col_def_list>

INSERT INTO <table_name> [<insert_col_list>] VALUES <val_list>

DELETE FROM <table_name> [<where_clause>]

UPDATE <table_name> SET <set_clause> [<where_clause>]

SELECT <select_col_list> FROM <table_name> [<where_clause>] [<order_clause>]

! Where clause
" a single "[NOT] column/value <op> column/value" predicate

" multiple predicates combined with ORs or ANDs are not supported

" op may be one of: < > >= <= = <> LIKE CLIKE IS

! If you need more functionality...
" Just install the SQL::Statement module

_

What’s new in the DBI
© Tim Bunce

July 2006

34

New Attributes for Fieldnames

! Control case of key (field) names returned by fetchrow_hashref

$h->{FetchHashKeyName} = 'NAME_lc'; # or 'NAME_uc'

! Fieldname-to-column-index mapping:

$h->{NAME_lc_hash} ==> { id => 0, name => 1, country => 2 };

! Also NAME_uc_hash, NAME_hash

What’s new in the DBI
© Tim Bunce

July 2006

Intercepting DBI Method Calls

! An alternative to subclassing
" Added in DBI 1.49 - Nov 2005

" but not yet documented and subject to change

! Example:
$dbh->{Callbacks}->{prepare} = sub { ... }

" Arguments to original method are passed in.
" The name of the method is in $_ (localized).

" The Callbacks attribute is not inherited by child handle

! Some special ‘method names’ are supported:
connect_cached.new

connect_cached.reused
35

The end

for now.

