
XHTML™ 2.0

W3C Working Draft 6 May 2003
This version:

http://www.w3.org/TR/2003/WD-xhtml2-20030506
Latest version:

http://www.w3.org/TR/xhtml2
Previous version:

http://www.w3.org/TR/2003/WD-xhtml2-20030131
Diff-marked version:

xhtml2-diff.html
Editors:

Jonny Axelsson, Opera Software
Beth Epperson, Netscape/AOL
Masayasu Ishikawa, W3C
Shane McCarron, Applied Testing and Technology
Ann Navarro, WebGeek, Inc.
Steven Pemberton, CWI (HTML Working Group Chair)

This document is also available in these non-normative formats: Single XHTML file [p.1] ,
PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive.

Copyright ©2003 W3C® (MIT, ERCIM , Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
XHTML 2 is a general purpose markup language designed for representing documents for a
wide range of purposes across the World Wide Web. To this end it does not attempt to be all
things to all people, supplying every possible markup idiom, but to supply a generally useful set
of elements.

Status of This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the W3C.

- 1 -

XHTML™ 2.0XHTML 2.0

http://www.w3.org/
http://www.w3.org/TR/2003/WD-xhtml2-20030506
http://www.w3.org/TR/xhtml2
http://www.w3.org/TR/2003/WD-xhtml2-20030131
http://www.w3.org/People/mimasa/
http://www.aptest.com/
http://www.cwi.nl/~steven/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

This document is the fifth public Working Draft of this specification. It should in no way be
considered stable, and should not be normatively referenced for any purposes whatsoever. This
version includes an early implementation of XHTML 2.0 in RELAX NG [RELAXNG [p.191]], but
does not include the implementations in DTD or XML Schema form. Those will be included in
subsequent versions, once the content of this language stabilizes. This version also does not
address the issues revolving around the use of [XLINK [p.193]] by XHTML 2. Those issues are
being worked independent of the evolution of this specification. Those issues should, of course,
be resolved as quickly as possible, and the resolution will be reflected in a future draft. Finally,
the working group has started to resolve many of the issues that have been submitted by the
public. If your particular issue has not yet been addressed, please be patient - there are many
issues, and some are more complex than others.

This document has been produced by the W3C HTML Working Group (members only) as part of
the W3C HTML Activity. The goals of the HTML Working Group are discussed in the HTML
Working Group charter.

Public discussion of XHTML takes place on www-html@w3.org (archive). To subscribe send an
email to www-html-request@w3.org with the word subscribe in the subject line.

Please report errors in this document to www-html-editor@w3.org (archive).

At the time of publication, the Working Group believed there were no patent disclosures relevant
to this specification. A current list of patent disclosures relevant to this specification may be
found on the Working Group’s patent disclosure page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Quick Table of Contents
1. Introduction

................ 132. Terms and Definitions
3. Conformance Definition

.............. 194. The XHTML 2.0 Document Type

.............. 215. Module Definition Conventions

............... 276. XHTML Attribute Collections

................ 417. XHTML Structure Module

............... 458. XHTML Block Text Module

............... 539. XHTML Inline Text Module

............... 6110. XHTML Hypertext Module

................. 6311. XHTML List Module

................ 6912. XHTML Linking Module

............. 7313. XHTML Metainformation Module

................ 7714. XHTML Object Module

.................. 8915. Ruby Module

- 2 -

XHTML 2.0Quick Table of Contents

http://www.w3.org/MarkUp/Group/
http://cgi.w3.org/MemberAccess/AccessRequest
http://www.w3.org/MarkUp/Activity
http://www.w3.org/2002/05/html/charter
http://www.w3.org/2002/05/html/charter
http://lists.w3.org/Archives/Public/www-html/
http://lists.w3.org/Archives/Public/www-html-editor/
http://www.w3.org/MarkUp/2002/Disclosures
http://www.w3.org/TR/

............... 9116. XHTML Scripting Module

.............. 9517. XHTML Style Attribute Module

............... 9718. XHTML Style Sheet Module

................ 10119. XHTML Tables Module

.................. 12520. XForms Module

................. 12721. XML Events Module

............... 129A. Changes from XHTML 1.1

............. 131B. XHTML 2.0 RELAX NG Definition

........... 133C. XHTML RELAX NG Module Implementations

................. 175D. XHTML 2.0 Schema

........... 177E. XHTML Schema Module Implementations

............ 179F. XHTML 2.0 Document Type Definition

............ 181G. XHTML DTD Module Implementations

.................. 185H. List of Elements

.................. 187J. List of Attributes

................ 189I. Cross-reference Index

................... 191K. References

................. 195L. Acknowledgements

List of Issues
DTD Bias
User Agent Conformance needs to be elaborated
Need a cohesive XHTML 2 content model definition [p.20]
Linktype ’required’ [p.24]
Linktype ’prefetch’ [p.24]
Linktype ’redirect’ [p.24]
improve bidi example [p.29]
Accesskey [p.33]
Type attribute is inconsistent with the Embedding Attribute Collection [p.36]
Allow any element to be an image map? [p.38]
Define ismap better [p.38]
Require UA to give feedback on regions [p.38]
List of XHTML 2 Events Needed [p.38]
Style Attributes and Generic XML [p.39]
footer [p.41]
security tag [p.41]
duplication of title [p.43]
content model of address element [p.46]
Deprecate h1-6? [p.48]
Remove or rename hr [p.49]
l element content model [p.53]
nr element [p.54]

- 3 -

List of IssuesXHTML 2.0

br element still needed [p.54]
strong [p.58]
Possible rel values [p.69]
XML linking support [p.69]
meta properties [p.73]
meta and RDF [p.74]
Improve handling of meta data profiles [p.75]
Could param be an attribute? [p.84]
Caption element needs its own module [p.87]
Style Attributes and Generic XML [p.95]
Change summary needed [p.129]
XHTML 2.0 Schema Needed [p.175]
XHTML 2.0 DTD Needed [p.179]
Module implementation XHTML Base Architecture needed [p.181]
Module implementation XHTML Notations needed [p.181]
Module implementation XHTML Datatypes needed [p.181]
Module implementation XHTML Common Attribute Definitions needed [p.182]
Module implementation XHTML Qualified Names needed [p.182]
Module implementation XHTML Character Entities needed [p.182]
Module implementation Structure needed [p.182]
Module implementation Block Text needed [p.182]
Module implementation Inline Text needed [p.183]
Module implementation Hypertext needed [p.183]
Module implementation List needed [p.183]
Module implementation Link needed [p.183]
Module implementation Metainformation needed [p.183]
Module implementation Object needed [p.183]
Module implementation Scripting needed [p.184]
Module implementation Style Attribute needed [p.184]
Module implementation Style Sheet needed [p.184]
Module implementation Tables needed [p.184]
Module implementation Param needed [p.184]

Full Table of Contents
1. Introduction

1.1. What is XHTML 2?
1.1.1. Backwards compatibility
1.1.2. XHTML2 and Presentation
1.1.3. Design Aims

1.2. What are the XHTML 2 Modules?
................ 132. Terms and Definitions

3. Conformance Definition

- 4 -

XHTML 2.0Full Table of Contents

3.1. Document Conformance
3.1.1. Strictly Conforming Documents

3.2. User Agent Conformance
.............. 194. The XHTML 2.0 Document Type
.............. 215. Module Definition Conventions
................ 215.1. Module Structure
............. 215.2. Abstract Module Definitions
............... 215.3. Syntactic Conventions
................. 225.4. Content Types
................. 235.5. Attribute Types
............... 276. XHTML Attribute Collections
.............. 276.1. Core Attribute Collection
.............. 286.2. I18N Attribute Collection
............. 296.3. Bi-directional Text Collection
......... 306.3.1. Inheritance of text direction information
........ 306.3.2. The effect of style sheets on bidirectionality
................. 316.4. Edit Collection
............. 316.5. Hypertext Attribute Collection
............. 346.6. Embedding Attribute Collection
............. 366.7. Image Map Attribute Collection
................... 386.8. Events
.............. 396.9. Style Attribute Collection
............. 406.10. Common Attribute Collection
................ 417. XHTML Structure Module
................ 427.1. The html element
................ 427.2. The head element
................ 427.3. The title element
................ 437.4. The body element
............... 458. XHTML Block Text Module
............... 468.1. The address element
.............. 468.2. The blockcode element
.............. 478.3. The blockquote element
................ 478.4. The div element
............... 488.5. The heading elements
................ 498.6. The hr element
................. 508.7. The p element
................ 508.8. The pre element
............... 518.9. The section element
............... 539. XHTML Inline Text Module
................ 549.1. The abbr element
................ 549.2. The cite element
................ 559.3. The code element
................ 559.4. The dfn element

- 5 -

Full Table of ContentsXHTML 2.0

................ 559.5. The em element

................ 569.6. The kbd element

................. 569.7. The l element

................ 579.8. The quote element

................ 579.9. The samp element

............... 589.10. The span element

............... 589.11. The strong element

................ 589.12. The sub element

................ 599.13. The sup element

................ 599.14. The var element

............... 6110. XHTML Hypertext Module

................. 6110.1. The a element

................. 6311. XHTML List Module

.......... 6511.1. Definition lists: the dl, dt, and dd elements

................ 6611.2. The nl element

.............. 6611.3. The ol, and ul elements

................ 6711.4. The li element

................ 6711.5. The label element

................ 6912. XHTML Linking Module

................ 6912.1. The link element

............ 7012.1.1. Forward and reverse links

........... 7012.1.2. Links and external style sheets

............ 7012.1.3. Links and search engines

............. 7313. XHTML Metainformation Module

............... 7313.1. The meta element

............ 7413.1.1. meta and search engines

............... 7413.1.2. meta and RDF

.............. 7513.1.3. meta data profiles

................ 7714. XHTML Object Module

............... 7714.1. The object element

............. 7814.1.1. Defining terminology

......... 7814.1.2. Basic Information for Object Handlers

............ 7914.1.3. Rules for processing objects

............... 8314.2. The param element

............ 8514.2.1. Referencing object data

....... 8614.2.2. Object element declarations and instantiations

............... 8714.3. The standby element

.................. 8915. Ruby Module

............... 9116. XHTML Scripting Module

............... 9116.1. The noscript element

............... 9216.2. The script element

............ 9216.2.1. Rules for processing scripts

.......... 9316.2.2. Specifying the scripting language

- 6 -

XHTML 2.0Full Table of Contents

.......... 9316.2.3. Declaration of a scripting language

.......... 9316.2.4. Dynamic modification of documents

.............. 9517. XHTML Style Attribute Module

............... 9718. XHTML Style Sheet Module

................ 9718.1. The style element

............. 9818.1.1. External style sheets

.......... 9818.1.2. Preferred and alternate style sheets

........... 9818.1.3. Specifying external style sheets

................ 10119. XHTML Tables Module

............... 10219.1. The caption element

.............. 10219.1.1. Caption Clipping

............ 10319.2. The col and colgroup elements

........ 10419.2.1. Calculating the number of columns in a table

.............. 10519.3. The summary element

............... 10519.4. The table element

.............. 10619.4.1. Visual Rendering

.............. 10619.4.2. Table directionality

........ 10719.4.3. Table rendering by non-visual user agents

............... 11419.4.4. Sample table

............... 11619.5. The tbody element

.............. 11619.6. The td and th elements

......... 11919.6.1. Cells that span several rows or columns

............. 12219.7. The thead and tfoot elements

................ 12319.8. The tr element

.................. 12520. XForms Module

................. 12721. XML Events Module

............... 129A. Changes from XHTML 1.1

............. 131B. XHTML 2.0 RELAX NG Definition

........... 131B.0.1. RELAX NG XHTML 2.0 Driver

........... 133C. XHTML RELAX NG Module Implementations

............ 133C.1. XHTML Module Implementations

.............. 133C.1.1. Attribute Collections

................ 138C.1.2. Structure

................ 140C.1.3. Block Text

................ 145C.1.4. Inline Text

................ 150C.1.5. Hypertext

.................. 150C.1.6. List

.................. 153C.1.7. Link

............... 154C.1.8. Metainformation

................. 154C.1.9. Object

................ 156C.1.10. Scripting

............... 157C.1.11. Style Attribute

- 7 -

Full Table of ContentsXHTML 2.0

............... 158C.1.12. Style Sheet

................. 158C.1.13. Tables

........... 163C.2. XHTML RELAX NG Support Modules

................ 163C.2.1. Datatypes

................. 166C.2.2. Events

................. 167C.2.3. Param

................. 168C.2.4. Caption

............. 168C.3. RELAX NG External Modules

................. 169C.3.1. Ruby

.......... 172C.3.2. Ruby Driver for Full Ruby Markup

................ 172C.3.3. XML Events

................. 175D. XHTML 2.0 Schema

........... 177E. XHTML Schema Module Implementations

............ 179F. XHTML 2.0 Document Type Definition

............ 181G. XHTML DTD Module Implementations

............. 181G.1. XHTML Modular Framework

............ 181G.1.1. XHTML Base Architecture

.............. 181G.1.2. XHTML Notations

.............. 181G.1.3. XHTML Datatypes

......... 182G.1.4. XHTML Common Attribute Definitions

............ 182G.1.5. XHTML Qualified Names

............ 182G.1.6. XHTML Character Entities

............ 182G.2. XHTML Module Implementations

................ 182G.2.1. Structure

................ 182G.2.2. Block Text

................ 183G.2.3. Inline Text

................ 183G.2.4. Hypertext

.................. 183G.2.5. List

.................. 183G.2.6. Link

............... 183G.2.7. Metainformation

................. 183G.2.8. Object

................ 184G.2.9. Scripting

............... 184G.2.10. Style Attribute

............... 184G.2.11. Style Sheet

................. 184G.2.12. Tables

............. 163G.3. XHTML DTD Support Modules

................. 184G.3.1. Param

.................. 185H. List of Elements

.................. 187J. List of Attributes

................ 189I. Cross-reference Index

................... 191K. References

............... 191K.1. Normative References

............... 193K.2. Informative References

- 8 -

XHTML 2.0Full Table of Contents

................. 195L. Acknowledgements

- 9 -

Full Table of ContentsXHTML 2.0

- 10 -

XHTML 2.0Full Table of Contents

1. Introduction
This section is informative.

1.1. What is XHTML 2?
XHTML 2 is a general purpose markup language designed for representing documents for a
wide range of purposes across the World Wide Web. To this end it does not attempt to be all
things to all people, supplying every possible markup idiom, but to supply a generally useful set
of elements, with the possibility of extension using the span and div elements in combination
with stylesheets.

1.1.1. Backwards compatibility

Because earlier versions of HTML were special-purpose languages, it was necessary to ensure
a level of backwards compatibility with new versions so that new documents would still be
usable in older browsers. However, thanks to XML and stylesheets, such strict element-wise
backwards compatibility is no longer necessary, since an XML-based browser, of which at the
time of writing means more than 95% of browsers in use, can process new markup languages
without having to be updated. Much of XHTML2 works already in existing browsers. Much, but
not all: just as when forms and tables were added to HTML, and people had to wait for new
version of browsers before being able to use the new facilities, some parts of XHTML2, such as
XForms and XML Events, still require user agents that understand that functionality.

1.1.2. XHTML2 and Presentation

The original version of HTML was designed to represent the structure of a document, not its
presentation. Even though presentation-oriented elements were later added to the language by
browser manufacturers, HTML is at heart a document structuring language. XHTML2 takes
HTML back to these roots, by removing all presentation elements, and subordinating all
presentation to stylesheets. This gives greater flexibility, and more powerful presentation
possibilities, since CSS can do more than the presentational elements of HTML ever did.

1.1.3. Design Aims

In designing XHTML, a number of design aims were kept in mind to help direct the design.
These included:

As generic XML as possible: if a facility exists in XML, try to use that rather than duplicating
it.
Less presentation, more structure: already mentioned above.
More usability: try to make the language easy to write, and make the resulting documents
easy to use.
More accessibility: some call it ’designing for our future selves’; the design should be as
inclusive as possible.

- 11 -

1. IntroductionXHTML 2.0

Better internationalization: it is a World Wide Web.
More device independence: new devices coming online, such as telephones, PDAs, tablets,
televisions and so on mean that it is imperative to have a design that allows you to author
once and render in different ways on different devices, rather than authoring new versions
of the document for each type of device.
Less scripting: achieving functionality through scripting is difficult for the author and restricts
the type of user agent you can use to view the document. We have tried to identify current
typical usage, and include those usages in markup.

1.2. What are the XHTML 2 Modules?
XHTML 2 is a member of the XHTML Family of markup languages. It is an XHTML Host
Language as defined in XHTML Modularization. As such, it is made up of a set of XHTML
Modules that together describe the elements and attributes of the language, and their content
model. XHTML 2 updates many of the modules defined in XHTML Modularization 1.0
[XHTMLMOD [p.192]], and includes the updated versions of all those modules and their
semantics. XHTML 2 also uses modules from Ruby [RUBY [p.192]], XML Events [XMLEVENTS
[p.192]], and XForms [XFORMS [p.192]].

The modules defined in this specification are largely extensions of the modules defined in
XHTML Modularization 1.0. This specification also defines the semantics of the modules it
includes. So, that means that unlike earlier versions of XHTML that relied upon the semantics
defined in HTML 4 [HTML4 [p.193]], all of the semantics for XHTML 2 are defined either in this
specification or in the specifications that it normatively references.

Even though the XHTML 2 modules are defined in this specification, they are available for use in
other XHTML family markup languages. Over time, it is possible that the modules defined in this
specification will migrate into the XHTML Modularization specification.

- 12 -

XHTML 2.01.2. What are the XHTML 2 Modules?

2. Terms and Definitions
This section is informative.

While some terms are defined in place, the following definitions are used throughout this
document. Familiarity with the W3C XML 1.0 Recommendation [XML [p.192]] is highly
recommended.

abstract module
a unit of document type specification corresponding to a distinct type of content,
corresponding to a markup construct reflecting this distinct type.

content model
the declared markup structure allowed within instances of an element type. XML 1.0
differentiates two types: elements containing only element content (no character data) and
mixed content (elements that may contain character data optionally interspersed with child
elements). The latter are characterized by a content specification beginning with the
"#PCDATA" string (denoting character data).

deprecated
a feature marked as deprecated is in the process of being removed from this
recommendation. Portable applications should not use features marked as deprecated.

document model
the effective structure and constraints of a given document type. The document model
constitutes the abstract representation of the physical or semantic structures of a class of
documents.

document type
a class of documents sharing a common abstract structure. The ISO 8879 [SGML [p.192]]
definition is as follows: "a class of documents having similar characteristics; for example,
journal, article, technical manual, or memo. (4.102)"

document type definition (DTD)
a formal, machine-readable expression of the XML structure and syntax rules to which a
document instance of a specific document type must conform; the schema type used in
XML 1.0 to validate conformance of a document instance to its declared document type.
The same markup model may be expressed by a variety of DTDs.

driver
a generally short file used to declare and instantiate the modules of a DTD. A good rule of
thumb is that a DTD driver contains no markup declarations that comprise any part of the
document model itself.

element
an instance of an element type.

element type
the definition of an element, that is, a container for a distinct semantic class of document
content.

entity
an entity is a logical or physical storage unit containing document content. Entities may be
composed of parseable XML markup or character data, or unparsed (i.e., non-XML,
possibly non-textual) content. Entity content may be either defined entirely within the

- 13 -

2. Terms and DefinitionsXHTML 2.0

document entity ("internal entities") or external to the document entity ("external entities"). In
parsed entities, the replacement text may include references to other entities.

entity reference
a mnemonic string used as a reference to the content of a declared entity (eg., "&" for
"&", "<" for "<", "©" for "©".)

generic identifier
the name identifying the element type of an element. Also, element type name.

hybrid document
A hybrid document is a document that uses more than one XML namespace. Hybrid
documents may be defined as documents that contain elements or attributes from hybrid
document types.

instantiate
to replace an entity reference with an instance of its declared content.

markup declaration
a syntactical construct within a DTD declaring an entity or defining a markup structure.
Within XML DTDs, there are four specific types: entity declaration defines the binding
between a mnemonic symbol and its replacement content; element declaration constrains
which element types may occur as descendants within an element (see also content
model); attribute definition list declaration defines the set of attributes for a given element
type, and may also establish type constraints and default values; notation declaration
defines the binding between a notation name and an external identifier referencing the
format of an unparsed entity.

markup model
the markup vocabulary (i.e., the gamut of element and attribute names, notations, etc.) and
grammar (i.e., the prescribed use of that vocabulary) as defined by a document type
definition (i.e., a schema) The markup model is the concrete representation in markup
syntax of the document model, and may be defined with varying levels of strict conformity.
The same document model may be expressed by a variety of markup models.

module
an abstract unit within a document model expressed as a DTD fragment, used to
consolidate markup declarations to increase the flexibility, modifiability, reuse and
understanding of specific logical or semantic structures.

modularization
an implementation of a modularization model; the process of composing or de-composing a
DTD by dividing its markup declarations into units or groups to support specific goals.
Modules may or may not exist as separate file entities (i.e., the physical and logical
structures of a DTD may mirror each other, but there is no such requirement).

modularization model
the abstract design of the document type definition (DTD) in support of the modularization
goals, such as reuse, extensibility, expressiveness, ease of documentation, code size,
consistency and intuitiveness of use. It is important to note that a modularization model is
only orthogonally related to the document model it describes, so that two very different
modularization models may describe the same document type.

parameter entity
an entity whose scope of use is within the document prolog (i.e., the external subset/DTD or
internal subset). Parameter entities are disallowed within the document instance.

- 14 -

XHTML 2.02. Terms and Definitions

parent document type
A parent document type of a hybrid document is the document type of the root element.

tag
descriptive markup delimiting the start and end (including its generic identifier and any
attributes) of an element.

- 15 -

2. Terms and DefinitionsXHTML 2.0

- 16 -

XHTML 2.02. Terms and Definitions

3. Conformance Definition
This section is normative.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119 [p.191]].

3.1. Document Conformance

3.1.1. Strictly Conforming Documents

DTD Bias

This section has a distinct DTD bias. We need to make it clear that any of DTD, XML Schema or
RELAX NG can be used to validate XHTML 2.0 documents.

A strictly conforming XHTML 2.0 document is a document that requires only the facilities
described as mandatory in this specification. Such a document must meet all the following
criteria:

1. The document must conform to the constraints expressed in Appendix B - XHTML 2.0
RELAX NG Definition [p.131] , Appendix D - XHTML 2.0 Schema [p.175] or Appendix F -
XHTML 2.0 Document Type Definition [p.179] .

2. The root element of the document must be html.

3. The root element of the document must contain an xmlns declaration for the XHTML 2.0
namespace [XMLNAMES [p.192]]. The namespace for XHTML 2.0 is defined to be
http://www.w3.org/2002/06/xhtml2. An example root element might look like:

<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="en">

4. There must be a DOCTYPE declaration in the document prior to the root element. If
present, the public identifier included in the DOCTYPE declaration must reference the DTD
found in Appendix F [p.181] using its Public Identifier. The system identifier may be modified
appropriately.

<!DOCTYPE
 html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "TBD">

Here is an example of an XHTML 2.0 document.

- 17 -

3. Conformance DefinitionXHTML 2.0

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "TBD">
<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="en">
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to vlib.org.</p>
 </body>
</html>

Note that in this example, the XML declaration is included. An XML declaration like the one
above is not required in all XML documents. XHTML document authors are strongly encouraged
to use XML declarations in all their documents. Such a declaration is required when the
character encoding of the document is other than the default UTF-8 or UTF-16 and no encoding
was determined by a higher-level protocol.

3.2. User Agent Conformance
User Agent Conformance needs to be elaborated

User Agent Conformance needs to be elaborated rather than just referring to [XHTMLMOD
[p.192]].

A conforming user agent must meet all user agent conformance requirements defined in
[XHTMLMOD [p.192]].

- 18 -

XHTML 2.03.2. User Agent Conformance

4. The XHTML 2.0 Document Type
This section is normative.

The XHTML 2.0 document type is a fully functional document type with rich semantics. It is a
collection of XHTML-conforming modules (most of which are defined in this specification). The
Modules and their elements are listed here for information purposes, but the definitions in their
base documents should be considered authoritative. In the on-line version of this document, the
module names in the list below link into the definitions of the modules within the relevant version
of the authoritative specification.

Structure Module [p.41] *
body, head, html, title

Block Text Module [p.45] *
address, blockcode, blockquote, div, h, h1, h2, h3, h4, h5, h6, hr,
p, pre, section

Inline Text Module [p.53] *
abbr, cite, code, dfn, em, kbd, l, quote, samp, span, strong, sub,
sup, var

Hypertext Module [p.61] *
a

List Module [p.63] *
dl, dt, dd, label, nl, ol, ul, li

Link Module [p.69]
link

Metainformation Module [p.73]
meta

Object Module [p.77]
object, param, standby

Scripting Module [p.91]
noscript, script

Style Attribute Module [p.95]
style attribute

Stylesheet Module [p.97]
style element

Tables Module [p.101]
caption, col, colgroup, summary, table, tbody, td, tfoot, th,
thead, tr

XHTML 2.0 also uses the following externally defined modules:

Ruby Annotation Module [RUBY [p.192]]
ruby, rbc, rtc, rb, rt, rp

XML Events Module [XMLEVENTS [p.192]]
listener

- 19 -

4. The XHTML 2.0 Document TypeXHTML 2.0

XForms Module [XFORMS [p.192]]
action, alert, bind, case, choices, copy, delete, dispatch,
extension, filename, group, help, hint, input, insert, instance,
item, itemset, label, load, mediatype, message, model, output,
range, rebuild, recalculate, refresh, repeat, reset, revalidate,
secret, select, select1, send, setfocus, setindex, setvalue,
submission, submit, switch, textarea, toggle, trigger, upload,
value

Need a cohesive XHTML 2 content model definition

Currently the content model of XHTML 2 must be determined through a trolling of all the
included modules. This section should define the members of the content model sets, and show
the content model of each element. This will make it easier for consumers of this document to
determine how things should hang together, and should serve as a normative guide for the
development of implementations.

There are no additional definitions required by this document type. An implementation of this
document type as a RELAX NG grammar is defined in Appendix B [p.131] , as an XML Schema
in Appendix D [p.175] , and as a DTD in Appendix F [p.179] .

- 20 -

XHTML 2.04. The XHTML 2.0 Document Type

5. Module Definition Conventions
This section is normative.

This document defines a variety of XHTML modules and the semantics of those modules. This
section describes the conventions used in those module definitions.

5.1. Module Structure
Each module in this document is structured in the following way:

An abstract definition [p.21] of the module’s elements, attributes, and content models, as
appropriate.
A sub-section for each element in the module; These sub-sections contain the following
components:

A brief description of the element,
A definition of each attribute or attribute collection [p.27] usable with the element, and
A detailed description of the behavior of the element, if appropriate.

Note that attributes are fully defined only the first time they are used in each module. After
that, only a brief description of the attribute is provided, along with a link back to the primary
definition.

5.2. Abstract Module Definitions
An abstract module is a definition of an XHTML module using prose text and some informal
markup conventions. While such a definition is not generally useful in the machine processing of
document types, it is critical in helping people understand what is contained in a module. This
section defines the way in which XHTML abstract modules are defined. An XHTML-conforming
module is not required to provide an abstract module definition. However, anyone developing an
XHTML module is encouraged to provide an abstraction to ease in the use of that module.

5.3. Syntactic Conventions
The abstract modules are not defined in a formal grammar. However, the definitions do adhere
to the following syntactic conventions. These conventions are similar to those of XML DTDs, and
should be familiar to XML DTD authors. Each discrete syntactic element can be combined with
others to make more complex expressions that conform to the algebra defined here.

element name
When an element is included in a content model, its explicit name will be listed.

content set
Some modules define lists of explicit element names called content sets. When a content
set is included in a content model, its name will be listed.

- 21 -

5. Module Definition ConventionsXHTML 2.0

expr ?
Zero or one instances of expr are permitted.

expr +
One or more instances of expr are required.

expr *
Zero or more instances of expr are permitted.

a , b
Expression a is required, followed by expression b.

a | b
Either expression a or expression b is required.

a - b
Expression a is permitted, omitting elements in expression b.

parentheses
When an expression is contained within parentheses, evaluation of any subexpressions
within the parentheses take place before evaluation of expressions outside of the
parentheses (starting at the deepest level of nesting first).

extending pre-defined elements
In some instances, a module adds attributes to an element. In these instances, the element
name is followed by an ampersand (&).

defining required attributes
When an element requires the definition of an attribute, that attribute name is followed by an
asterisk (*).

defining the type of attribute values
When a module defines the type of an attribute value, it does so by listing the type in
parentheses after the attribute name.

defining the legal values of attributes
When a module defines the legal values for an attribute, it does so by listing the explicit
legal values (enclosed in quotation marks), separated by vertical bars (|), inside of
parentheses following the attribute name. If the attribute has a default value, that value is
followed by an asterisk (*). If the attribute has a fixed value, the attribute name is followed
by an equals sign (=) and the fixed value enclosed in quotation marks.

