
RFC 9738
IMAP MESSAGELIMIT Extension

Abstract
The MESSAGELIMIT extension of the Internet Message Access Protocol (RFCs 3501 and 9051)
allows servers to announce a limit on the number of messages that can be processed in a single
FETCH, SEARCH, STORE, COPY, or MOVE command (or their UID variants), or in a single APPEND
or UID EXPUNGE command. This helps servers to control resource usage when performing
various IMAP operations. This helps clients to know the message limit enforced by the
corresponding IMAP server and avoid issuing commands that would exceed such limit.

Stream: Internet Engineering Task Force (IETF)
RFC: 9738
Category: Experimental
Published: March 2025
ISSN: 2070-1721
Authors: A. Melnikov

Isode
A. P. Achuthan
Yahoo!

V. Nagulakonda
Yahoo!

L. Alves

Status of This Memo
This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This document is a
product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for
any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9738

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Melnikov, et al. Experimental Page 1

https://www.rfc-editor.org/rfc/rfc9738
https://www.rfc-editor.org/info/rfc9738
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents
1. Introduction and Overview

2. Document Conventions

3. The MESSAGELIMIT Extension

3.1. Returning Limits on the Number of Messages Processed in a Single Command

3.2. UIDAFTER and UIDBEFORE SEARCH Criteria

3.3. Interaction with SORT and THREAD Extensions

3.4. Interaction with SEARCHRES Extension and IMAP4rev2

4. Interoperability Considerations

4.1. Effects of MESSAGELIMIT and SAVELIMIT Extensions on Noncompliant Clients

4.2. Maintaining Compatibility

5. Formal Syntax

6. Security Considerations

7. IANA Considerations

7.1. Additions to the IMAP Capabilities Registry

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

3

3

3

4

7

7

8

8

8

8

9

9

10

10

10

10

11

11

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 2

1. Introduction and Overview
This document defines an extension to the Internet Message Access Protocol for
announcing a server limit on the number of messages that can be processed in a single FETCH,
SEARCH, STORE, COPY, or MOVE command (or their UID variants), or a single APPEND or UID
EXPUNGE command. This extension is compatible with both IMAP4rev1 and
IMAP4rev2 .

2. Document Conventions
In protocol examples, this document uses a prefix of "C: " to denote lines sent by the client to the
server, and "S: " for lines sent by the server to the client. Lines prefixed with "// " are comments
explaining the previous protocol line. These prefixes and comments are not part of the protocol.
Lines without any of these prefixes are continuations of the previous line, and no line break is
present in the protocol unless specifically mentioned.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Other capitalized words are IMAP key words or key words from this
document.

Authors' Addresses 11

[RFC9051]

[RFC3501]
[RFC9051]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC3501][RFC9051]

3. The MESSAGELIMIT Extension
An IMAP server advertises support for the MESSAGELIMIT extension by including
"MESSAGELIMIT=<limit>" capability in the CAPABILITY response or response code, where
"<limit>" is a positive integer that conveys the maximum number of messages that can be
processed in a single SEARCH, FETCH, STORE, COPY, MOVE command (or their UID variants), or
in a single APPEND or UID EXPUNGE command.

An IMAP server that only enforces the message limit on COPY and APPEND commands (and
their UID variants) would include the "SAVELIMIT=<limit>" capability (instead of the
"MESSAGELIMIT=<limit>") in the CAPABILITY response or response code.

The limit advertised in the MESSAGELIMIT or SAVELIMIT capability be lower than
1000 messages.

SHOULD NOT

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 3

3.1. Returning Limits on the Number of Messages Processed in a Single
Command
If a server implementation doesn't allow more than <N> messages to be operated on by a single
COPY or UID COPY command, it fail the command by returning a tagged NO response with
the MESSAGELIMIT response code defined below. No messages are copied in this case. If a server
implementation doesn't allow more than <N> messages to be operated on by a single SEARCH,
FETCH, STORE, or MOVE command (or their UID variants), or an APPEND or UID EXPUNGE
command, it return the MESSAGELIMIT response code defined below:

MESSAGELIMIT
The server doesn't allow more than <N> messages to be operated on by a single SEARCH,
FETCH, STORE, COPY, or MOVE command (or their UID variants). The lowest processed UID is
<LastUID>. The client needs to repeat the operation for remaining messages, if required.

The server doesn't allow more than <N> \Deleted messages to be operated on by a single UID
EXPUNGE command. The lowest processed UID is <LastUID>. The client needs to repeat the
operation for remaining messages, if required.

Note that when the MESSAGELIMIT response code is returned, the server is to
process messages from highest to lowest UID.

Note that the MESSAGELIMIT response code is similar to the LIMIT response code ,
but it provides more details on the exact type of the limit and how to resume the command
once the limit is exceeded.

In the following example, the <N> value is 1000, and the lowest processed UID <LastUID> is
23221.

In the following example the client searches for UNDELETED UIDs between 22000:25000. The
total number of searched messages (note, NOT the number of matched messages) exceeds the
server's published 1000-message limit.

