
The Gamebooklib Package∗

Robert J Lee
latex@rjlee.homelinux.org

July 30, 2023

Abstract

This package provides macros and environments to allow the user to
typeset a series of cross-referenced, numbered “entries”, shuffled into random
order.

1 Introduction

This package was written to allow the typesetting of gamebooks.
A gamebook is a book divided into “entries” (which may be a single paragraph

or longer), each with a sequentially numbered value. At the end of each entry, a
link to one or more other numbered entries is given; the reader selects one and
they follow through the story in this order. Gamebooks traditionally start at the
entry numbered “1” and some gamebooks have multiple endings, with the final
section representing a success or victory for the reader.

In particular, this package handles two technical challenges which are tricky to
solve with LATEX directly: writing the “entries” in order but presenting them in a
randomised order; and presenting footnotes at the end of each “entry”, numbered
in the order in which they appear, not the order in which they are written.

Aside from shuffling the paragraphs and fixing the handling of footnotes, this
package provides little help for the actual typesetting of gamebook entries. For
this, please consider using André Miede’s gamebook package, available on CTAN1.
That package is orthogonal to this one; both may be used together.

Terminology

For the purposes of this document, the term entry means a numbered section of
text. This term helps describe the common format of a gamebook, while avoiding
confusion with the terms paragraph and a section, both of which already have a
clear definition.

The term gamebook means a book consisting of numbered sections, typically
presented in a non-linear order with a tree or graph of possible reading options.

∗This document corresponds to Gamebooklib Gamebook, dated 2023/07/28.
1https://www.ctan.org/pkg/gamebook

1

Usage

To load the class, use \usepackage[options]{gamebook}
The class options are described below; [footnotes,jukebox,mark] is nor-

mally a good choice, although there are some limitations.
The user simply writes entries like this inside the document:

\begin{gentry}{codea}

This is the first entry

Turn to \turnto{codeb}

\end{gentry}

\begin{gentry}[123]{codeb}[title]

This is the second and final entry.\par

To play again, turn to \turnto{codea}

\end{gentry}

% Output:

\thegentries

Here, two entries are defined, and then output.
The first entry is given a label of gentry:codea, and the \turnto{codea} in

the second entry generates a link back to that label. You might define \turnto

like this:

\newcommand{\turnto}[1]{\ref{gentry:#1}}

As entry is a common term likely to conflict with other environments, the en-
vironment to declare an entry has been named gentry (gamebook entry) instead.

Sometimes it is convenient, when writing an entry, to give it a fixed index in
the text. The first optional argument in the second entry — [123] — fixes the
entry at that position during shuffling. This is implemented by iterating over each
entry and swapping it with that index. Duplicates are not currently checked for,
but they would not be lost; if two entries are defined with the same fixed index,
one will end up somewhere else in the text.

The first and last entries are automatically fixed without needing to specify
the optional number.

Specifying the optional number as a value greater than or equal to the number
of entries, or less than 2, is not recommended. (Yes, this example used 123, which
is beyond the number of entries. This was done to show the syntax).

The second optional argument is a title to be displayed alongside the numerical
value.

Finally, the command \thegentries will output all entries defined so far,
handling shuffling and footnotes.

{⟨counterIdx ⟩}{⟨fixedIdx ⟩}{⟨code⟩}{⟨title⟩}\gentryheader

Users may also want to redefine \gentryheader to change how the entries are
displayed. The initial version is quite basic and intended for debugging; users
should use \renewcommand to change it to something more pleasant.

2

Here’s one suggestion, using packages from CTAN. It works well if you have
either a title, or at least 2 lines of text before the first paragraph break inside the
gentry.

It also requires near the start of the document:

\usepackage{lettrine}

\usepackage{etoolbox}

\usepackage{color}

And this anywhere before \thegentries:

\renewcommand{\LettrineFontHook}{%

\color[gray]{0.5}\fontfamily{ppl}\fontseries{bx}}

\renewcommand{\gentryheader}[4]{%

% \typeout{Typesetting entry at original index #1}

\lettrine[lines=3,lhang=0.2,loversize=0.2]{\raisebox{0.1em}{\arabic{gentryctr}}}%

{\textbf{\Large\textbf{\raisebox{0.3em}{~#4}%

}}}%

\ifstrempty{#1}{}{\linebreak\mbox{}~}}%

On the last line, \mbox stops the \parindent space being ignored; the ∼ brings it
back up to the expected spacing. You may need to adjust the lettrine spacing
parameters, depending on the font size and whether you use header text.

Package options

These options can be specified as a comma-separated list to the \usepackage
line.footnote

The footnote option causes LATEX to output footnotes at the end of each
entry, or the end of each page, whichever comes first after the footnote mark.

There are some limitations, described below.
Support for other packages that affect footnotes is limited. If using hyperref,

it is recommended to pass [hyperfootnotes=false] to avoid broken links.jukebox

Use the Jukebox Index shuffling algorithm2. This is slightly slower, but tends
to reduce the number of times you get a “turn to ” instrution referencing the
next (or previous) entry in the original order, by modifying the shuffle to ensure
that adjacent gentries in the input have much less chance of being adjacent in
the final document. jukebox requires a LATEX2ε that supports \numexpr, and a
minimum of 6 gentries. If fewer than 6 gentry environments are supplied before
\thegentries, this option will only log a warning in verbose mode.