5.4. Content Types
Abstract module definitions define minimal, atomic content models for each module. These
minimal content models reference the elements in the module itself. They may also reference
elements in other modules upon which the abstract module depends. Finally, the content model
in many cases requires that text be permitted as content to one or more elements. In these
cases, the symbol used for text is PCDATA. This is a term, defined in the XML 1.0
Recommendation, that refers to processed character data. A content type can also be defined
as EMPTY, meaning the element has no content in its minimal content model.

- 22 -

XHTML 2.05.4. Content Types

5.5. Attribute Types
In some instances, it is necessary to define the types of attribute values or the explicit set of
permitted values for attributes. The following attribute types (defined in the XML 1.0
Recommendation) are used in the definitions of the abstract modules:

Attribute Type Definition

CDATA Character data

ID A document-unique identifier

IDREF A reference to a document-unique identifier

IDREFS A space-separated list of references to document-unique identifiers

NAME A name with the same character constraints as ID above

NMTOKEN A name composed of only name tokens as defined in XML 1.0 [XML [p.192]].

NMTOKENS One or more white space separated NMTOKEN values

PCDATA Processed character data

In addition to these pre-defined data types, XHTML Modularization defines the following data
types and their semantics (as appropriate):

Data type Description

Character A single character, as per section 2.2 of [XML [p.192]].

Charset A character encoding, as per [RFC2045 [p.191]].

Charsets A space-separated list of character encodings, as per [RFC2045 [p.191]].

ContentType
A list of media ranges with optional accept parameters, as defined in section
14.1 of [RFC2616 [p.191]] as the field value of the accept request header.

Coordinates Comma separated list of Length [p.23] s used in defining areas.

Datetime
Date and time information, as defined by the type dateTime in
[XMLSCHEMA [p.192]].

HrefTarget
Name used as destination for results of certain actions, with legal values as
defined by NMTOKEN [p.23] .

LanguageCode A language code, as per [RFC3066 [p.191]].

Length
The value may be either in pixels or a percentage of the available horizontal
or vertical space. Thus, the value "50%" means half of the available space.

- 23 -

5.5. Attribute TypesXHTML 2.0

LinkTypes

Authors may use the following recognized link types, listed here with their
conventional interpretations. A LinkTypes value refers to a space-separated
list of link types. White space characters are not permitted within link types.

These link types are case-insensitive, i.e., "Alternate" has the same meaning
as "alternate".

User agents, search engines, etc. may interpret these link types in a variety of
ways. For example, user agents may provide access to linked documents
through a navigation bar.

Alternate
Designates substitute versions for the document in which the link occurs.
When used together with the xml:lang attribute, it implies a translated
version of the document. When used together with the media attribute, it
implies a version designed for a different medium (or media).

Stylesheet
Refers to an external style sheet. See the Style Sheet Module [p.97] for
details. This is used together with the link type "Alternate" for
user-selectable alternate style sheets.

Start
Refers to the first document in a collection of documents. This link type
tells search engines which document is considered by the author to be
the starting point of the collection.

Next
Refers to the next document in an ordered sequence of documents. User
agents may choose to pre-load the "next" document, to reduce the
perceived load time.

Prev
Refers to the previous document in an ordered series of documents.
Some user agents also support the synonym "Previous".

Parent
Refers to the parent document in a structured set of documents.

Contents
Refers to a document serving as a table of contents. Some user agents
also support the synonym ToC (from "Table of Contents").

Index
Refers to a document providing an index for the current document.

Glossary
Refers to a document providing a glossary of terms that pertain to the
current document.

Copyright
Refers to a copyright statement for the current document.

Chapter
Refers to a document serving as a chapter in a collection of documents.

Section
Refers to a document serving as a section in a collection of documents.

Subsection
Refers to a document serving as a subsection in a collection of
documents.

Appendix
Refers to a document serving as an appendix in a collection of
documents.

Help
Refers to a document offering help (more information, links to other
sources information, etc.)

Bookmark
Refers to a bookmark. A bookmark is a link to a key entry point within an
extended document. The title attribute may be used, for example, to label
the bookmark. Note that several bookmarks may be defined in each
document.

Meta
Refers to a document that provides metadata, for instance in RDF, about
the current document.

P3Pv1
Refers to a P3P Policy Reference File. See [P3P [p.191]]

Linktype ’required’

Linktype ’required’

Linktype ’prefetch’

Linktype ’prefetch’

Linktype ’redirect’

Linktype ’redirect’ to handle the one missing piece of functionality that
http-equiv used to supply.

- 24 -

XHTML 2.05.5. Attribute Types

MediaDesc
A comma-separated list of media descriptors as described by [CSS2 [p.191]].
The default is all.

Number One or more digits

Shape The shape of a region.

Text Arbitrary textual data, likely meant to be human-readable.

URI
A Uniform Resource Identifier Reference, as defined by the type anyURI in
[XMLSCHEMA [p.192]].

URIs A space-separated list of URIs as defined above.

URIList A comma-separated list of URIs as defined above.

- 25 -

5.5. Attribute TypesXHTML 2.0

- 26 -

XHTML 2.05.5. Attribute Types

6. XHTML Attribute Collections
This section is normative.

Many of the abstract modules in this document define the required attributes for their elements.
The table below defines some collections of attributes that are referenced throughout the
modules. These expressions should in no way be considered normative or mandatory. They are
an editorial convenience for this document. When used in the remainder of this section, it is the
expansion of the term that is normative, not the term itself.

The following basic attribute sets are used on many elements. In each case where they are
used, their use is identified via their collection name.

6.1. Core Attribute Collection
class = NMTOKENS [p.23]

This attribute assigns one or more class names to an element; the element may be said to
belong to these classes. A class name may be shared by several element instances.

The class [p.27] attribute can be used for different purposes in XHTML, for instance as a
style sheet [p.97] selector (when an author wishes to assign style information to a set of
elements), and for general purpose processing by user agents.

For instance in the following example, the p [p.50] element is used in conjunction with the
class [p.27] attribute to identify a particular type of paragraph.

<p class="note">
These programs are only available if you have purchased
the advanced professional suite.
</p>

Style sheet rules can then be used to render the paragraph appropriately, for instance by
putting a border around it, giving it a different background colour, or where necessary by not
displaying it at all.

id = ID [p.23]
The id [p.27] attribute assigns an identifier to an element. The id of an element must be
unique within a document.

The id [p.27] attribute has several roles in XHTML:

As a style sheet [p.97] selector.
As a target anchor [p.61] for hypertext links.
As a means to reference a particular element from a script [p.92] .
As the name of a declared object [p.77] element.
For general purpose processing by user agents (e.g. for identifying fields when
extracting data from XHTML pages into a database, translating XHTML documents into

- 27 -

6. XHTML Attribute CollectionsXHTML 2.0

other formats, etc.).

As an example, the following headings are distinguished by their id [p.27] values:

<h id="introduction">Introduction</h>
<p>...</p>
<h id="events">The Events Module</h>
<p>...</p>

title = Text [p.25]
This attribute offers advisory information about the element for which it is set.

Values of the title [p.28] attribute may be used by user agents in a variety of ways. For
instance, visual browsers should display the title as a "tool tip" (a short message that
appears when the pointing device pauses over an object). Audio user agents may speak the
title information in a similar context.

Example of the use of title [p.28] :

Jakob Nielsen’s
Alertbox for January 11, 1998

The title [p.28] attribute has an additional role when used with the link [p.69] element to
designate an external style sheet. [p.98] See the section on links and style sheets [p.70] for
details.

6.2. I18N Attribute Collection
xml:lang = LanguageCode [p.23]

This attribute specifies the base language of an element’s attribute values and text content.
It is defined normatively in [XML [p.192]] section 2.12. The default value of this attribute is
unspecified.

An element inherits language code information according to the following order of
precedence (highest to lowest):

The xml:lang [p.28] attribute set for the element itself.
The closest parent element that has the xml:lang [p.28] attribute set (i.e., the xml:lang
[p.28] attribute is inherited).
The HTTP "Content-Language" header (which may be configured in a server).

In this example, the primary language of the document is French ("fr"). One paragraph is
declared to be in US English ("en-us"), after which the primary language returns to French.
The following paragraph includes an embedded Japanese ("ja") phrase, after which the
primary language returns to French.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "TBD">
<html xmlns="http://www.w3.org/2002/06/xhtml2" xml:lang="fr">
<head>

- 28 -

XHTML 2.06.2. I18N Attribute Collection

http://www.w3.org/TR/REC-xml#sec-lang-tag

 <title>Un document multilingue</title>
</head>
<body>
<p>...Interpreted as French...</p>
<p xml:lang="en-us">...Interpreted as US English...</p>
<p>...Interpreted as French again...</p>
<p>...French text interrupted by<em xml:lang="ja">some
 JapaneseFrench begins here again...</p>
</body>
</html>

6.3. Bi-directional Text Collection
dir = "ltr|rtl|lro|rlo"

This attribute specifies the base direction of the element’s text content. This direction
overrides the inherent directionality of characters as defined in [UAX9 [p.192]], and defines
directional properties of text as defined by CSS2 [CSS2 [p.191]]. The default value of this
attribute is user-agent dependent. Possible values are:

ltr: Left-to-right text. The effect of this attribute is defined by the CSS2 rule:

*[dir="ltr"] { unicode-bidi: embed; direction: ltr}

rtl: Right-to-left text. The effect of this attribute is defined by the CSS2 rule:

*[dir="rtl"] { unicode-bidi: embed; direction: rtl}

lro: Left-to-right override. The effect of this attribute is defined by the CSS2 rule:

*[dir="lro"] { unicode-bidi: bidi-override; direction: ltr}

rlo: Right-to-left override. The effect of this attribute is defined by the CSS2 rule:

*[dir="rlo"] { unicode-bidi: bidi-override; direction: rtl}

Example:

improve bidi example

This example is sort of contrived. Can’t we come up with a real-world example that is
actually interesting?

<p dir="ltr">
I received the following email:
<l dir="lro">english werbeh english</l>
<l dir="lro">werbeh english werbeh</l>
</p>

- 29 -

6.3. Bi-directional Text CollectionXHTML 2.0

6.3.1. Inheritance of text direction information

The Unicode bidirectional algorithm requires a base text direction for text blocks. To specify
the base direction of a block-level element, set the element’s dir [p.29] attribute. The default
value of the dir [p.29] attribute is "ltr" (left-to-right text).

When the dir [p.29] attribute is set for a block-level element, it remains in effect for the
duration of the element and any nested block-level elements. Setting the dir [p.29] attribute
on a nested element overrides the inherited value.

To set the base text direction for an entire document, set the dir [p.29] attribute on the html
[p.42] element.

Example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"
 "http://www.w3.org/TR/xhtml2/DTD/xhtml2.dtd">
<html dir="rtl">
<head>
<title>...a right-to-left title...</title>
</head>
...right-to-left text...
<p dir="ltr">...left-to-right text...</p>
<p>...right-to-left text again...</p>
</html>

Inline elements, on the other hand, do not inherit the dir [p.29] attribute. This means that an
inline element without a dir [p.29] attribute does not open an additional level of embedding
with respect to the bidirectional algorithm. (Here, an element is considered to be block-level
or inline based on its default presentation.)

6.3.2. The effect of style sheets on bidirectionality

In general, using style sheets to change an element’s visual rendering from block-level to
inline or vice-versa is straightforward. However, because the bidirectional algorithm relies
on the inline/block-level distinction, special care must be taken during the transformation.

When an inline element that does not have a dir [p.29] attribute is transformed to the style of
a block-level element by a style sheet, it inherits the dir [p.29] attribute from its closest
parent block element to define the base direction of the block.

When a block element that does not have a dir [p.29] attribute is transformed to the style of
an inline element by a style sheet, the resulting presentation should be equivalent, in terms
of bidirectional formatting, to the formatting obtained by explicitly adding a dir [p.29] attribute
(assigned the inherited value) to the transformed element.

- 30 -

XHTML 2.06.3.1. Inheritance of text direction information

6.4. Edit Collection
This collection allows elements to carry information indicating how, when and why content has
changed.

edit = "inserted|deleted|changed|moved"
This attribute allows elements to carry information indicating how content has changed.
Possible values:

inserted: the content has been inserted
deleted: the content has been deleted
changed: the content has changed considerably, therefore making it not worth being
marked up with values of inserted and deleted
moved: the content has been moved from some other part of the document.

The default presentation for an element with edit="deleted" is display: none (in
other words, it is not displayed) although an alternate style might display it as crossed
through. The other three values cause no special presentation by default, though an
alternate style might use background colors or other text decoration to indicate the changed
text.

Example:

<p>I will do it
next weekmonth.</p>

datetime = Datetime [p.23]
The value of this attribute specifies the date and time when a change was made.

Example:

datetime="2003-01-13T13:15:30Z"

6.5. Hypertext Attribute Collection
This collection allows an element to be the start point of a hypertext link to a remote resource.

href = URI [p.25]
This attribute specifies a URI that is actuated when the element is activated.

Examples:

<abbr href="http://www.w3.org/" title="World Wide Web">WWW</abbr>
<li href="contents.xhtml">contents
Amsterdam
<quote href="hamlet.xhtml#p2435">To be or not to be</quote>
<var href="#index_ninc">ninc</var>

- 31 -

6.4. Edit CollectionXHTML 2.0

cite = URI [p.25]
The value of this attribute is a URI that designates a source document or message. This
attribute is intended to give further information about the element’s contents (e.g., the
source from which a quotation was borrowed, or the reason text was inserted or deleted).
User Agents should provide a means for the user to access the further information.

Example:

cite="comments.html"

target = HrefTarget [p.23]
This attribute identifies an environment that will act as the destination for a resource
identified by a hyperlink when it is activated.

This specification does not define how this attribute gets used, since that is defined by the
environment that the hyperlink is actuated in. See for instance XFrames [XFRAMES [p.193]
].

Example:

Home

rel = LinkTypes [p.24]
This attribute describes the relationship from the current document to the URI referred to by
the element. The value of this attribute is a space-separated list of link types.

Example:

<link href="top.html" rel="contents"/>

rev = LinkTypes [p.24]
This attribute is used to describe a reverse link from the anchor specified by the href [p.31]
attribute to the current document. The value of this attribute is a space-separated list of link
types.

accesskey = Character [p.23]
This attribute assigns an access key to an element. An access key is a single character
from the document character set. Note. Authors should consider the input method of the
expected reader when specifying an accesskey.

Pressing an access key assigned to an element gives focus to the element. The action that
occurs when an element receives focus depends on the element. For example, when a user
activates a link defined by the a [p.61] element, the user agent generally follows the link.
When a user activates a radio button, the user agent changes the value of the radio button.
When the user activates a text field, it allows input, etc.

In this example, we assign the access key "C" to a link. Typing this access key takes the
user to another document, in this case, a table of contents.

- 32 -

XHTML 2.06.5. Hypertext Attribute Collection

<p accesskey="C"
 rel="contents"
 href="http://example.com/specification/contents.html">
 Table of Contents
</p>

The invocation of access keys depends on the underlying system. For instance, on
machines running MS Windows, one generally has to press the "alt" key in addition to the
access key. On Apple systems, one generally has to press the "cmd" key in addition to the
access key.

The rendering of access keys depends on the user agent. We recommend that authors
include the access key in label text or wherever the access key is to apply. User agents
should render the value of an access key in such a way as to emphasize its role and to
distinguish it from other characters (e.g., by underlining it).

Accesskey

Actuation of elements with accesskey

navindex = Number [p.25]
This attribute specifies the position of the current element in the navigation order for the
current document. This value must be a number between 0 and 32767. User agents must
ignore leading zeros.

The navigation order defines the order in which elements will receive focus when navigated
by the user via the keyboard. The navigation order may include elements nested within
other elements.

Elements that may receive focus should be navigated by user agents according to the
following rules:

1. Those elements that support the navindex [p.33] attribute and assign a positive value to
it are navigated first. Navigation proceeds from the element with the lowest navindex
[p.33] value to the element with the highest value. Values need not be sequential nor
need they begin with any particular value. Elements that have identical navindex [p.33]
values should be navigated in the order they appear in the character stream.

2. Those elements that do not support the navindex [p.33] attribute or support it and
assign it a value of "0" are navigated next. These elements are navigated in the order
they appear in the character stream.

When a document is loaded using a URL that includes a fragment reference (such as
book.html#chapter5) navigation begins at the point the fragment begins. If the user has
moved away from that point (for instance using page up or page down), the navigation
starting point is undefined.

The following example would allow the links to be navigated in column order (without the
use of navindex they would be navigated in document, i.e. row, order):

- 33 -

6.5. Hypertext Attribute CollectionXHTML 2.0

<table>
<tr><td href="a" navindex="1">NW</td>
 <td href="c" navindex="3">NE</td></tr>
<tr><td href="b" navindex="2">SW</td>
 <td href="d" navindex="4">SE</td></tr>
</table>

Navigation keys. The actual key sequence that causes navigation or element activation
depends on the configuration of the user agent (e.g., the "tab" key might be used for
navigation and the "enter" key or "space" key used to activate a selected element).

User agents may also define key sequences to navigate the navigation order in reverse.
When the end (or beginning) of the navigation order is reached, user agents may circle
back to the beginning (or end).

xml:base = URI [p.25]
This attribute specifies the base URI from which to resolve relative URIs. It is normatively
defined in [XMLBASE [p.192]]. Any relative URI used on an element that uses this attribute,
or on an element contained within an element that uses this attribute, must be resolved
relative to the base URI defined by this attribute.

An element inherits URI base information according to the following order of precedence
(highest to lowest):

The xml:base [p.34] attribute set for the element itself.
The closest parent element that has the xml:base [p.34] attribute set (i.e., the xml:base
[p.34] attribute is inherited).
The HTTP "Content-Location" header (which may be configured in a server).
The location of the document itself.

Example:

See:
<ul xml:base="http://www.w3.org">
<li href="/">The W3C home page
<li href="/TR">The W3C Technical Reports page
<li href="/Markup">The HTML home page
<li href="/Markup/Forms">The XForms home page

6.6. Embedding Attribute Collection
This collection causes the contents of a remote resource to be embedded in the document in
place of the element’s content. If accessing the remote resource fails, for whatever reason
(network unavailable, no resource available at the URI given, inability of the user agent to
process the type of resource) the content of the element must be processed instead.

- 34 -

XHTML 2.06.6. Embedding Attribute Collection

Note that this behavior makes documents far more robust, and gives much better opportunities
for accessible documents than the longdesc attribute present in earlier versions of XHTML,
since it allows the description of the resource to be included in the document itself, rather than in
a separate document.

Examples:

<p src="holiday.png" type="image/png">

 An image of us on holiday.

</p>

<table src="temperature-graph.png" type="image/png">
<caption>Average monthly temperature over the last 20 years</caption>
<tr><th>Jan</th><th>Feb</th><th>Mar</th><th>Apr</th><th>May</th><th>Jun</th>
 <th>Jul</th><th>Aug</th><th>Sep</th><th>Oct</th><th>Nov</th><th>Dec</th>
</tr>
<tr><td> 4</td><td> 2</td><td> 7</td><td> 9</td><td>13</td><td>16</td>
 <td>17</td><td>17</td><td>14</td><td>11</td><td> 7</td><td> 4</td>
</tr>
</table>

src = URI [p.25]
This attribute specifies the location of an external source for the contents of the element.

type = ContentType [p.23]

This attribute specifies the allowable content types of the relevant src [p.35] URI. At its most
general, it is a comma-separated list of media ranges with optional accept parameters, as
defined in section 14.1 of [RFC2616 [p.191]] as the field value of the accept request
header.

In its simplest case, this is just a media type, such as "image/png" or "application/xml", but it
may also contain asterisks, such as "image/*" or "*/*", or lists of acceptable media types,
such as "image/png, image/gif, image/jpeg".

The user agent must combine this list it with its own list of acceptable media types by taking
the intersection, and then use the resulting list as the field value of the accept request
header when requesting the resource using HTTP.

For instance, if the attribute specifies the value "image/png, image/gif, image/jpeg", but the
user agent does not accept images of type "image/gif" then the resultant accept header
would contain "image/png, image/jpeg".

A user agent should imitate similar behavior when using other methods than HTTP. For
instance, when accessing files in a local filestore, <p src="logo" type="image/png,
image/jpeg"> might cause the user agent first to look for a file logo.png, and then for
logo.jpg.

- 35 -

6.6. Embedding Attribute CollectionXHTML 2.0

If this attribute is not present, "*/*" is used for its value.

For the current list of registered content types, please consult [MIMETYPES [p.191]].

Examples:

<script src="pop" type="application/x-javascript, text/x-newspeak"/>

<style src="midnight" type="text/css, text/x-mystyle"/>

<p src="w3c-logo" type="image/png, image/jpeg;q=0.2">W3C logo</p>

Our logo

Our theme jingle

Type attribute is inconsistent with the Embedding Attribute Collection

The Embedding Attribute Collection defines src and type. We need to ensure that the use of
type is consistent, or find a way to rename the attributes.

6.7. Image Map Attribute Collection
This collection adds attributes that specify that an embedded image may be used as an image
map, so that clicking on different parts of the image causes different hyperlinks to be activated.

usemap = URI [p.25]
This attribute associates an image map with an element. The value of usemap must match
the value of the id [p.27] attribute of an element that contains one or more elements with
shape [p.37] and coords [p.37] attributes.

ismap = "ismap"
This attribute indicates that the associated image is to be treated as a "server-side image
map". When selected, the coordinates within the element that the user selected are sent to
the server where the document resides. Screen coordinates are expressed as screen pixel
values relative to the image, and start at (0,0) at the top left corner.

In the following example, the active region defines a server-side image map. A click
anywhere on the image will cause the click’s coordinates to be sent to the server.

<p href="http://www.example.com/cgi-bin/map"
 src="map.png" ismap="ismap">
 Our location.
</p>

The location clicked is passed to the server as follows. The user agent derives a new URI
from the URI specified by the href [p.31] attribute of the element, by appending ‘?’ followed
by the x and y coordinates, separated by a comma. The link is then actuated using the new
URI. For instance, in the given example, if the user clicks at the location x=10, y=27 then
the derived URI is "http://www.example.com/cgi-bin/map?10,27".

- 36 -

XHTML 2.06.7. Image Map Attribute Collection

User agents that do not offer the user a means to select specific coordinates (e.g.,
non-graphical user agents that rely on keyboard input, speech-based user agents, etc.)
should send the coordinates "0,0" to the server when the link is activated.

shape = "default|rect|circle|poly"
This attribute specifies the shape of a region. Possible values:

default: Specifies the entire region.
rect: Define a rectangular region.
circle: Define a circular region.
poly: Define a polygonal region.

coords = Coordinates [p.23]
This attribute specifies the position and shape of the area. The number and order of values
depends on the shape being defined. Possible combinations:

rect: left-x, top-y, right-x, bottom-y.
circle: center-x, center-y, radius. Note. When the radius value is a percentage
value, user agents should calculate the final radius value based on the associated
object’s width and height. The radius should be the smaller value of the two.
poly: x1, y1, x2, y2, ..., xN, yN. The first x and y coordinate pair and the last should
be the same to close the polygon. When these coordinate values are not the same,
user agents should infer an additional coordinate pair to close the polygon.

Coordinates are relative to the top, left corner of the object. All values are of type Length
[p.23] . All values are separated by commas. The coordinates of the top, left corner of an
area are 0, 0.

Note that in the following example, if the image is unavailable for any reason, the fallback
properties of the src [p.35] attribute mean that the <nl> will be displayed instead of the image,
thus making the page still useful:

<html xmlns="http://www.w3.org/2002/06/xhtml2">
 <head>
 <title>The cool site!</title>
 </head>
 <body>
 <p src="navbar1.png" type="image/png" usemap="#map1">
 <nl id="map1">
 <label>Navigate the site:</label>
 <li href="guide.html" shape="rect" coords="0,0,118,28">
 Access Guide
 <li href="shortcut.html" shape="rect" coords="118,0,184,28">
 Go
 <li href="search.html" shape="circle" coords="184,200,60">
 Search
 <li href="top10.html" shape="poly" coords="276,0,276,28,100,200,50,50,276,0">
 Top Ten
 </nl>
 </p>
 </body>
</html>

- 37 -

6.7. Image Map Attribute CollectionXHTML 2.0

Note that an li [p.67] in an nl [p.66] is not required to have an href [p.31] attribute. In that case,
the relevant region of the image is inactive:

<p src="image.png" type="image/png" usemap="#map1">
 <nl id="map1">
 <li shape="circle" coords="100,200,50">I’m inactive.
 <li href="outer-ring-link.html" shape="circle" coords="100,200,250">I’m active.
 </nl>
</p>

Allow any element to be an image map?

Should we allow any element (such as <p>) that contains a number of hyperlinks to be an image
map?

Define ismap better

Can we define ismap better?

Require UA to give feedback on regions

Should a UA be required to give feedback on the regions when hovering?

6.8. Events
The global attributes from [XMLEVENTS [p.192]] are included in the Events attribute collection.
The normative definition of those attributes and their semantics is included in that specification.
They are described briefly below:

defaultAction = cancel|perform
This attribute defines whether or not the default action associated with the event should be
processed. The default value is perform

event = CDATA [p.23]
This attribute defines the event type that is being listened for. The set of legal names for
XHTML 2 is to be defined.

List of XHTML 2 Events Needed

We need to define the list of XHTML 2 events and map them into the XHTML DOM.
activate, load, focusIn, focusOut, ...

handler = IDREF [p.23]
This attribute specifies the ID of a handler element that defines the action that should be
performed if the event reaches the observer.

observer = IDREF [p.23]
This attribute specifies an ID for an observer element for which the listener is to be
registered.

- 38 -

XHTML 2.06.8. Events

phase = capture|default
This attribute specifies the phase of event propagation in which to process the event. If not
specified, the default value of this attribute is default.

propagate = stop|continue
This attribute specifies whether an event should stop propagating after this observer
processes it, or continue for possible further processing. The default value of this attribute is
continue.

target = IDREF [p.23]
This attribute specifies the id of the target element of the event (i.e., the node that caused
the event). If not specified, the default value of this attribute is the element on which the
event attribute is specified.

Note that these attributes are not in the XHTML namespace but in the XML Events namespace.
The XHTML namespace is the default namespace for XHTML documents, so XHTML elements
and attributes may be expressed without namespace prefixes (although they are permitted on
elements). XML Events attributes MUST use a prefix, since they are not in the default
namespace of the document.

6.9. Style Attribute Collection
style = CDATA [p.23]

This attribute specifies style information for the current element.

The syntax of the value of the style [p.39] attribute is determined by the default style sheet
language. For example, for [CSS2 [p.191]] inline style, use the declaration block syntax
described in the Style Sheet [p.97] Module (without curly brace delimiters).

This CSS example sets color and font size information for the text in a specific paragraph.

<p style="font-size: 12pt; color: fuchsia">Aren’t style sheets wonderful?</p>

In CSS, property declarations have the form "name : value" and are separated by a
semi-colon.

To specify style information for more than one element, authors should use the style [p.97]
element. For optimal flexibility, authors should define styles in external style sheets.

Style Attributes and Generic XML

There is currently no way to declare what attribute within a given namespace contains
"styling" information in a way that a Generic XML processor can discern. In an ideal world,
someone would define such a mechanism (e.g., through the xml-stylesheet PI).

Note that the Style collection is only defined when the Style Attribute Module is selected.
Otherwise, the Style collection is empty.

- 39 -

6.9. Style Attribute CollectionXHTML 2.0

6.10. Common Attribute Collection
This collection assembles the Core [p.27] , I18N [p.28] , Events [p.38] , Edit [p.31] , Embedding
[p.34] , Map [p.36] , Style [p.39] , Bi-directional [p.29] , and Hypertext [p.31] attribute collections
defined above.

- 40 -

XHTML 2.06.10. Common Attribute Collection

7. XHTML Structure Module
This section is normative.

The Structure Module defines the major structural elements for XHTML. These elements
effectively act as the basis for the content model of many XHTML family document types. The
elements and attributes included in this module are:

Elements Attributes
Minimal

Content Model

html [p.42]
Common [p.40] , profile (URIs [p.25]), xmlns (URI [p.25] =
"http://www.w3.org/2002/06/xhtml2")

head [p.42] ,
body [p.43]

head
[p.42]

Common [p.40] title [p.42]

title [p.42] Common [p.40]
(PCDATA |
Inline)*

body
[p.43]

Common [p.40]
(Heading | Block
| List)*

This module is the basic structural definition for XHTML content. The html element acts as the
root element for all XHTML Family Document Types.