MUST

MUST

REQUIRED

[RFC9051]

 C: 03 FETCH 10000:14589 (UID FLAGS)
 S: * 14589 FETCH (FLAGS (\Seen) UID 25000)
 S: * 14588 FETCH (FLAGS (\Answered) UID 24998)
 S: ... further 997 fetch responses
 S: * 13590 FETCH (FLAGS () UID 23221)
 S: 03 OK [MESSAGELIMIT 1000 23221] FETCH completed with 1000
 partial results

 C: 04 UID SEARCH UID 22000:25000 UNDELETED
 S: * SEARCH 25000 24998 (... UIDs ...) 23221
 S: 04 OK [MESSAGELIMIT 1000 23221] SEARCH completed with 1000
 partial results

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 4

The following example demonstrates the copy of messages with UIDs between 18000:21000.
The total message count exceeds the server's published 1000-message limit. As COPY or UID
COPY needs to be atomic (as per /), no messages are copied.

The following example shows the move of messages with UIDs between 18000:21000. The
total message count exceeds the server's published 1000-message limit. (Unlike COPY or UID
COPY, MOVE or UID MOVE don't need to be atomic.) The client that wants to move all
messages in the range and observes a MESSAGELIMIT response code can repeat the UID
MOVE command with the same parameter. (For the MOVE command, the message set
parameter needs to be updated before repeating the command.) The client needs to keep
doing this until the MESSAGELIMIT response is not returned (or until a tagged NO or BAD is
returned).

The following example shows the update of flags for messages with UIDs between
18000:20000. The total number of existing messages in the UID range exceeds the server's
published 1000-message limit. The client that wants to change flags for all messages in the
range and observes a MESSAGELIMIT response code can repeat the UID STORE command
with the updated UID range that doesn't include the UID returned in the MESSAGELIMIT
response code. (For the STORE command, the message set parameter also needs to be
updated before repeating the command.) The client needs to keep doing this until the
MESSAGELIMIT response is not returned (or until a tagged NO or BAD is returned).

The following example shows the removal of messages (using UID EXPUNGE) that have the
\Deleted flag set with UIDs between 11000:13000. The total message count of messages with
the \Deleted flag set exceeds the server's published 1000-message limit. The client that wants

[RFC3501] [RFC9051]

 C: 05 UID COPY 18000:21000 "Trash"
 S: 05 NO [MESSAGELIMIT 1000 20001] Too many messages to copy,
 try a smaller subset

 C: 06 UID MOVE 18000:21000 "Archive/2021/2021-12"
 S: * OK [COPYUID 1397597919 20001:21000 22363:23362] Some
 messages were not moved
 S: * 12336 EXPUNGE
 S: * 12335 EXPUNGE
 ...
 S: * 11337 EXPUNGE
 S: 06 OK [MESSAGELIMIT 1000 20001] MOVE completed for the last
 1000 messages

 C: 07 UID STORE 18000:20000 +FLAGS (\Seen)
 S: * 11215 FETCH (FLAGS (\Seen \Deleted) UID 20000)
 S: * 11214 FETCH (FLAGS (\Seen \Answered \Deleted) UID 19998)
 ...
 S: * 10216 FETCH (FLAGS (\Seen) UID 19578)
 S: 07 OK [MESSAGELIMIT 1000 19578] STORE completed for the last
 1000 messages

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 5

to remove all messages marked as \Deleted in the range and observes a MESSAGELIMIT
response code can repeat the UID EXPUNGE command with the same parameter. The client
needs to keep doing this until the MESSAGELIMIT response is not returned (or until a tagged
NO or BAD is returned).

The following example shows removal of messages (using EXPUNGE) that have the \Deleted
flag set. Unlike UID EXPUNGE, the server impose any message limit when
processing EXPUNGE.

Similarly, the server impose any message limit when processing a "CLOSE" or a
"STATUS UNSEEN" command.

The following example shows use of the MESSAGELIMIT response code together with the
PARTIAL extension. The total message count (as specified by the PARTIAL range)
exceeds the server's published 1000-message limit, so the server refuses to do any work in
this case.

Without the PARTIAL parameter, the above UID FETCH can look like this:

 C: 08 UID EXPUNGE 11000:13000
 S: * 4306 EXPUNGE
 S: * 4305 EXPUNGE
 ...
 S: * 3307 EXPUNGE
 S: 08 OK [MESSAGELIMIT 1000 11627] UID EXPUNGE completed for
 the last 1000 messages

MUST NOT

 C: 09 EXPUNGE
 S: * 4306 EXPUNGE
 S: * 4305 EXPUNGE
 ...
 S: * 3307 EXPUNGE
 S: * 112 EXPUNGE
 S: 09 OK EXPUNGE completed

MUST NOT

[RFC9394]

 C: 10 UID FETCH 22000:25000 (UID FLAGS MODSEQ)
 (PARTIAL -1:-1500)
 S: 10 NO [MESSAGELIMIT 1000] FETCH exceeds the maximum 1000-
 message limit

 C: 10 UID FETCH 22000:25000 (UID FLAGS MODSEQ)
 S: * 12367 FETCH (FLAGS (\Seen \Deleted) UID 23007)
 S: * 12366 FETCH (FLAGS (\Seen \Answered \Deleted) UID 23114)
 ...
 S: * 13366 FETCH (FLAGS (\Seen) UID 24598)
 S: 10 OK [MESSAGELIMIT 1000 23007] FETCH exceeds the maximum
 1000-message limit

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 6

3.3. Interaction with SORT and THREAD Extensions
Servers that advertise MESSAGELIMIT N will be unable to execute a THREAD command

 in a mailbox with more than N messages.

Servers that advertise MESSAGELIMIT N might be unable to execute a SORT command
in a mailbox with more than N messages, unless they maintain indices for different SORT orders
they support. In absence of such indices, server implementors will need to decide whether their
server advertises SORT or MESSAGELIMIT capability.