The jukebox option guarantees no more adjacent entries than without the
option, for a given seed value; it may not eliminate them completely unless the
number of entries is large. The performance is linear to the number of entries.noshuffle

In general, it’s easier to write gamebooks in a more linear fashion, in which
related entries are kept together. But this is much less fun to play, as it’s too
easy for the reader to simply read the adjacent eentries to decide what to do. For
this reason, this package shuffles the output entries by default. The first and last
entries are never shuffled.

2https://github.com/robertjlee/jukeboxshuffle

3

Sometimes, perhaps for proofreading, you may not want the entries to be
shuffled. In this case, you can use the noshuffle option.verbose

This macro causes the package to output information messages about what
it’s doing to the log file. This is not generally too useful, but it does include a
mapping of the original paragraph indexes to their sorted positons, which may be
useful to keep for handling proofreading corrections.endpage

Puts the last entry on a page on its own. This typically produces a better
“winning” feel for reaching the last entry, but it can also produce documents with
ugly spacing, so it’s recommended to try it each way and see which works better
for your text.seed

It’s suggested that users specify a value for “seed” for stable builds, by adding
the following before including this package: \usepackage[seed=123]{lcg}

Footnotes

When typesetting a gamebook with footnotes, it is confusing if they migrate
to the bottom of each page, as the footnote becomes visually detached from the
entry to which it relates. Some effort has been taken to ensure that footnotes can
be typeset at the bottom of the page on which the mark appears, or the bottom
of each entry, whichever comes first.

However, this implementation has some limitations:

� Footnotes are not expanded until they are typeset.

� As a consequence, attaching one footnote to another with the use of
\footnotemark within a \footnote argument will not advance the counter
in time, so \footnotetext may not behave as you expect unless it is also
set inside the first footnote’s text.

� Footnotes at the end of the page will not be broken across pages. Putting
sufficient text into footnotes will cause the page to overflow.

� Where the footnote mark appears at the very end of a page, the footnote
text may be set at the top of the subsequent page. TEX is asked not to
break the page there, but this influence is limited. It may be possible for the
author to avoid this, eg by adding a rubber length to the interline spacing
(it may be easier to simply choose a different seed value for the lcg package
to reshuffle).

� If you have a lot of rubber space in the text, or variably-sized items, LATEX
may expand the footnote at the end of the entry before it works out where
to put the page break. In this case, the footnote will appear on the wrong
page. The macro \noentryfoot is provided to allow the author to fix this
case.

� Support for other footnotes packages may be limited and the behaviour of
packages like footnote, endnotes, footmisx, fnote, dblfnote etc may be
affected.

� If using the hyperref package, it is recommended to pass the option
hyperfootnotes=false to that package, as the footnote links will be in-
correct.

4

� The package uses TEX \marks to indicate which footnotes should appear on
each page. Because TEX supports only one set of marks, this would break
any other package or usage of \mark while a gamebook was being output.

� Because \mark does not escape a floating environment, such as minipage, it
is likely that this footnote implementation will not work as expected if the
gamebook or \footnote is set in a minipage or similar.

� Each footnote is evaluated in a group. Just conceivably, this might affect
the behaviour of some macros that affect the document beyond the footnote.

� We rely on some non-“public” macros, such as \@mpfn and \@footnotetext

defined by LATEX standard document classes. Other document classes may
override these, which would override this package’s footnotes too.

For this reason, the improved footnote handling is only enabled if you pass the
footnote option, and only while the environment is active.

Implementation

1 \ProvidesPackage{gamebooklib}[2023/07/28 Gamebook by R Lee latex@rjlee.homelinux.org]

We need LATEX2ε, for the extra token registers.
2 \NeedsTeXFormat{LaTeX2e}[1994/06/01]verbose
The package option verbose enables detailed logging. Logging is via the macro
\gamebook@info, which throws away detail messages unless the verbose option
is given.
3 \newcommand{\gamebook@info}[1]{}%

4 \DeclareOption{verbose}{%

5 \renewcommand{\gamebook@info}[1]{\PackageInfo{gamebooklib}{#1}}%

6 \gamebook@info{Gamebook Library package is logging}}%

RL: Untested start of mark support The mark package option enables supportmark

for LATEX2εMark interface, intruduced in 2022. This enables gamebooklib to
declare its own \mark class, ensuring that other packages’ marks are unaffected.
7 %% \newcommand{\gamebooklibmarkclass}{gamebooklibmark}

8 \def\gamebooklib@mark{\mark}

9 %% \DeclareOption{mark}{%

10 %% \gamebook@info{Using mark class \gamebooklibmarkclass}%

11 %% \NewMarkClass{\gamebooklibmarkclass}%

12 %% \renewcommand{\gamebooklib@mark}[1]{\InsertMark{\gamebooklibmarkclass}{#1}}%

13 %% }%endpage
The endpage option puts the last entry on its own page. This can work better

when the last entry is about a page long, and also the final “winning” entry of the
gamebook.
14 \newcommand\gamebook@beforelast{}

15 \DeclareOption{endpage}{%

16 \renewcommand\gamebook@beforelast{\eject}%

17 }%jukebox
The jukebox option defines the \gamebox@jukebox macro; while the macro

does nothing, \ifcsname can then be used to determine if the option was set.
18 \DeclareOption{jukebox}{%

19 \newcommand\gamebook@jukebox{}%

5

20 \gamebook@info{Gamebook Library to perform jukebox index reshuffle

21 pass}%

22 }%footnote
The footnote option enables our footnote processing, to throw out footnotes

at the end of each gentry so that they don’t appear to be against subsequent
entries for that page.