Note that the value of the xmlns attribute is defined to be "http://www.w3.org/2002/06/xhtml2".
Also note that because the xmlns attribute is treated specially by XML namespace-aware
parsers [XMLNAMES [p.192]], it is legal to have it present as an attribute of each element.
However, any time the xmlns attribute is used in the context of an XHTML module, whether with
a prefix or not, the value of the attribute shall be the XHTML namespace defined here.

Implementation: RELAX NG [p.138]

footer PR #744

There was a suggestion for a footer element to contain data that should be presented at the
bottom of content. The working group has not yet addressed this suggestion.

security tag

There was a suggestion that we define a security tag, within which elements that have security
ramifications would be rendered harmless. The working group has not yet addressed this
suggestion.

- 41 -

7. XHTML Structure ModuleXHTML 2.0

7.1. The html element
After the document type declaration, the remainder of an XHTML document is contained by the
html [p.42] element.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

profile = URIs [p.25]
This attribute specifies the location of one or more meta data profiles, separated by white
space. For future extensions, user agents should consider the value to be a list even though
this specification only considers the first URI to be significant. Profiles are discussed in the
section on meta data [p.73] .

Example:

<html class="slideshow">

7.2. The head element
The head [p.42] element contains information about the current document, such as its title,
keywords that may be useful to search engines, and other data that is not considered document
content. The default presentation of the head is not to display it; however that can be overridden
with a stylesheet for special purpose use. User agents may however make information in the
head [p.42] available to users through other mechanisms.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

<head>
 <title>My Life</title>
</head>

7.3. The title element
Every XHTML document must have a title [p.42] element in the head [p.42] section.

- 42 -

XHTML 2.07.1. The html element

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

The title [p.42] element is used to identify the document. Since documents are often consulted
out of context, authors should provide context-rich titles. Thus, instead of a title such as
"Introduction", which doesn’t provide much contextual background, authors should supply a title
such as "Introduction to Medieval Bee-Keeping" instead.

For reasons of accessibility, user agents must always make the content of the title [p.42]
element available to users. The mechanism for doing so depends on the user agent (e.g., as a
caption, spoken).

Example:

<title>A study of population dynamics</title>

duplication of title

There has been a request for facilities to reduce the need for duplicating title and headings.

7.4. The body element
The body of a document contains the document’s content. The content may be presented by a
user agent in a variety of ways. For example, for visual browsers, you can think of the body as a
canvas where the content appears: text, images, colors, graphics, etc. For audio user agents,
the same content may be spoken.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 43 -

7.4. The body elementXHTML 2.0

- 44 -

XHTML 2.07.4. The body element

8. XHTML Block Text Module
This section is normative.

This module defines all of the basic text container elements, attributes, and their content models
that are "block level". Note that while the concept of "block level" can be construed as a
presentation aspect, in this case it is intended to only have a semantic meaning.

Element Attributes Minimal Content Model

address Common [p.40] (PCDATA | Inline)*

blockcode Common [p.40] (PCDATA | Inline | Heading | Block | List)*

blockquote Common [p.40] (PCDATA | Inline | Heading | Block | List)*

div Common [p.40] (PCDATA | Flow)*

h Common [p.40] (PCDATA | Inline)*

h1 Common [p.40] (PCDATA | Inline)*

h2 Common [p.40] (PCDATA | Inline)*

h3 Common [p.40] (PCDATA | Inline)*

h4 Common [p.40] (PCDATA | Inline)*

h5 Common [p.40] (PCDATA | Inline)*

h6 Common [p.40] (PCDATA | Inline)*

hr Common [p.40] EMPTY

p Common [p.40] (PCDATA | Inline | List | blockcode | blockquote | pre | table)*

pre Common [p.40] (PCDATA | Inline)*

section Common [p.40] (PCDATA | Flow)*

The minimal content model for this module defines some content sets:

Heading
h | h1 | h2 | h3 | h4 | h5 | h6

Block
address | blockcode | blockquote | div | p | pre | section

Flow
Heading | Block | Inline

- 45 -

8. XHTML Block Text ModuleXHTML 2.0

Note that the use of the words Block and Inline here are meant to be suggestive of the role the
content sets play. They are not normative with regards to presentation since a style sheet might
give any element within the Block content a display property of inline.

Implementation: RELAX NG [p.140]

8.1. The address element
The address [p.46] element may be used by authors to supply contact information for a
document or a major part of a document such as a form. This element often appears at the
beginning or end of a document.

content model of address element

The content model of the address element should be improved to improve its semantic
processability.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

<address href="mailto:webmaster@example.net">Webmaster</address>

8.2. The blockcode element
This element indicates that its contents are a block of "code" (see the code [p.55] element). This
element is similar to the pre [p.50] element, in that whitespace in the enclosed text has semantic
relevance. The whitespace should normally be included in visual renderings of the content.

Non-visual user agents are not required to respect extra white space in the content of a
blockcode [p.46] element.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

The following example shows a code fragment:

- 46 -

XHTML 2.08.1. The address element

<blockcode class="Perl">
sub squareFn {
 my $var = shift;

 return $var * $var ;
}
</blockcode>

Here is how this might be rendered:

sub squareFn {
 my $var = shift;

 return $var * $var ;
}

8.3. The blockquote element
This element designates a block of quoted text.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

This example formats an excerpt from "The Two Towers", by J.R.R. Tolkien, as a blockquote.

<blockquote cite="http://www.example.com/tolkien/twotowers.html">
<p>They went in single file, running like hounds on a strong scent,
and an eager light was in their eyes. Nearly due west the broad
swath of the marching Orcs tramped its ugly slot; the sweet grass
of Rohan had been bruised and blackened as they passed.</p>
</blockquote>

8.4. The div element
The div [p.47] element, in conjunction with the id [p.27] and class [p.27] attributes, offers a
generic mechanism for adding extra structure to documents. This element defines no
presentational idioms on the content. Thus, authors may use this element in conjunction with
style sheets [p.97] , the xml:lang [p.28] attribute, etc., to tailor XHTML to their own needs and
tastes.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 47 -

8.3. The blockquote elementXHTML 2.0

For example, suppose you wish to make a presentation in XHTML, where each slide is enclosed
in a separate element. You could use a div [p.47] element, with a class [p.27] of slide:

<body>
 <h>The meaning of life</h>
 <p>By Huntington B. Snark</p>
 <div class="slide">
 <h>What do I mean by "life"</h>
 <p>....</p>
 </div>
 <div class="slide">
 <h>What do I mean by "mean"?</h>
 ...
 </div>
 ...
</body>

8.5. The heading elements
A heading element briefly describes the topic of the section it introduces. Heading information
may be used by user agents, for example, to construct a table of contents for a document
automatically.

Deprecate h1-6?

There was a suggestion that h1 - h6 be deprecated. The working group has not yet addressed
this suggestion.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

There are two styles of headings in XHTML: the numbered versions h1 [p.48] , h2 [p.48] etc.,
and the structured version h [p.48] , which is used in combination with the section [p.51]
element.

There are six levels of numbered headings in XHTML with h1 [p.48] as the most important and
h6 [p.48] as the least. The visual presentation of headers can render more important headings in
larger fonts than less important ones.

Structured headings use the single h element, in combination with the section [p.51] element to
indicate the structure of the document, and the nesting of the sections indicates the importance
of the heading. The heading for the section is the one that is a child of the section element.

For example:

- 48 -

XHTML 2.08.5. The heading elements

<body>
<h>This is a top level heading</h>
<p>....</p>
<section>
 <p>....</p>
 <h>This is a second-level heading</h>
 <p>....</p>
 <h>This is another second-level heading</h>
 <p>....</p>
</section>
<section>
 <p>....</p>
 <h>This is another second-level heading</h>
 <p>....</p>
 <section>
 <h>This is a third-level heading</h>
 <p>....</p>
 </section>
</section>

These visual representation of these levels can be distinguished in a style sheet:

h {font-family: sans-serif; font-weight: bold; font-size: 200%}
section h {font-size: 150%} /* A second-level heading */
section section h {font-size: 120%} /* A third-level heading */

etc.

Numbered sections and references
XHTML does not itself cause section numbers to be generated from headings. Style sheet
languages such as CSS however allow authors to control the generation of section numbers.

The practice of skipping heading levels is considered to be bad practice. The series h1 h2 h1
is acceptable, while h1 h3 h1 is not, since the heading level h2 has been skipped.

8.6. The hr element
The hr [p.49] element places a horizontal line in the document.

Remove or rename hr

It has been suggested that hr be removed or renamed to, for instance, <separator/>. The
working group has not yet addressed this suggestion.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 49 -

8.6. The hr elementXHTML 2.0

8.7. The p element
The p [p.50] element represents a paragraph.

In comparison with earlier versions of HTML, where a paragraph could only contain inline text,
XHTML2’s paragraphs represent the conceptual idea of a paragraph, and so may contain lists,
blockquotes, pre’s and tables as well as inline text. They may not, however, contain directly
nested p [p.50] elements.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

<p>Payment options include:

cash
credit card
luncheon vouchers.

</p>

8.8. The pre element
The pre [p.50] element indicates that whitespace in the enclosed text has semantic relevance,
and will normally be included in visual renderings of the content.

Note that all elements in the XHTML family preserve their whitespace in the document, which is
only removed on rendering, via a stylesheet, according to the rules of CSS [CSS]. This means
that in principle any elements may preserve or collapse whitespace on rendering, under control
of a stylesheet. Also note that there is no normative requirement that the <pre> element be
rendered in a monospace font (although this is the default rendering), nor that text wrapping be
disabled.

Non-visual user agents are not required to respect extra white space in the content of a pre
[p.50] element.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 50 -

XHTML 2.08.7. The p element

The following example shows a preformatted verse from Shelly’s poem To a Skylark:

<pre>
 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.
</pre>

Here is how this might be rendered:

 Higher still and higher
 From the earth thou springest
 Like a cloud of fire;
 The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.

8.9. The section element
Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

The section [p.51] element, in conjunction with the h [p.48] element, offers a mechanism for
structuring documents into sections. This element defines content to be block-level but imposes
no other presentational idioms on the content, which may otherwise be controlled from a style
sheet.

By representing the structure of documents explicitely using the section [p.51] and h [p.48]
elements gives the author greater control over presentation possibilities than the traditional
implicit structuring using numbered levels of headings. For instance, it is then possible to
indicate the nesting of sections by causing a border to be displayed to the left of sections.

Here is an example

<body>
<h>Events</h>
<section>
 <h>Introduction</h>
 <p>....</p>
 <h>Specifying events</h>
 <p>...</p>
 <section>
 <h>Attaching events to the handler</h>
 <p>...</p>
 </section>
 <section>
 <h>Attaching events to the listener</h>
 <p>...</p>

- 51 -

8.9. The section elementXHTML 2.0

 </section>
 <section>
 <h>Specifying the binding elsewhere</h>
 <p>...</p>
 </section>
</section>

- 52 -

XHTML 2.08.9. The section element

9. XHTML Inline Text Module
This section is normative.

This module defines all of the basic text container elements, attributes, and their content models
that are "inline level". Note that while the concept of "inline level" can be construed as a
presentation aspect, in this case it is intended to only have a semantic meaning.

Element Attributes Minimal Content Model

abbr Common [p.40] (PCDATA | Inline)*

cite Common [p.40] (PCDATA | Inline)*

code Common [p.40] (PCDATA | Inline)*

dfn Common [p.40] (PCDATA | Inline)*

em Common [p.40] (PCDATA | Inline)*

kbd Common [p.40] (PCDATA | Inline)*

l Common [p.40] (PCDATA | Inline)*

quote Common [p.40] (PCDATA | Inline)*

samp Common [p.40] (PCDATA | Inline)*

span Common [p.40] (PCDATA | Inline)*

strong Common [p.40] (PCDATA | Inline)*

sub Common [p.40] (PCDATA | Inline)*

sup Common [p.40] (PCDATA | Inline)*

var Common [p.40] (PCDATA | Inline)*

l element content model

Content model of the l element should not allow nested lines

The minimal content model for this module defines a content set:

Inline
abbr | cite | code | dfn | em | kbd | l | quote | samp | span | strong | var

Note that the use of the words Block and Inline here are meant to be suggestive of the role the
content sets play. They are not normative with regards to presentation since a style sheet might
give any element within the Block content a display property of inline.

- 53 -

9. XHTML Inline Text ModuleXHTML 2.0

Implementation: RELAX NG [p.145]

nr element

There was a suggestion to introduce an nr element to help annotate content as being a number.
This suggestion has not yet been addressed by the working group.

br element still needed

Several reviewers have commented that the l element is not really a replacement for the br
element, and that both are needed. The working group is still discussing this issue.

9.1. The abbr element
The abbr [p.54] element indicates that a text fragment is an abbreviation (e.g., W3C, XML, Inc.,
Ltd., Mass., etc.); this includes acronyms.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

The content of the abbr [p.54] element specifies the abbreviated expression itself, as it would
normally appear in running text. The title [p.28] attribute of these elements may be used to
provide the full or expanded form of the expression.

Note that abbreviations often have idiosyncratic pronunciations. For example, while "IRS" and
"BBC" are typically pronounced letter by letter, "NATO" and "UNESCO" are pronounced
phonetically. Still other abbreviated forms (e.g., "URI" and "SQL") are spelled out by some
people and pronounced as words by other people. When necessary, authors should use style
sheets to specify the pronunciation of an abbreviated form.

Examples:

 <abbr title="Limited">Ltd.</abbr>
 <abbr title="Abbreviation">abbr.</abbr>

9.2. The cite element
The cite [p.54] element contains a citation or a reference to other sources.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 54 -

XHTML 2.09.1. The abbr element

In the following example, the cite [p.54] element is used to delineate the speaker:

As <cite cite="http://www.whitehouse.gov/history/presidents/ht33.html">Harry S. Truman</cite> said,
<quote xml:lang="en-us">The buck stops here.</quote>

More information can be found in <cite cite="http://www.w3.org/TR/REC-xml">[XML]</cite>.

9.3. The code element
The code [p.55] element contains a fragment of computer code.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

The Pascal statement <code>i := 1;</code> assigns the
literal value one to the variable <var>i</var>.

9.4. The dfn element
The dfn [p.55] element contains the defining instance of the enclosed term.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

An <dfn id="def-acronym">acronym</dfn> is a word formed
from the initial letters or groups of letters of words in a set phrase
or series of words.

9.5. The em element
The em [p.55] element indicates emphasis for its contents.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 55 -

9.3. The code elementXHTML 2.0

Example:

Do not phone before 9 a.m.

9.6. The kbd element
The kbd [p.56] element indicates text to be entered by the user.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

To exit, type <kbd>QUIT</kbd>.

9.7. The l element
The l [p.56] element represents a semantic line of text (e.g., a line of verse or a line of computer
code). It is intended as a structured replacement for the br element.

When visually represented, the l [p.56] element should start on a new line and have a line break
at the end. Whether the line should wrap or not depends on styling properties of the element.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

By retaining structure in text that has to be broken over lines, you retain essential information
about its makeup. This gives you greater freedom with styling the content. For instance, line
numbers can be generated automatically from the stylesheet if needed.

For instance, for a document with the following structure:

<p class="program">
<l>program p(input, output);</l>
<l>begin</l>
<l> writeln("Hello world");</l>
<l>end.</l>
</p>

the following CSS stylesheet would number each line:

- 56 -

XHTML 2.09.6. The kbd element

.program { counter-reset: linenumber }

l:before {
 position: relative;
 left: -1em;
 counter-increment: linenumber;
 content: counter(linenumber);
}

9.8. The quote element
This element designates an inline text fragment of quoted text.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Visual user agents must not by default add delimiting quotation marks (as was the case for the q
element in earlier versions of XHTML). It is the responsibility of the document author to add any
required quotation marks, either directly in the text, or via a stylesheet.

The following example illustrates nested quotations with the quote [p.57] element.

<p>John said, <quote>"I saw Lucy at lunch, she told me
<quote>’Mary wants you
to get some ice cream on your way home.’</quote> I think I will get
some at Jen and Berry’s, on Gloucester Road."</quote></p>

Here is an example using the cite [p.32] attribute:

Steven replied:
<quote cite="http://lists.example.org/2002/01.html">We quite agree</quote>

9.9. The samp element
The samp [p.57] element designates sample output from programs, scripts, etc.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

On starting, you will see the prompt <samp>$ </samp>.

- 57 -

9.8. The quote elementXHTML 2.0

9.10. The span element
The span [p.58] element, in conjunction with the id [p.27] and class [p.27] attributes, offer a
generic mechanism for adding structure to documents. This element imposes no presentational
idioms on the content. Thus, authors may use this element in conjunction with style sheets [p.97]
, the xml:lang [p.28] attribute, etc., to tailor XHTML to their own needs and tastes.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

For example, suppose you wish to mark all words in a document that need to be collected into
an index. You could use a span [p.58] element, with a class [p.27] of xref:

<p>This operation is called
the transpose
or inverse.</p>

9.11. The strong element
The strong [p.58] element indicates higher importance for its contents.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

On Monday please put the rubbish out,
but not before nightfall!

strong

Leave in, deprecate or remove? No consensus.

9.12. The sub element
The sub [p.58] element indicates that its contents should regarded as a subscript.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

- 58 -

XHTML 2.09.10. The span element

For visual user agents this element would normally be rendered as a subscript of the text
baseline, but on user agents where this is not possible (for instance teletype-like devices) other
renderings may be used. For instance, a_{i, j} that would be rendered as a i, j

on a device that can render it so, might be rendered as a[i, j] on a simpler device.

Example:

 H₂O

9.13. The sup element
The sup [p.59] element indicates that its contents should be regarded as a super-script.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

For visual user agents this element would normally be rendered as a super-script of the text
baseline, but on user agents where this is not possible (for instance teletype-like devices) other
renderings may be used. For instance, 2ⁿ that would be rendered as 2 n on a
device that can render it so, might be rendered as 2↑(n) on a simpler device.

Many scripts (e.g., French) require superscripts or subscripts for proper rendering. The sub
[p.58] and sup [p.59] elements should be used to markup text in these cases.

 H₂O
 E = mc²
 M^{lle} Dupont

9.14. The var element
The var [p.59] element indicates an instance of a variable or program argument.

Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

Example:

The parameter <var>ncols</var> represents
the number of colors to use.

- 59 -

9.13. The sup elementXHTML 2.0

- 60 -

XHTML 2.09.14. The var element

10. XHTML Hypertext Module
This section is normative.

The Hypertext Module provides an element that traditionally has been used in HTML to define
hypertext links to other resources. Although all elements may now play the role of a hyperlink
(using the href [p.31] attribute) or hyperlink anchor (using the id [p.27] attribute), this element
remains for explicit markup of links, though is otherwise identical in semantics to the span [p.58]
element.

This module supports the following element:

Element Attributes Minimal Content Model

a [p.61] Common [p.40] (PCDATA | Inline)*

This module adds the a [p.61] element to the Inline content set of the Inline Text Module.

Implementation: RELAX NG [p.150]

10.1. The a element
Attributes

The Common [p.40] collection
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] ,
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31]

An a [p.61] element defines an anchor.

1. The a [p.61] element’s content defines the position of the anchor.
2. An href [p.31] attribute makes this anchor the source anchor of exactly one link.
3. An id [p.27] attribute makes this anchor the possible target of other links.

Authors may also create an a [p.61] element that specifies no anchors, i.e., that doesn’t specify
href [p.31] , or id [p.27] . Values for these attributes may be set at a later time through scripts as
defined in the Scripting [p.91] module.

In the example that follows, the a [p.61] element defines a link. The source anchor is the text
"W3C Web site" and the destination anchor is "http://www.w3.org/":

For more information about W3C, please consult the
W3C Web site.

This link designates the home page of the World Wide Web Consortium. When a user activates
this link in a user agent, the user agent will retrieve the resource, in this case, an XHTML
document.

- 61 -

10. XHTML Hypertext ModuleXHTML 2.0

User agents generally render links in such a way as to make them obvious to users (underlining,
reverse video, etc.). The exact rendering depends on the user agent. Rendering may vary
according to whether the user has already visited the link or not. A possible visual rendering of
the previous link might be:

For more information about W3C, please consult the W3C Web site.
                                                   ~~~~~~~~~~~~

Suppose we define an anchor named "anchor-one" in the file "one.html".

...text before the anchor...
<a id="anchor-one">This is the location of anchor one.</a>
...text after the anchor...

This creates an anchor around the text "This is the location of anchor one.". Usually, the
contents of a [p.61] are not rendered in any special way when a [p.61] defines an anchor only.

Having defined the anchor, we may link to it from the same or another document. URIs that
designate anchors contain a "#" character followed by the anchor name (the fragment identifier).
Here are some examples of such URIs:

An absolute URI: http://www.mycompany.com/one.html#anchor-one 
A relative URI: ./one.html#anchor-one or one.html#anchor-one 
When the link is defined in the same document: #anchor-one

Thus, a link defined in the file "two.html" in the same directory as "one.html" would refer to the
anchor as follows:

...text before the link...
For more information, please consult <a href="./one.html#anchor-one"> anchor one</a>.
...text after the link...

The a [p.61] element in the following example specifies a link (with href [p.31] ) and creates a
named anchor (with id [p.27] ) simultaneously:

I just returned from vacation! Here’s a
<a id="anchor-two" 
   href="http://www.somecompany.com/People/Ian/vacation/family.png">
photo of my family at the lake.</a>.

This example contains a link to a different type of Web resource (a PNG image). Activating the
link should cause the image resource to be retrieved from the Web (and possibly displayed if the
system has been configured to do so).

Note. User agents are required to find anchors created by empty a [p.61] elements.

- 62 -

XHTML 2.010.1. The a element



11. XHTML List Module
This section is normative.

As its name suggests, the List Module provides list-oriented elements. Specifically, the List
Module supports the following elements and attributes:

Elements Attributes Minimal Content Model 

dl [p.65] Common [p.40] (dt | dd)+

dt [p.65] Common [p.40] (PCDATA | Inline)*

dd [p.65] Common [p.40] (PCDATA | Flow)*

label [p.67] Common [p.40] (PCDATA | Inline)*

nl [p.66] Common [p.40] label [p.67] , li [p.67] +

ol [p.66] Common [p.40] li [p.67] +

ul [p.66] Common [p.40] li [p.67] +

li [p.67] Common [p.40] (PCDATA | Flow)*

This module also defines the content set List with the minimal content model (dl | nl | ol | ul)+
and adds this set to the Flow content set of the Block Text Module.

Implementation: RELAX NG [p.150] 

XHTML offers authors several mechanisms for specifying lists of information. All lists must
contain one or more list elements. Lists may contain:

Unordered information. 
Ordered information. 
Navigation information. 
Definitions.

The previous list, for example, is an unordered list, created with the ul [p.66] element:

<ul>
<li>Unordered information. </li>
<li>Ordered information. </li>
<li>Navigation information. </li>
<li>Definitions. </li>
</ul>

An ordered list, created using the ol [p.66] element, should contain information where order
should be emphasized, as in a recipe:

- 63 -

11. XHTML List ModuleXHTML 2.0



1.  Mix dry ingredients thoroughly. 
2.  Pour in wet ingredients. 
3.  Mix for 10 minutes. 
4.  Bake for one hour at 300 degrees.

Definition lists, created using the dl [p.65] element, generally consist of a series of term/definition
pairs (although definition lists may have other applications). Thus, when advertising a product,
one might use a definition list:

Lower cost 
The new version of this product costs significantly less than the previous one! 

Easier to use 
We’ve changed the product so that it’s much easier to use! 

Safe for kids 
You can leave your kids alone in a room with this product and they won’t get hurt (not a 
guarantee).

defined in XHTML as:

<dl>
<dt><strong>Lower cost</strong></dt>
<dd>The new version of this product costs significantly less than the
previous one!</dd>
<dt><strong>Easier to use</strong></dt>
<dd>We’ve changed the product so that it’s much easier to
use!</dd>
<dt><strong>Safe for kids</strong></dt>
<dd>You can leave your kids alone in a room with this product and
they won’t get hurt (not a guarantee).</dd>
</dl>

Lists may also be nested and different list types may be used together, as in the following
example, which is a definition list that contains an unordered list (the ingredients) and an
ordered list (the procedure):

The ingredients: 
100 g. flour 
10 g. sugar 
1 cup water 
2 eggs 
salt, pepper

The procedure: 
1.  Mix dry ingredients thoroughly. 
2.  Pour in wet ingredients. 
3.  Mix for 10 minutes. 
4.  Bake for one hour at 300 degrees.

Notes: 
The recipe may be improved by adding raisins.

- 64 -

XHTML 2.011. XHTML List Module



The exact presentation of the three list types depends on the user agent and/or the stylesheet in
effect. Authors must not use lists purely as a means of indenting text. This is a stylistic issue and
is properly handled by style sheets.

11.1. Definition lists: the dl, dt, and dd elements
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

Definition lists vary only slightly from other types of lists in that list items consist of two parts: a
term and a description. The term is given by the dt element and is restricted to inline content.
The description is given with a dd element that contains block-level content.

Here is an example:

  
<dl>
  <dt>Dweeb</dt>
  <dd>young excitable person who may mature
    into a <em>Nerd</em> or <em>Geek</em></dd>

  <dt>Hacker</dt>
  <dd>a clever programmer</dd>

  <dt>Nerd</dt>
  <dd>technically bright but socially inept person</dd>

</dl>

Here is an example with multiple terms and descriptions:

<dl>
   <dt>Center</dt>
   <dt>Centre</dt>
   <dd> A point equidistant from all points
              on the surface of a sphere.</dd>
   <dd> In some field sports, the player who
              holds the middle position on the field, court,
              or forward line.</dd>
</dl>

Another application of dl [p.65] , for example, is for marking up dialogues, with each dt naming a
speaker, and each dd containing his or her words.

- 65 -

11.1. Definition lists: the dl, dt, and dd elementsXHTML 2.0



11.2. The nl element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

Navigation lists are intended to be used to define collections of selectable items for presentation
in a "navigation" menu. A navigation list is required to start with a label [p.67] element that
defines the label for the list.

On visual user agents, the default presentation behavior is as follows:

1.  The contents of the label [p.67] element are presented. 
2.  When the label [p.67] element’s content is selected, the navigation list’s li [p.67] element

contents are displayed. 
3.  If an li [p.67] element contains another navigation list [p.66] , that list’s label’s contents are

displayed. 
4.  If an li [p.67] element has an href [p.31] attribute, and that element’s contents are selected,

the link defined by the href [p.31] attribute is followed. 
5.  If the nl [p.66] element is de-selected, it’s contents are removed from the display.

It is possible to change this default behavior through the use of style sheets. The behavior of 
navigation lists [p.66] in non-visual user agents is unspecified.

This example illustrates the basic structure of a nested navigation list:

<nl>
   <label>Contents </label>
   <li href="#introduction">Introduction</li>
   <li>
      <nl>
          <label>Terms</label>
          <li href="#may">May</li>
          <li href="#must">Must</li>
          <li href="#should">Should</li>
      </nl>
   </li>
   <li href="#conformance">Conformance</li>
   <li href="#references">References</li>
   ...
</nl>

11.3. The ol, and ul elements
Attributes

- 66 -

XHTML 2.011.2. The nl element



The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

Ordered and unordered lists are rendered in an identical manner except that visual user agents
number ordered list items. User agents may present those numbers in a variety of ways.
Unordered list items are not numbered.

Both types of lists are made up of sequences of list items defined by the li [p.67] element.

This example illustrates the basic structure of a list.

<ul>
   <li> ... first list item...</li>
   <li> ... second list item...</li>
   ...
</ul>

11.4. The li element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The li [p.67] element defines a list item within an ordered, unordered, or navigation list. When
the href [p.31] attribute is defined, the contents of the list item become a selectable link, just as
an a [p.61] element with an href [p.31] attribute would be.

11.5. The label element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The label [p.67] element is used to define a label for an nl [p.66] navigation list. The contents of
the label element are displayed as the title of a list (or sublist). See nl [p.66] for more 
information.

- 67 -

11.4. The li elementXHTML 2.0



- 68 -

XHTML 2.011.5. The label element



12. XHTML Linking Module
This section is normative.

The Link Module defines an element that can be used to define links to external resources.
These resources are often used to augment the user agent’s ability to process the associated
XHTML document. The element and attributes included in this module are:

Elements Attributes Minimal Content Model 

link [p.69] Common [p.40] , media [p.69] (MediaDesc [p.25] ), EMPTY

When this module is used, it adds the link [p.69] element to the content model of the head [p.42] 
element as defined in the Structure Module [p.41] .