Note that when the server needs to return both EXPUNGEISSUED and MESSAGELIMIT
response codes, the former be returned in the tagged OK response, while the latter
be returned in an untagged NO response. The following example demonstrates that:

When the IMAP MULTIAPPEND extension is also supported by the server, the
message limit also applies to the APPEND command. As MULTIAPPEND APPEND needs to atomic
(as per), no messages are appended when the server MESSAGELIMIT is exceeded.

[RFC9051]
MUST MUST

 C: 11 FETCH 10000:14589 (UID FLAGS)
 S: * 14589 FETCH (FLAGS (\Seen) UID 25000)
 S: * 14588 FETCH (FLAGS (\Answered) UID 24998)
 S: ... further 997 fetch responses
 S: * 13590 FETCH (FLAGS () UID 23221)
 S: * NO [MESSAGELIMIT 1000 23221] FETCH completed with 1000 partial
 results
 S: 11 OK [EXPUNGEISSUED] Some messages were also expunged

[RFC3502]

[RFC3502]

"UIDAFTER <uid>"

"UIDBEFORE <uid>"

3.2. UIDAFTER and UIDBEFORE SEARCH Criteria
The MESSAGELIMIT extension also defines two extra SEARCH keys, UIDAFTER and UIDBEFORE,
which make it easier to convert a single UID to a range of UIDs.

Messages that have a UID greater than the specified UID. This is
semantically the same as "UID <uid>+1:*".

Messages that have a UID less than the specified UID. This is semantically
the same as "UID 1:<uid>-1" (or if <uid> has the value 1, then the empty set).

These two SEARCH keys are particularly useful when the SEARCHRES extension is
also supported, but they can be used without it. For example, this allows a SEARCH that sets the
"$" marker to be converted to a range of messages in a subsequent SEARCH, and both SEARCH
requests can be pipelined.

[RFC5182]

 C: 12 UID SEARCH UIDAFTER 25000 UNDELETED
 S: * SEARCH 27800 27798 (... 250 UIDs ...) 25001
 S: 12 OK SEARCH completed

[RFC5256]

[RFC5256]

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 7

4. Interoperability Considerations

4.1. Effects of MESSAGELIMIT and SAVELIMIT Extensions on Noncompliant
Clients
A server that advertises the MESSAGELIMIT=N capability would have the following effect on
clients that don't support this capability:

Operations are not affected on a mailbox that has N messages or fewer.
In a mailbox with more than N messages:

An attempt to COPY or UID COPY more than N messages will always fail.
EXPUNGE and CLOSE will always operate on the full mailbox, so they are not affected.
Other commands like FETCH, SEARCH, and MOVE will be effectively restricted to the last
N messages of the mailbox. In particular, unextended SEARCHes (intended for counting of
messages with or without a particular set of flags) would return incorrect counts.

4.2. Maintaining Compatibility
It is important to understand that the above effects essentially abandon existing clients with
respect to operation on large mailboxes. Suppose, for example, that a user is accessing a large
and active mailing list via IMAP, and the mailing list gets on the order of 1500 posts per week.
When the user returns from a week-long vacation and catches up on the mailing list, the user's
client will be fetching information about 1500 messages. If the server has a MESSAGELIMIT of
1000, the client will only be able to download 1000 of the most recent messages; the client will
not understand why, will not be prepared to recover from the situation, and will act as if it is
interacting with a broken server.

In order to give clients time to implement this extension, servers should not be strict about
applying the MESSAGELIMIT at first. One possible approach is to advertise a MESSAGELIMIT but
not enforce it at all for a while. Clients that understand this extension will comply, reducing load
on the server, but clients that do not understand the limit will continue to work in all situations.

3.4. Interaction with SEARCHRES Extension and IMAP4rev2
Servers that support both MESSAGELIMIT and SEARCHRES extensions truncate
SEARCH SAVE result stored in the $ variable when the SEARCH command succeeds, but the
MESSAGELIMIT response code is returned. For example, if the following SEARCH would have
returned 1200 results in absence of MESSAGELIMIT, and the MESSAGELIMIT is 1000, only 1000
matching results will be saved in the $ variable:

[RFC5182] MUST

 C: D0004 UID SEARCH RETURN (SAVE) SINCE 1-Jan-2004 NOT FROM "Smith"
 UID 22000:25000 UNDELETED
 S: D0004 OK [MESSAGELIMIT 1000 1179] SEARCH completed with 1000
 partial results saved

•
•

◦
◦
◦

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 8

Another approach, which perhaps could be phased in later, is to advertise one limit but to treat
it as a soft limit and to begin enforcement at a higher, unadvertised hard limit. In the above
example, perhaps the server might advertise 1000 but actually enforce a limit of 10,000. Again,
clients that understand MESSAGELIMIT will comply with the limit of 1000, but other clients will
still interoperate up to the higher threshold.

Attempts to go beyond the advertised limit can be logged so that client understanding of
MESSAGELIMIT can be tracked. If implementation and deployment of this extension becomes
common, it may at some point be acceptable to strictly enforce the advertised limit and to accept
that the remaining clients will, indeed, no longer work properly with mailboxes above that limit.

5. Formal Syntax
The following syntax specification uses the Augmented Backus-Naur Form (ABNF) notation as
specified in .

Non-terminals referenced but not defined below are as defined by .

Except as noted otherwise, all alphabetic characters are case-insensitive. The use of uppercase
or lowercase characters to define token strings is for editorial clarity only. Implementations

 accept these strings in a case-insensitive fashion.