This is genearlly recommended, unless you have a reason to turn it off (such as
a conflicting package). It’s disabled by default because it could cause unexpected
faults.
23 \def\if@gamebook@footnotes{\iffalse}

24 \DeclareOption{footnote}{%

25 \gdef\if@gamebook@footnotes{\iftrue}%

26 \gamebook@info{Gamebook Library footnotes per gamebook entry}%

27 }%noshuffle
28 \def\if@gamebook@shuffle{\iftrue}

29 \DeclareOption{noshuffle}{%

30 \gdef\if@gamebook@shuffle{\iffalse}%

31 \gamebook@info{Gamebook Library entries output in order}%

32 }%
seed

All unknown options are passed to lcg, as it’s our only dependency with op-
tions.
33 \DeclareOption*{%

34 \PassOptionsToClass{\CurrentOption}{lcg}%

35 }%

36 \ProcessOptions\relax%

We need to capture environment contents
37 \RequirePackage{environ}%

Macroswap: used to swap the commands that evaluate the macros
38 \RequirePackage{macroswap}%

Ifthen makes branching and loops a little easier
39 \RequirePackage{ifthen}

LCG: random numbers for the shuffle
40 \RequirePackage{lcg}%

Silence is used to suppress a warning from lcg that gamebook is not wasting
counter registers. debrief ensures that the user is at least told than warnings
were suppressed.

To see the warnings, put the following line before \usepackage{gamebook}:
\usepackage[debrief,showwarnings]{silence}:

41 \RequirePackage[debrief]{silence}%

Let’s count the entries we’re reading in so we can build up token registers.
42 \newcounter{gentryctr}%

43 \setcounter{gentryctr}{0}%

gentry [⟨fixedIdx ⟩]{⟨code⟩}[⟨title⟩] First, we need to parse the optional arguments.
When we say \begin{gentry}, LATEX does some stuff ending in \gentry so we

redefine \gentry to take an optional argument and delegate to \@gentry

44 \newcommand{\gentry}[1][]{\@gentry{#1}}%

\gentry just makes the first argument mandatory.
NB: If you define two entries with the same code, LATEX will print out a ”mul-

tiply defined” label warning.

6

45 \newenvironment{@gentry}[2]{%

46 \xdef\gentryidx{#1}%

47 \xdef\gentrycode{#2}%

48 \@@gentry%

49 }{\ignorespacesandallpars%

50 \global\let\gentryidx\@undefined%

51 \global\let\gentrycode\@undefined%

52 \global\let\gentryidxu\@undefined%

53 \global\let\gentryidxs\@undefined%

54 }%

gentryidx This can be used inside a gentry; it expands to the first optional argument of
the gentry environment, which is either blank or the requested fixed index of the
entry. To get the actual shuffled index, use \gentryidxu.

gentrycode This can be used inside a gentry; it expands to the first mandatory argument of
the gentry environment, which is the code for this entry (without the gentry:

prefix).

\@@gentry then reads in the optional title argument, storing it in the
\gentrytitle macro to supply the unsorted index number and the current entry’s
code respectively.

55 \newcommand{\@@gentry}[1][]{%

56 \def\gentrytitle{#1}%

57 \stepcounter{gentryctr}%

For fixed entries, define a macro to hold the requested index

58 \ifthenelse{\equal{\gentryidx}{}}{}{%

59 \expandafter\xdef\csname fixedat\arabic{gentryctr}%

60 \endcsname{\gentryidx}%

61 }%

62 \expandafter\global\expandafter\newtoks\expandafter{%

63 \csname paratok\arabic{gentryctr}\endcsname}{ }%

64 \Collect@Body\gentry@store%

This was supposed to discard any blank lines at the end of the gentry environment,
but it still left odd spacing in the output somehow, and sometimes produced weird
error messages about \inaccessible and \head. Removed for now.

65 % \ignorespacesandallpars%

66 }

Store the collected environment contents for \thegentries to output: This uses
the token register \gentryN , where N is the unsorted index of this entry. Later,
we’ll change the values of the N bit of \gentryN macros when we shuffle (the
underlying token registers stay the same).

This relies on \refstepcounter{⟨gentryctr⟩} being expanded before this
macro. The label gentry:\gentrycode is thus set to the current index of the
final output entry.

67 \newcommand{\gentry@store}[1]{%

68 \edef\head{\noexpand\begingroup\noexpand\gentryheader%

69 {\arabic{gentryctr}}{\gentryidx}{\gentrycode}{\gentrytitle}%

70 \noexpand\label{gentry:\gentrycode}%

71 }%

72 \global\expandafter\csname paratok\arabic{gentryctr}\endcsname=%

7

Output the header, the environment token list, flush any footnotes (if applicable)
then the inter-gentry footer.

73 \expandafter{\head #1%

74 \outputfootnotes@endgentry%

75 \gentryfooter\endgroup}%

76 }%

This macro is executed inside the gentry group and sets up the commands\gentry@footnotespergentry

to be run to allow footnotes. It is only expanded if \if@gamebook@footnotes is
true, ie the footnotes option is given.

77 \newcommand{\gentry@footnotespergentry}{}

\thegentries

This macro shuffles the entries as required, then expands to them in the correct
order.

78 \newcommand{\thegentries}{%

This command is in a group so that the output routine resets.
The expansion of \gentry@footnotespergentry only happens if the footnote

option was given; it sets up the output routine while the gamebook is running.

