
© Cray Inc.CSC, Finland September 21-24, 2009

� Motivation

� I/O Infrastructure
• Hardware
• Software Layers

� I/O Strategies
• Input
• Output• Output

� Achieving Performance

September 21-24, 2009 © Cray Inc. 2

� Asking who is interested in I/O optimization people will fall
into one (or more) camps:
• It doesn’t affect me – I compute for 12hrs on 8192 cores and to

compute “42” thus IO is not important to me!
• Disks are slow so there is nothing I can do about it so optimization is

irrelevant
• I do I/O but I have no idea how long it takes nor do I care.
•• I know I/O does not scale and I’m not here to fix it
• I/O has never really been a problem until I got on this large Cray

system
� Oh, and I also upped my job size from 128p to 8192p....

• I run for 12 hrs and it takes 20 minutes to create a checkpoint file and
this seems insignificant.

• If it is expensive I will do it less often.
• My I/O works well – I dump my 2GB dataset in 2 minutes this is better

than I see elsewhere.

September 21-24, 2009 © Cray Inc. 3

� Everyone should care
• Either you affect everyone
• Or others affect you.

� I/O is a shared resource unless the disk is a dedicated
resource
• On Cray XT4 no disk resource is dedicated – remember that /tmp is • On Cray XT4 no disk resource is dedicated – remember that /tmp is

memory so not very big nor permanent.

September 21-24, 2009 © Cray Inc. 4

� I don’t care about what order data reaches disk and how it is
split. All that matters is performance
• Good – measure in GB/s (maybe higher)

� Format and structure and portability matter but I’ve tried to
make my code use large contiguous blocks
• Measure I/O in 100’s MB/s

� None of the above apply� None of the above apply
• 10’s MB/s – maybe lower.
• You should look at the I/O pattern in your code

� I have no control – I use an external library that I have no
control over.
• You always have control over how you use the library
• Choose another library, an optimized version or a parallel version

September 21-24, 2009 © Cray Inc. 5

� Input is the need to load data into my program/data space

� Output is the need to move data out of my data space
• This could either be from my program
• Or to disk

September 21-24, 2009 © Cray Inc. 6

� That looks really simple but the real situation is:

� Linux is really good at using buffer cache.
• Much better than catamount

September 21-24, 2009 © Cray Inc. 7

� Actually it is a little more complicated than that with Lustre…
• The interaction with the disk consists of two phases

MDS

Data

Data

Data

Data

September 21-24, 2009 © Cray Inc. 8

Cray XT Supercomputer

Compute nodes
Login nodes
Lustre OSS
Lustre MDS

Lustre high Lustre high Lustre high Lustre high performanceperformanceperformanceperformance

parallel filesystemparallel filesystemparallel filesystemparallel filesystem

Lustre MDS
NFS Server

1 GigE Backbone1 GigE Backbone1 GigE Backbone1 GigE Backbone

10 GigE10 GigE10 GigE10 GigE
Backup andBackup andBackup andBackup and
Archive Archive Archive Archive
ServersServersServersServers

1. Every rank outputs the data to a separate file
a) GOOD – simple to program
b) OK– restarting probably requires the same number of ranks
c) GOOD – can be efficient at writing
d) BAD – at reading

2. Data is collected to one rank and one file is stored
a) GOOD – simple to program but it needs MPI to communicate the a) GOOD – simple to program but it needs MPI to communicate the

data
b) BAD – Insufficient memory on one rank to cache the data in OS

buffers so data has to go to disks
c) BAD – All processors send messages to one rank and it has to send

the data out. Bottleneck is the communications on one node
d) VERY BAD – No parallelism, in fact due to overhead of

communicating the data it is probably worse than serial

September 21-24, 2009 © Cray Inc. 10

3. Every rank does MPI-IO
a) GOOD – portable
b) OK – Can be more difficult to program than the above methods
c) GOOD – someone else can optimize the MPI-IO library
d) GOOD – configurable options

4. Using an I/O server approach
a) GOOD – portablea) GOOD – portable
b) OK – needs some work to rewrite how the I/O is performed.
c) GOOD – can take advantage of large numbers or cores available on

nodes
d) GOOD – asynchronous. 1TB checkpoint data set could take 20

minutes or more to create.