6. Security Considerations
This document defines an additional IMAP4 capability. As such, it does not change the
underlying security considerations of IMAP4rev1 or IMAP4rev2 .

This document defines an optimization that can both reduce the amount of work performed by
the server, as well at the amount of data returned to the client. Use of this extension is likely to
cause the server and the client to use less memory than when the extension is not used, which
can in turn help to protect from denial-of-service attacks. However, as this is going to be new
code in both the client and the server, rigorous testing of such code is required in order to avoid
introducing new implementation bugs.

[ABNF]

IMAP4 [RFC3501]

MUST

capability =/ "MESSAGELIMIT=" message-limit /
 "SAVELIMIT=" message-limit
 ;; <capability> from [RFC3501]

message-limit = nz-number

resp-text-code =/ "MESSAGELIMIT" SP message-limit [SP uniqueid]
 ;; No more than nz-number messages can be processed
 ;; by any command at a time. The last (lowest) processed
 ;; UID is uniqueid.
 ;; The last parameter is omitted when not known.

[RFC3501] [RFC9051]

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 9

[ABNF]

[RFC2119]

[RFC3501]

[RFC3502]

[RFC5182]

[RFC5256]

[RFC8174]

[RFC9051]

7. IANA Considerations

7.1. Additions to the IMAP Capabilities Registry
IMAP4 capabilities are registered by publishing a Standards Track or IESG-approved
Informational or Experimental RFC. The "IMAP Capabilities" registry is currently located at:

.

IANA has added "MESSAGELIMIT=" and "SAVELIMIT=" capabilities to this registry, with this
document as the reference.

8. References

8.1. Normative References

 and ,
, , , , January 2008,

.

, , ,
, , March 1997,
.

, ,
, , March 2003,

.

,
, , , March 2003,

.

, ,
, , March 2008,

.

 and ,
, , , June 2008,

.

, ,
, , , May 2017,

.

 and ,
, , , August 2021,

.

<https://www.iana.org/assignments/imap-capabilities/>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Crispin, M. "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1" RFC
3501 DOI 10.17487/RFC3501 <https://www.rfc-editor.org/info/
rfc3501>

Crispin, M. "Internet Message Access Protocol (IMAP) - MULTIAPPEND
Extension" RFC 3502 DOI 10.17487/RFC3502 <https://www.rfc-
editor.org/info/rfc3502>

Melnikov, A. "IMAP Extension for Referencing the Last SEARCH Result" RFC
5182 DOI 10.17487/RFC5182 <https://www.rfc-editor.org/info/
rfc5182>

Crispin, M. K. Murchison "Internet Message Access Protocol - SORT and
THREAD Extensions" RFC 5256 DOI 10.17487/RFC5256 <https://
www.rfc-editor.org/info/rfc5256>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Melnikov, A., Ed. B. Leiba, Ed. "Internet Message Access Protocol (IMAP) -
Version 4rev2" RFC 9051 DOI 10.17487/RFC9051 <https://www.rfc-
editor.org/info/rfc9051>

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 10

https://www.iana.org/assignments/imap-capabilities/
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3502
https://www.rfc-editor.org/info/rfc3502
https://www.rfc-editor.org/info/rfc5182
https://www.rfc-editor.org/info/rfc5182
https://www.rfc-editor.org/info/rfc5256
https://www.rfc-editor.org/info/rfc5256
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/info/rfc9051

[RFC9394]

8.2. Informative References

, , , and ,
, , ,

June 2023, .

Acknowledgments
This document was motivated by the Yahoo! team and their questions about best client practices
for dealing with large mailboxes.

The authors of this document would like to thank the following people who provided useful
comments, contributed text, or participated in discussions of this document: ,

, , and .

Melnikov, A. Achuthan, A. P. Nagulakonda, V. L. Alves "IMAP PARTIAL
Extension for Paged SEARCH and FETCH" RFC 9394 DOI 10.17487/RFC9394

<https://www.rfc-editor.org/info/rfc9394>

Timo Sirainen
Barry Leiba Ken Murchison Arnt Gulbrandsen

Authors' Addresses
Alexey Melnikov
Isode Limited

alexey.melnikov@isode.comEmail:
https://www.isode.comURI:

Arun Prakash Achuthan
Yahoo!

arunprakash@myyahoo.comEmail:

Vikram Nagulakonda
Yahoo!

nvikram_imap@yahoo.comEmail:

Luis Alves
luis.alves@lafaspot.comEmail:

RFC 9738 IMAP MESSAGELIMIT March 2025

Melnikov, et al. Experimental Page 11

https://www.rfc-editor.org/info/rfc9394
mailto:alexey.melnikov@isode.com
https://www.isode.com
mailto:arunprakash@myyahoo.com
mailto:nvikram_imap@yahoo.com
mailto:luis.alves@lafaspot.com

	RFC 9738
	IMAP MESSAGELIMIT Extension
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Overview
	2. Document Conventions
	3. The MESSAGELIMIT Extension
	3.1. Returning Limits on the Number of Messages Processed in a Single Command
	3.2. UIDAFTER and UIDBEFORE SEARCH Criteria
	3.3. Interaction with SORT and THREAD Extensions
	3.4. Interaction with SEARCHRES Extension and IMAP4rev2

	4. Interoperability Considerations
	4.1. Effects of MESSAGELIMIT and SAVELIMIT Extensions on Noncompliant Clients
	4.2. Maintaining Compatibility