Implementation: RELAX NG [p.153] 

12.1. The link element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

media = MediaDesc [p.25] 
The value of this attribute specifies the type of media for which the element is intended.

This element defines a link. Unlike a [p.61] , it may only appear in the head [p.42] section of a
document, although it may appear any number of times. Although link [p.69] has no content, it
conveys relationship information that may be rendered by user agents in a variety of ways (e.g.,
a tool-bar with a drop-down menu of links).

Possible rel values

Allowable and new values for the rel attribute are being discussed.

XML linking support

The HTML Working Group is aware that there are issues surrounding various linking models that
would permit generic XML user agents to support generic linking semantics and presentation.
The Working Group is coordinating closely with other groups both inside and outside of the W3C
to resolve these issues.

This example illustrates how several link [p.69] definitions may appear in the head [p.42] section
of a document. The current document is "Chapter2.html". The rel [p.32] attribute specifies the
relationship of the linked document with the current document. The values "Index", "Next", and

- 69 -

12. XHTML Linking ModuleXHTML 2.0



"Prev" are explained in the section on link types [p.24] .

<head>
  <title>Chapter 2</title>
  <link rel="Index" href="../index.html"/>
  <link rel="Next"  href="Chapter3.html"/>
  <link rel="Prev"  href="Chapter1.html"/>
</head>

12.1.1. Forward and reverse links

While the rel [p.32] attribute specifies a relationship from this document to another resource, the 
rev [p.32] attribute specifies the reverse relationship.

Consider two documents A and B.

Document A:       <link href="docB" rel="index"/>

Has exactly the same meaning as:

Document B:       <link href="docA" rev="index"/>

namely that document B is the index for document A.

Both the rel [p.32] and rev [p.32] attributes may be specified simultaneously.

12.1.2. Links and external style sheets

When the link [p.69] element links an external style sheet to a document, the type [p.35] attribute
specifies the style sheet language and the media [p.69] attribute specifies the intended
rendering medium or media. User agents may save time by retrieving from the network only
those style sheets that apply to the current device.

Media descriptors [p.25] are further discussed under Attribute Types.

12.1.3. Links and search engines

Authors may use the link [p.69] element to provide a variety of information to search engines, 
including:

Links to alternate versions of a document, written in another human language. 
Links to alternate versions of a document, designed for different media, for instance a
version especially suited for printing. 
Links to the starting page of a collection of documents.

The examples below illustrate how language information, media types, and link types may be
combined to improve document handling by search engines.

- 70 -

XHTML 2.012.1.1. Forward and reverse links



The following example shows how to use the xml:lang [p.28] attribute to indicate to a search
engine where to find Dutch, Portuguese, and Arabic versions of a document. Note that this also
indicates that the value of the title [p.28] attribute for the link [p.69] element designating the
French manual is in French.

<head>
<title>The manual in English</title>
<link title="The manual in Dutch"
      rel="alternate"
      xml:lang="nl" 
      href="http://example.com/manual/dutch.html"/>
<link title="The manual in Portuguese"
      rel="alternate"
      xml:lang="pt" 
      href="http://example.com/manual/portuguese.html"/>
<link title="The manual in Arabic"
      rel="alternate"
      xml:lang="ar" 
      href="http://example.com/manual/arabic.html"/>
<link lang="fr" title="La documentation en Fran&ccedil;ais"
      rel="alternate"
      xml:lang="fr"
      href="http://example.com/manual/french.html"/>
</head>

In the following example, we tell search engines where to find the printed version of a manual.

<head>
<title>Reference manual</title>
<link media="print" 
      title="The manual in PostScript"
      type="application/postscript"
      rel="alternate"
      href="http://example.com/manual/postscript.ps"/>
</head>

In the following example, we tell search engines where to find the front page of a collection of 
documents.

<head>
<title>Reference manual -- Chapter 5</title>
<link rel="Start" title="The first chapter of the manual"
      type="text/html"
      href="http://example.com/manual/start.html"/>
</head>

- 71 -

12.1.3. Links and search enginesXHTML 2.0



- 72 -

XHTML 2.012.1.3. Links and search engines



13. XHTML Metainformation Module
This section is normative.

The Metainformation Module defines an element that describes information within the
declarative portion of a document (in XHTML within the head element). This module includes the
following element:

Elements Attributes Minimal Content Model 

meta Common [p.40] , name (NMTOKEN [p.23] ) ( ( PCDATA | Inline )* | meta+ )

When this module is selected, the meta [p.73] element is added to the content model of the 
head [p.42] element as defined in the Structure Module.

Implementation: RELAX NG [p.154] 

13.1. The meta element
For the following attributes, the permitted values and their interpretation are profile [p.42] 
dependent:

Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

name = NMTOKEN [p.23] 
This attribute identifies the property name. This recommendation does not specify legal
values for this attribute.

The meta [p.73] element can be used to identify properties of a document (e.g., author,
expiration date, a list of key words, etc.) and assign values to those properties. This specification
does not define a normative set of properties.

meta properties

We should specify a minimal set of useful meta properties

Each meta [p.73] element specifies a property/value pair. The name [p.73] attribute identifies the
property and the content of the element specifies the property’s value.

For example, the following declaration sets a value for the Author property:

- 73 -

13. XHTML Metainformation ModuleXHTML 2.0



<meta name="Author">Steven Pemberton</meta>

Note. The meta [p.73] element is a generic mechanism for specifying meta data. However,
some XHTML elements and attributes already handle certain pieces of meta data and may be
used by authors instead of meta [p.73] to specify those pieces: the title [p.42] element, the 
address [p.46] element, the edit [p.31] and related attributes, the title [p.28] attribute, and the cite 
[p.32] attribute.

Note. When a property specified by a meta [p.73] element takes a value that is a URI [p.25] ,
some authors prefer to specify the meta data via the link [p.69] element. Thus, the following
meta data declaration:

<meta name="DC.identifier">http://www.rfc-editor.org/rfc/rfc3236.txt</meta>

might also be written:

<link rel="DC.identifier"
         type="text/plain"
         href="http://www.rfc-editor.org/rfc/rfc3236.txt"/>

13.1.1. meta and search engines

A common use for meta [p.73] is to specify keywords that a search engine may use to improve
the quality of search results. When several meta [p.73] elements provide language-dependent
information about a document, search engines may filter on the xml:lang [p.28] attribute to
display search results using the language preferences of the user. For example,

<!-- For speakers of US English -->
<meta name="keywords" xml:lang="en-us">vacation, Greece, sunshine</meta>
<!-- For speakers of British English -->
<meta name="keywords" xml:lang="en">holiday, Greece, sunshine</meta>
<!-- For speakers of French -->
<meta name="keywords" xml:lang="fr">vacances, Gr&egrave;ce, soleil</meta>

The effectiveness of search engines can also be increased by using the link [p.69] element to
specify links to translations of the document in other languages, links to versions of the
document in other media (e.g., PDF), and, when the document is part of a collection, links to an
appropriate starting point for browsing the collection.

13.1.2. meta and RDF

meta and RDF

How to represent and include RDF in XHTML2 documents is under discussion.

- 74 -

XHTML 2.013.1.1. meta and search engines



13.1.3. meta data profiles

Improve handling of meta data profiles

There are number of suggestions to improve handling of meta data profiles. The Working Group
has not resolved this issue yet.

The profile [p.42] attribute of the html [p.42] element specifies the location of a meta data profile.
The value of the profile [p.42] attribute is a URI. User agents may use this URI in two ways:

As a globally unique name. User agents may be able to recognize the name (without
actually retrieving the profile) and perform some activity based on known conventions for
that profile. For instance, search engines could provide an interface for searching through
catalogs of XHTML documents, where these documents all use the same profile for
representing catalog entries. 
As a link. User agents may dereference the URI and perform some activity based on the
actual definitions within the profile (e.g., authorize the usage of the profile within the current
XHTML document). This specification does not define formats for profiles.

This example refers to a hypothetical profile that defines useful properties for document
indexing. The properties defined by this profile -- including "author", "copyright", "keywords", and
"date" -- have their values set by subsequent meta [p.73] declarations.

 <html ... profile="http://www.acme.com/profiles/core">
  <head>
      <title>How to complete Memorandum cover sheets</title>
      <meta name="author">John Doe</meta>
      <meta name="copyright">&copy; 1997 Acme Corp.</meta>
      <meta name="keywords">corporate,guidelines,cataloging</meta>
      <meta name="date">1994-11-06T08:49:37+00:00</meta>
 </head>
...

- 75 -

13.1.3. meta data profilesXHTML 2.0



- 76 -

XHTML 2.013.1.3. meta data profiles



14. XHTML Object Module
This section is normative.

The Object Module provides elements for general-purpose object inclusion; this includes images
and other media, as well as executable content. Specifically, the Object Module supports:

Elements Attributes Minimal Content Model 

object
Common [p.40] , archive [p.77] (URIList [p.25] ), 
content-length [p.77] (Number [p.25] ), data [p.77] 
(URI [p.25] ), declare [p.78] ("declare"),

( caption [p.102] ?, standby 
[p.87] ?, param [p.83] *,
(PCDATA | Flow)*)

param
id [p.27] (ID [p.23] ), name [p.83] * (CDATA [p.23] ), 
value [p.84] (CDATA [p.23] ), valuetype [p.84] 
("data"* | "ref" | "object")

EMPTY

standby Common [p.40] (PCDATA | Inline)*

When this module is used, it adds the object element to the Inline content set of the Inline Text 
module.

Implementation: RELAX NG [p.154] 

14.1. The object element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

archive = URIList [p.25] 
This attribute specifies a comma-separated list of URIs for archives containing classes and
other resources that will be "preloaded". The classes are loaded using an instance of an
AppletClassLoader with the given xml:base [p.34] . Relative URIs for archives are
interpreted with respect to the applet’s xml:base. Preloading resources can significantly
improve the performance of applets.

content-length = Number [p.25] 
This attribute is to be used as a hint by the object handler. The author may provide the
object handler with the physical size of the object data that is to be processed. A valid value
is the same as defined in section 14.13 of [RFC2616 [p.191] ].

data = URI [p.25] 
This attribute is used to specify the location of the object’s data. If given as a relative URI,
the location is based from the URI defined in the xml:base [p.34] attribute .

- 77 -

14. XHTML Object ModuleXHTML 2.0



declare = "declare" 
When present, this boolean attribute makes the current object [p.77] element a declaration
only - not one that is to be executed until after the document has completed loading and has
been called through a user event such as selecting an anchor that references the object.

type = ContentType [p.23] 
This attribute specifies the content type of the resource designated by the data [p.77] 
attribute. It is used to help the user agent decide whether it can process this element’s 
contents.

14.1.1. Defining terminology

The following terms will be used throughout this section.

object data 
The file that is to be processed, such as an mp3, or a .gif file. The actual content to be
processed. 

object handler 
The mechanism that will be used to process the object data. The mechanism could be the
user agent or an external application. 

object element 
This refers to the actual XHTML coding, including the allowable attributes. 

instantiation 
Refers to the plug-in handler, and the need to create a window, modify the user interface,
allocate memory, etc.

14.1.2. Basic Information for Object Handlers

Most user agents have built-in mechanisms for processing common data types such as text, and
various image types (gif, jpg and png for example) in some instances the user agent may pass
the processing to an external application. Generally, a user agent will attempt to process the
object declaration, otherwise it may invoke an external application, which are normally referred
to as "plug-ins".

In the most general case, an author should specify three types of information:

The location of the object data (the data attribute). The author must direct the object handler
to the actual physical location of the object data, otherwise the object handler will not be
able to process the request. 
The mime type associated with the object data (the type attribute). For instance, if the
author prefers that a particular object handler be used to process the data, they may specify
a mime type that is associated to a specific object handler. 
Additional values required for the appropriate processing of the object data by the object
handler at run-time (via the param element). Some instances may process more
appropriately if the object handler is passed initial process instructions. For example, the
author can specify whether a video should automatically start or wait until the entire data file
has been downloaded.

- 78 -

XHTML 2.014.1.1. Defining terminology



The object [p.77] element allows authors to specify all three types of information, but authors
may not have to specify all three at once. For example, some object element instances may not
require data (e.g., a self-contained applet that performs a small animation). Others may not
require mime type information, i.e., the user agent itself may already know how to process that
type of data (e.g., GIF images). Still others may not require run-time initialization.

Authors specify an object’s mime type and the location of the data to be processed via the object 
[p.77] element. To specify run-time values, however, authors use the param [p.83] element,
which is discussed in the section on object initialization.

The object [p.77] element may also appear in the content of the head [p.42] element. Since user
agents generally do not process elements in the head [p.42] , authors should ensure that any 
object [p.77] element in the head [p.42] does not specify content that may be processed. Please
consult the section on sharing frame data for an example of including the object [p.77] element
in the head [p.42] element.

Please consult the section on form controls for information about object [p.77] elements in forms.

14.1.3. Rules for processing objects

A user agent must interpret an object [p.77] element according to the following precedence 
rules:

1.  The user agent must first try to process the object element. It should not process the
embedded contents, but it must examine them in case there are param [p.83] elements (see
object initialization) or elements that take advantage of the Map [p.36] attribute collection
defined. 

2.  If the user agent is not able to process the object for whatever reason (configured not to,
lack of resources, wrong architecture, etc.), it must try to process its contents.

Authors should not include content in object [p.77] elements that appear in the head [p.42] 
element.

When a user agent is able to successfully process an object element it MUST not attempt to
process inner elements. For example, if the following code is encountered:

<object ... pointing to objectdataA>
<object ... pointing to objectdataB>
<p>alternate text</p>
</object>
</object>

When the user agent encounters objectdataA and is able to process that object [p.77] element,
then all nested elements (except for applicable param [p.83] elements) MUST be ignored.

If a user agent cannot process an object element or a set of nested objects, and the author did
not provide alternate text, the user agent SHOULD NOT supply any additional information. It is
the responsibility of the author to supply additional or alternate information. It may be the intent
of the author to not provide additional information if the object cannot be processed.

- 79 -

14.1.3. Rules for processing objectsXHTML 2.0



The user agent SHOULD attempt to process the outer object to its fullest extent before dropping
to a nested object. For example, if the author provided information that could be used to
download an external application to be used to process the object, then the user agent SHOULD
attempt to download and install the application. If the user selects to not install the application,
the user agent SHOULD continue to process the nested object or objects, if they exist.

The following example shows a minimally coded object [p.77] element. The data [p.77] attribute
specifies the location of the object data and the type [p.78] attribute specifies the mime type
associated with the object data:

<object data="http://www.example.com/foo.mp3" type="audio/mpeg">
   <em>alternate text</em>
</object>

Note that the MP3 file will be processed as soon as the object handler interprets this object 
[p.77] element declaration. It is possible to delay processing of an object through the use of
additional values defined within the param [p.83] element (described later). It may also be
delayed by the use of the declare [p.78] attribute.

The following example shows an object [p.77] element coded to process an image. The data 
[p.77] attribute specifies the location of the object data, in this case the image to be processed,
and the type [p.78] attribute specifies the mime type associated with the object data:

<object data="http://www.example.com/foo.jpg" type="image/jpeg">
   <em>alternate text</em>
</object>

The following example shows how an applet element can be converted to an object [p.77] 
element. The codebase attribute is replaced with the xml:base attribute. The code attribute is
replaced with the data attribute. The width and the height of the applet are defined using CSS.
The param [p.83] elements are not modified since the values within the param [p.83] elements
are passed directly to the external application. If a particular version reference is required, that
would be appended to the content of the type attribute. For example, 
type="application/x-java-applet;version=1.4.1"

If the archive attribute is used, the object handler should process the search order by
interpreting the archive attribute value first and then the xml:base attribute value.

<applet
  codebase="http://www.example.com/applets/classes"  
  code="Clock.class"
  width="150" 
  height="150">
    <param name="bgcolor" value="ffffff"/>
    <param name="border" value="5"/>
    <param name="ccolor" value="dddddd"/>
    <param name="cfont" value="TimesRoman|BOLD|18"/>
    <param name="delay" value="100"/>
    <param name="hhcolor" value="0000ff"/>
    <param name="link" value="http://www.example.com/"/>
    <param name="mhcolor" value="00ff00"/>

- 80 -

XHTML 2.014.1.3. Rules for processing objects



    <param name="ncolor" value="000000"/>
    <param name="nradius" value="80"/>
    <param name="shcolor" value="ff0000"/>
</applet>

<style type="text/css">
#obj1 {width:150px; height:150px;}
</style>
...

<object id="obj1" 
  xml:base="http://www.example.com/applets/classes" 
  type="application/x-java-applet" 
  data="Clock.class">
    <param  name="delay"   value="100"/>
    <param  name="link"    value="http://www.example.com/"/>
    <param  name="border"  value="5"/>
    <param  name="nradius" value="80"/>
    <param  name="cfont"   value="TimesRoman|BOLD|18"/>
    <param  name="bgcolor" value="ddddff"/>
    <param  name="shcolor" value="ff0000"/>
    <param  name="mhcolor" value="00ff00"/>
    <param  name="hhcolor" value="0000ff"/>
    <param  name="ccolor"  value="dddddd"/>
    <param  name="ncolor"  value="000000"/>
    <em>alternate text</em>

</object>

Authors should always include alternate text as the content of the object [p.77] element
declaration when an embedded object is not defined. If an author includes alternate text and an
embedded object, the object handler may process both the text and the embedded object. The
alternate text will provide the user a hint in cases where the object handler cannot process the
object data. The author should also consider supplying a link to the location where the external
application may be downloaded in case the user does not have the external application installed.

The following example demonstrates how alternate text may be used within an object [p.77] 
element.

<object data="http://www.example.com/foo.mp3" type="audio/mpeg">
   A really cool audio file. If you want to download and install 
   a plug-in to listen to this file, please go to 
   <a href="http://www.example.com">www.example.com</a>
</object>

One significant consequence of the object [p.77] element’s design is that it offers a mechanism
for specifying alternate object processing; each embedded object [p.77] element declaration
may specify alternate content types. If the object handler cannot process the outermost object 
[p.77] , it must then process the embedded contents, which may be another object [p.77] 
element, etc. In this case, the innermost object [p.77] element declaration should contain
alternative text, the outer object [p.77] element declarations should not contain alternative text
since an embedded object [p.77] element declaration is present.

- 81 -

14.1.3. Rules for processing objectsXHTML 2.0



A user agent must attempt to process the outermost object [p.77] element. If the object [p.77] 
cannot be processed, then the next level object [p.77] declaration should be processed. If that
object cannot be processed, then the user agent must continue to process each embedded 
object [p.77] declaration until the inner most object [p.77] declaration is reached. Once the inner
most object [p.77] declaration is analyzed and if the user agent cannot process it, then the
alternative text of the inner most object [p.77] declaration should be processed.

In the following example, we embed several object [p.77] element declarations to illustrate how
alternate processing works. In the following order: (1) an Earth applet, (2) an MPEG animation of
the Earth, (3) a GIF image of the Earth, (4) alternate text.

<!-- First, try the applet -->
<object 
    data="http://www.example.com/TheEarth.class"
    type="application/x-java-applet">

      <!-- Else, try the MPEG video -->
      <object 
          data="TheEarth.mpeg"
          type="video/mpeg"
          xml:base="http://www.example.com/">

            <!-- Else, try the GIF image -->
            <object
                data="TheEarth.gif"
                type="image/gif"
                xml:base="http://www.example.com/">

                <!-- Else process the alternate text -->
                The <strong>Earth</strong> as seen from space.
            </object>
      </object>
</object>

The outermost object [p.77] element declaration specifies an applet that requires no initial
values, the data [p.77] attribute points to the applet class file, and the type [p.78] attribute
defines the mime type. An xml:base [p.34] attribute could have been used to point to the base
location to access the class file. In this example, however, the data [p.77] attribute value
contains an absolute URL so the xml:base [p.34] attribute was not required. An archive [p.77] 
attribute could have been used if the author needed to include any associated jar files. The
second object [p.77] element declaration specifies an MPEG animation, and the xml:base [p.34] 
attribute defines the location of the object data defined in the data [p.77] attribute. We also set
the type [p.78] attribute so that a user agent can determine if it has the capability to process the
object data or to invoke an external application to process the MPEG. The third object element
declaration specifies a GIF file and furnishes alternate text in case all other mechanisms fail.

Another way to approach the usage of the object [p.77] element attributes is this way:

- 82 -

XHTML 2.014.1.3. Rules for processing objects



attribute function

archive
For example, when defining an applet you could reference a space-separated
list of jar files.

content-length
This is similar to meta data, in that this can be used by the object handler as a
hint to the physical size of the object data that is to be processed.

data

This URI points to the object data to be processed. This can be an absolute
URI (http://www.example.com/datafiles/myinstance.mpg), or a relative URI
(myinstance.mpg). If you use a relative URI, then you will need to use the 
xml:base [p.34] attribute to define the base location of the object data. This
attribute should only refer to the data to be processed.

declare

This is used to delay the processing of the object data until such time that it is
referred to by another element that requires the object data to be processed. In
other words, the object data should be downloaded but should not be
processed. For example, if an a [p.61] element is coded to refer to the object
element and the a [p.61] element is activated, then the object data would be 
processed.

type
Defining the mime type of the object data will assist the object handler in
determining whether the object data can be processed by the user agent or if
an external application needs to be launched to process the object data.

xml:base
Use this attribute to define the base location of the object data. For example:
http://www.example.com/datafiles/. This attribute should not be used for any
other purpose.

Inline vs. external data. Data to be processed may be supplied in two ways: inline and from an
external resource. While the former method will generally lead to faster processing, it is not
convenient when processing large quantities of data.

Here’s an example that illustrates how inline data may be fed to an object [p.77] handler:

<object 
    id="clock1"
    type="application/x-java-applet">
    A clock.
</object>

14.2. The param element
Attributes

name = CDATA [p.23] 
This attribute defines the name of a run-time parameter, assumed to be known by the object
handler. Whether the property name is case-sensitive depends on the specific object
handler implementation.

- 83 -

14.2. The param elementXHTML 2.0



value = CDATA [p.23] 
This attribute specifies the value of a run-time parameter specified by name [p.83] .
Property values have no meaning to XHTML; their meaning is determined by the object in 
question.

valuetype = data|ref|object 
This attribute specifies the type of the value attribute. 

Possible values:

data: This is the default value for the attribute. It means that the value specified by 
value [p.84] will be evaluated and passed to the object’s implementation as a string. 
ref: The value specified by value [p.84] is a URI that designates a resource where
run-time values are stored. This allows support tools to identify URIs given as
parameters. The URI must be passed to the object as is, i.e., unresolved. 
object: The value specified by value [p.84] is an identifier that refers to an object 
[p.77] declaration in the same document. The identifier must be the value of the id 
[p.27] attribute set for the declared object [p.77] element.

param [p.83] elements specify a set of values that may be required to process the object data by
an object handler at run-time. Any number of param [p.83] elements may appear in the content
of an object [p.77] element, in any order, but must be placed at the start of the content of the
enclosing object [p.77] element, with the exception of optional caption [p.102] and standby [p.87] 
elements.

The syntax of names and values is assumed to be understood by the user agent or the external
application that will process the object data. This document does not specify how object
handlers should retrieve name/value pairs nor how they should interpret parameter names that
appear twice.

The user agent or the external application can utilize the param [p.83] element name/value pairs
to pass unique datapoints to trigger specific functions or actions. For example, the user agent
may wish to trigger an external application download if the user does not have an appropriate
application installed on their system.

Could param be an attribute?

Would it be better to have param be an attribute of whatever needs it, with the attribute value
syntax being something like the style attribute to permit rich values?

We return to the clock example to illustrate the use of the param [p.83] element. For example,
suppose that the applet is able to handle two run-time parameters that define its initial height
and width. We can set the initial dimensions to 40x40 pixels with two param [p.83] elements.

- 84 -

XHTML 2.014.2. The param element



    
<object 
    data="http://www.example.com/myclock.class"
    type="application/x-java-applet">
        <param name="height" value="40" valuetype="data" />
        <param name="width" value="40" valuetype="data" />
        This user agent cannot process a java applet.
</object>

In the following example, run-time data for the object’s "Init_values" parameter is specified as an
external resource (a GIF file). The value of the valuetype [p.84] attribute is thus set to "ref" and
the value [p.84] is a URI designating the resource.

<object
    data="http://www.example.com/gifappli"
    type="image/gif">
        <standby>Loading Elvis...</standby>
        <param name="Init_values"
            value="./images/elvis.gif"
            valuetype="ref" />
        Elvis lives!
</object>

Note that we have also set the standby [p.87] element so that the object handler may display a
message while the object data is downloading.

When an object [p.77] element is processed, the user agent must search the content for only
those param [p.83] elements that are direct children and "feed" them to the object handler.

Thus, in the following example, if "obj1" is processed, then the name/value content of "param1"
applies to "obj1" (and not "obj2"). If "obj1" is not processed and "obj2" is, "param1" is ignored,
and the name/value content of "param2" applies to "obj2". If neither object [p.77] element is
processed, neither param [p.83] name/value content applies.

<object
    data="obj1"
    type="application/x-something">
    <param name="param1" value="value1" />
    <object
        data="obj2"
        type="application/x-something">
        <param name="param2" value="value2" />
        This user agent cannot process this application.
    </object>
</object>

14.2.1. Referencing object data

The location of an object’s data is given by a URI. The URI may be either an absolute URI or a
relative URI. If the URI is relative, it may be based from the referring document location or from
the xml:base [p.34] attribute location.

- 85 -

14.2.1. Referencing object dataXHTML 2.0



In the following example, we insert a video clip into an XHTML document.

<object
    data="mymovie.mpg"
    type="video/mpeg">
    A film showing how to open the printer to replace the cartridge.
</object>

By setting the type [p.78] attribute, a user agent can determine whether to retrieve the external
application based on its ability to do so. The location of the object data is relative to the
referencing document, in this example the object data would need to exist within the same 
directory.

The following example specifies a base location via the xml:base [p.34] attribute. The data [p.77] 
attribute defines the data to process.

<object
    xml:base="http://www.example.com/"
    data="mymovie.mpg"
    type="video/mpeg">
    This user agent cannot process this movie.
</object>

14.2.2. Object element declarations and instantiations

The following example is for illustrative purposes only. When a document is designed to contain
more than one instance of the same object data, it is possible to separate the declaration of the
object from the references to the object data. Doing so has several advantages:

The object data may be retrieved from the network by the object handler one time (during
the declaration) and reused for each additional reference to that object data. 
It is possible to reference the object data from a location other than the object element in
which it was defined, for example, from a link. 
It is possible to specify an object data as run-time data for other object element 
declarations.

To declare an object element so that it is not executed when read by the object handler, set the
boolean declare [p.78] attribute in the object [p.77] element. At the same time, authors must
identify the object declaration by setting the id [p.27] attribute in the object [p.77] element to a
unique value. Later processing of the object data will refer to this identifier.

A declared object [p.77] element must appear in a document before the first time the object data
is referenced. For example, the delaring object element must appear before a link referencing
the object data.

When an object element is defined with the declare [p.78] attribute, the object handler is
instantiated every time an element refers to that object data later in the document. The
references will require the object data to be processed (e.g., a link that refers to it is activated,
an object element that refers to it is activated, etc.).

- 86 -

XHTML 2.014.2.2. Object element declarations and instantiations



In the following example, we declare an object [p.77] element and cause the object handler to be
instantiated by referring to it from a link. Thus, the object data can be activated by clicking on
some highlighted text, for example.

<object
    declare="declare"
    id="earth.declaration" 
    data="TheEarth.mpg" 
    type="video/mpeg">
    The <strong>Earth</strong> as seen from space.
</object>
...later in the document...
<p>A neat <a href="#earth.declaration">animation of The Earth!</a></p>

In the previous example, when the document is initially loaded the object data should not be
processed. If this was to be processed within a visual user agent, the object data would not be
displayed. When the user selects the anchor data, the object data would then be initialized and
displayed. This would also be the case for an audio file, where the file would be instantiated but
would not be processed. Selecting the anchor data would then trigger the audio file to be 
processed.

User agents that do not support the declare [p.78] attribute must process the contents of the 
object [p.77] element.

14.3. The standby element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The standby [p.87] element specifies a message that a user agent may render while loading the
object’s implementation and data.

Caption element needs its own module

Since the Caption element needs its own module [p.102] element is now used by object and
tables, it should be in its own module!

- 87 -

14.3. The standby elementXHTML 2.0



- 88 -

XHTML 2.014.3. The standby element



15. Ruby Module
This section is informative.

The Ruby Module defines elements for ruby annotation markup as defined in Ruby Annotation 
[RUBY [p.192] ].