79 \begingroup%

80 \if@gamebook@footnotes\gentry@footnotespergentry\fi%

To begin, let’s record the number of entries. This may come in useful. Note
that you can use this macro in the gentry environment, because that’s not been
expanded yet.

81 \xdef\gentrycount{\arabic{gentryctr}}%

The next thing is to perform some surgery on LCG. This cuts out an annoying
warning, hopefully more reliably than replacing the definition of \p@stkeysr@nd.
The warning is simply that this package doesn’t waste another counter every time
it changes the random limits (which happens a lot during the Fisher-Yates shuffle):

82 \WarningFilter{lcg}{Using an already existing counter rand}%

The output routine and end-of-page footnotes

The idea is to keep footnotes always on the same page as their mark where
possible.

LATEX does lots of fun things with the output routine, which we want to keep.
So grab a copy of whatever the code is currently doing:

Here I’m using the \edef trick to expand \the\output into a token register,
because using a macro causes a weird error about an “{” after “\the”.

83 \newtoks\gentry@oldoutput{}%

84 \edef\mytmp@{\noexpand\gentry@oldoutput={\the\output}}\mytmp@%

For the footnotes, if we reach the end of a page without outputting them, we need
to flush them.

\output is the output routine. It takes the page built up in \box255, annotates
it with headers, footers etc, then ships it out. For our purposes, we only need to
append the footnotes to the bottom of \box255.

85 \if@gamebook@footnotes\output={%

86 \def\gentry@deferoutput{\the\gentry@oldoutput}%

8

The \outputpenalty tells us why the output routine was called; generally, it’s
invoked whenever a new floatable environment is generated, or when a page is
full. Anything less than -1000 means that the page was filled, so we should add
any footnotes only in this case.

87 \ifnum\outputpenalty<-\@M\else%

88 \if\gentryshouldoutput0%

89 \unvbox255\def\gentry@deferoutput{}%

90 \else%

91 \expandafter\ifcsname footnotetoks\botmark\endcsname%

92 \expandafter\if\expandafter\relax\expandafter%

93 \detokenize\expandafter{\csname footnotetoks\botmark\endcsname}\relax\else%

94 \global\setbox255=\vbox to \vsize{%

95 \unvbox255\vfill\outputfootnotes@endpage}%

96 \fi\fi%

97 \fi\fi%

98 \gentry@deferoutput%

99 % \the\gentry@oldoutput

100 }\fi%

The Shuffling Algorithm

The basic shuffling algorithm is to first shuffle all entries, except for those
marked with a fixed index, then to go through the fixed-index entries in order and
swap them into their final place.

The original version of this package had a bug relating to multiple fixed-index
entries (now fixed). In short, let A, B, and C be indices; if A < B and (unshuffled)
entry number A was fixed at (shuffled) location B, while (unshuffled) entry number
B was fixed at (shuffled) location C, so during the “shuffle,” A would be swapped
with B, then B would be swapped with C, resulting in A appearing at C in the
text, not B as requested. Because the unshuffled index doesn’t appear in either
the source or output document, this could be difficult to diagnose; the author
simply saw one of their entries ending up in the wrong place.

TEX has well beyond 255 token registers these days, so don’t bother to check
that limit.

The LCG package provides a suitable pseudo-random number generator. What
we want is a repeatable series of disparate numbers, not an especially random one.

1. Work out how many entries there are (N). Provided \thegentries is called
at the end, this is just the value of gentryctr

2. Declare a set of token registers named \paratoksn, where n is each integer
1. . .N inclusive. These will hold the contents of the entry.

3. Declare a set of macros named \paraidxn, where n is each integer 1. . .N
inclusive, each initialised to n. These will hold the number of the entry.

4. Shuffle elements {2 : N − 1}, in that array. For i = 2 through N − 2

(a) Let R be a random number between i and N − 1 inclusive

(b) If R ̸= i then swap macros \gentrytoksR and \gentrytoksi

(c) If R ̸= i then swap macros \paraIdxR and \gentryidxi

9

5. If a jukebox index sort is requested, perform an optimisation pass (see below)

6. For i = 1 : n, output token reg i

Define macros \csname paraIdxn\endcsname containing the arabic original
gentry number to be put out on the nth output gentry.

gentrycount

101 \xdef\gentrycount{\arabic{gentryctr}}%

we can reuse gentryctr; we’ve finished this set of paras and kept the total count.

102 \setcounter{gentryctr}{0}%

If there are fewer than 3 entries, don’t try and shuffle.

103 \ifthenelse{\gentrycount<3}{}{%SHUFFLE START

104 \whiledo{\not{\value{gentryctr}>\gentrycount}}{%

105 \edef\gentryidxu{\arabic{gentryctr}}%

106 \expandafter\xdef\csname paraIdx\gentryidxu\endcsname{\gentryidxu}%

107 \typeout{DEFINED paraIdx\gentryidxu}%

108 \stepcounter{gentryctr}%

109 }%

gentryidxu The \gentryidxu macro can be used inside a gentry to obtain the current arabic
shuffled index of the entry.

gentryidxs The \gentryidxs macro can be used inside a gentry to obtain the arabic original
unshuffled index of the entry (the first gentry is 1, and this counter resets after
each expansion of \thegentries).

110 \if@gamebook@shuffle%

111 \setcounter{rand}{\gentrycount}%

112 \addtocounter{rand}{-1}\edef%

113 \stoppoint{\arabic{rand}}%

First, shuffle everything that isn’t fixed down. Don’t renumber para 1 or
\gentrycount; Fisher-Yates-shuffle the rest NB: we stop at \gentrycount−2,
because \gentrycount−1 would only shuffle with itself.