	5. Formal Syntax
	6. Security Considerations
	7. IANA Considerations
	7.1. Additions to the IMAP Capabilities Registry

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Authors' Addresses

 IMAP MESSAGELIMIT Extension

 Isode Limited

 alexey.melnikov@isode.com
 https://www.isode.com

 Yahoo!

 arunprakash@myyahoo.com

 Yahoo!

 nvikram_imap@yahoo.com

 luis.alves@lafaspot.com

 ART
 extra

 The MESSAGELIMIT extension of the Internet Message Access Protocol
 (RFCs 3501 and 9051) allows servers to announce a limit on the number
 of messages that can be processed in a single FETCH, SEARCH, STORE,
 COPY, or MOVE command (or their UID variants), or in a single APPEND
 or UID EXPUNGE command. This helps servers to control resource usage
 when performing various IMAP operations. This helps clients to know
 the message limit enforced by the corresponding IMAP server and avoid
 issuing commands that would exceed such limit.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF community.
 It has received public review and has been approved for publication
 by the Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s)
 controlling the copyright in such materials, this document may not
 be modified outside the IETF Standards Process, and derivative
 works of it may not be created outside the IETF Standards Process,
 except to format it for publication as an RFC or to translate it
 into languages other than English.

 Table of Contents

 . Introduction and Overview

 . Document Conventions

 . The MESSAGELIMIT Extension

 . Returning Limits on the Number of Messages Processed in a Single Command

 . UIDAFTER and UIDBEFORE SEARCH Criteria

 . Interaction with SORT and THREAD Extensions

 . Interaction with SEARCHRES Extension and IMAP4rev2

 . Interoperability Considerations

 . Effects of MESSAGELIMIT and SAVELIMIT Extensions on Noncompliant Clients

 . Maintaining Compatibility

 . Formal Syntax

 . Security Considerations

 . IANA Considerations

 . Additions to the IMAP Capabilities Registry

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction and Overview
 This document defines an extension to the Internet Message Access Protocol
 for announcing a server limit on the number of
 messages that can be processed in a single FETCH, SEARCH, STORE, COPY, or MOVE command (or their UID variants), or a single APPEND or UID EXPUNGE command.
 This extension is compatible with both IMAP4rev1 and IMAP4rev2 .

 Document Conventions
 In protocol examples, this document uses a prefix of "C: " to denote
 lines sent by the client to the server, and "S: " for lines sent by the
 server to the client. Lines prefixed with "// " are comments explaining
 the previous protocol line. These prefixes and comments are not part of
 the protocol. Lines without any of these prefixes are continuations of
 the previous line, and no line break is present in the protocol unless
 specifically mentioned.

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Other capitalized words are IMAP key words
 or key words from this document.

 The MESSAGELIMIT Extension
 An IMAP server advertises support for the MESSAGELIMIT extension
 by including "MESSAGELIMIT=<limit>" capability in the CAPABILITY response or response code,
 where "<limit>" is a positive integer that conveys the maximum number of messages
 that can be processed in a single SEARCH, FETCH, STORE, COPY, MOVE command (or their UID variants), or in a single APPEND or UID EXPUNGE command.
 An IMAP server that only enforces the message limit on COPY and APPEND commands (and their UID variants) would include
 the "SAVELIMIT=<limit>" capability (instead of the "MESSAGELIMIT=<limit>") in
 the CAPABILITY response or response code.
 The limit advertised in the MESSAGELIMIT or SAVELIMIT capability SHOULD NOT be lower than 1000 messages.

 Returning Limits on the Number of Messages Processed in a Single Command

 If a server implementation doesn't allow more than <N> messages to be operated on
 by a single COPY or UID COPY command, it MUST fail the command by returning a tagged NO response
 with the MESSAGELIMIT response code defined below. No messages are copied in this case.

 If a server implementation doesn't allow more than <N> messages to be operated on
 by a single SEARCH, FETCH, STORE, or MOVE command (or their UID variants), or an APPEND or UID EXPUNGE command, it MUST return the MESSAGELIMIT response code defined below:

 MESSAGELIMIT

 The server doesn't allow more than <N> messages to be
 operated on by a single SEARCH, FETCH, STORE, COPY, or MOVE command (or
 their UID variants). The lowest processed UID is <LastUID>.
 The client needs to repeat the operation for remaining messages,
 if required.
 The server doesn't allow more than <N> \Deleted messages
 to be operated on by a single UID EXPUNGE command. The lowest
 processed UID is <LastUID>. The client needs to repeat the
 operation for remaining messages, if required.
 Note that when the MESSAGELIMIT response code is returned, the
 server is REQUIRED to process messages from highest
 to lowest UID.
 Note that the MESSAGELIMIT response code is similar to the
 LIMIT response code ,
 but it provides more details on the exact type of the limit and
 how to resume the command once the limit is exceeded.
 In
 the following example, the <N> value is 1000, and the lowest
 processed UID <LastUID> is 23221.

 C: 03 FETCH 10000:14589 (UID FLAGS)
 S: * 14589 FETCH (FLAGS (\Seen) UID 25000)
 S: * 14588 FETCH (FLAGS (\Answered) UID 24998)
 S: ... further 997 fetch responses
 S: * 13590 FETCH (FLAGS () UID 23221)
 S: 03 OK [MESSAGELIMIT 1000 23221] FETCH completed with 1000
 partial results
 In the following example the client searches for UNDELETED UIDs
 between 22000:25000. The total number of searched messages (note,
 NOT the number of matched messages) exceeds the server's published
 1000-message limit.