This module adds the ruby element to the Inline content set of the Inline Text Module. XHTML
2.0 supports the maximal content model for the ruby element, defined as follows:

((rb, (rt | (rp, rt, rp))) | (rbc, rtc, rtc?))

As defined in [RUBY [p.192] ], the ruby element is not allowed to nest.

Implementation: RELAX NG [p.172] , DTD

- 89 -

15. Ruby ModuleXHTML 2.0

http://www.w3.org/TR/2001/REC-ruby-20010531/#module


- 90 -

XHTML 2.015. Ruby Module



16. XHTML Scripting Module
This section is normative.

The Scripting Module defines elements that are used to contain information pertaining to
executable scripts or the lack of support for executable scripts. Elements and attributes included
in this module are:

Elements Attributes
Minimal

Content Model 

noscript Common [p.40] 
(Heading | List | 
Block)+

script
charset (Charset [p.23] ), declare ("declare"), src (URI [p.25] ),
type* (ContentType [p.23] ), xml:space="preserve"

PCDATA | script
| noscript

When this module is used, the script [p.92] and noscript [p.91] elements are added to the Block
and Inline content sets of the Block and Inline Text Modules. In addition, the script [p.92] 
element is added to the content model of the head [p.42] element defined in the Structure 
Module.

Implementation: RELAX NG [p.156] 

16.1. The noscript element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The noscript [p.91] element allows authors to provide alternate content when a script is not
executed. The content of a noscript [p.91] element will be rendered if and only if the containing 
script [p.92] is not processed. noscript [p.91] elements that are not contained in a script [p.92] 
element will only be rendered in the following cases:

The user agent is configured not to evaluate scripts. 
The user agent doesn’t support a scripting language invoked by a script [p.92] element
earlier in the document. 
The user agent can’t access an external script.

User agents that do not support client-side scripts must render this element’s contents.

- 91 -

16. XHTML Scripting ModuleXHTML 2.0



In the following example, a user agent that executes the script [p.92] will include some
dynamically created data in the document. If the user agent doesn’t support scripts, the user
may still retrieve the data through a link.

<script type="text/tcl" src="http://example.org/script">
 <noscript>
  <p>Access the <a href="http://example.org/data">data.</a></p>
 </noscript>
</script>

16.2. The script element
Attributes

The Embedding [p.34] collection 
A collection of attributes related to embedding content, including src [p.35] and type [p.35] .

declare = "declare" 
When present, this boolean attribute makes the current object [p.77] element a declaration
only - not one that is to be executed until after the document has completed loading and has
been called through a user event such as selecting an anchor that references the object.

charset = Charset [p.23] 
This attribute specifies the character encoding of the resource designated by the link.
Please consult the section on character encodings for more details.

The script [p.92] element places a script within a document. This element may appear any
number of times in the head [p.42] or body [p.43] of an XHTML document.

The script may be defined within the contents of the script [p.92] element or in an external file. If
the src [p.35] attribute is not set, user agents must interpret the contents of the element as the
script. If the src [p.35] has a URI value, user agents must ignore the element’s contents and
retrieve the script via the URI. Note that the charset [p.92] attribute refers to the character 
encoding [p.23] of the script designated by the src [p.35] attribute; it does not concern the
content of the script [p.92] element.

16.2.1. Rules for processing scripts

Scripts are evaluated by script engines that must be known to a user agent.

A user agent must interpret a script [p.92] element according to the following precedence rules:

1.  The user agent must first try to process the script element, but not the embedded content. 
2.  If the user agent is not able to process the script for any reason (configured not to, no

support of the scripting language, no access to an external resource, etc.), it must try to
process its contents. 

3.  If the content is inline text it must be evaluated as script data of the scripting language of the
containing script element. 

- 92 -

XHTML 2.016.2. The script element



4.  If the content is a noscript [p.91] element, its content should be rendered. 
5.  If the content is a script [p.92] element, its content should be processed according to these 

rules.

The syntax of script data depends on the scripting language.

16.2.2. Specifying the scripting language

As XHTML does not rely on a specific scripting language, document authors must explicitly tell
user agents the language of each script. This may be done either through a default declaration
or a local declaration.

16.2.3. Declaration of a scripting language

The type [p.35] attribute must be specified for each script [p.92] element instance in a document.

In this example, we include one script [p.92] in the header, whose script is located in an external
file and is in the scripting language "text/vbscript". The JavaScript code contained in the inner 
script [p.92] will be evaluated if and only if the user agent isn’t evaluating the outer script [p.92] .
We also include one script [p.92] in the body, which contains its own script written in "text/x-perl".

<html xmlns="http://www.w3.org/2002/06/xhtml2">
 <head>
  <title>A document with script</title>
  <script type="text/x-vbscript" src="http://example.org/progs/vbcalc">
   <script type="text/javascript">
    ...some inline JavaScript...
   </script>
  </script>
 </head>
 <body>
    <script type="text/x-perl"/>
 </body>
</html>

16.2.4. Dynamic modification of documents

Note that because of the XML processing model, where a document is first parsed before being
processed, the form of dynamic generation used in earlier versions of HTML, using 
document.write cannot be used in XHTML2. To dynamically generate content in XHTML you
have to add elements to the DOM tree using DOM calls [DOM [p.191] ] rather than using 
document.write top generate text that then gets parsed.

- 93 -

16.2.2. Specifying the scripting languageXHTML 2.0



- 94 -

XHTML 2.016.2.4. Dynamic modification of documents



17. XHTML Style Attribute Module
This section is normative.

The Style Attribute Module defines the style attribute. When this module is selected, it
activates the Style [p.39] Collection.

Note: use of the style [p.95] attribute is strongly discouraged in favor of the style [p.97] element
and external style sheets. In addition, content developers are advised to avoid use of the style 
[p.95] attribute on content intended for use on small devices, since those devices may not
support the use of in-line styles.

Implementation: RELAX NG [p.157] 

style = CDATA [p.23] 
This attribute specifies style information for the current element. 

The syntax of the value of the style [p.95] attribute is determined by the default style sheet
language. For example, for [CSS2 [p.191] ] inline style, use the declaration block syntax
described in the Style Sheet [p.97] Module (without curly brace delimiters).

This CSS example sets color and font size information for the text in a specific paragraph.

<p style="font-size: 12pt; color: fuchsia">Aren’t style sheets wonderful?</p>

In CSS, property declarations have the form "name : value" and are separated by a 
semi-colon.

To specify style information for more than one element, authors should use the style [p.97] 
element. For optimal flexibility, authors should define styles in external style sheets.

Style Attributes and Generic XML

There is currently no way to declare what attribute within a given namespace contains
"styling" information in a way that a Generic XML processor can discern. In an ideal world,
someone would define such a mechanism (e.g., through the xml-stylesheet PI).

- 95 -

17. XHTML Style Attribute ModuleXHTML 2.0



- 96 -

XHTML 2.017. XHTML Style Attribute Module



18. XHTML Style Sheet Module
This section is normative.

The Style Sheet Module defines an element to be used when declaring internal style sheets.
The element and attributes defined by this module are:

Elements Attributes Minimal Content Model 

style Common [p.40] , media (MediaDesc [p.25] ) PCDATA

When this module is used, it adds the style [p.97] element to the content model of the head 
[p.42] element of the Structure Module.

Implementation: RELAX NG [p.158] 

18.1. The style element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

media = MediaDesc [p.25] 
The value of this attribute specifies the type of media for which the element is intended.

The style [p.97] element allows an author to put style sheet rules in the head of the document.
XHTML permits any number of style [p.97] elements in the head [p.42] section of a document.

User agents that don’t support style sheets, or don’t support the specific style sheet language
used by a style [p.97] element, must hide the contents of the style [p.97] element. It is an error to
render the content as part of the document’s text.

The syntax of style data depends on the style sheet language.

Rules for style rule precedences and inheritance depend on the style sheet language.

Example:

<head>
 <style type="text/css">
   h1 {border-width: thin; border-style: solid; text-align: center}
 </style>
</head>

- 97 -

18. XHTML Style Sheet ModuleXHTML 2.0



18.1.1. External style sheets

Authors may separate style sheets from XHTML documents. This offers several benefits:

Authors and web site managers may share style sheets across a number of documents
(and sites). 
Authors may change the style sheet without requiring modifications to the document. 
User agents may load style sheets selectively (based on media descriptors).

18.1.2. Preferred and alternate style sheets

XHTML allows authors to associate any number of external style sheets with a document. The
style sheet language defines how multiple external style sheets interact (for example, the CSS
"cascade" rules).

Authors may specify a number of mutually exclusive style sheets called alternate style sheets.
Users may select their favorite among these depending on their preferences. For instance, an
author may specify one style sheet designed for small screens and another for users with weak
vision (e.g., large fonts). User agents should allow users to select from alternate style sheets.

The author may specify that one of the alternates is a preferred style sheet. User agents should
apply the author’s preferred style sheet unless the user has selected a different alternate.

Authors may group several alternate style sheets (including the author’s preferred style sheets)
under a single style name. When a user selects a named style, the user agent must apply all
style sheets with that name. User agents must not apply alternate style sheets with a different
style name. The section on specifying external style sheets explains how to name a group of
style sheets.

Authors may also specify persistent style sheets that user agents must apply in addition to any
alternate style sheet.

User agents must respect media descriptors [p.25] when applying any style sheet.

User agents should also allow users to disable the author’s style sheets entirely, in which case
the user agent must not apply any persistent or alternate style sheets.

18.1.3. Specifying external style sheets

Authors specify external style sheets with the following attributes of the link [p.69] element:

Set the value of href [p.31] to the location of the style sheet file. The value of href [p.31] is a 
URI [p.25] . 
Set the value of the type [p.35] attribute to indicate the language of the linked (style sheet)
resource. This allows the user agent to avoid downloading a style sheet for an unsupported
style sheet language. 
Specify that the style sheet is persistent, preferred, or alternate: 

- 98 -

XHTML 2.018.1.1. External style sheets



To make a style sheet persistent, set the rel [p.32] attribute to "stylesheet" and don’t set
the title [p.28] attribute. 
To make a style sheet preferred, set the rel [p.32] attribute to "stylesheet" and name
the style sheet with the title [p.28] attribute. 
To specify an alternate style sheet, set the rel [p.32] attribute to "alternate stylesheet"
and name the style sheet with the title [p.28] attribute.

User agents should provide a means for users to view and pick from the list of alternate styles.
The value of the title [p.28] attribute is recommended as the name of each choice.

In this example, we first specify a persistent style sheet located in the file mystyle.css:

<link href="mystyle.css" rel="stylesheet" type="text/css"/>

Setting the title [p.28] attribute makes this the author’s preferred style sheet:

 <link href="mystyle.css" title="compact" rel="stylesheet" type="text/css"/>

Adding the keyword "alternate" to the rel [p.32] attribute makes it an alternate style sheet:

<link href="mystyle.css" title="Medium" rel="alternate stylesheet" type="text/css"/>

For more information on external style sheets, please consult the section on links and external
style sheets.

If two or more link [p.69] elements specify a preferred style sheet, the first one takes 
precedence.

- 99 -

18.1.3. Specifying external style sheetsXHTML 2.0



- 100 -

XHTML 2.018.1.3. Specifying external style sheets



19. XHTML Tables Module
This section is normative.

The Tables Module provides elements for marking up tabular information in a document.

The module supports the following elements, attributes, and content model:

Elements Attributes Minimal Content Model 

table Common [p.40] 

caption [p.102] ?, summary 
[p.105] ?, ( col [p.103] * | 
colgroup [p.103] * ), (( thead 
[p.122] ?, tfoot [p.122] ?, tbody 
[p.116] + ) | ( tr [p.123] + ))

caption Common [p.40] (PCDATA | Inline)*

summary Common [p.40] (PCDATA | Flow)*

col Common [p.40] , span [p.103] (Number [p.25] ) EMPTY

colgroup Common [p.40] , span [p.103] (Number [p.25] ) col [p.103] *

thead Common [p.40] tr [p.123] +

tfoot Common [p.40] tr [p.123] +

tbody Common [p.40] tr [p.123] +

tr Common [p.40] ( td [p.116] | th [p.116] )+

td

Common [p.40] , abbr [p.116] (Text [p.25] ), axis 
[p.117] (CDATA [p.23] ), colspan [p.117] 
(Number [p.25] ), headers [p.117] (IDREFS 
[p.23] ), rowspan [p.117] (Number [p.25] ), scope 
[p.117] ("row", "col", "rowgroup", "colgroup")

(PCDATA | Flow)*

th

Common [p.40] , abbr [p.116] (Text [p.25] ), axis 
[p.117] (CDATA [p.23] ), colspan [p.117] 
(Number [p.25] ), headers [p.117] (IDREFS 
[p.23] ), rowspan [p.117] (Number [p.25] ), scope 
[p.117] ("row", "col", "rowgroup", "colgroup")

(PCDATA | Flow)*

When this module is used, it adds the table [p.105] element to the Block content set of the Block
Text Module.

- 101 -

19. XHTML Tables ModuleXHTML 2.0



Implementation: RELAX NG [p.158] 

19.1. The caption element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

When present, the caption [p.102] element’s text should describe the nature of the table or the 
object. The caption [p.102] element is only permitted immediately after the table [p.105] start tag
or the object [p.77] start tag. A table [p.105] element or an object [p.77] element may only
contain one caption [p.102] element.

For tables, visual user agents allow sighted people to quickly grasp the structure of the table
from the headings as well as the caption. A consequence of this is that captions will often be
inadequate as a summary of the purpose and structure of the table from the perspective of
people relying on non-visual user agents.

Authors should therefore take care to provide additional information summarizing the purpose
and structure of the table using the summary [p.105] element. This is especially important for
tables without captions. The example below illustrates the use of the summary [p.105] element.

User agents must provide access to the content of the summary [p.105] element. As an
example, access could be provided through a menu option, a mouse-over function, or through a 
dialog.

The following example demonstrates the difference between a table caption and a table 
summary.

<table>
  <caption>Student Class Roster</caption>
  <summary>The table defines the class roster.
    The columns contain the following data:
    students name, permanent address, permanent phone,
    local address, local phone,
    declared major, assigned academic advisor,
    student standing</summary>
  ...the rest of the table...
</table>

19.1.1. Caption Clipping

Visual user agents must avoid clipping any part of the table including the caption, unless a
means is provided to access all parts, e.g., by horizontal or vertical scrolling. We recommend
that the caption text be wrapped to the same width as the table.

- 102 -

XHTML 2.019.1. The caption element



19.2. The col and colgroup elements
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

span = Number [p.25] 
This attribute must be an integer > 0; the default value is 1. This specifies the number of
columns in a colgroup [p.103] , or specifies the number of columns "spanned" by the col 
[p.103] element. 

Values mean the following:

In the absence of a span [p.103] attribute, each colgroup [p.103] defines a column
group containing one column. 
If the span [p.103] attribute is used with the colgroup [p.103] element and the value is
set to N > 0, that defines a column group containing N columns. 
If the span [p.103] attribute is used with the col [p.103] element and the value is set to
to N > 1, the current col [p.103] element shares its attributes with the next N-1 columns.

User agents must ignore this attribute if the colgroup [p.103] element contains one or more 
col [p.103] elements.

The colgroup [p.103] element allows authors to create structural divisions within a table. Authors
may highlight this structure through style sheets. For example, the author may wish to divide the
columns into logical groups such as the student’s permanent address, phone number and
emergency contact information. And group the student’s local address, phone and email
address into another logical group.

A table [p.105] may either contain a single implicit column group (no colgroup [p.103] element
delimits the columns) or any number of explicit column groups (each delimited by an instance of
the colgroup [p.103] element).

The col [p.103] element allows authors to share attributes among several columns without
implying any structural grouping. The "span" of the col [p.103] element is the number of columns
that will share the element’s attributes. For example, the author may wish to apply a specific
style to the student’s permanent data and apply a different style to the student’s local data.

The colgroup [p.103] element creates an explicit column group. The number of columns in the
column group may be specified in two, mutually exclusive ways:

1.  The colgroup span [p.103] attribute (default value 1) specifies the number of columns in the
group. 

2.  Each embedded col [p.103] element in the colgroup [p.103] represents one or more
columns in the group.

- 103 -

19.2. The col and colgroup elementsXHTML 2.0



The advantage of using the colgroup [p.103] element is that authors may logically group multiple
columns. By grouping columns, the author can apply rules across the entire group. The author
can also apply column width balancing across the group of columns. For example, if the author
has a table with five columns and the author divides the table into two column groups, one with
three columns and the other with two columns. The author could define the first column group to
consume 300 pixels and the second column group to consume 100 pixels. Each column within
the first column group would be 100 pixels wide and the remaining two columns would be 50
pixels wide. If the author added embedded col [p.103] elements, she could force one or more
columns to be a specific width and the remaining columns within the group would be evenly
divided within the remaining allotted width.

For example, the following table defines a column group and embedded columns with differing 
widths.

<style type="text/css">
#colgrp1 { width: 300px }
#col1 { width: 100px }
#col2 { width: 50px }
</style>

...

<table>
  <colgroup id="colgrp1">
    <col id="col1" span="3"/>
    <col id="col2" span="2"/>
  </colgroup>
...the rest of the table...
</table>

In this example, the defined width for the colgroup [p.103] constrains all of the columns to fit
within that value regardless of the of the defined values within the col [p.103] eleemnts. In this
example, the width of the columns within the column group must be constrained to fit the defined
width of the column group.

When it is necessary to single out a column (e.g., for style information, to specify width
information, etc.) within a group, authors must identify that column with a col [p.103] element.

The col [p.103] element allows authors to group together attribute specifications for table
columns. The col [p.103] does not group columns together structurally -- that is the role of the 
colgroup [p.103] element. col [p.103] elements are empty and serve only as a support for
attributes. They may appear inside or outside an explicit column group (i.e., colgroup [p.103] 
element).

19.2.1. Calculating the number of columns in a table

There are two ways to determine the number of columns in a table (in order of precedence):

- 104 -

XHTML 2.019.2.1. Calculating the number of columns in a table



1.  If the table [p.105] element contains any colgroup [p.103] or col [p.103] elements, user
agents should calculate the number of columns by summing the following: 

For each col [p.103] element, take the value of its span [p.103] attribute (default value
1). 
For each colgroup [p.103] element containing at least one col [p.103] element, ignore
the span [p.103] attribute for the colgroup [p.103] element. For each col [p.103] 
element, perform the calculation of step 1. 
For each empty colgroup [p.103] element, take the value of its span [p.103] attribute
(default value 1).

2.  Otherwise, if the table [p.105] element contains no colgroup [p.103] or col [p.103] elements,
user agents should base the number of columns on what is required by the rows. The
number of columns is equal to the number of columns required by the row with the most
columns, including cells that span multiple columns. For any row that has fewer than this
number of columns, the end of that row should be padded with empty cells. The "end" of a
row depends on the directionality of a table.

It is an error if a table contains colgroup [p.103] or col [p.103] elements and the two calculations
do not result in the same number of columns.

Once the user agent has calculated the number of columns in the table, it may group them into a 
colgroup [p.103] .

19.3. The summary element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

This element provides a summary of the table’s purpose and structure for user agents rendering
to non-visual media such as speech and Braille.

19.4. The table element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The table [p.105] element contains all other elements that specify the caption, column groups,
columns, rows, and content for a table.

- 105 -

19.3. The summary elementXHTML 2.0



19.4.1. Visual Rendering

The following informative list describes what operations visual user agents may carry out when
rendering a table:

Provide access to the content of the summary [p.105] element. As an example, access
could be provided through a menu option, a mouse-over function, or through a dialog.
Authors should provide a summary of a table’s content and structure so that people using
non-visual user agents may better understand it. 
Render the caption, if one is defined. The caption may be rendered, for example, either on
the top or the bottom of the table. 
Render the table header, if one is specified. Render the table footer, if one is specified. User
agents must know where to render the header and footer. For instance, if the output
medium is paged, user agents may put the header at the top of each page and the footer at
the bottom. Similarly, if the user agent provides a mechanism to scroll the rows, the header
may appear at the top of the scrolled area and the footer at the bottom. 
Calculate the number of columns [p.104] in the table. Note that the number of rows in a 
table is equal to the number of tr [p.123] elements contained by the table [p.105] element. 
Group the columns according to any column groups [p.103] specifications. 
Render the cells, row by row and grouped in appropriate columns, between the header and
footer. Visual user agents should format the table according to XHTML attributes and style
sheet specification.

The XHTML table model has been designed so that, with author assistance, user agents may
render tables incrementally (i.e., as table rows arrive) rather than having to wait for all the data
before beginning to render.

In order for a user agent to format a table in one pass, authors must tell the user agent:

The number of columns in the table. 
The widths of these columns.

More precisely, a user agent may render a table in a single pass when the column widths are
specified using a combination of colgroup [p.103] and col [p.103] elements. If any of the columns
are specified in relative or percentage terms, authors must also specify the width of the table 
itself.

19.4.2. Table directionality

The directionality of a table is either the inherited directionality (the default is left-to-right) or that
specified by the dir [p.29] attribute for the table [p.105] element.

For a left-to-right table, column zero is on the left side and row zero is at the top. For a
right-to-left table, column zero is on the right side and row zero is at the top.

- 106 -

XHTML 2.019.4.1. Visual Rendering



When a user agent allots extra cells to a row, extra row cells are added to the right of the table
for left-to-right tables and to the left side for right-to-left tables.

Note that table [p.105] is the only element on which dir [p.29] reverses the visual order of the
columns; a single table row ( tr [p.123] ) or a group of columns ( colgroup [p.103] ) cannot be
independently reversed.

When set for the table [p.105] element, the dir [p.29] attribute also affects the direction of text
within table cells (since the dir [p.29] attribute is inherited by block-level elements).

To specify a right-to-left table, set the dir [p.29] attribute as follows:

<table dir="rtl">
...the rest of the table...
</table>

The direction of text in individual cells can be changed by setting the dir [p.29] attribute in an
element that defines the cell.

19.4.3. Table rendering by non-visual user agents

This section provides more detailed discussion on cell header data and how non-visual agents
may utilize that information.

19.4.3.1. Associating header information with data cells

Non-visual user agents such as speech synthesizers and Braille-based devices may use the
following td [p.116] and th [p.116] element attributes to render table cells more intuitively:

For a given data cell, the headers [p.117] attribute lists which cells provide pertinent header
information. For this purpose, each header cell must be named using the id [p.27] attribute.
Note that it’s not always possible to make a clean division of cells into headers or data. You
should use the td [p.116] element for such cells together with the id [p.27] or scope [p.117] 
attributes as appropriate. 
For a given header cell, the scope [p.117] attribute tells the user agent the data cells for
which this header provides information. Authors may choose to use this attribute instead of 
headers [p.117] according to which is more convenient; the two attributes fulfill the same
function. The headers [p.117] attribute is generally needed when headers are placed in
irregular positions with respect to the data they apply to. 
The abbr [p.116] attribute specifies an abbreviated header for header cells so that user
agents may render header information more rapidly.

In the following example, we assign header information to cells by setting the headers [p.117] 
attribute. Each cell in the same column refers to the same header cell (via the id [p.27] attribute).

<table>
<caption>Cups of coffee consumed by each senator</caption>
<summary>This table charts the number of cups
          of coffee consumed by each senator, the type 

- 107 -

19.4.3. Table rendering by non-visual user agentsXHTML 2.0



          of coffee (decaf or regular), and whether 
          taken with sugar.</summary>
<tbody>
   <tr>
      <th id="t1">Name</th>
      <th id="t2">Cups</th>
      <th id="t3" abbr="Type">Type of Coffee</th>
      <th id="t4">Sugar?</th>
   </tr>
   <tr>
      <td headers="t1">T. Sexton</td>
      <td headers="t2">10</td>
      <td headers="t3">Espresso</td>
      <td headers="t4">No</td>
   </tr>
   <tr>
      <td headers="t1">J. Dinnen</td>
      <td headers="t2">5</td>
      <td headers="t3">Decaf</td>
      <td headers="t4">Yes</td>
   </tr>
</tbody>
</table>

A speech synthesizer might render this table as follows:

Caption: Cups of coffee consumed by each senator
Summary: This table charts the number of cups
         of coffee consumed by each senator, the type 
         of coffee (decaf or regular), and whether 
         taken with sugar.
Name: T. Sexton,   Cups: 10,   Type: Espresso,   Sugar: No
Name: J. Dinnen,   Cups: 5,    Type: Decaf,      Sugar: Yes

Note how the header "Type of Coffee" is abbreviated to "Type" using the abbr [p.116] attribute.

Here is the same example substituting the scope [p.117] attribute for the headers [p.117] 
attribute. Note the value "col" for the scope [p.117] attribute, meaning "all cells in the current 
column":

<table>
<caption>Cups of coffee consumed by each senator</caption>
<summary>
  This table charts the number of cups
  of coffee consumed by each senator, the type 
  of coffee (decaf or regular), and whether 
  taken with sugar.
</summary>
<tbody>
   <tr>
      <th scope="col">Name</th>
      <th scope="col">Cups</th>
      <th scope="col" abbr="Type">Type of Coffee</th>
      <th scope="col">Sugar?</th>
   </tr>
   <tr>

- 108 -

XHTML 2.019.4.3. Table rendering by non-visual user agents



      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
</tbody>
</table>

Here’s a somewhat more complex example illustrating other values for the scope [p.117] 
attribute:

<table>
<summary>
  History courses offered in the community of
  Bath arranged by course name, tutor, summary, 
  code, and fee
</summary>
<thead>
  <tr>
    <th colspan="5" scope="colgroup">Community Courses -- Bath Autumn 1997</th>
  </tr>
</thead>
<tbody>
  <tr>
    <th scope="col" abbr="Name">Course Name</th>
    <th scope="col" abbr="Tutor">Course Tutor</th>
    <th scope="col">Summary</th>
    <th scope="col">Code</th>
    <th scope="col">Fee</th>
  </tr>
  <tr>
    <td scope="row">After the Civil War</td>
    <td>Dr. John Wroughton</td>
    <td>
       The course will examine the turbulent years in England
       after 1646. <em>6 weekly meetings starting Monday 13th
       October.</em>
    </td>
    <td>H27</td>
    <td>&pound;32</td>
  </tr>
  <tr>
    <td scope="row">An Introduction to Anglo-Saxon England</td>
    <td>Mark Cottle</td>
    <td>
       One day course introducing the early medieval
       period reconstruction the Anglo-Saxons and
       their society. <em>Saturday 18th October.</em>
    </td>
    <td>H28</td>
    <td>&pound;18</td>

- 109 -

19.4.3. Table rendering by non-visual user agentsXHTML 2.0



  </tr>
  <tr>
    <td scope="row">The Glory that was Greece</td>
    <td>Valerie Lorenz</td>
    <td>
     Birthplace of democracy, philosophy, heartland of theater, home of
     argument. The Romans may have done it but the Greeks did it
     first. <em>Saturday day school 25th October 1997</em>
    </td>
    <td>H30</td>
    <td>&pound;18</td>
  </tr>
</tbody>
</table>

A graphical user agent might render this as:

Note the use of the scope [p.117] attribute with the "row" value. Although the first cell in each
row contains data, not header information, the scope [p.117] attribute makes the data cell
behave like a row header cell. This allows speech synthesizers to provide the relevant course
name upon request or to state it immediately before each cell’s content.

19.4.3.2. Categorizing cells

Users browsing a table with a speech-based user agent may wish to hear an explanation of a
cell’s contents in addition to the contents themselves. One way the user might provide an
explanation is by speaking associated header information before speaking the data cell’s
contents (see the section on associating header information with data cells [p.107] ).

- 110 -

XHTML 2.019.4.3. Table rendering by non-visual user agents



Users may also want information about more than one cell, in which case header information
provided at the cell level (by headers [p.117] , scope [p.117] , and abbr [p.116] ) may not provide
adequate context. Consider the following table, which classifies expenses for meals, hotels, and
transport in two locations (San Jose and Seattle) over several days:

Users might want to extract information from the table in the form of queries:

"What did I spend for all my meals?" 
"What did I spend for meals on 25 August?" 
"What did I spend for all expenses in San Jose?"

Each query involves a computation by the user agent that may involve zero or more cells. In
order to determine, for example, the costs of meals on 25 August, the user agent must know
which table cells refer to "Meals" (all of them) and which refer to "Dates" (specifically, 25
August), and find the intersection of the two sets.