114 \setcounter{gentryctr}{2}%

115 \chgrand[last=\stoppoint]%

116 \whiledo{\value{gentryctr}<\stoppoint}{%

If this is to be swapped with a fixed position, skip it

117 \edef\gentryidxu{\arabic{gentryctr}}%

118 \expandafter\ifcsname fixedat\gentryidxu\endcsname%

119 \gamebook@info{Not shuffling \gentryidxu; fixed pos}%

120 \stepcounter{gentryctr}%

121 \else%

122 \gamebook@info{Shuffling \gentryidxu}%

123 \stepcounter{gentryctr}%

124 \edef\nextidx{\arabic{gentryctr}}%

Roll the dice. If we’ve hit an entry with fixed position, we must skip it, or it would
end up being swapped out into fixedat\arabic{rand} instead.

125 \chgrand[first=\nextidx]%

126 \rand%

127 \expandafter\ifcsname fixedat\arabic{rand}\endcsname\else%

10

128 \gamebook@info{Shuffling \gentryidxu to \arabic{rand}}%

129 \macroswap{paraIdx\gentryidxu}{paraIdx\arabic{rand}}%

130 \fi%

131 \fi%

132 }%

Now move fixed entries into their final place:

133 \setcounter{gentryctr}{2}%

134 \whiledo{\not{\value{gentryctr}>\stoppoint}}{%

135 \edef\gentryidxu{\arabic{gentryctr}}%

136 \expandafter\ifcsname fixedat\gentryidxu\endcsname%

137 \expandafter\edef\expandafter\mydest\expandafter%

138 {\expandafter\csname fixedat\gentryidxu\endcsname}%

139 \gamebook@info{MOVING FIXED GAMEBOOK ENTRY INTO PLACE: \gentryidxu -> \mydest}%

140 \macroswap{paraIdx\gentryidxu}%

141 {paraIdx\expandafter\csname fixedat\gentryidxu\endcsname}%

Edge case: It’s possible that we also have fixedat\mydest; in which case
that would be messed up with the reshuffling. So we need to rename that to
fixedat\gentryidxu as well, then reprocess this index

142 \expandafter\ifcsname fixedat\mydest\endcsname%

143 \macroswap{fixedat\gentryidxu}{fixedat\mydest}%

144 \expandafter\global\expandafter\let\csname fixedat\mydest\endcsname\@undefined%

145 \addtocounter{gentryctr}{-1}%

146 \fi%

if we are doing a jukebox shuffle, remember which final entries are fixed, so they
don’t get moved.

147 \ifcsname gamebook@jukebox\endcsname%

148 \expandafter\def\csname fixedto\mydest\endcsname{}%

149 \fi%

150 \fi%

151 \stepcounter{gentryctr}%

152 }%

The jukebox shuffle requires an extra pass. This must come after moving fixed
entries into their final place, to allow us to compare the initial indicies. We make
a reasonable effort:

� t is the current index

� u is the next index

� r is a random index after u (make 3 attempts to find a non-fixed r)

� if abs(t − u) = 1 and r is not fixed, then swap u and r if u is not fixed;
otherwise:

� if abs(t− u) = 1 and r is not fixed, then swap t and r if t is not fixed;

� otherwise, give up.

153 \ifcsname gamebook@jukebox\endcsname%

154 \ifnum\gentrycount<6%

155 \gamebook@info{Jukebox pass skipped; too few entries}%

156 \else%

157 \setcounter{gentryctr}{2}%

11

158 \whiledo{\not{\value{gentryctr}=\stoppoint}}{%

159 \edef\gentryidxt{\arabic{gentryctr}}%

160 \edef\curpos{\csname paraIdx\gentryidxt\endcsname}%

161 \stepcounter{gentryctr}%

162 \edef\gentryidxu{\arabic{gentryctr}}%

163 \edef\nextpos{\csname paraIdx\gentryidxu\endcsname}%

164 \edef\pdiff{\the\numexpr\curpos+\nextpos}%

165 \ifnum\pdiff<0\edef\pdiff{\the\numexpr-\pdiff}\fi%

166 \edef\sdiff{\the\numexpr\curpos-\nextpos}%

167 \ifnum\sdiff<0\edef\sdiff{\the\numexpr-\sdiff}\fi%

168 \ifnum\pdiff<\sdiff\relax\def\thediff{\pdiff}\else\def\thediff{\sdiff}\fi%

169 \ifnum\thediff=1%

170 \gamebook@info{Jukebox: entries are too close: %

171 \gentryidxt,\gentryidxu\space (original \curpos,\nextpos)}%

172 \chgrand[first=\numexpr\gentryidxu+1]%

173 \rand%

174 \expandafter\ifcsname fixedto\arabic{rand}\endcsname\rand\fi%

175 \expandafter\ifcsname fixedto\arabic{rand}\endcsname\rand\fi%

176 \expandafter\ifcsname fixedto\arabic{rand}\endcsname%

177 \gamebook@info{Can’t reshuffle: failed to find non-fixed index}%

178 \else%

179 \ifcsname fixedto\gentryidxu\endcsname%

180 \ifcsname fixedto\gentryidxt\endcsname%

181 \gamebook@info{Can’t reshuffle: \curpos\space and %

182 \nextpos\space are both fixed.}%

183 \else%

184 \gamebook@info{Reshuffling \gentryidxt\space to \arabic{rand}}%

185 \macroswap{paraIdx\gentryidxt}{paraIdx\arabic{rand}}%

186 \fi%

187 \else%

188 \gamebook@info{Reshuffling \gentryidxu\space to%

189 \arabic{rand} (alt)}%

190 \macroswap{paraIdx\gentryidxu}{paraIdx\arabic{rand}}%

191 \fi\fi\fi%

192 }%

193 \fi\fi%

194 }\fi%SHUFFLE END

Now we can output the gentry token registers to let LATEX do its thing:

195 \gamebook@info{Shuffled! Gentry order:}%

196 \setcounter{gentryctr}{1}%

197 \whiledo{\not{\value{gentryctr}>\gentrycount}}{%

198 \edef\gentryidxu{\arabic{gentryctr}}%

199 \gamebook@info{\gentryidxu -> \csname paraIdx\gentryidxu\endcsname}%

200 \stepcounter{gentryctr}%

201 }%

We can reuse the same counter again to output

202 \setcounter{gentryctr}{0}%

203 \gamebook@info{Outputting \gentrycount\space gamebook entries}%

204 \whiledo{\value{gentryctr}<\gentrycount}{%

Use refstepcounter in the loop to allow \label to work as expected.

205 \refstepcounter{gentryctr}%

Keep last entry on its own page

12

206 \ifthenelse{\value{gentryctr}=\gentrycount}{%

207 \gamebook@beforelast%

208 }{}%

209 \edef\gentryidxu{\arabic{gentryctr}}%

210 \xdef\gentryidxs{\csname paraIdx\gentryidxu\endcsname}%

211 \gamebook@info{Output gentry \gentryidxu\ of \gentrycount,%

212 original idx \gentryidxs}%

Output the stored entry body, stripping any extraneous space:

213 \the\csname paratok\gentryidxs\endcsname%

214 }%

Finally, we clear the registers and reset the counter in case we want to start again
(NB: fixedto is scope to the current block only, so no need to clear that)

215 \gamebook@info{All gamebook entries added to main vertical list}%

216 \setcounter{gentryctr}{1}%

217 \whiledo{\not{\value{gentryctr}>\gentrycount}}{%

218 \edef\gentryidxu{\arabic{gentryctr}}%

219 \expandafter\global\expandafter\let%

220 \csname paratok\gentryidxu\endcsname\@undefined%

221 \expandafter\ifcsname fixedat\gentryidxu\endcsname%

222 \expandafter\global\expandafter\let%

223 \csname fixedat\gentryidxu\endcsname\@undefined%

224 \fi%

225 \stepcounter{gentryctr}%

226 }%

227 \setcounter{gentryctr}{0}%

228 \eject%

229 \endgroup%

230 }%

The final \eject ensures that the output routine has flushed as many pages as it
can, before the output routine is reset again.

{⟨counterIdx ⟩}{⟨fixedIdx ⟩}{⟨code⟩}{⟨title⟩}\gentryheader

This macro is called before outputting the header. Its job is to format whatever
header information the user wants to see on each entry; generally, this will be the
page number.

It takes 4 parameters:

1. The unshuffled index value (to help an author find an entry in the original
text); this is numerically the same as \gentryidxs

2. The fixed index value, if any; otherwise an empty argument

3. The user-entered unique code for this entry

4. The user-supplied title, if any; otherwise an empty argument

The arabic value of the output index can be obtained with \gentryidxu; the
numeric value is also set in the counter gentryctr.

231 \newcommand{\gentryheader}[4]{%

232 \noindent\textbf{\Huge\arabic{gentryctr}\large\ #4}%

233 \nopagebreak%

234 \vspace{0.3em}%

235 \nopagebreak%

236 \par%

13

237 \marginpar{#3}%

238 }%

gentryshouldoutput This macro may be called from the output routine, and can be used to suppress
page breaks. It was added because it proves fairly easy to write custom divider
routines that can produce blank pages. If it expands to the number 1, then the
page will be output; if it expands to 0, it will not be.

For example, the following will prevent pages that are less than 80% full.
\renewcommand{\gentryshouldoutput}{%

\ifdim\pagetotal>0.8\pagegoal\relax1\else 0\fi}

Caution: if this macro continually tests false, then material will eventually be
discarded from the main vertical list to ensure that TEX can complete the output of
the document. If you redefine this macro, make sure to check out output carefully
for missing text.

239 \newcommand{\gentryshouldoutput}{1}

gentryfooter This takes no arguments and is simply expanded after the entry is typeset. The
default adds some vertical space and a simple separator.

240 \newcommand{\gentryfooter}{%

241 \par\vspace{2em}\centerline{---}\vspace{2em plus 1in}\par%

242 }%

ignorespacesandallpars@ This is a technique described on StackExchange3.
This is used to ensure that extra space at the start and end of the gentry

environment is ignored.

243 \def\ignorespacesandallpars@{%

244 \@ifnextchar\par%

245 {\expandafter\ignorespacesandallpars\@gobble}%

246 {}%

247 }%

{⟨token register⟩} Token registers to hold each footnote.\@footnotetext

Each footnote is held in its own token register, so that we can control which
footnotes appear on each page.

LATEX would normally use saveboxes to store footnotes, but I prefer to hold off
on expanding them until we know which page they’re to be expanded on, which
saves some difficulties (and perhaps creates others).