 C: 04 UID SEARCH UID 22000:25000 UNDELETED
 S: * SEARCH 25000 24998 (... UIDs ...) 23221
 S: 04 OK [MESSAGELIMIT 1000 23221] SEARCH completed with 1000
 partial results
 The following example demonstrates the copy of messages with UIDs
 between 18000:21000. The total message count exceeds the server's
 published 1000-message limit. As COPY or UID COPY needs to be atomic
 (as per /), no messages are copied.

 C: 05 UID COPY 18000:21000 "Trash"
 S: 05 NO [MESSAGELIMIT 1000 20001] Too many messages to copy,
 try a smaller subset
 The following example shows the move of messages with UIDs between
 18000:21000. The total message count exceeds the server's
 published 1000-message limit. (Unlike COPY or UID COPY, MOVE or UID
 MOVE don't need to be atomic.) The client that wants to move all
 messages in the range and observes a MESSAGELIMIT response code
 can repeat the UID MOVE command with the same parameter. (For the
 MOVE command, the message set parameter needs to be updated before
 repeating the command.) The client needs to keep doing this until
 the MESSAGELIMIT response is not returned (or until a tagged
 NO or BAD is returned).

 C: 06 UID MOVE 18000:21000 "Archive/2021/2021-12"
 S: * OK [COPYUID 1397597919 20001:21000 22363:23362] Some
 messages were not moved
 S: * 12336 EXPUNGE
 S: * 12335 EXPUNGE
 ...
 S: * 11337 EXPUNGE
 S: 06 OK [MESSAGELIMIT 1000 20001] MOVE completed for the last
 1000 messages
 The following example shows the update of flags for messages with
 UIDs between 18000:20000. The total number of existing messages in
 the UID range exceeds the server's published 1000-message limit.
 The client that wants to change flags for all messages in the
 range and observes a MESSAGELIMIT response code can repeat the
 UID STORE command with the updated UID range that doesn't include
 the UID returned in the MESSAGELIMIT response code. (For the STORE
 command, the message set parameter also needs to be updated before
 repeating the command.) The client needs to keep doing this until
 the MESSAGELIMIT response is not returned (or until a tagged
 NO or BAD is returned).

 C: 07 UID STORE 18000:20000 +FLAGS (\Seen)
 S: * 11215 FETCH (FLAGS (\Seen \Deleted) UID 20000)
 S: * 11214 FETCH (FLAGS (\Seen \Answered \Deleted) UID 19998)
 ...
 S: * 10216 FETCH (FLAGS (\Seen) UID 19578)
 S: 07 OK [MESSAGELIMIT 1000 19578] STORE completed for the last
 1000 messages
 The following example shows the removal of messages (using UID
 EXPUNGE) that have the \Deleted flag set with UIDs between
 11000:13000. The total message count of messages with the \Deleted
 flag set exceeds the server's published 1000-message limit. The
 client that wants to remove all messages marked as \Deleted in the
 range and observes a MESSAGELIMIT response code can repeat the
 UID EXPUNGE command with the same parameter. The client needs to
 keep doing this until the MESSAGELIMIT response is not returned
 (or until a tagged NO or BAD is returned).

 C: 08 UID EXPUNGE 11000:13000
 S: * 4306 EXPUNGE
 S: * 4305 EXPUNGE
 ...
 S: * 3307 EXPUNGE
 S: 08 OK [MESSAGELIMIT 1000 11627] UID EXPUNGE completed for
 the last 1000 messages
 The following example shows removal of messages (using EXPUNGE)
 that have the \Deleted flag set. Unlike UID EXPUNGE, the server
 MUST NOT impose any message limit when processing
 EXPUNGE.

 C: 09 EXPUNGE
 S: * 4306 EXPUNGE
 S: * 4305 EXPUNGE
 ...
 S: * 3307 EXPUNGE
 S: * 112 EXPUNGE
 S: 09 OK EXPUNGE completed
 Similarly, the server MUST NOT impose any
 message limit when processing a "CLOSE" or a "STATUS UNSEEN"
 command.
 The following example shows use of the MESSAGELIMIT response code
 together with the PARTIAL extension. The total message count (as
 specified by the PARTIAL range) exceeds the server's published
 1000-message limit, so the server refuses to do any work in this
 case.

 C: 10 UID FETCH 22000:25000 (UID FLAGS MODSEQ)
 (PARTIAL -1:-1500)
 S: 10 NO [MESSAGELIMIT 1000] FETCH exceeds the maximum 1000-
 message limit
 Without the PARTIAL parameter, the above UID FETCH can look like
 this:

 C: 10 UID FETCH 22000:25000 (UID FLAGS MODSEQ)
 S: * 12367 FETCH (FLAGS (\Seen \Deleted) UID 23007)
 S: * 12366 FETCH (FLAGS (\Seen \Answered \Deleted) UID 23114)
 ...
 S: * 13366 FETCH (FLAGS (\Seen) UID 24598)
 S: 10 OK [MESSAGELIMIT 1000 23007] FETCH exceeds the maximum
 1000-message limit

 Note that when the server needs to return both EXPUNGEISSUED
 and MESSAGELIMIT
 response codes, the former MUST be returned in the
 tagged OK response, while the latter MUST be
 returned in an untagged NO response. The following example
 demonstrates that:

 C: 11 FETCH 10000:14589 (UID FLAGS)
 S: * 14589 FETCH (FLAGS (\Seen) UID 25000)
 S: * 14588 FETCH (FLAGS (\Answered) UID 24998)
 S: ... further 997 fetch responses
 S: * 13590 FETCH (FLAGS () UID 23221)
 S: * NO [MESSAGELIMIT 1000 23221] FETCH completed with 1000 partial
 results
 S: 11 OK [EXPUNGEISSUED] Some messages were also expunged
 When the IMAP MULTIAPPEND extension is also supported by the server,
 the message limit also applies to the APPEND command. As MULTIAPPEND APPEND needs to atomic (as per),
 no messages are appended when the server MESSAGELIMIT is exceeded.