To accommodate this type of query, the table model allows authors to place cell headers and
data into categories. For example, for the travel expense table, an author could group the
header cells "San Jose" and "Seattle" into the category "Location", the headers "Meals",
"Hotels", and "Transport" in the category "Expenses", and the four days into the category "Date".
The previous three questions would then have the following meanings:

"What did I spend for all my meals?" means "What are all the data cells in the
"Expenses=Meals" category? 
"What did I spend for meals on 25 August?" means "What are all the data cells in the
"Expenses=Meals" and "Date=Aug-25-1997" categories? 
"What did I spend for all expenses in San Jose?" means "What are all the data cells in the
"Expenses=Meals, Hotels, Transport" and "Location=San Jose" categories?

Authors categorize a header or data cell by setting the axis [p.117] attribute for the cell. For
instance, in the travel expense table, the cell containing the information "San Jose" could be
placed in the "Location" category as follows:

- 111 -

19.4.3. Table rendering by non-visual user agentsXHTML 2.0



  <th id="a6" axis="location">San Jose</th>

Any cell containing information related to "San Jose" should refer to this header cell via either
the headers [p.117] or the scope [p.117] attribute. Thus, meal expenses for 25-Aug-1997 should
be marked up to refer to id [p.27] attribute (whose value here is "a6") of the "San Jose" header 
cell:

  
  <td headers="a6">37.74</td>

Each headers [p.117] attribute provides a list of id [p.27] references. Authors may thus
categorize a given cell in any number of ways (or, along any number of "headers", hence the 
name).

Below we mark up the travel expense table with category information:

<table>
<caption>Travel Expense Report</caption>
<summary>
  This table summarizes travel expenses
  incurred during August trips to
  San Jose and Seattle
</summary>
<tbody>
   <tr>
      <th></th>
      <th id="a2" axis="expenses">Meals</th>
      <th id="a3" axis="expenses">Hotels</th>
      <th id="a4" axis="expenses">Transport</th>
      <td>subtotals</td>
   </tr>
   <tr>
      <th id="a6" axis="location">San Jose</th>
      <th></th>
      <th></th>
      <th></th>
      <td></td>
   </tr>
   <tr>
      <td id="a7" axis="date">25-Aug-97</td>
      <td headers="a6 a7 a2">37.74</td>
      <td headers="a6 a7 a3">112.00</td>
      <td headers="a6 a7 a4">45.00</td>
      <td></td>
   </tr>
   <tr>
      <td id="a8" axis="date">26-Aug-97</td>
      <td headers="a6 a8 a2">27.28</td>
      <td headers="a6 a8 a3">112.00</td>
      <td headers="a6 a8 a4">45.00</td>
      <td></td>
   </tr>
   <tr>
      <td>subtotals</td>
      <td>65.02</td>

- 112 -

XHTML 2.019.4.3. Table rendering by non-visual user agents



      <td>224.00</td>
      <td>90.00</td>
      <td>379.02</td>
   </tr>
   <tr>
      <th id="a10" axis="location">Seattle</th>
      <th></th>
      <th></th>
      <th></th>
      <td></td>
   </tr>
   <tr>
      <td id="a11" axis="date">27-Aug-97</td>
      <td headers="a10 a11 a2">96.25</td>
      <td headers="a10 a11 a3">109.00</td>
      <td headers="a10 a11 a4">36.00</td>
      <td></td>
   </tr>
   <tr>
      <td id="a12" axis="date">28-Aug-97</td>
      <td headers="a10 a12 a2">35.00</td>
      <td headers="a10 a12 a3">109.00</td>
      <td headers="a10 a12 a4">36.00</td>
      <td></td>
   </tr>
   <tr>
      <td>subtotals</td>
      <td>131.25</td>
      <td>218.00</td>
      <td>72.00</td>
      <td>421.25</td>
   </tr>
   <tr>
      <th>Totals</th>
      <td>196.27</td>
      <td>442.00</td>
      <td>162.00</td>
      <td>800.27</td>
   </tr>
</tbody>
</table>

Note that marking up the table this way also allows user agents to avoid confusing the user with
unwanted information. For instance, if a speech synthesizer were to speak all of the figures in
the "Meals" column of this table in response to the query "What were all my meal expenses?", a
user would not be able to distinguish a day’s expenses from subtotals or totals. By carefully
categorizing cell data, authors allow user agents to make important semantic distinctions when 
rendering.

Of course, there is no limit to how authors may categorize information in a table. In the travel
expense table, for example, we could add the additional categories "subtotals" and "totals".

- 113 -

19.4.3. Table rendering by non-visual user agentsXHTML 2.0



This specification does not require user agents to handle information provided by the axis 
[p.117] attribute, nor does it make any recommendations about how user agents may present 
axis [p.117] information to users or how users may query the user agent about this information.

However, user agents, particularly speech synthesizers, may want to factor out information
common to several cells that are the result of a query. For instance, if the user asks "What did I
spend for meals in San Jose?", the user agent would first determine the cells in question
(25-Aug-1997: 37.74, 26-Aug-1997:27.28), then render this information. A user agent speaking
this information might read it:

   Location: San Jose. Date: 25-Aug-1997. Expenses, Meals: 37.74
   Location: San Jose. Date: 26-Aug-1997. Expenses, Meals: 27.28

or, more compactly:

   San Jose, 25-Aug-1997, Meals: 37.74
   San Jose, 26-Aug-1997, Meals: 27.28

An even more economical rendering would factor the common information and reorder it:

   San Jose, Meals, 25-Aug-1997: 37.74
                    26-Aug-1997: 27.28

User agents that support this type of rendering should allow authors a means to customize
rendering (e.g., through style sheets).

19.4.3.3. Algorithm to find heading information

In the absence of header information from either the scope [p.117] or headers [p.117] attribute,
user agents may construct header information according to the following algorithm. The goal of
the algorithm is to find an ordered list of headers. (In the following description of the algorithm
the table directionality [p.106] is assumed to be left-to-right.)

First, search left from the cell’s position to find row header cells. Then search upwards to
find column header cells. The search in a given direction stops when the edge of the table is
reached or when a data cell is found after a header cell. 
Row headers are inserted into the list in the order they appear in the table. For left-to-right
tables, headers are inserted from left to right. 
Column headers are inserted after row headers, in the order they appear in the table, from
top to bottom. 
If a header cell has the headers [p.117] attribute set, then the headers referenced by this
attribute are inserted into the list and the search stops for the current direction. 
td [p.116] cells that set the axis [p.117] attribute are also treated as header cells.

- 114 -

XHTML 2.019.4.3. Table rendering by non-visual user agents



19.4.4. Sample table

This sample illustrates grouped rows and columns.

<table>
<caption>Calendar for 2002</caption>
<summary>
  Calendar for 2002. @@need better summary
</summary>
<colgroup span="7"/>
<colgroup span="7"/>
<colgroup span="7"/>
<thead>
   <tr>
      <th colspan="7">January</th>
      <th colspan="7">February</th>
      <th colspan="7">March</th>
   </tr>
</thead>
<tbody>
   <tr>
      <td>S</td><td>M</td><td>T</td><td>W</td><td>T</td><td>F</td><td>S</td>
      <td>S</td><td>M</td><td>T</td><td>W</td><td>T</td><td>F</td><td>S</td>
      <td>S</td><td>M</td><td>T</td><td>W</td><td>T</td><td>F</td><td>S</td>
   </tr>
</tbody>
<tbody>
   <tr>
      <td></td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td>
      <td></td><td></td><td></td><td></td><td></td><td>1</td><td>2</td>
      <td></td><td></td><td></td><td></td><td></td><td>1</td><td>2</td>

   </tr>
   <tr>
      <td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td>
      <td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td>
      <td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td>

   </tr>
   <tr>
      <td>13</td><td>14</td><td>15</td><td>16</td><td>17</td><td>18</td><td>19</td>
      <td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td>
      <td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td>
   </tr>
   <tr>
      <td>20</td><td>21</td><td>22</td><td>23</td><td>24</td><td>25</td><td>26</td>
      <td>17</td><td>18</td><td>19</td><td>20</td><td>21</td><td>22</td><td>23</td>
      <td>17</td><td>18</td><td>19</td><td>20</td><td>21</td><td>22</td><td>23</td>
   </tr>
   <tr>
      <td>27</td><td>28</td><td>29</td><td>30</td><td>31</td><td></td><td></td>
      <td>24</td><td>25</td><td>26</td><td>27</td><td>28</td><td></td><td></td>
      <td>24</td><td>25</td><td>26</td><td>27</td><td>28</td><td>29</td><td>30</td>
   </tr>
   <tr>
      <td></td><td></td><td></td><td></td><td></td><td></td><td></td>

- 115 -

19.4.4. Sample tableXHTML 2.0



      <td></td><td></td><td></td><td></td><td></td><td></td><td></td>
      <td>31</td><td></td><td></td><td></td><td></td><td></td><td></td>
   </tr>
</tbody>
</table>

would be rendered something like this:

                      Calendar for 2002
===================================================================
      January         |       February      |        March  
 S  M  T  W  T  F  S  | S  M  T  W  T  F  S | S  M  T  W  T  F  S 
-------------------------------------------------------------------
       1  2  3  4  5  |                1  2 |                1  2
 6  7  8  9  10 11 12 | 3  4  5  6  7  8  9 | 3  4  5  6  7  8  9
 13 14 15 16 17 18 19 | 10 11 12 13 14 15 16| 10 11 12 13 14 15 16
 20 21 22 23 24 25 26 | 17 18 19 20 21 22 23| 17 18 19 20 21 22 23
 27 28 29 30 31       | 24 25 26 27 28      | 24 25 26 27 28 29 30
                      |                     |                   31
===================================================================

A graphical user agent might render this as:

This example illustrates how colgroup [p.103] can be used to group columns and set the default
column alignment. Similarly, tbody [p.116] is used to group rows.

19.5. The tbody element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

- 116 -

XHTML 2.019.5. The tbody element



The tbody [p.116] element contains rows of table data. In tables that also contain thead [p.122] 
or tfoot [p.122] elements, all of these sections must contain the same number of columns.

19.6. The td and th elements
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

abbr = Text [p.25] 
This attribute should be used to provide an abbreviated form of the cell’s content, and may
be rendered by user agents when appropriate in place of the cell’s content. Abbreviated
names should be short since user agents may render them repeatedly. For instance,
speech synthesizers may render the abbreviated headers relating to a particular cell before
rendering that cell’s content.

axis = CDATA [p.23] 
This attribute may be used to place a cell into conceptual categories that can be considered
to form axes in an n-dimensional space. User agents may give users access to these
categories (e.g., the user may query the user agent for all cells that belong to certain
categories, the user agent may present a table in the form of a table of contents, etc.).
Please consult the section on categorizing cells [p.110] for more information. The value of
this attribute is a comma-separated list of category names.

colspan = Number [p.25] 
This attribute specifies the number of columns spanned by the current cell. The default
value of this attribute is one ("1"). The value zero ("0") means that the cell spans all columns
from the current column to the last column of the column group ( colgroup [p.103] ) in which
the cell is defined.

headers = IDREFS [p.23] 
This attribute specifies the list of header cells that provide header information for the current
data cell. The value of this attribute is a space-separated list of cell names; those cells must
be named by setting their id [p.27] attribute. Authors generally use the headers [p.117] 
attribute to help non-visual user agents render header information about data cells (e.g.,
header information is spoken prior to the cell data), but the attribute may also be used in
conjunction with style sheets. See also the scope [p.117] attribute.

rowspan = Number [p.25] 
This attribute specifies the number of rows spanned by the current cell. The default value of
this attribute is one ("1"). The value zero ("0") means that the cell spans all rows from the
current row to the last row of the table section ( thead [p.122] , tbody [p.116] , or tfoot 
[p.122] ) in which the cell is defined.

- 117 -

19.6. The td and th elementsXHTML 2.0



scope = row|col|rowgroup|colgroup 
This attribute specifies the set of data cells for which the current header cell provides
header information. This attribute may be used in place of the headers [p.117] attribute,
particularly for simple tables. When specified, this attribute must have one of the following
values: 

row: The current cell provides header information for the rest of the row that contains it
(see also the section on table directionality [p.106] ). 
col: The current cell provides header information for the rest of the column that
contains it. 
rowgroup: The header cell provides header information for the rest of the row group
that contains it. 
colgroup: The header cell provides header information for the rest of the column group 
[p.103] that contains it.

Table cells may contain two types of information: header information and data. This distinction
enables user agents to render header and data cells distinctly, even in the absence of style
sheets. For example, visual user agents may present header cell text with a bold font. Speech
synthesizers may render header information with a distinct voice inflection.

The th [p.117] element defines a cell that contains header information. User agents have two
pieces of header information available: the contents of the th [p.117] element and the value of
the abbr [p.117] attribute. User agents must render either the contents of the cell or the value of
the abbr [p.117] attribute. For visual media, the latter may be appropriate when there is
insufficient space to render the full contents of the cell. For non-visual media abbr [p.117] may
be used as an abbreviation for table headers when these are rendered along with the contents
of the cells to which they apply.

The headers [p.117] and scope [p.118] attributes also allow authors to help non-visual user
agents process header information. Please consult the section on labeling cells for non-visual
user agents [p.107] for information and examples.

The td [p.117] element defines a cell that contains data.

Cells may be empty (i.e., contain no data).

For example, the following table contains four columns of data, each headed by a column 
description.

<table>
<caption>Cups of coffee consumed by each senator</caption>
<summary>This table charts the number of cups
  of coffee consumed by each senator, the type 
  of coffee (decaf or regular), and whether 
  taken with sugar.</summary>
<tbody>
   <tr>
      <th>Name</th>
      <th>Cups</th>
      <th>Type of Coffee</th>
      <th>Sugar?</th>

- 118 -

XHTML 2.019.6. The td and th elements



   </tr>
   <tr>
      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
</tbody>
</table>

A user agent rendering to a tty device might display this as follows:

Name         Cups       Type of Coffee   Sugar?
T. Sexton    10         Espresso         No
J. Dinnen    5          Decaf            Yes

19.6.1. Cells that span several rows or columns

Cells may span several rows or columns. The number of rows or columns spanned by a cell is
set by the rowspan [p.117] and colspan [p.117] attributes for the th [p.117] and td [p.117] 
elements.

In this table definition, we specify that the cell in row four, column two should span a total of
three columns, including the current column.

<table>
<caption>Cups of coffee consumed by each senator</caption>
<tbody>
   <tr>
      <th>Name</td>
      <th>Cups</td>
      <th>Type of Coffee</td>
      <th>Sugar?</td>
   </tr>
   <tr>
      <td>T. Sexton</td>
      <td>10</td>
      <td>Espresso</td>
      <td>No</td>
   </tr>
   <tr>
      <td>J. Dinnen</td>
      <td>5</td>
      <td>Decaf</td>
      <td>Yes</td>
   </tr>
   <tr>
      <td>A. Soria</td>

- 119 -

19.6.1. Cells that span several rows or columnsXHTML 2.0



      <td colspan="3"><em>Not available</em></td>
   </tr>
</tbody>
</table>

This table might be rendered on a tty device by a visual user agent as follows:

Cups of coffee consumed by each senator
 --------------------------------------
 |   Name  |Cups|Type of Coffee|Sugar?|
 --------------------------------------
 |T. Sexton|10  |Espresso      |No    |
 --------------------------------------
 |J. Dinnen|5   |Decaf         |Yes   |
 --------------------------------------
 |A. Soria |Not available             |
 --------------------------------------

The next example illustrates (with the help of table borders) how cell definitions that span more
than one row or column affect the definition of later cells. Consider the following table definition:

<table>
<tbody>
   <tr>
      <td>1</td>
      <td rowspan="2">2</td>
      <td>3</td>
   </tr>
   <tr>
      <td>4
      <td>6</td>
   </tr>
   <tr>
      <td>7</td>
      <td>8</td>
      <td>9</td>
      </td></td>
   </tr>
</tbody>
</table>

As cell "2" spans the first and second rows, the definition of the second row will take it into
account. Thus, the second td [p.117] in row two actually defines the row’s third cell. Visually, the
table might be rendered to a tty device as:

-------------
| 1 | 2 | 3 | 
----|   |----
4		6
7	8	9
-------------

- 120 -

XHTML 2.019.6.1. Cells that span several rows or columns



while a graphical user agent might render this as:

Note that if the td [p.117] defining cell "6" had been omitted, an extra empty cell would have
been added by the user agent to complete the row.

Similarly, in the following table definition:

<table>
<tbody>
   <tr>
      <td>1</td>
      <td>2</td>
      <td>3</td>
   </tr>
   <tr>
      <td colspan="2">4</td>
      <td>6</td>
   </tr>
   <tr>
      <td>7</td>
      <td>8</td>
      <td>9</td>
   </tr>
</tbody>
</table>

cell "4" spans two columns, so the second td [p.117] in the row actually defines the third cell 
("6"):

-------------
| 1 | 2 | 3 | 
--------|----
4	6	
7	8	9
-------------

A graphical user agent might render this as:

- 121 -

19.6.1. Cells that span several rows or columnsXHTML 2.0



Defining overlapping cells is an error. User agents may vary in how they handle this error (e.g.,
rendering may vary).

The following illegal example illustrates how one might create overlapping cells. In this table, cell
"5" spans two rows and cell "7" spans two columns, so there is overlap in the cell between "7"
and "9":

<table">
<tbody>
   <tr>
      <td>1</td>
      <td>2</td>
      <td>3</td>
   </tr>
   <tr>
      <td>4</td>
      <td rowspan="2">5</td>
      <td>6</td>
   </tr>
   <tr>
      <td colspan="2">7</td>
      <td>9</td>
   </tr>
</tbody>
</table>

19.7. The thead and tfoot elements
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

Table rows may be grouped into a table head, table foot, and one or more table body sections,
using the thead [p.122] , tfoot [p.122] and tbody [p.116] elements, respectively. This division
enables user agents to support scrolling of table bodies independently of the table head and
foot. When long tables are printed, the table head and foot information may be repeated on each
page that contains table data.

The table head and table foot should contain information about the table’s columns. The table
body should contain rows of table data.

When present, each thead [p.122] , tfoot [p.122] , and tbody [p.116] contains a row group. Each
row group must contain at least one row, defined by the tr [p.123] element.

If the thead [p.122] , tfoot [p.122] , and tbody [p.116] elements are used, and a rowspan attriubte
is used within a group, the rowspan must remain within the group boundaries of which it is 
defined.

- 122 -

XHTML 2.019.7. The thead and tfoot elements



This example illustrates the order and structure of the table head, foot, and bodies.

<table>
<thead>
     <tr> ...header information...</tr>
</thead>
<tfoot>
     <tr> ...footer information...</tr>
</tfoot>
<tbody>
     <tr> ...first row of block one data...</tr>
     <tr> ...second row of block one data...</tr>
</tbody>
<tbody>
     <tr> ...first row of block two data...</tr>
     <tr> ...second row of block two data...</tr>
     <tr> ...third row of block two data...</tr>
</tbody>
</table>

tfoot [p.122] must appear before tbody [p.116] within a table [p.105] definition so that user
agents can render the foot before receiving all of the (potentially numerous) rows of data.

19.8. The tr element
Attributes

The Common [p.40] collection 
A collection of other attribute collections, including: Core [p.27] , Events [p.38] , I18N [p.28] , 
Bi-directional [p.29] , Edit [p.31] , Embedding [p.34] , Map [p.36] , and Hypertext [p.31] 

The tr [p.123] elements acts as a container for a row of table cells.

This sample table contains three rows, each begun by the tr [p.123] element:

<table>
<caption>Cups of coffee consumed by each senator</caption>
<summary>This table charts the number of cups
  of coffee consumed by each senator, the type 
  of coffee (decaf or regular), and whether 
  taken with sugar.</summary>
<tbody>
   <tr> ...A header row...</tr>
   <tr> ...First row of data...</tr>
   <tr> ...Second row of data...</tr>
   ...the rest of the table...</tr>
</tbody>
</table>

- 123 -

19.8. The tr elementXHTML 2.0



- 124 -

XHTML 2.019.8. The tr element



20. XForms Module
This section is informative.

The XForms Module provides a rich collection of forms features. It is defined in [XFORMS 
[p.192] ].

Implementation: XML Schema

- 125 -

20. XForms ModuleXHTML 2.0

http://www.w3.org/TR/2002/CR-xforms-20021112/sliceA.html


- 126 -

XHTML 2.020. XForms Module



21. XML Events Module
This section is informative.

The XML Events Module defines a linkage between XHTML and the XML Document Object
Model [DOM [p.191] ]. XML Events are defined in [XMLEVENTS [p.192] ].

When this module is selected, the listener element is added to the content model of the head 
[p.42] element as defined in the Structure Module.

Implementation: RELAX NG [p.172] , XML Schema, DTD

- 127 -

21. XML Events ModuleXHTML 2.0

http://www.w3.org/TR/2003/CR-xml-events-20030207/Overview.html#a_Schema_definition
http://www.w3.org/TR/2003/CR-xml-events-20030207/Overview.html#a_DTD_definition


- 128 -

XHTML 2.021. XML Events Module



A. Changes from XHTML 1.1
This appendix is informative.

This Appendix describes the differences between XHTML 2.0 and XHTML 1.1.

Change summary needed

This section needs a table that illustrates elements removed and added, and changes made to
elements that were kept.

- 129 -

A. Changes from XHTML 1.1XHTML 2.0



- 130 -

XHTML 2.0A. Changes from XHTML 1.1



B. XHTML 2.0 RELAX NG Definition
This appendix is normative.

This appendix contains the implementation of the XHTML 2.0 RELAX NG driver file.

B.0.1. RELAX NG XHTML 2.0 Driver
<?xml version="1.0" encoding="UTF-8"?>
<grammar ns="http://www.w3.org/2002/06/xhtml2"
         xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>RELAX NG schema for XHTML 2.0</x:h1>

  <x:pre>
    Copyright &#xA9;2003 W3C&#xAE; (MIT, ERCIM, Keio), All Rights Reserved.

      Editor:   Masayasu Ishikawa &lt;mimasa@w3.org&gt;
      Revision: $Id: xhtml2.rng,v 1.25 2003/05/01 05:53:05 mimasa Exp $

    Permission to use, copy, modify and distribute this RELAX NG schema
    for XHTML 2.0 and its accompanying documentation for any purpose and
    without fee is hereby granted in perpetuity, provided that the above
    copyright notice and this paragraph appear in all copies. The copyright
    holders make no representation about the suitability of this RELAX NG
    schema for any purpose.

    It is provided "as is" without expressed or implied warranty.
    For details, please refer to the W3C software license at:

      <x:a href="http://www.w3.org/Consortium/Legal/copyright-software"
      >http://www.w3.org/Consortium/Legal/copyright-software</x:a>
  </x:pre>

  <div>
    <x:h2>XHTML 2.0 modules</x:h2>

    <x:h3>Attribute Collections Module</x:h3>
    <include href="xhtml-attribs-2.rng"/>

    <x:h3>Structure Module</x:h3>
    <include href="xhtml-struct-2.rng"/>

    <x:h3>Block Text Module</x:h3>
    <include href="xhtml-blktext-2.rng"/>

    <x:h3>Inline Text Module</x:h3>
    <include href="xhtml-inltext-2.rng"/>

    <x:h3>Hypertext Module</x:h3>
    <include href="xhtml-hypertext-2.rng"/>

    <x:h3>List Module</x:h3>
    <include href="xhtml-list-2.rng"/>

- 131 -

B. XHTML 2.0 RELAX NG DefinitionXHTML 2.0



    <x:h3>Linking Module</x:h3>
    <include href="xhtml-link-2.rng"/>

    <x:h3>Metainformation Module</x:h3>
    <include href="xhtml-meta-2.rng"/>

    <x:h3>Object Module</x:h3>
    <include href="xhtml-object-2.rng"/>

    <x:h3>Scripting Module</x:h3>
    <include href="xhtml-script-2.rng"/>

    <x:h3>Style Attribute Module</x:h3>
    <include href="xhtml-inlstyle-2.rng"/>

    <x:h3>Style Sheet Module</x:h3>
    <include href="xhtml-style-2.rng"/>

    <x:h3>Tables Module</x:h3>
    <include href="xhtml-table-2.rng"/>

    <x:h3>Support Modules</x:h3>

    <x:h4>Datatypes Module</x:h4>
    <include href="xhtml-datatypes-2.rng"/>

    <x:h4>Events Module</x:h4>
    <include href="xhtml-events-2.rng"/>

    <x:h4>Param Module</x:h4>
    <include href="xhtml-param-2.rng"/>

    <x:h4>Caption Module</x:h4>
    <include href="xhtml-caption-2.rng"/>
  </div>

  <div>
    <x:h2>XML Events module</x:h2>
    <include href="xml-events-1.rng"/>
  </div>

  <div>
    <x:h2>Ruby module</x:h2>
    <include href="full-ruby-1.rng"/>
  </div>

  <div>
    <x:h2>XForms module</x:h2>
    <x:p>To-Do: work out integration of XForms</x:p>
    <!--include href="xforms-1.rng"/-->
  </div>

</grammar>

- 132 -

XHTML 2.0B.0.1. RELAX NG XHTML 2.0 Driver



C. XHTML RELAX NG Module Implementations
This appendix is normative.

This appendix contains implementations of the modules defined in this specification. These
module implementations can be used in other XHTML Family Document Types.

C.1. XHTML Module Implementations
This section contains the formal definition of each of the XHTML Abstract Modules as a RELAX
NG module.