September 21-24, 2009 © Cray Inc. 11

GREAT

September 21-24, 2009 © Cray Inc. 12

� Using Lustre presents many opportunities and facilities for
parallelism

� It is important to understand them in order to take the best
advantage

� There is parallelism� There is parallelism
• In data creation (this is done by compute nodes)
• Parallel data paths out of the application
• There are parallel paths into the I/O servers
• The I/O servers are parallel using RAID file systems

September 21-24, 2009 © Cray Inc. 13

� There is buffering at most levels
• MPI has buffers
• The compute node performing the I/O
• Fortran runtime has buffers
• The OSTs have buffers

� Some of which are configurable

� It is important to use the buffering effectively

� If you do large efficient I/O buffering adds extra layers which
are not needed.

� Small requests should use a buffering layer to collect the
small requests into larger requests.

September 21-24, 2009 © Cray Inc. 14

� This is covered in greater depth later but in order to get a
flavour of Lustre performance …

� We apply attributes to files or directories
• For directories the attributes apply to all files contained in it

� We can describe
• A stripe size
• A stripe count (how many lustre nodes to spread a file across)• A stripe count (how many lustre nodes to spread a file across)

� As a quick test:
• we can create two directories
• Apply “lfs setstripe 0 -1 16” to one of them
• Create two identical files and put one in each directory
• In each directory simply copy the file to a new file name and measure

the performance

September 21-24, 2009 © Cray Inc. 15

� The previous example shows good speed up if the file is
large

� For small files this will not be the case

� For many files this may not always be the case

� Stripe size� Stripe size
• If we have a 4MB write statement written to a file with a 1MB stripe

size with a count of 4+ stripes the I/O uses 4 stripes to achieve
parallelism

September 21-24, 2009 © Cray Inc. 16

September 21-24, 2009 © Cray Inc. 17

� Is your I/O strategy a parallel one?

� What is your limiting factor?
• Bandwidth from a single node?
• Granularity of write requests?
• Time taken to perform the I/O?

� Use the tools

September 21-24, 2009 © Cray Inc. 18

Table 7: File Output Stats by Filename

Write Time | Write MB | Write Rate | Writes |Write B/Call |File Name

| | MB/sec | | | PE[mmm]

| | | | | File Desc

44.933754 | 2936.514680 | 65.352089 | 1847.000000 | 1667113.60 |Total

|---

| 2.864199 | 93.251465 | 32.557611 | 24.000000 | 4074218.67 |./state/f000000

||--

|| 2.864199 | 93.251465 | 32.557611 | 24.000000 | 4074218.67 |pe.0

3| | | | | | fd.203| | | | | | fd.20

|| 0.000000 | -- | -- | -- | -- |pe.3

|| 0.000000 | -- | -- | -- | -- |pe.5

||==

| 2.714276 | 93.251465 | 34.355926 | 24.000000 | 4074218.67 |./state/f000010

||--

|| 2.714276 | 93.251465 | 34.355926 | 24.000000 | 4074218.67 |pe.10

3| | | | | | fd.10

|| 0.000000 | -- | -- | -- | -- |pe.6

|| 0.000000 | -- | -- | -- | -- |pe.5

September 21-24, 2009 © Cray Inc. 19

||==

| 2.080276 | 93.251465 | 44.826483 | 24.000000 | 4074218.67 |./state/f000001

||--

|| 2.080276 | 93.251465 | 44.826483 | 24.000000 | 4074218.67 |pe.1

3| | | | | | fd.13

|| 0.000000 | -- | -- | -- | -- |pe.3

|| 0.000000 | -- | -- | -- | -- |pe.5

||==

| 1.844042 | 93.251465 | 50.569048 | 24.000000 | 4074218.67 |./state/f000020

||--

|| 1.844042 | 93.251465 | 50.569048 | 24.000000 | 4074218.67 |pe.20|| 1.844042 | 93.251465 | 50.569048 | 24.000000 | 4074218.67 |pe.20

3| | | | | | fd.13

|| 0.000000 | -- | -- | -- | -- |pe.6

|| 0.000000 | -- | -- | -- | -- |pe.5

||==

| 1.830046 | 93.251465 | 50.955807 | 24.000000 | 4074218.67 |./state/f000009

||--

|| 1.830046 | 93.251465 | 50.955807 | 24.000000 | 4074218.67 |pe.9

3| | | | | | fd.12

|| 0.000000 | -- | -- | -- | -- |pe.6

|| 0.000000 | -- | -- | -- | -- |pe.5

September 21-24, 2009 © Cray Inc. 20

September 21-24, 2009 © Cray Inc. 21

September 21-24, 2009 © Cray Inc. 22

� Understand your what your application needs and what your system can
provide
• How much data I am writing and how often?
• What’s the peak bandwidth of the system?
• Ok, what’s the real bandwidth?