To start with, modify LATEX’s \@makefnmark to output a mark for the footnote,
holding its index. This tells the output routine which footnotes to include at the
end of the page. The \in@out macro is only defined when outputting footnotes,
so suppresses this mark when we don’t need it.

248 \g@addto@macro{\@makefnmark}{%

249 \ifcsname in@out\endcsname\else%

250 \gamebooklib@mark{\arabic{\@mpfn}}%

251 \fi%

252 }%

3https://tex.stackexchange.com/questions/179016/
ignore-spaces-and-pars-after-an-environment#179034

14

The \footnotetext@save is a convenience that takes the the footnote counter
value in the first argument, the token register as a second argument, and the token
list (footnote text) as the third.

253 \g@addto@macro{\gentry@footnotespergentry}{%

254 \newcommand{\@footnotetext@save}[3]{%

255 \global\newtoks#2{}%

256 \global#2={\noindent\@footnotemark{}#3}%

257 }}%

\@footnotetext@save unpacks the arguments for \@footnotetext@save@. This
one uses the value of the \@mpfn counter to unpack the footnote counter, the token
register (full csname) as the first argument, and the token list (footnote text) as
the second.

258 \g@addto@macro{\gentry@footnotespergentry}{%

259 \newcommand{\@footnotetext@save@}[2]{%

260 \edef\@tmp@{\expandafter\arabic{\@mpfn}}%

261 \expandafter\@footnotetext@save\expandafter{\@tmp@}{#1}{#2}%

262 }}%

Footnotes are built in a group, so that \in@out can be defined locally to indicate
that footnotes are being built (which stops spurious \marks).

263 \g@addto@macro{\gentry@footnotespergentry}{%

264 \renewcommand{\@footnotetext}[1]{%

265 \begingroup%

266 \def\in@out{}% flag that we’re building footnotes

267 \edef\@tmp{\expandafter\csname footnotetoks\arabic{\@mpfn}\endcsname}%

268 \expandafter\@footnotetext@save@\expandafter{\@tmp}{%

269 % This fixes up the use of \cs{footnotemark} within footnotes:

270 #1}%

271 \endgroup%

272 }}%

{⟨maxIdx ⟩}\outputfootnotes

Command to output the footnotes, which are just in \footnotetoksN for now.
An end user can call this at any point in the text to set out the footnotes.
This macro takes one argument, being the maximum index of footnotes to

output, inclusive. Footnotes after this index will be excluded. If not provided, the
value provided by the counter \@mfpn, which is the default LATEX counter, will be
used.

273 \newcounter{fncounter}%

274 \newcommand{\outputfootnotes}[1]{%

275 \begingroup%

276 \def\in@out{}% flag that footnotes are outputting; suppresses marks

277 \setcounter{fncounter}{1}%

Called in vertical mode, and don’t want to throw a page break.
I’m not sure how LATEX renders the footnote rule exactly, so I’m just using my

own.

278 \def\footnote@rule{%

The next line comes from the TUGboat suggestions, and protect against various
user changes

279 \leftskip=0pt\rightskip=0pt\interlinepenalty=1000%

280 \penalty-1000%

15

281 \vspace{1pt plus 2pt minus 0.5pt}%

282 \hspace{-0.5in}\rule{1.5in}{0.4pt}\\%

283 }%

Invoke the output routine. This attempts to stop the output routine being invoked
while we’re adding the footnote rule, which could cause a blank footnote to appear.

Instead, it means some footnotes could appear on the subsequent page. To
guard against this, footnotes are set into a \vbox to prevent page breaking.

The macro \footnote@rule is output before each footnote. The first time,
it outputs a divider rule; subsequently, it just throws a new paragraph to keep
footnotes on separate lines.

The next line comess from the TUGboat suggestions, and protect against var-
ious user changes

284 \outputpenalty=-\@MM\break%

285 \vbox{%

286 \whiledo{\not{\value{fncounter}>#1}}{%

We are now looping over all possible entry numbers, in order. Some will already
have been output, but we check them all anyway (it doesn’t take much time).

First, we check if the macro exists. If it does, it must contain the value of the
token register.

Next, we make sure that the token register has contents.

287 \expandafter\ifcsname footnotetoks\arabic{fncounter}\endcsname%

288 \edef\tmp@@{\csname footnotetoks\arabic{fncounter}\endcsname}%

This \detokenize black magic tests if a token reg is actually empty4

289 \expandafter\if\expandafter\relax\expandafter%

290 \detokenize\expandafter{\the\tmp@@}\relax\else%

291 \footnote@rule\gdef\footnote@rule{\ifvmode\else\par\fi}%

292 \interlinepenalty\interfootnotelinepenalty%

Actually output the footnotes.
Having output the footnote, clear the token register (to save memory), then

use \let to clear the definition of the macro. This ensures that we don’t try to
output the same footnote twice (at page end and entry end).

293 \expandafter\the\tmp@@%

294 \global\expandafter\tmp@@={}%

295 \expandafter\let\tmp@@\@undefined%

296 \fi\fi%

297 \stepcounter{fncounter}%

298 }%

299 }%

300 \endgroup%

301 }%

LATEX works by building up a little more than a page, then calling the output
routine. The output routine then decides where to put the page end from the
built-up material. If there is a footnote mark, it could come after the page end, so
we can’t rely on the fact that there’s footnote register to determine if we should
output footnotes or not. The edge case is: if the footnote mark is held back for
the next page, the footnote text would appear on the footer of the page where
being built when the mark was expanded, which is the page before the footnote.