 UIDAFTER and UIDBEFORE SEARCH Criteria
 The MESSAGELIMIT extension also defines two extra SEARCH keys,
 UIDAFTER and UIDBEFORE, which make it easier to convert a single UID
 to a range of UIDs.

 "UIDAFTER <uid>"
 Messages that have a UID greater
 than the specified UID. This is semantically the same as "UID
 <uid>+1:*".
 "UIDBEFORE <uid>"
 Messages that have a UID less
 than the specified UID. This is semantically the same as "UID
 1:<uid>-1" (or if <uid> has the value 1, then the empty
 set).

 These two SEARCH keys are particularly useful when the SEARCHRES extension
 is also supported, but they can be used without it. For example, this allows a SEARCH that
 sets the "$" marker to be converted to a range of messages in a subsequent SEARCH, and both SEARCH requests
 can be pipelined.

 C: 12 UID SEARCH UIDAFTER 25000 UNDELETED
 S: * SEARCH 27800 27798 (... 250 UIDs ...) 25001
 S: 12 OK SEARCH completed

 Interaction with SORT and THREAD Extensions

 Servers that advertise MESSAGELIMIT N will be unable to execute a THREAD command in a mailbox with more than N messages.

 Servers that advertise MESSAGELIMIT N might be unable to execute a SORT command in a mailbox with more than N messages,
 unless they maintain indices for different SORT orders they support. In absence of such indices, server implementors will need to decide whether
 their server advertises SORT or MESSAGELIMIT capability.

 Interaction with SEARCHRES Extension and IMAP4rev2

 Servers that support both MESSAGELIMIT and SEARCHRES extensions MUST truncate SEARCH SAVE result stored
 in the $ variable when the SEARCH command succeeds, but the MESSAGELIMIT response code is returned. For example, if the following
 SEARCH would have returned 1200 results in absence of MESSAGELIMIT, and the MESSAGELIMIT is 1000, only 1000 matching results
 will be saved in the $ variable:

 C: D0004 UID SEARCH RETURN (SAVE) SINCE 1-Jan-2004 NOT FROM "Smith"
 UID 22000:25000 UNDELETED
 S: D0004 OK [MESSAGELIMIT 1000 1179] SEARCH completed with 1000
 partial results saved

 Interoperability Considerations

 Effects of MESSAGELIMIT and SAVELIMIT Extensions on Noncompliant Clients
 A server that advertises the MESSAGELIMIT=N capability would have
 the following effect on clients that don't support this capability:

 Operations are not affected on a mailbox that has N messages or fewer.

 In a mailbox with more than N messages:

 An attempt to COPY or UID COPY more than N messages will always fail.

 EXPUNGE and CLOSE will always operate on the full mailbox, so they are not affected.

 Other commands like FETCH, SEARCH, and MOVE will be effectively restricted to the last N messages
 of the mailbox. In particular, unextended SEARCHes (intended for counting of messages with or without
 a particular set of flags) would return incorrect counts.

 Maintaining Compatibility

 It is important to understand that the above effects essentially
 abandon existing clients with respect to operation on large mailboxes.
 Suppose, for example, that a user is accessing a large and active
 mailing list via IMAP, and the mailing list gets on the order of 1500
 posts per week. When the user returns from a week-long vacation and
 catches up on the mailing list, the user's client will be fetching
 information about 1500 messages. If the server has a MESSAGELIMIT of
 1000, the client will only be able to download 1000 of the most recent messages;
 the client will not understand why, will not be
 prepared to recover from the situation, and will act as if it is
 interacting with a broken server.

 In order to give clients time to implement this extension, servers
 should not be strict about applying the MESSAGELIMIT at first. One
 possible approach is to advertise a MESSAGELIMIT but not enforce it at
 all for a while. Clients that understand this extension will comply,
 reducing load on the server, but clients that do not understand the
 limit will continue to work in all situations.

 Another approach, which perhaps could be phased in later, is to advertise one limit
 but to treat it as a soft limit and to begin enforcement at a higher,
 unadvertised hard limit. In the above example, perhaps the server
 might advertise 1000 but actually enforce a limit of 10,000. Again,
 clients that understand MESSAGELIMIT will comply with the limit of
 1000, but other clients will still interoperate up to the higher
 threshold.

 Attempts to go beyond the advertised limit can be logged so that
 client understanding of MESSAGELIMIT can be tracked. If
 implementation and deployment of this extension becomes common, it may
 at some point be acceptable to strictly enforce the advertised limit
 and to accept that the remaining clients will, indeed, no longer work
 properly with mailboxes above that limit.

 Formal Syntax
 The following syntax specification uses the Augmented Backus-Naur Form (ABNF) notation as specified in .
 Non-terminals referenced but not defined below are as defined by IMAP4.
 Except as noted otherwise, all alphabetic characters are case-insensitive.
 The use of uppercase or lowercase characters to define token strings is for editorial clarity only.
 Implementations MUST accept these strings in a case-insensitive fashion.

capability =/ "MESSAGELIMIT=" message-limit /
 "SAVELIMIT=" message-limit
 ;; <capability> from [RFC3501]

message-limit = nz-number

resp-text-code =/ "MESSAGELIMIT" SP message-limit [SP uniqueid]
 ;; No more than nz-number messages can be processed
 ;; by any command at a time. The last (lowest) processed
 ;; UID is uniqueid.
 ;; The last parameter is omitted when not known.