C.1.1. Attribute Collections
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Attribute Collections Module</x:h1>

  <div>
    <x:h2>Core Attribute Collection</x:h2>

    <define name="class.attrib">
      <optional>
        <attribute name="class">
          <ref name="NMTOKENS.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="id.attrib">
      <optional>
        <attribute name="id">
          <ref name="ID.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="title.attrib">
      <optional>
        <attribute name="title">
          <ref name="Text.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="Core.attrib">
      <ref name="id.attrib"/>
      <ref name="class.attrib"/>
      <ref name="title.attrib"/>
    </define>
  </div>

- 133 -

C. XHTML RELAX NG Module ImplementationsXHTML 2.0



  <div>
    <x:h2>I18N Attribute Collection</x:h2>

    <define name="lang.attrib">
      <optional>
        <attribute name="xml:lang">
          <ref name="LanguageCode.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="I18n.attrib">
      <ref name="lang.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Bi-directional Text Collection</x:h2>

    <define name="dir.attrib">
      <optional>
        <attribute name="dir">
          <choice>
            <value>ltr</value>
            <value>rtl</value>
            <value>lro</value>
            <value>rlo</value>
          </choice>
        </attribute>
      </optional>
    </define>

    <define name="Bidi.attrib">
      <ref name="dir.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Edit Collection</x:h2>

    <define name="edit.attrib">
      <optional>
        <attribute name="edit">
          <choice>
            <value>inserted</value>
            <value>deleted</value>
            <value>changed</value>
            <value>moved</value>
          </choice>
        </attribute>
      </optional>
    </define>

    <define name="datetime.attrib">
      <optional>
        <attribute name="datetime">

- 134 -

XHTML 2.0C.1.1. Attribute Collections



          <ref name="Datetime.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="Edit.attrib">
      <ref name="edit.attrib"/>
      <ref name="datetime.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Hypertext Attribute Collection</x:h2>

    <define name="href.attrib">
      <optional>
        <attribute name="href">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="cite.attrib">
      <optional>
        <attribute name="cite">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="target.attrib">
      <optional>
        <attribute name="target">
          <ref name="HrefTarget.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="rel.attrib">
      <optional>
        <attribute name="rel">
          <ref name="LinkTypes.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="rev.attrib">
      <optional>
        <attribute name="rev">
          <ref name="LinkTypes.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="accesskey.attrib">
      <optional>
        <attribute name="accesskey">

- 135 -

C.1.1. Attribute CollectionsXHTML 2.0



          <ref name="Character.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="navindex.attrib">
      <optional>
        <attribute name="navindex">
          <ref name="navindexNumber.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="base.attrib">
      <optional>
        <attribute name="xml:base">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="Hypertext.attrib">
      <ref name="href.attrib"/>
      <ref name="cite.attrib"/>
      <ref name="target.attrib"/>
      <ref name="rel.attrib"/>
      <ref name="rev.attrib"/>
      <ref name="accesskey.attrib"/>
      <ref name="navindex.attrib"/>
      <ref name="base.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Embedding Attribute Collection</x:h2>

    <define name="src.attrib">
      <optional>
        <attribute name="src">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="type.attrib">
      <optional>
        <attribute name="type">
          <ref name="ContentType.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="Embedding.attrib">
      <ref name="src.attrib"/>
      <ref name="type.attrib"/>
    </define>
  </div>

- 136 -

XHTML 2.0C.1.1. Attribute Collections



  <div>
    <x:h2>Image Map Attribute Collection</x:h2>

    <define name="usemap.attrib">
      <optional>
        <attribute name="usemap">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="ismap.attrib">
      <optional>
        <attribute name="ismap">
          <value>ismap</value>
        </attribute>
      </optional>
    </define>

    <define name="shape.attrib">
      <optional>
        <attribute name="shape">
          <choice>
            <value>rect</value>
            <value>circle</value>
            <value>poly</value>
            <value>default</value>
          </choice>
        </attribute>
      </optional>
    </define>

    <define name="coords.attrib">
      <optional>
        <attribute name="coords"/>
      </optional>
    </define>

    <define name="ImageMap.attrib">
      <ref name="usemap.attrib"/>
      <ref name="ismap.attrib"/>
      <ref name="shape.attrib"/>
      <ref name="coords.attrib"/>
    </define>
  </div>

  <define name="Common.extra.attrib">
    <empty/>
  </define>

  <define name="Common.attrib">
    <ref name="Core.attrib"/>
    <ref name="I18n.attrib"/>
    <ref name="Bidi.attrib"/>
    <ref name="Edit.attrib"/>
    <ref name="Hypertext.attrib"/>

- 137 -

C.1.1. Attribute CollectionsXHTML 2.0



    <ref name="Embedding.attrib"/>
    <ref name="ImageMap.attrib"/>
    <ref name="Common.extra.attrib"/>
  </define>

  <define name="CommonIdRequired.attrib">
    <attribute name="id">
      <ref name="ID.datatype"/>
    </attribute>
    <ref name="class.attrib"/>
    <ref name="title.attrib"/>
    <ref name="I18n.attrib"/>
    <ref name="Bidi.attrib"/>
    <ref name="Edit.attrib"/>
    <ref name="Hypertext.attrib"/>
    <ref name="Embedding.attrib"/>
    <ref name="ImageMap.attrib"/>
    <ref name="Common.extra.attrib"/>
  </define>

</grammar>

C.1.2. Structure
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Structure Module</x:h1>

  <start>
    <ref name="html"/>
  </start>

  <div>
    <x:h2>The html element</x:h2>

    <define name="html">
      <element name="html">
        <ref name="html.attlist"/>
        <ref name="head"/>
        <ref name="body"/>
      </element>
    </define>

    <define name="html.attlist">
      <ref name="Common.attrib"/>
      <ref name="profile.attlist"/>
    </define>

    <define name="profile.attlist">
      <optional>
        <attribute name="profile">
          <ref name="URIs.datatype"/>
        </attribute>     
      </optional>

- 138 -

XHTML 2.0C.1.2. Structure



    </define>
  </div>

  <div>
    <x:h2>The head element</x:h2>

    <define name="head">
      <element name="head">
        <ref name="head.attlist"/>
        <ref name="head.content"/>
      </element>
    </define>

    <define name="head.attlist">
      <ref name="Common.attrib"/>
    </define>

    <define name="head.content">
      <ref name="title"/>
    </define>
  </div>

  <div>
    <x:h2>The title element</x:h2>

    <define name="title">
      <element name="title">
        <ref name="title.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="title.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The body element</x:h2>

    <define name="body">
      <element name="body">
        <ref name="body.attlist"/>
        <ref name="Block.model"/>
      </element>
    </define>

    <define name="body.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

</grammar>

- 139 -

C.1.2. StructureXHTML 2.0



C.1.3. Block Text
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Block Text Module</x:h1>

  <div>
    <x:h2>The address element</x:h2>

    <define name="address">
      <element name="address">
        <ref name="address.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="address.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The blockcode element</x:h2>

    <define name="blockcode">
      <element name="blockcode">
        <ref name="blockcode.attlist"/>
        <ref name="blockcode.content"/>
      </element>
    </define>

    <define name="blockcode.attlist">
      <ref name="Common.attrib"/>
    </define>

    <define name="blockcode.content">
      <ref name="blockcode.model"/>
    </define>
  </div>

  <div>
    <x:h2>The blockquote element</x:h2>

    <define name="blockquote">
      <element name="blockquote">
        <ref name="blockquote.attlist"/>
        <ref name="blockquote.content"/>
      </element>
    </define>

    <define name="blockquote.attlist">
      <ref name="Common.attrib"/>
    </define>

- 140 -

XHTML 2.0C.1.3. Block Text



    <define name="blockquote.content">
      <ref name="blockquote.model"/>
    </define>
  </div>

  <div>
    <x:h2>The div element</x:h2>

    <define name="div">
      <element name="div">
        <ref name="div.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="div.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The heading elements</x:h2>

    <define name="h">
      <element name="h">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>
 
    <define name="h1">
      <element name="h1">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>
 
    <define name="h2">
      <element name="h2">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>
     
    <define name="h3">
      <element name="h3">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>
 
    <define name="h4">
      <element name="h4">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>

- 141 -

C.1.3. Block TextXHTML 2.0



 
    <define name="h5">
      <element name="h5">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>

    <define name="h6">
      <element name="h6">
        <ref name="Heading.attrib"/>
        <ref name="Heading.content"/>
      </element>
    </define>

    <define name="Heading.attrib">
      <ref name="Common.attrib"/>
    </define>
 
    <define name="Heading.content">
      <ref name="Inline.model"/>
    </define>
  </div>

  <div>
    <x:h2>The hr element</x:h2>

    <define name="hr">
      <element name="hr">
        <ref name="hr.attlist"/>
      </element>
    </define>

    <define name="hr.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The p element</x:h2>

    <define name="p">
      <element name="p">
        <ref name="p.attlist"/>
        <ref name="p.content"/>
      </element>
    </define>

    <define name="p.attlist">
      <ref name="Common.attrib"/>
    </define>

    <define name="p.content">
      <ref name="p.model"/>
    </define>
  </div>

- 142 -

XHTML 2.0C.1.3. Block Text



  <div>
    <x:h2>The pre element</x:h2>

    <define name="pre">
      <element name="pre">
        <ref name="pre.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="pre.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The section element</x:h2>

    <define name="section">
      <element name="section">
        <ref name="section.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="section.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Content Model</x:h2>

    <define name="Heading.class">
      <choice>
        <ref name="h"/>
        <ref name="h1"/>
        <ref name="h2"/>
        <ref name="h3"/>
        <ref name="h4"/>
        <ref name="h5"/>
        <ref name="h6"/>
      </choice>
    </define>

    <define name="Block.class">
      <choice>
        <ref name="address"/>
        <ref name="blockcode"/>
        <ref name="blockquote"/>
        <ref name="div"/>
        <ref name="hr"/>
        <ref name="p"/>
        <ref name="pre"/>
        <ref name="section"/>
      </choice>
    </define>

- 143 -

C.1.3. Block TextXHTML 2.0



    <define name="blockcode.model">
      <zeroOrMore>
        <choice>
          <text/>
          <ref name="Inline.class"/>
          <ref name="Heading.class"/>
          <ref name="Block.class"/>
          <ref name="List.class"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>

    <define name="blockquote.model">
      <zeroOrMore>
        <choice>
          <text/>
          <ref name="Inline.class"/>
          <ref name="Heading.class"/>
          <ref name="Block.class"/>
          <ref name="List.class"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>

    <define name="p.model">
      <zeroOrMore>
        <choice>
          <text/>
          <ref name="Inline.class"/>
          <ref name="List.class"/>
          <ref name="blockquote"/>
          <ref name="pre"/>
          <ref name="table"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>

    <define name="Block.mix">
      <zeroOrMore>
        <choice>
          <ref name="Heading.class"/>
          <ref name="Block.class"/>
          <ref name="List.class"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>

    <define name="Block.model">
      <oneOrMore>
        <ref name="Block.mix"/>
      </oneOrMore>
    </define>

- 144 -

XHTML 2.0C.1.3. Block Text



    <define name="Flow.model">
      <zeroOrMore>
        <choice>
          <text/>
          <ref name="Heading.class"/>
          <ref name="Block.class"/>
          <ref name="List.class"/>
          <ref name="Inline.class"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>
  </div>

</grammar>

C.1.4. Inline Text
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Inline Text Module</x:h1>

  <div>
    <x:h2>The abbr element</x:h2>

    <define name="abbr">
      <element name="abbr">
        <ref name="abbr.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="abbr.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The cite element</x:h2>

    <define name="cite">
      <element name="cite">
        <ref name="cite.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="cite.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>

- 145 -

C.1.4. Inline TextXHTML 2.0



    <x:h2>The code element</x:h2>

    <define name="code">
      <element name="code">
        <ref name="code.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="code.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The dfn element</x:h2>

    <define name="dfn">
      <element name="dfn">
        <ref name="dfn.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="dfn.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The em element</x:h2>

    <define name="em">
      <element name="em">
        <ref name="em.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="em.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The kbd element</x:h2>

    <define name="kbd">
      <element name="kbd">
        <ref name="kbd.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="kbd.attlist">
      <ref name="Common.attrib"/>
    </define>

- 146 -

XHTML 2.0C.1.4. Inline Text



  </div>

  <div>
    <x:h2>The l element</x:h2>

    <define name="l">
      <element name="l">
        <ref name="l.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="l.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The quote element</x:h2>

    <define name="quote">
      <element name="quote">
        <ref name="quote.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="quote.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The samp element</x:h2>

    <define name="samp">
      <element name="samp">
        <ref name="samp.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="samp.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The span element</x:h2>

    <define name="span">
      <element name="span">
        <ref name="span.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

- 147 -

C.1.4. Inline TextXHTML 2.0



    <define name="span.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The strong element</x:h2>

    <define name="strong">
      <element name="strong">
        <ref name="strong.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="strong.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The sub element</x:h2>

    <define name="sub">
      <element name="sub">
        <ref name="sub.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="sub.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The sup element</x:h2>

    <define name="sup">
      <element name="sup">
        <ref name="sup.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="sup.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The var element</x:h2>

    <define name="var">
      <element name="var">
        <ref name="var.attlist"/>
        <ref name="Inline.model"/>

- 148 -

XHTML 2.0C.1.4. Inline Text



      </element>
    </define>

    <define name="var.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:p>these can occur at block or inline level</x:p>

    <define name="Misc.class">
      <empty/>
    </define>
  </div>

  <div>
    <x:h2>Content Model</x:h2>

    <define name="Inline.class">
      <choice>
        <ref name="abbr"/>
        <ref name="cite"/>
        <ref name="code"/>
        <ref name="dfn"/>
        <ref name="em"/>
        <ref name="kbd"/>
        <ref name="l"/>
        <ref name="quote"/>
        <ref name="samp"/>
        <ref name="span"/>
        <ref name="strong"/>
        <ref name="sub"/>
        <ref name="sup"/>
        <ref name="var"/>
      </choice>
    </define>

    <define name="Inline.model">
      <zeroOrMore>
        <choice>
          <text/>
          <ref name="Inline.class"/>
          <ref name="Misc.class"/>
        </choice>
      </zeroOrMore>
    </define>
  </div>

</grammar>

- 149 -

C.1.4. Inline TextXHTML 2.0



C.1.5. Hypertext
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Hypertext Module</x:h1>

  <div>
    <x:h2>The a element</x:h2>

    <define name="a">
      <element name="a">
        <ref name="a.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="a.attlist">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="charset">
          <ref name="Charset.datatype"/>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="Inline.class" combine="choice">
    <ref name="a"/>
  </define>

</grammar>

C.1.6. List
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>List Module</x:h1>

  <div>
    <x:h2>The dl element</x:h2>

    <define name="dl">
      <element name="dl">
        <ref name="dl.attlist"/>
        <oneOrMore>
          <choice>
        <ref name="dt"/>
        <ref name="dd"/>
          </choice>
        </oneOrMore>
      </element>
    </define>

- 150 -

XHTML 2.0C.1.5. Hypertext



    <define name="dl.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The dt element</x:h2>

    <define name="dt">
      <element name="dt">
        <ref name="dt.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="dt.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The dd element</x:h2>

    <define name="dd">
      <element name="dd">
        <ref name="dd.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="dd.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The label element</x:h2>

    <define name="label">
      <element name="label">
        <ref name="label.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="label.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The nl element</x:h2>

    <define name="nl">
      <element name="nl">
        <ref name="nl.attlist"/>

- 151 -

C.1.6. ListXHTML 2.0



        <ref name="label"/>
        <oneOrMore>
          <ref name="li"/>
        </oneOrMore>
      </element>
    </define>

    <define name="nl.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The ol element</x:h2>

    <define name="ol">
      <element name="ol">
        <ref name="ol.attlist"/>
        <oneOrMore>
          <ref name="li"/>
        </oneOrMore>
      </element>
    </define>

    <define name="ol.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The ul element</x:h2>

    <define name="ul">
      <element name="ul">
        <ref name="ul.attlist"/>
        <oneOrMore>
          <ref name="li"/>
        </oneOrMore>
      </element>
    </define>

    <define name="ul.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The li element</x:h2>

    <define name="li">
      <element name="li">
        <ref name="li.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>  

    <define name="li.attlist">

- 152 -

XHTML 2.0C.1.6. List



      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>List Content Set</x:h2>

    <define name="List.class">
      <choice>
        <ref name="ul"/>
        <ref name="nl"/>
        <ref name="ol"/>
        <ref name="dl"/>
      </choice>
    </define>
  </div>

</grammar>

C.1.7. Link
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Link Module</x:h1>

  <div>
    <x:h2>The link element</x:h2>

    <define name="link">
      <element name="link">
        <ref name="link.attlist"/>
      </element>
    </define>

    <define name="link.attlist">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="charset">
          <ref name="Charset.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="media">
          <ref name="MediaDesc.datatype"/>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="head.content" combine="interleave">
    <zeroOrMore>
      <ref name="link"/>

- 153 -

C.1.7. LinkXHTML 2.0



    </zeroOrMore>
  </define>

</grammar>

C.1.8. Metainformation
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Metainformation Module</x:h1>

  <div>
    <x:h2>The meta element</x:h2>

    <define name="meta">
      <element name="meta">
        <ref name="meta.attlist"/>
        <choice>
          <ref name="Inline.model"/>
          <oneOrMore>
            <ref name="meta"/>
          </oneOrMore>
        </choice>
      </element>
    </define>

    <define name="meta.attlist">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="name">
          <ref name="NMTOKEN.datatype"/>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="head.content" combine="interleave">
    <zeroOrMore>
      <ref name="meta"/>
    </zeroOrMore>
  </define>

</grammar>

C.1.9. Object
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Object Module</x:h1>

  <div>
    <x:h2>The object element</x:h2>

- 154 -

XHTML 2.0C.1.8. Metainformation



    <define name="object">
      <element name="object">
        <ref name="object.attlist"/>
        <optional>
          <ref name="caption"/>
        </optional>
        <optional>
          <ref name="standby"/>
        </optional>
        <zeroOrMore>
          <ref name="param"/>
        </zeroOrMore>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="object.attlist">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="archive">
          <ref name="URIs.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="content-length">
          <ref name="Number.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="data">
          <ref name="URI.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="declare">
          <value>declare</value>
        </attribute>
      </optional>
    </define>
  </div>

  <div>
    <x:h2>The standby element</x:h2>

    <define name="standby">
      <element name="standby">
        <ref name="standby.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="standby.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

- 155 -

C.1.9. ObjectXHTML 2.0



  <define name="Inline.class" combine="choice">
    <ref name="object"/>
  </define>

</grammar>

C.1.10. Scripting
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Scripting Module</x:h1>

  <div>
    <x:h2>The noscript element</x:h2>

    <define name="noscript">
      <element name="noscript">
        <ref name="noscript.attlist"/>
        <ref name="Block.model"/>
      </element>
    </define>

    <define name="noscript.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The script element</x:h2>

    <define name="script">
      <element name="script">
        <ref name="script.attlist"/>
        <choice>
          <text/>
          <ref name="script"/>
          <ref name="noscript"/>
        </choice>
      </element>
    </define>

    <define name="script.attlist">
      <optional>
        <attribute name="charset">
          <ref name="Charset.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="declare">
          <value>declare</value>
        </attribute>
      </optional>
      <optional>
        <attribute name="src">

- 156 -

XHTML 2.0C.1.10. Scripting



          <ref name="URI.datatype"/>
        </attribute>
      </optional>
      <attribute name="type">
        <ref name="ContentType.datatype"/>
      </attribute>
      <optional>
        <attribute name="xml:space">
          <value>preserve</value>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="head.content" combine="interleave">
    <zeroOrMore>
      <ref name="script"/>
    </zeroOrMore>
  </define>

  <define name="Script.class">
    <choice>
      <ref name="noscript"/>
      <ref name="script"/>
    </choice>
  </define>

  <define name="Inline.class" combine="choice">
    <ref name="Script.class"/>
  </define>

  <define name="Block.class" combine="choice">
    <ref name="Script.class"/>
  </define>

</grammar>

C.1.11. Style Attribute
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Style Attribute Module</x:h1>

  <define name="style.attrib">
    <optional>
      <attribute name="style"/>
    </optional>
  </define>

  <define name="Common.extra.attrib" combine="interleave">
    <ref name="style.attrib"/>
  </define>

</grammar>

- 157 -

C.1.11. Style AttributeXHTML 2.0



C.1.12. Style Sheet
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Style Module</x:h1>

  <div>
    <x:h2>The style element</x:h2>

    <define name="style">
      <element name="style">
        <ref name="style.attlist"/>
        <text/>
      </element>
    </define>

    <define name="style.attlist">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="media">
          <ref name="MediaDesc.datatype"/>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="head.content" combine="interleave">
    <zeroOrMore>
      <ref name="style"/>
    </zeroOrMore>
  </define>

</grammar>

C.1.13. Tables
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Tables Module</x:h1>

  <x:p>Note. Also include the Caption Module when this module is used.</x:p>

  <div>
    <x:h2>The table element</x:h2>

    <define name="table">
      <element name="table">
        <ref name="table.attlist"/>
        <optional>
          <ref name="caption"/>
        </optional>

- 158 -

XHTML 2.0C.1.12. Style Sheet



        <optional>
          <ref name="summary"/>
        </optional>
        <choice>
          <zeroOrMore>
            <ref name="col"/>
          </zeroOrMore>
          <zeroOrMore>
            <ref name="colgroup"/>
          </zeroOrMore>
        </choice>
        <choice>
          <group>
            <optional>
              <ref name="thead"/>
            </optional>
            <optional>
              <ref name="tfoot"/>
            </optional>
            <oneOrMore>
              <ref name="tbody"/>
            </oneOrMore>
          </group>
          <oneOrMore>
            <ref name="tr"/>
          </oneOrMore>
        </choice>
      </element>
    </define>

    <define name="table.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The summary element</x:h2>

    <define name="summary">
      <element name="summary">
        <ref name="summary.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="summary.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The col element</x:h2>

    <define name="col">
      <element name="col">
        <ref name="col.attlist"/>
      </element>

- 159 -

C.1.13. TablesXHTML 2.0



    </define>

    <define name="col.attlist">
      <ref name="Common.attrib"/>
      <ref name="span.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The colgroup element</x:h2>

    <define name="colgroup">
      <element name="colgroup">
        <ref name="colgroup.attlist"/>
        <zeroOrMore>
          <ref name="col"/>
        </zeroOrMore>
      </element>
    </define>

    <define name="colgroup.attlist">
      <ref name="Common.attrib"/>
      <ref name="span.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The thead element</x:h2>

    <define name="thead">
      <element name="thead">
        <ref name="thead.attlist"/>
        <oneOrMore>
          <ref name="tr"/>
        </oneOrMore>
      </element>
    </define>

    <define name="thead.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The tfoot element</x:h2>

    <define name="tfoot">
      <element name="tfoot">
        <ref name="tfoot.attlist"/>
        <oneOrMore>
          <ref name="tr"/>
        </oneOrMore>
      </element>
    </define>

    <define name="tfoot.attlist">
      <ref name="Common.attrib"/>

- 160 -

XHTML 2.0C.1.13. Tables



    </define>
  </div>

  <div>
    <x:h2>The tbody element</x:h2>

    <define name="tbody">
      <element name="tbody">
        <ref name="tbody.attlist"/>
        <oneOrMore>
          <ref name="tr"/>
        </oneOrMore>
      </element>
    </define>

    <define name="tbody.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The tr element</x:h2>

    <define name="tr">
      <element name="tr">
        <ref name="tr.attlist"/>
        <oneOrMore>
          <choice>
            <ref name="th"/>
            <ref name="td"/>
          </choice>
        </oneOrMore>
      </element>
    </define>

    <define name="tr.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The th element</x:h2>

    <define name="th">
      <element name="th">
        <ref name="th.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="th.attlist">
      <ref name="Cell.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>The td element</x:h2>

- 161 -

C.1.13. TablesXHTML 2.0



    <define name="td">
      <element name="td">
        <ref name="td.attlist"/>
        <ref name="Flow.model"/>
      </element>
    </define>

    <define name="td.attlist">
      <ref name="Cell.attrib"/>
    </define>
  </div>

  <div>
    <x:h2>Attribute definitions</x:h2>

    <define name="span.attrib">
      <optional>
        <attribute name="span" a:defaultValue="1">
          <ref name="spanNumber.datatype"/>
        </attribute>
      </optional>
    </define>

    <define name="Cell.attrib">
      <ref name="Common.attrib"/>
      <optional>
        <attribute name="abbr">
          <ref name="Text.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="axis"/>
      </optional>
      <optional>
        <attribute name="colspan" a:defaultValue="1">
          <ref name="Number.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="headers">
          <ref name="IDREFS.datatype"/>
        </attribute>
      </optional>
      <optional>
        <attribute name="rowspan" a:defaultValue="1">
          <ref name="Number.datatype"/>
        </attribute>
      </optional>
      <ref name="scope.attrib"/>
    </define>

    <define name="scope.attrib">
      <optional>
        <attribute name="scope">
          <choice>
            <value>row</value>

- 162 -

XHTML 2.0C.1.13. Tables



            <value>col</value>
            <value>rowgroup</value>
            <value>colgroup</value>
          </choice>
        </attribute>
      </optional>
    </define>
  </div>

  <define name="Block.class" combine="choice">
    <ref name="table"/>
  </define>

</grammar>

C.2. XHTML RELAX NG Support Modules
The modules in this section are elements and attributes of the XHTML RELAX NG
implementation that, while hidden from casual users, are important to understand when creating
derivative markup languages using the Modularization architecture.

C.2.1. Datatypes
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml"
         datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

  <x:h1>Datatypes Module</x:h1>

  <div>
    <x:h2>Datatypes defined in XML 1.0</x:h2>

    <define name="CDATA.datatype">
      <text/>
    </define>

    <define name="ID.datatype">
      <data type="ID"/>
    </define>

    <define name="IDREF.datatype">
      <data type="IDREF"/>
    </define>

    <define name="IDREFS.datatype">
      <data type="IDREFS"/>
    </define>

    <define name="NAME.datatype">
      <data type="Name"/>
    </define>

    <define name="NMTOKEN.datatype">
      <data type="NMTOKEN"/>
    </define>

    <define name="NMTOKENS.datatype">

- 163 -

C.2. XHTML RELAX NG Support ModulesXHTML 2.0



      <data type="NMTOKENS"/>
    </define>
  </div>

  <div>
    <x:h2>Additional Datatypes</x:h2>

    <define name="Character.datatype">
      <x:p>A single character, as per section 2.2 of [XML].</x:p>
      <data type="string">
        <param name="length">1</param>
      </data>
    </define>

    <define name="Charset.datatype">
      <x:p>A character encoding, as per [RFC2045].</x:p>
      <text/>
    </define>

    <define name="Charsets.datatype">
      <x:p>A space separated list of character encodings,
        as per [RFC2045].</x:p>
      <list>
        <oneOrMore>
          <ref name="Charset.datatype"/>
        </oneOrMore>
      </list>
    </define>

    <define name="ContentType.datatype">
      <x:p>A list of media ranges with optional accept parameters,
        as defined in section 14.1 of [RFC2616] as the field value
        of the accept request header.</x:p>
      <text/>
    </define>

    <define name="Coordinates.datatype">
      <x:p>Comma separated list of Lengths used in defining areas.</x:p>
      <data type="string">
        <param name="pattern">[\-+]?(\d+|\d+(\.\d+)?%)(,\s*[\-+]?(\d+|\d+(\.\d+)?%))*</param>
      </data>
    </define>

    <define name="Datetime.datatype">
      <x:p>Date and time information, as defined by the type dateTime
        in [XMLSCHEMA].</x:p>
      <data type="dateTime"/>
    </define>

    <define name="HrefTarget.datatype">
      <x:p>Name used as destination for results of certain actions.</x:p>
      <ref name="NMTOKEN.datatype"/>
    </define>

    <define name="LanguageCode.datatype">
      <x:p>A language code, as per [RFC3066].</x:p>
      <data type="language"/>
    </define>

    <define name="Length.datatype">
      <x:p>The value may be either in pixels or a percentage of the available
        horizontal or vertical space. Thus, the value "50%" means half of
        the available space.</x:p>

- 164 -

XHTML 2.0C.2.1. Datatypes



      <data type="string">
        <param name="pattern">[\-+]?(\d+|\d+(\.\d+)?%)</param>
      </data>
    </define>

    <define name="LinkTypes.datatype">
      <x:p>Space-separated list of link types.</x:p>
      <ref name="NMTOKENS.datatype"/>
    </define>

    <define name="MediaDesc.datatype">
      <x:p>A comma-separated list of media descriptors as described by [CSS].
        The default is all.</x:p>
      <data type="string">
        <param name="pattern">[^,]+(,\s*[^,]+)*</param>
      </data>
    </define>

    <define name="Number.datatype">
      <x:p>One or more digits (NUMBER).</x:p>
      <data type="nonNegativeInteger">
        <param name="pattern">[0-9]+</param>
      </data>
    </define>

    <define name="spanNumber.datatype">
      <x:p>span: this attribute value must be an integer > 0;
        the default value is 1.</x:p>
      <data type="positiveInteger">
        <param name="pattern">[0-9]+</param>
      </data>
    </define>

    <define name="navindexNumber.datatype">
      <x:p>navindex: the position of the current element in the navingation
        order for the current document. This value must be a number between
        0 and 32767. User agents must ignore leading zeros.</x:p>
      <data type="nonNegativeInteger">
        <param name="pattern">[0-9]+</param>
        <param name="minInclusive">0</param>
        <param name="maxInclusive">32767</param>
      </data>
    </define>

    <define name="Shape.datatype">
      <x:p>The shape of a region.</x:p>
      <choice>
        <value>rect</value>
        <value>circle</value>
        <value>poly</value>
        <value>default</value>
      </choice>
    </define>

    <define name="Text.datatype">
      <x:p>Arbitrary textual data, likely meant to be human-readable.</x:p>
      <text/>
    </define>

    <define name="URI.datatype">
      <x:p>A Uniform Resource Identifier Reference, as defined by the type
        anyURI in [XMLSCHEMA].</x:p>
      <data type="anyURI"/>

- 165 -

C.2.1. DatatypesXHTML 2.0



    </define>

    <define name="URIs.datatype">
      <x:p>A space-separated list of URIs as defined above.</x:p>
      <list>
        <oneOrMore>
          <data type="anyURI"/>
        </oneOrMore>
      </list>
    </define>

    <define name="URIList.datatype">
      <x:p>A comma-separated list of URIs as defined above.</x:p>
      <text/>
    </define>
  </div>

</grammar>

C.2.2. Events
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:ev="http://www.w3.org/2001/xml-events"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Events Attribute Collection Module</x:h1>

  <define name="Events.attrib">
    <optional>
      <attribute name="ev:event">
        <ref name="NMTOKEN.datatype"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="ev:observer">
        <ref name="IDREF.datatype"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="ev:target">
        <ref name="IDREF.datatype"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="ev:handler">
        <ref name="URI.datatype"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="ev:phase" a:defaultValue="default">
        <choice>
          <value>capture</value>
          <value>default</value>
        </choice>
      </attribute>
    </optional>

- 166 -

XHTML 2.0C.2.2. Events



    <optional>
      <attribute name="ev:propagate" a:defaultValue="continue">
        <choice>
          <value>stop</value>
          <value>continue</value>
        </choice>
      </attribute>
    </optional>
    <optional>
      <attribute name="ev:defaultAction" a:defaultValue="perform">
        <choice>
          <value>cancel</value>
          <value>perform</value>
        </choice>
      </attribute>
    </optional>
  </define>

  <define name="Common.extra.attrib" combine="interleave">
    <ref name="Events.attrib"/>
  </define>

  <define name="head.content" combine="interleave">
    <zeroOrMore>
      <ref name="listener" ns="http://www.w3.org/2001/xml-events"/>
    </zeroOrMore>
  </define>

  <define name="Script.class" combine="choice">
    <ref name="listener" ns="http://www.w3.org/2001/xml-events"/>
  </define>

</grammar>

C.2.3. Param
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Param Module</x:h1>

  <div>
    <x:h2>The param element</x:h2>

    <define name="param">
      <element name="param">
        <ref name="param.attlist"/>
      </element>
    </define>

    <define name="param.attlist">
      <optional>
        <ref name="id.attrib"/>
      </optional>

- 167 -

C.2.3. ParamXHTML 2.0



      <attribute name="name"/>
      <optional>
        <attribute name="value"/>
      </optional>
      <optional>
        <attribute name="valuetype" a:defaultValue="data">
          <choice>
            <value>data</value>
            <value>ref</value>
            <value>object</value>
          </choice>
        </attribute>
      </optional>
    </define>
  </div>

</grammar>

C.2.4. Caption
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Caption Module</x:h1>

  <div>
    <x:h2>The caption element</x:h2>

    <define name="caption">
      <element name="caption">
        <ref name="caption.attlist"/>
        <ref name="Inline.model"/>
      </element>
    </define>

    <define name="caption.attlist">
      <ref name="Common.attrib"/>
    </define>
  </div>

</grammar>

C.3. RELAX NG External Modules
These modules are not defined by XHTML, but these definitions are included here for 
completeness.