4https://tex.stackexchange.com/questions/263733/

whats-the-best-practice-way-to-test-whether-parameter-is-empty

16

One fix for this is to have each footnote mark in the main body of the text
output a \mark containing the footnote’s counter value, and output the footnotes
only to \botmark, which is the last \mark actually typeset on the page.

(see https://www.tug.org/TUGboat/Articles/tb11-4/tb30salomon.pdf, page
598, to read around footnotes).

This macro is called at the end of each gentry. It switches into vertical mode\outputfootnotes@endgentry

(as ending gentry doesn’t throw a \break or line end by itself), then we output all
footnotes so far (by reading the footnote counter \@mpfn, as this is “sequential”).

302 \newcommand{\outputfootnotes@endgentry}{%

303 \if@gamebook@footnotes%

304 \nopagebreak\ifhmode\\\fi% get into vertical mode

305 \nopagebreak\outputfootnotes{\arabic{\@mpfn}}%

306 \fi%

307 }%

This method simply suppresses footnotes at the end of the entry within the current\noentryfoot

group. This forces footnotes within the current group to be printed at the bottom
of the page.

This is useful in the case where LATEX expands the footnote at the end of the
entry, then decides to put the page split between the footnote mark and the text.

308 \newcommand{\noentryfoot}{\def\outputfootnotes@endgentry{}}

This is called by the output routine at the end of each page. If \botmark has a\outputfootnotes@endpage

value, then we can output all footnotes up to that index.

309 \g@addto@macro{\gentry@footnotespergentry}{%

310 \newcommand{\outputfootnotes@endpage}{%

311 \expandafter\if\expandafter\relax\expandafter%

312 \detokenize\expandafter{\botmark}\relax\else%

313 \outputfootnotes{\botmark}%

314 \fi%

315 }}%

Change History

v1.0
General: Endpage option 4

Footnote option 3
Initial Release 1
Noshuffle option 3
Verbose option 4

v1.1
General: Bugfix: edge case with

clashing fixed-index entries . . . 1
gentryidxs: Access original index 10
gentryidxu: Access shuffled index 10

v1.2

General: Bugfix: footnotes set
justified on last line 1

v1.3

General: Feature: ”jukebox”
shuffle 3

gentryshouldoutput: Suppress
short pages option 14

v1.4

General: Improved documentation 1

17

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@@gentry 48, 55

\@footnotemark 256

\@footnotetext . 14, 264

\@footnotetext@save

. 254, 261

\@footnotetext@save@

. 259, 268

\@gentry 44

\@makefnmark 248

\@mpfn 250, 260, 267, 305

\␣ 211, 232

C

\chgrand . . 115, 125, 172

\curpos 160,
164, 166, 171, 181

E

\eject 16, 228

endpage (option) . . . 4, 5

environments:

gentry 44

F

footnote (option) . . 3, 6

\footnote@rule 278, 291

G

\gamebook@beforelast

. 14, 16, 207

\gamebook@info
. 3, 5, 6, 10, 20,
26, 31, 119, 122,
128, 139, 155,
170, 177, 181,
184, 188, 195,
199, 203, 211, 215

\gamebook@jukebox . 19

\gamebooklib@mark .
. 8, 12, 250

\gamebooklibmarkclass

. 7, 10–12

\gentry 44

gentry (environment) 44

\gentry@deferoutput

. 86, 89, 98
\gentry@footnotespergentry

. . . . 8, 77, 80,
253, 258, 263, 309

\gentry@oldoutput .
. . . . 83, 84, 86, 99

\gentry@store . . . 64, 67
\gentrycode

. 47, 51, 55, 69, 70
\gentrycount

. . 81, 101, 101,
103, 104, 111,
154, 197, 203,
204, 206, 211, 217

\gentryfooter
. 75, 240, 240

\gentryheader
. . . . 2, 13, 68, 231

\gentryidx 46,
50, 55, 58, 60, 69

\gentryidxs 53,
110, 210, 212, 213

\gentryidxt 159, 160,
171, 180, 184, 185

\gentryidxu 52,
105–107, 110,
117–119, 122,
128, 129, 135,
136, 138–141,
143, 162, 163,
171, 172, 179,
188, 190, 198,
199, 209–211,
218, 220, 221, 223

\gentryshouldoutput

. 88, 239, 239
\gentrytitle 56, 69

I
\if@gamebook@footnotes

23, 25, 80, 85, 303
\if@gamebook@shuffle

. 28, 30, 110
\ignorespacesandallpars

. 49, 65, 245
\ignorespacesandallpars@

. 243, 243

\in@out 266, 276
\InsertMark 12

J
jukebox (option) . . . 3, 5

M
\macroswap . . . 129,

140, 143, 185, 190
mark (option) 5
\mydest 137,

139, 142–144, 148

N
\NewMarkClass 11
\nextidx 124, 125
\nextpos 163,

164, 166, 171, 182
\noentryfoot . . . 17, 308
noshuffle (option) . . 3, 6

O
\output 84, 85
\outputfootnotes . .

. 15, 274, 305, 313
\outputfootnotes@endgentry

. . 17, 74, 302, 308
\outputfootnotes@endpage

. 17, 95, 310

P
\pdiff 164, 165, 168

S
\sdiff 166–168
seed (option) 4, 6
\space 171, 181,

182, 184, 188, 203
\stoppoint . . . 113,

115, 116, 134, 158

T
\thediff 168, 169
\thegentries 8, 78
\typeout 107

V
verbose (option) . . . 4, 5

18