 Security Considerations

 This document defines an additional IMAP4 capability. As such, it
 does not change the underlying security considerations of IMAP4rev1
 or IMAP4rev2 .

 This document defines an optimization that can both reduce the amount of work
 performed by the server, as well at the amount of data returned to the client.
 Use of this extension is likely to cause the server and the client to use less memory
 than when the extension is not used, which can in turn help to protect from
 denial-of-service attacks. However, as this is going
 to be new code in both the client and the server, rigorous testing of such code
 is required in order to avoid introducing new implementation bugs.

 IANA Considerations

 Additions to the IMAP Capabilities Registry
 IMAP4 capabilities are registered by publishing a Standards Track
 or IESG-approved Informational or Experimental RFC. The "IMAP Capabilities" registry is
 currently located at:
 .
 IANA has added "MESSAGELIMIT=" and
 "SAVELIMIT=" capabilities to this registry, with this
 document as the reference.

 References

 Normative References

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1

 The Internet Message Access Protocol, Version 4rev1 (IMAP4rev1) allows a client to access and manipulate electronic mail messages on a server. IMAP4rev1 permits manipulation of mailboxes (remote message folders) in a way that is functionally equivalent to local folders. IMAP4rev1 also provides the capability for an offline client to resynchronize with the server. IMAP4rev1 includes operations for creating, deleting, and renaming mailboxes, checking for new messages, permanently removing messages, setting and clearing flags, RFC 2822 and RFC 2045 parsing, searching, and selective fetching of message attributes, texts, and portions thereof. Messages in IMAP4rev1 are accessed by the use of numbers. These numbers are either message sequence numbers or unique identifiers. IMAP4rev1 supports a single server. A mechanism for accessing configuration information to support multiple IMAP4rev1 servers is discussed in RFC 2244. IMAP4rev1 does not specify a means of posting mail; this function is handled by a mail transfer protocol such as RFC 2821. [STANDARDS-TRACK]

 Internet Message Access Protocol (IMAP) - MULTIAPPEND Extension

 This document describes the multiappending extension to the Internet Message Access Protocol (IMAP) (RFC 3501). This extension provides substantial performance improvements for IMAP clients which upload multiple messages at a time to a mailbox on the server. A server which supports this extension indicates this with a capability name of "MULTIAPPEND". [STANDARDS-TRACK]

 IMAP Extension for Referencing the Last SEARCH Result

 Many IMAP clients use the result of a SEARCH command as the input to perform another operation, for example, fetching the found messages, deleting them, or copying them to another mailbox.
 This can be achieved using standard IMAP operations described in RFC 3501; however, this would be suboptimal. The server will send the list of found messages to the client; after that, the client will have to parse the list, reformat it, and send it back to the server. The client can't pipeline the SEARCH command with the subsequent command, and, as a result, the server might not be able to perform some optimizations.
 This document proposes an IMAP extension that allows a client to tell a server to use the result of a SEARCH (or Unique Identifier (UID) SEARCH) command as an input to any subsequent command. [STANDARDS-TRACK]

 Internet Message Access Protocol - SORT and THREAD Extensions

 This document describes the base-level server-based sorting and threading extensions to the IMAP protocol. These extensions provide substantial performance improvements for IMAP clients that offer sorted and threaded views. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Internet Message Access Protocol (IMAP) - Version 4rev2

 The Internet Message Access Protocol Version 4rev2 (IMAP4rev2) allows a client to access and manipulate electronic mail messages on a server. IMAP4rev2 permits manipulation of mailboxes (remote message folders) in a way that is functionally equivalent to local folders. IMAP4rev2 also provides the capability for an offline client to resynchronize with the server.
 IMAP4rev2 includes operations for creating, deleting, and renaming mailboxes; checking for new messages; removing messages permanently; setting and clearing flags; parsing per RFCs 5322, 2045, and 2231; searching; and selective fetching of message attributes, texts, and portions thereof. Messages in IMAP4rev2 are accessed by the use of numbers. These numbers are either message sequence numbers or unique identifiers.
 IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail submission protocol such as the one specified in RFC 6409.

 Informative References

 IMAP PARTIAL Extension for Paged SEARCH and FETCH

 The PARTIAL extension of the Internet Message Access Protocol (see RFCs 3501 and 9051) allows clients to limit the number of SEARCH results returned, as well as to perform incremental (paged) searches. This also helps servers to optimize resource usage when performing searches.
 This document extends the PARTIAL SEARCH return option originally specified in RFC 5267. It also clarifies some interactions between RFC 5267 and RFCs 4731 and 9051.
 This document updates RFCs 4731 and 5267.

 Acknowledgments
 This document was motivated by the Yahoo! team and their questions
 about best client practices for dealing with large mailboxes.
 The authors of this document would like to thank the following people who
 provided useful comments, contributed text, or participated in
 discussions of this document: ,
 , ,
 and .

 Authors' Addresses

 Isode Limited

 alexey.melnikov@isode.com
 https://www.isode.com

 Yahoo!

 arunprakash@myyahoo.com

 Yahoo!

 nvikram_imap@yahoo.com

 luis.alves@lafaspot.com