- 168 -

XHTML 2.0C.3. RELAX NG External Modules



C.3.1. Ruby
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml"
         datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

  <x:h1>Ruby Module in RELAX NG</x:h1>

  <x:pre>
    Ruby Elements

      ruby, rbc, rtc, rb, rt, rp

    This module defines grammars to support ruby annotation markup.
    This module is based on the W3C Ruby Annotation Specification:

      http://www.w3.org/TR/ruby

    Copyright &#xA9;2003 W3C&#xAE; (MIT, ERCIM, Keio), All Rights Reserved.

      Editor:   Masayasu Ishikawa &lt;mimasa@w3.org&gt;
      Revision: $Id: ruby-1.rng,v 1.7 2003/05/01 04:58:15 mimasa Exp $

    Permission to use, copy, modify and distribute this RELAX NG schema
    for Ruby Annotation and its accompanying documentation for any purpose
    and without fee is hereby granted in perpetuity, provided that the above
    copyright notice and this paragraph appear in all copies. The copyright
    holders make no representation about the suitability of this RELAX NG
    schema for any purpose.

    It is provided "as is" without expressed or implied warranty.
    For details, please refer to the W3C software license at:

      <x:a href="http://www.w3.org/Consortium/Legal/copyright-software"
      >http://www.w3.org/Consortium/Legal/copyright-software</x:a>
  </x:pre>

  <div>
    <x:h2>patterns for the content model of the ruby element</x:h2>

    <define name="Ruby.content.simple">
      <x:p>Content model of simple ruby</x:p>
      <group>
        <ref name="rb"/>
        <choice>
          <ref name="rt-simple"/>
          <group>
            <ref name="rp"/>
            <ref name="rt-simple"/>
            <ref name="rp"/>
          </group>
        </choice>
      </group>
    </define>

- 169 -

C.3.1. RubyXHTML 2.0



    <define name="Ruby.content.complex">
      <x:p>Content model of complex ruby</x:p>
      <group>
        <ref name="rbc"/>
        <ref name="rtc"/>
        <optional>
          <ref name="rtc"/>
        </optional>
      </group>
    </define>

    <define name="Ruby.content">
      <x:p>Simple ruby is used by default</x:p>
      <ref name="Ruby.content.simple"/>
    </define>
  </div>

  <div>
    <x:h2>Ruby Elements</x:h2>

    <x:h3>ruby element</x:h3>

    <define name="ruby">
      <element name="ruby">
        <ref name="Ruby.content"/>
        <ref name="Ruby.common.attrib"/>
      </element>
    </define>

    <x:h3>rbc (ruby base component) element</x:h3>

    <define name="rbc">
      <element name="rbc">
        <oneOrMore>
          <ref name="rb"/>
        </oneOrMore>
        <ref name="Ruby.common.attrib"/>
      </element>
    </define>

    <x:h3>rtc (ruby text component) element</x:h3>

    <define name="rtc">
      <element name="rtc">
        <oneOrMore>
          <ref name="rt-complex"/>
        </oneOrMore>
        <ref name="Ruby.common.attrib"/>
      </element>
    </define>

    <x:h3>rb (ruby base) element</x:h3>

    <define name="rb">
      <element name="rb">
        <ref name="NoRuby.content"/>

- 170 -

XHTML 2.0C.3.1. Ruby



        <ref name="Ruby.common.attrib"/>
      </element>
    </define>

    <x:h3>rt (ruby text) element</x:h3>

    <define name="rt-simple">
      <x:p>grammar for simple ruby</x:p>
      <x:p>rbspan attribute is not allowed in simple ruby</x:p>
      <element name="rt">
        <ref name="NoRuby.content"/>
        <ref name="Ruby.common.attrib"/>
      </element>
    </define>

    <define name="rt-complex">
      <x:p>grammar for complex ruby</x:p>
      <element name="rt">
        <ref name="NoRuby.content"/>
        <ref name="Ruby.common.attrib"/>
        <optional>
          <attribute name="rbspan" a:defaultValue="1">
            <data type="positiveInteger">
              <param name="pattern">[1-9][0-9]*</param>
            </data>
          </attribute>
        </optional>
      </element>
    </define>

    <x:h3>rp (ruby parenthesis) element</x:h3>

    <define name="rp">
      <element name="rp">
        <text/>
        <ref name="Ruby.common.attrib"/>
      </element>
    </define>
  </div>

  <div>
    <x:h2>Ruby Common Attributes</x:h2>

    <x:p>Ruby elements are intended to have common attributes of its
      parent markup language. The pattern "Common.attrib" MUST be
      defined to integrate this module.</x:p>

    <define name="Ruby.common.attrib">
      <ref name="Common.attrib"/>
    </define>
  </div>

  <div>
    <x:p>Content models of the rb and the rt elements are intended to
      allow other inline-level elements of its parent markup language,
      but it should not include ruby descendent elements. This RELAX NG
      module itself doesn’t check nesting of ruby elements.

- 171 -

C.3.1. RubyXHTML 2.0



      The patterns "Inline.class" and "Inline.model" MUST be defined
      to integrate this module.</x:p>

    <define name="Inline.class" combine="choice">
      <ref name="ruby"/>
    </define>

    <define name="NoRuby.content">
      <ref name="Inline.model"/>
    </define>
  </div>

</grammar>

C.3.2. Ruby Driver for Full Ruby Markup
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml">

  <x:h1>Ruby Module in RELAX NG for full ruby markup</x:h1>

  <x:pre>
    Copyright &#xA9;2003 W3C&#xAE; (MIT, ERCIM, Keio), All Rights Reserved.

      Editor:   Masayasu Ishikawa &lt;mimasa@w3.org&gt;
      Revision: $Id: full-ruby-1.rng,v 1.4 2003/04/30 06:50:03 mimasa Exp $
  </x:pre>

  <include href="ruby-1.rng"/>

  <define name="Ruby.content" combine="choice">
    <x:p>Allow complex ruby markup in addition to simple ruby markup</x:p>
    <ref name="Ruby.content.complex"/>
  </define>

</grammar>

C.3.3. XML Events
<?xml version="1.0" encoding="UTF-8"?>
<grammar ns="http://www.w3.org/2001/xml-events"
         xmlns="http://relaxng.org/ns/structure/1.0"
         xmlns:ev="http://www.w3.org/2001/xml-events"
         xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
         xmlns:x="http://www.w3.org/1999/xhtml"
         datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

  <x:h1>XML Events Module in RELAX NG</x:h1>

  <x:pre>
    Copyright &#xA9;2003 W3C&#xAE; (MIT, ERCIM, Keio), All Rights Reserved.

      Editor:   Masayasu Ishikawa &lt;mimasa@w3.org&gt;
      Revision: $Id: xml-events-1.rng,v 1.6 2003/04/30 06:50:03 mimasa Exp $

- 172 -

XHTML 2.0C.3.2. Ruby Driver for Full Ruby Markup



    Permission to use, copy, modify and distribute this RELAX NG schema
    for XML Events and its accompanying documentation for any purpose and
    without fee is hereby granted in perpetuity, provided that the above
    copyright notice and this paragraph appear in all copies. The copyright
    holders make no representation about the suitability of this RELAX NG
    schema for any purpose.

    It is provided "as is" without expressed or implied warranty.
    For details, please refer to the W3C software license at:

      <x:a href="http://www.w3.org/Consortium/Legal/copyright-software"
      >http://www.w3.org/Consortium/Legal/copyright-software</x:a>
  </x:pre>

  <define name="listener">
    <element name="listener">
      <ref name="listener.attlist"/>
    </element>
  </define>

  <define name="listener.attlist">
    <optional>
      <attribute name="event">
        <data type="NMTOKEN"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="observer">
        <data type="IDREF"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="target">
        <data type="IDREF"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="handler">
        <data type="anyURI"/>
      </attribute>
    </optional>
    <optional>
      <attribute name="phase" a:defaultValue="default">
        <choice>
          <value>capture</value>
          <value>default</value>
        </choice>
      </attribute>
    </optional>
    <optional>
      <attribute name="propagate" a:defaultValue="continue">
        <choice>
          <value>stop</value>
          <value>continue</value>
        </choice>
      </attribute>
    </optional>

- 173 -

C.3.3. XML EventsXHTML 2.0



    <optional>
      <attribute name="defaultAction" a:defaultValue="perform">
        <choice>
          <value>cancel</value>
          <value>perform</value>
        </choice>
      </attribute>
    </optional>
    <optional>
      <attribute name="id">
        <data type="ID"/>
      </attribute>
    </optional>
  </define>

</grammar>

- 174 -

XHTML 2.0C.3.3. XML Events



D. XHTML 2.0 Schema
This appendix is normative.

This appendix will contain the implementation of the XHTML 2.0 Schema driver file and content
model file.

XHTML 2.0 Schema Needed

The XHTML 2.0 Schema driver and content model files need to be built.

- 175 -

D. XHTML 2.0 SchemaXHTML 2.0



- 176 -

XHTML 2.0D. XHTML 2.0 Schema



E. XHTML Schema Module Implementations
This appendix is normative.

This appendix will contain implementations of the modules defined in this specification via XML
Schema [XMLSCHEMA [p.192] ] when XML Schema becomes a W3C Recommendation.

- 177 -

E. XHTML Schema Module ImplementationsXHTML 2.0



- 178 -

XHTML 2.0E. XHTML Schema Module Implementations



F. XHTML 2.0 Document Type Definition
This appendix is normative.

This appendix will contain the implementation of the XHTML 2.0 DTD driver file and content
model file.

XHTML 2.0 DTD Needed

The XHTML 2.0 DTD driver and content model files need to be built. There is an open issue
about how to integrate the XForms instance data into such a DTD.

- 179 -

F. XHTML 2.0 Document Type DefinitionXHTML 2.0



- 180 -

XHTML 2.0F. XHTML 2.0 Document Type Definition



G. XHTML DTD Module Implementations
This appendix is normative.

This appendix will contain implementations of the modules defined in this specification. These
module implementations can be used in other XHTML Family Document Types.

G.1. XHTML Modular Framework
In order to take advantage of the XHTML DTD Modules, DTD authors need to define the content
model for their DTD. XHTML provides a variety of tools to ease this effort. They are defined in a
set of support modules, instantiated by a main Framework module:

Module DTD/xhtml-framework-2.mod not found!

Note that the module above references a content model module. This module is defined on a
per-document type basis in addition to the document type driver file. The Modular framework
also relies upon the following component modules:

G.1.1. XHTML Base Architecture

Module implementation XHTML Base Architecture needed

The Module implementation Module implementation XHTML Base Architecture needed
referenced as DTD/xhtml-arch-2.mod needs to be defined. It will be defined before publication of
a last call draft.

G.1.2. XHTML Notations

Module implementation XHTML Notations needed

The Module implementation Module implementation XHTML Notations needed referenced as
DTD/xhtml-notations-2.mod needs to be defined. It will be defined before publication of a last
call draft.

G.1.3. XHTML Datatypes

Module implementation XHTML Datatypes needed

The Module implementation Module implementation XHTML Datatypes needed referenced as
DTD/xhtml-datatypes-2.mod needs to be defined. It will be defined before publication of a last
call draft.

- 181 -

G. XHTML DTD Module ImplementationsXHTML 2.0



G.1.4. XHTML Common Attribute Definitions

Module implementation XHTML Common Attribute Definitions needed

The Module implementation Module implementation XHTML Common Attribute Definitions
needed referenced as DTD/xhtml-attribs-2.mod needs to be defined. It will be defined before
publication of a last call draft.

G.1.5. XHTML Qualified Names

Module implementation XHTML Qualified Names needed

The Module implementation Module implementation XHTML Qualified Names needed
referenced as DTD/xhtml-qname-2.mod needs to be defined. It will be defined before publication
of a last call draft.

G.1.6. XHTML Character Entities

Module implementation XHTML Character Entities needed

The Module implementation Module implementation XHTML Character Entities needed
referenced as DTD/xhtml-charent-1.mod needs to be defined. It will be defined before
publication of a last call draft.

G.2. XHTML Module Implementations
This section contains the formal definition of each of the XHTML Abstract Modules as a DTD 
module.

G.2.1. Structure

Module implementation Structure needed

The Module implementation Module implementation Structure needed referenced as
DTD/xhtml-struct-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.2. Block Text

Module implementation Block Text needed

The Module implementation Module implementation Block Text needed referenced as
DTD/xhtml-blktext-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

- 182 -

XHTML 2.0G.2. XHTML Module Implementations



G.2.3. Inline Text

Module implementation Inline Text needed

The Module implementation Module implementation Inline Text needed referenced as
DTD/xhtml-inltext-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.4. Hypertext

Module implementation Hypertext needed

The Module implementation Module implementation Hypertext needed referenced as
DTD/xhtml-hypertext-2.mod needs to be defined. It will be defined before publication of a last
call draft.

G.2.5. List

Module implementation List needed

The Module implementation Module implementation List needed referenced as
DTD/xhtml-list-2.mod needs to be defined. It will be defined before publication of a last call draft.

G.2.6. Link

Module implementation Link needed

The Module implementation Module implementation Link needed referenced as
DTD/xhtml-link-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.7. Metainformation

Module implementation Metainformation needed

The Module implementation Module implementation Metainformation needed referenced as
DTD/xhtml-meta-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.8. Object

Module implementation Object needed

The Module implementation Module implementation Object needed referenced as
DTD/xhtml-object-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

- 183 -

G.2.3. Inline TextXHTML 2.0



G.2.9. Scripting

Module implementation Scripting needed

The Module implementation Module implementation Scripting needed referenced as
DTD/xhtml-script-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.10. Style Attribute

Module implementation Style Attribute needed

The Module implementation Module implementation Style Attribute needed referenced as
DTD/xhtml-inlstyle-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.11. Style Sheet

Module implementation Style Sheet needed

The Module implementation Module implementation Style Sheet needed referenced as
DTD/xhtml-style-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.2.12. Tables

Module implementation Tables needed

The Module implementation Module implementation Tables needed referenced as
DTD/xhtml-table-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

G.3. XHTML DTD Support Modules
The modules in this section are elements of the XHTML DTD implementation that, while hidden
from casual users, are important to understand when creating derivative markup languages
using the Modularization architecture.

G.3.1. Param

Module implementation Param needed

The Module implementation Module implementation Param needed referenced as
DTD/xhtml-param-2.mod needs to be defined. It will be defined before publication of a last call 
draft.

- 184 -

XHTML 2.0G.3. XHTML DTD Support Modules



H. List of Elements
This appendix is informative.

This appendix will contain a list of elements defined in this specification, sorted in alphabetical
order, with some other relevant information and links to the element definitions.

- 185 -

H. List of ElementsXHTML 2.0



- 186 -

XHTML 2.0H. List of Elements



J. List of Attributes
This appendix is informative.

This appendix will contain a list of attributes defined in this specification, sorted in alphabetical
order, with some other relevant information and links to the attribute definitions.

- 187 -

J. List of AttributesXHTML 2.0



- 188 -

XHTML 2.0J. List of Attributes



I. Cross-reference Index
This appendix is informative.

This appendix will contain a detailed index of this document, with links to the indexed terms.

- 189 -

I. Cross-reference IndexXHTML 2.0



- 190 -

XHTML 2.0I. Cross-reference Index



K. References
This appendix is normative.

K.1. Normative References
[CSS2] 

"Cascading Style Sheets, level 2 (CSS2) Specification", W3C Recommendation, B. Bos et 
al., eds., 12 May 1998.
Available at: http://www.w3.org/TR/1998/REC-CSS2-19980512 

[DOM] 
"Document Object Model (DOM) Level 2 Core Specification", W3C Recommendation, A.
Le Hors et al., eds., 13 November 2000.
Available at: http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
A list of DOM Level 2 specifications can be found at:
http://www.w3.org/DOM/DOMTR#dom2 

[MIMETYPES] 
List of registered content types (MIME media types). Download a list of registered content
types from http://www.iana.org/assignments/media-types/. 

[P3P] 
"The Platform for Privacy Preferences 1.0 (P3P1.0) Specification", W3C Recommendation,
L. Cranor et al., 16 April 2002.
Available at: http://www.w3.org/TR/2002/REC-P3P-20020416/ 

[RELAXNG] 
"RELAX NG Specification", OASIS Committee Specification, J. Clark, Murata M., eds., 3
December 2001.
Available at: http://relaxng.org/spec-20011203.html
RELAX NG is being standardized as part of ISO/IEC 19757 - Document Schema Definition
Languages (DSDL), currently a Final Draft International Standard (FDIS). See home page
for Document Schema Definition Languages at http://dsdl.org/ for details. 

[RFC2045] 
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message 
Bodies", RFC 2045, N. Freed and N. Borenstein, November 1996.
Available at: http://www.rfc-editor.org/rfc/rfc2045.txt 

[RFC2119] 
"Key words for use in RFCs to indicate requirement levels", RFC 2119, S. Bradner, March 
1997.
Available at: http://www.rfc-editor.org/rfc/rfc2119.txt 

[RFC2616] 
"Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, R. Fielding et al., June 1999.
Available at: http://www.rfc-editor.org/rfc/rfc2616.txt 

[RFC3066] 
"Tags for the Identification of Languages", RFC 3066, H. Alvestrand, January 2001.
Available at: http://www.rfc-editor.org/rfc/rfc3066.txt 

- 191 -

K. ReferencesXHTML 2.0

http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/DOM/DOMTR#dom2
http://www.iana.org/assignments/media-types/
http://www.w3.org/TR/2002/REC-P3P-20020416/
http://relaxng.org/spec-20011203.html
http://dsdl.org/
http://dsdl.org/
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc3066.txt


[RUBY] 
"Ruby Annotation", W3C Recommendation, M. Sawicki et al., eds., 31 May 2001.
Available at: http://www.w3.org/TR/2001/REC-ruby-20010531 

[SGML] 
"Information Processing -- Text and Office Systems -- Standard Generalized Markup
Language (SGML)", ISO 8879:1986.
Please consult the ISO Web site at http://www.iso.ch/ for information about the standard, or 
http://www.oasis-open.org/cover/general.html#overview about SGML. 

[UAX9] 
"Unicode Standard Annex #9: The Bidirectional Algorithm", M. Davis, 17 April 2003.
Available at: http://www.unicode.org/reports/tr9/tr9-11.html
The latest version of UAX #9 is available at: http://www.unicode.org/reports/tr9/ 

[URI] 
"Uniform Resource Identifiers (URI): Generic Syntax", RFC 2396, T. Berners-Lee et al.,
August 1998.
Available at: http://www.rfc-editor.org/rfc/rfc2396.txt. 

[XFORMS] 
"XForms 1.0", W3C Candidate Recommendation, M. Dubinko et al., eds., 12 November
2002, work in progress.
Available at: http://www.w3.org/TR/2002/CR-xforms-20021112/ 

[XHTMLMOD] 
"Modularization of XHTML", W3C Recommendation, M. Altheim et al., eds., 10 April 2001
Available at: http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410 

[XML] 
"Extensible Markup Language (XML) 1.0 (Second Edition)", W3C Recommendation, T. Bray 
et al., eds., 6 October 2000.
Available at: http://www.w3.org/TR/2000/REC-xml-20001006 

[XMLBASE] 
"XML Base", W3C Recommendation, J. Marsh, ed., 27 June 2001.
Available at: http://www.w3.org/TR/2001/REC-xmlbase-20010627/ 

[XMLEVENTS] 
"XML Events", W3C Candidate Recommendation, S. McCarron et al., eds., 7 February
2003, work in progress.
Available at: http://www.w3.org/TR/2003/CR-xml-events-20030207 

[XMLNAMES] 
"Namespaces in XML", W3C Recommendation, T. Bray et al., eds., 14 January 1999.
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114 

[XMLSCHEMA] 
"XML Schema Part 1: Structures", W3C Recommendation, H. S. Thompson et al., eds., 2
May 2001.
Available at: http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
See also "XML Schema Part 2: Datatypes", available at: 
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

- 192 -

XHTML 2.0K.1. Normative References

http://www.w3.org/TR/2001/REC-ruby-20010531
http://www.iso.ch/
http://www.oasis-open.org/cover/general.html#overview
http://www.unicode.org/reports/tr9/tr9-11.html
http://www.unicode.org/reports/tr9/
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.w3.org/TR/2002/CR-xforms-20021112/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/2003/CR-xml-events-20030207
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502


K.2. Informative References
[HTML4] 

"HTML 4.01 Specification", W3C Recommendation, D. Raggett et al., eds., 24 December 
1999.
Available at: http://www.w3.org/TR/1999/REC-html401-19991224 

[XFRAMES] 
"XFrames", W3C Working Draft, S. Pemberton, ed., 6 August 2002, work in progress.
Available at: http://www.w3.org/TR/2002/WD-xframes-20020806 

[XLINK] 
"XML Linking Language (XLink) Version 1.0", W3C Recommendation, S. DeRose et al., 
eds., 27 June 2001.
Available at: http://www.w3.org/TR/2001/REC-xlink-20010627/

- 193 -

K.2. Informative ReferencesXHTML 2.0

http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/2002/WD-xframes-20020806
http://www.w3.org/TR/2001/REC-xlink-20010627/


- 194 -

XHTML 2.0K.2. Informative References



L. Acknowledgements
This appendix is informative.

This specification was prepared by the W3C HTML Working Group. The participants at the time
of publication were:

This section will be updated at publication time.

- 195 -

L. AcknowledgementsXHTML 2.0


	XHTML� 2.0
	W3C Working Draft 6 May 2003
	Abstract
	Status of This Document

	Quick Table of Contents
	List of Issues
	Full Table of Contents
	1. Introduction
	1.1. What is XHTML 2?
	1.1.1. Backwards compatibility
	1.1.2. XHTML2 and Presentation
	1.1.3. Design Aims

	1.2. What are the XHTML 2 Modules?

	2. Terms and Definitions
	3. Conformance Definition
	3.1. Document Conformance
	3.1.1. Strictly Conforming Documents

	3.2. User Agent Conformance

	4. The XHTML 2.0 Document Type
	5. Module Definition Conventions
	5.1. Module Structure
	5.2. Abstract Module Definitions
	5.3. Syntactic Conventions
	5.4. Content Types
	5.5. Attribute Types

	6. XHTML Attribute Collections
	6.1. Core Attribute Collection
	6.2. I18N Attribute Collection
	6.3. Bi-directional Text Collection
	6.3.1. Inheritance of text direction information
	6.3.2. The effect of style sheets on bidirectionality

	6.4. Edit Collection
	6.5. Hypertext Attribute Collection
	6.6. Embedding Attribute Collection
	6.7. Image Map Attribute Collection
	6.8. Events
	6.9. Style Attribute Collection
	6.10. Common Attribute Collection

	7. XHTML Structure Module
	7.1. The html element
	7.2. The head element
	7.3. The title element
	7.4. The body element

	8. XHTML Block Text Module
	8.1. The address element
	8.2. The blockcode element
	8.3. The blockquote element
	8.4. The div element
	8.5. The heading elements
	8.6. The hr element
	8.7. The p element
	8.8. The pre element
	8.9. The section element

	9. XHTML Inline Text Module
	9.1. The abbr element
	9.2. The cite element
	9.3. The code element
	9.4. The dfn element
	9.5. The em element
	9.6. The kbd element
	9.7. The l element
	9.8. The quote element
	9.9. The samp element
	9.10. The span element
	9.11. The strong element
	9.12. The sub element
	9.13. The sup element
	9.14. The var element

	10. XHTML Hypertext Module
	10.1. The a element

	11. XHTML List Module
	11.1. Definition lists: the dl, dt, and dd elements
	11.2. The nl element
	11.3. The ol, and ul elements
	11.4. The li element
	11.5. The label element

	12. XHTML Linking Module
	12.1. The link element
	12.1.1. Forward and reverse links
	12.1.2. Links and external style sheets
	12.1.3. Links and search engines


	13. XHTML Metainformation Module
	13.1. The meta element
	13.1.1. meta and search engines
	13.1.2. meta and RDF
	13.1.3. meta data profiles


	14. XHTML Object Module
	14.1. The object element
	14.1.1. Defining terminology
	14.1.2. Basic Information for Object Handlers
	14.1.3. Rules for processing objects

	14.2. The param element
	14.2.1. Referencing object data
	14.2.2. Object element declarations and instantiations

	14.3. The standby element

	15. Ruby Module
	16. XHTML Scripting Module
	16.1. The noscript element
	16.2. The script element
	16.2.1. Rules for processing scripts
	16.2.2. Specifying the scripting language
	16.2.3. Declaration of a scripting language
	16.2.4. Dynamic modification of documents


	17. XHTML Style Attribute Module
	18. XHTML Style Sheet Module
	18.1. The style element
	18.1.1. External style sheets
	18.1.2. Preferred and alternate style sheets
	18.1.3. Specifying external style sheets


	19. XHTML Tables Module
	19.1. The caption element
	19.1.1. Caption Clipping

	19.2. The col and colgroup elements
	19.2.1. Calculating the number of columns in a table

	19.3. The summary element
	19.4. The table element
	19.4.1. Visual Rendering
	19.4.2. Table directionality
	19.4.3. Table rendering by non-visual user agents
	19.4.3.1. Associating header information with data cells
	19.4.3.2. Categorizing cells
	19.4.3.3. Algorithm to find heading information

	19.4.4. Sample table

	19.5. The tbody element
	19.6. The td and th elements
	19.6.1. Cells that span several rows or columns

	19.7. The thead and tfoot elements
	19.8. The tr element

	20. XForms Module
	21. XML Events Module
	A. Changes from XHTML 1.1
	B. XHTML 2.0 RELAX NG Definition
	
	B.0.1. RELAX NG XHTML 2.0 Driver


	C. XHTML RELAX NG Module Implementations
	C.1. XHTML Module Implementations
	C.1.1. Attribute Collections
	C.1.2. Structure
	C.1.3. Block Text
	C.1.4. Inline Text
	C.1.5. Hypertext
	C.1.6. List
	C.1.7. Link
	C.1.8. Metainformation
	C.1.9. Object
	C.1.10. Scripting
	C.1.11. Style Attribute
	C.1.12. Style Sheet
	C.1.13. Tables

	C.2. XHTML RELAX NG Support Modules
	C.2.1. Datatypes
	C.2.2. Events
	C.2.3. Param
	C.2.4. Caption

	C.3. RELAX NG External Modules
	C.3.1. Ruby
	C.3.2. Ruby Driver for Full Ruby Markup
	C.3.3. XML Events


	D. XHTML 2.0 Schema
	E. XHTML Schema Module Implementations
	F. XHTML 2.0 Document Type Definition
	G. XHTML DTD Module Implementations
	G.1. XHTML Modular Framework
	G.1.1. XHTML Base Architecture
	G.1.2. XHTML Notations
	G.1.3. XHTML Datatypes
	G.1.4. XHTML Common Attribute Definitions
	G.1.5. XHTML Qualified Names
	G.1.6. XHTML Character Entities

	G.2. XHTML Module Implementations
	G.2.1. Structure
	G.2.2. Block Text
	G.2.3. Inline Text
	G.2.4. Hypertext
	G.2.5. List
	G.2.6. Link
	G.2.7. Metainformation
	G.2.8. Object
	G.2.9. Scripting
	G.2.10. Style Attribute
	G.2.11. Style Sheet
	G.2.12. Tables

	G.3. XHTML DTD Support Modules
	G.3.1. Param


	H. List of Elements
	J. List of Attributes
	I. Cross-reference Index
	K. References
	K.1. Normative References
	K.2. Informative References

	L. Acknowledgements