� Determine where you have a problem
• Am I performing a lot of small writes that could be combined?
• Am I overwhelming the FS with too much at once?• Am I overwhelming the FS with too much at once?
• Do I really need to save all of this data every single timestep?

� Try different Lustre parameters
• Could more or fewer OSTs help?
• Can I improve performance with larger stripes?

� If possible, make a small test program out of the I/O portion of your code
• Sometimes it’s easier to test parameters with a smaller kernel than a full

application

� Seek help

September 21-24, 2009 23© Cray Inc.

� The MPI specification provides a way to give “hints” to the MPI-I/O layer for better
performance.

� Hints to try
• cb_nodes -> Built-in subsetting
• cb_read/write -> Enable/Disable “collective buffering”
• cb_buffer_size -> Controls the size of the intermediate buffer used in collective buffering
• ds_read/write -> Enable/Disable “Data sieving”, used with non-contiguous I/O requests

� Generally not recommended

• direct_io -> Enables direct I/O, bypassing kernel buffers• direct_io -> Enables direct I/O, bypassing kernel buffers
� Requires xt-mpt/3.0.0.8 (pre-release as of April 3, 2008)
� Requires data buffer to be aligned to page boundary
� Can help with very large I/O requests

� Can be set via API or via MPICH_MPIIO_HINTS environment variable
• Example: export

MPICH_MPIIO_HINTS="${FILE}:direct_io=true:romio_cb_read=disable:romio_cb_write
=disable:romio_ds_read=disable:romio_ds_write=disable"

� Setting MPICH_MPIIO_HINTS_DISPLAY=1 will print your MPI-IO hints when a
program is run.

September 21-24, 2009 24© Cray Inc.

� Remember, this is not your laptop, I/O for HPC has many
challenges
• Unfortunately, I/O rarely scales at the same rate as FLOPS

� Do not open a file from hundreds/thousands of nodes at the
same time
• Metadata operations are slow, do them infrequently
• Too many will overwhelms the MDS at very large scales• Too many will overwhelms the MDS at very large scales

� Do not try to do all of your I/O through 1 node, unless you
have a little data or a lot time.
• Unable to saturate bandwidth

� Do not do I/O from every node for nodes over ~1K processes
• Performance degradation
• Where this degradation occurs varies by system

September 21-24, 2009 25© Cray Inc.

� Buffer so that you can do large I/O operations
• Bigger writes/reads perform better
• Subsetting can help improve buffering

� Many files can perform better than 1, but can be less
convenient
• Try doing operations on many thousands of files, non-trivial
• As discussed, too many at once files can lead to MDS overload• As discussed, too many at once files can lead to MDS overload

� Subsetting can help with this too!

� Stripe Appropriately to Your I/O
• Many nodes to individual files: Stripe to 1 OST
• Many nodes to 1 file: Stripe to many OSTs
• 1 node to 1 file: Stripe to few OSTs
• Set your stripe size to larger than 1MB, 4MB suggested

September 21-24, 2009 26© Cray Inc.

� Basic IO measurement. This is symptomatic of the
spokesperson method, where data is accumulated to one
rank and sent to disk as one big message.

1000

1200

B
a

n
d

w
id

th
 i

n
 M

B
/s

Achieved Bandwidth for Single Message

0

200

400

600

800

1000

B
a

n
d

w
id

th
 i

n
 M

B
/s

Message Size

� But what about larger messages

2000

2500

3000

B
a

n
d

w
id

th
 in

 M
B

/s

Large Message Performance

� Looks like a buffer issue when it hits 2MB

0

500

1000

1500

1 5 9 13 17 21 25 29

B
a

n
d

w
id

th
 in

 M
B

/s

128K

256K

512K

© Cray Inc.CSC, Finland September 21-24, 2009

