Elmer FEM Webinar Series

CSC, Espoo, Finland via Zoom Thursdays 15 EET, 14 CET, 8 ET, 22 JST Spring 2021

Practical guidelines for the webinar

- Chat may be used for general discussion • You may write about your application area, geographic location etc.
- The presentation slides will be made available at <u>https://www.nic.funet.fi/pub/sci/physics/elmer/webinar/</u>
- This webinar will be recorded and will for most parts be available later on youtube

Elmer FEM webinar series - program

- 11.3. Peter Råback & Thomas Zwinger: *Introduction to Elmer & How to teach yourself Elmer*
- 18.3. Peter Råback & Jonathan Velasco: Overview of capabilities of Elmer where to go from here?
- 25.3. Peter Råback & Thomas Zwinger: *Parallel Computing with Elmer*
- 1.4. Juris Vencels: *Elmer-OpenFOAM library*
- 8.4. Eelis Takala & Frederic Trillaud: *Electrical circuits with Elmer with applications*
- 15.4. Mika Malinen: Solvers for solid mechanics Recent progress
- 22.4. Minhaj Zaheer: Induction Machine Open-source FEA Computations comparison with Measurement and Commercial FEA
- 29.4. Arved Enders-Seidlitz: *pyelmer Python interface for Elmer workflow*
- 13.5. Roman Szewczyk, Anna Ostaszewska-Liżewska, Dominika Kopala & Jakub Szałatkiewicz: Industrial applications oriented, microwave modelling in Elmer
- Additional slots available: contact organizers if you're interested!

Outline for today

• Short introduction to Elmer (Peter)

Metalevel overview, more details next week...

- Running Elmer on different platforms (Thomas)

 Linux, Windows, Docker,...
 Pointers to material
- How to teach yourself Elmer (Peter)

 Strategies for GUI and CL persons
 Pointers to material
- Q&A

4

CSC – IT Center for Science: <u>http://www.csc.fi</u>

- Non-profit company owned by Finnish ministry of education & the Finnish universities
- Provides information technology and solutions in different areas of expertise

• Services mainly provided for Finnish academia

• Running the largest computers in Finland already since the 1970's

Currently hosting supercomputers Puhti and Mahti (=210,000 cores)
 Will also host EuroHPC pre-exascale system LUMI

• Elmer was initiated as a finite element code to utilize the power of parallel computing

Introduction to Elmer

ElmerTeam CSC – IT Center for Science, Finland

Elmer FEM webinar

2021

Elmer finite element software for multiphysical problems

Figures by Esko Järvinen, Mikko Lyly, Peter Råback, Timo Veijola (TKK) & Thomas Zwinger

Short history of Elmer

- FreeFEM++ 87, OpenFOAM 89, Code Aster 90, Netgen 94, Gmsh 97, Fenics 03,...
- $\odot\,\text{CFD}$ toolbox: Emphasis on crystal growth and pulp manufacturing

Strategic choice: MPI + Fortrango

• Initially Elmer included all pieces

Now obsolite: Original pre- and postprocessors (ElmerFront & ElmerPost)

- Initial project followed by large number of application projects • Strengths and weaknesses of the software reflects these projects
- First international colloboration on computational glaciology in 2001 • Resulted eventually to a large Elmer/Ice community
- Release under open source on sf.net in 2008

 More international project portfolio
 Included in many EU projects over the years

Current status of Elmer

- Still mainly developed at CSC but many external contributors, thank you!
- Used worldwide by thousands of researchers
- Library parts under LGPL, modules under GPL

Elmer is hosted at GitHub and accepts contributions

This repository Search Pull requests	Issues Marketplace Gist	\$ +- .
ElmerCSC / elmerfem	⊙ Unwatch -	53 🖈 Unstar 132 😵 Fork 58
♦ Code ① Issues 8 ⑦ Pull requests 0 Ⅲ Projects 0	🗉 Wiki 🏟 Settings 🛛 Insights 🗸	
Overview Yours Active Stale All branches		Q Search branches
All branches		
devel Updated 16 hours ago by raback	✓ Default	Change default branch
permafrost Updated 9 hours ago by tzwinger	✓ 193 61	រិឿ New pull request 🗐
fix_uninit Updated 3 days ago by juharu	✓ <u>12</u> 0	#101 🕄 Merged 🗑
elmerice Updated 4 days ago by joeatodd	• 107 107	រ៉ិ New pull request 🗍
metis_update Updated 13 days ago by samiilvonen	- 13 1	រ៉ិ) New pull request 🔟
release Updated 27 days ago by juhanikataja	✓ 35 33	រ៉ិ) New pull request 🔟
StrideProjectorGeneric Updated 2 months ago by raback	× 105 3	រ៉ិឿ New pull request 🗍
elmerice-iscal Updated 2 months ago by Josefin	✓ 193 5	រ៉ិឿ New pull request 🗍

CSC

Elmer in numbers

Software

- ~440,000 lines of active code
 - \circ ~3/4 in Fortran, 1/4 in C/C++
- ~700 consistency tests
- ~800 pages of documentation
- ~1000 code commits yearly

Community

- ~20,000 downloads for Windows binary yearly O Linux users untracked
- ~2000 forum postings yearly
- ~100 people participate on Elmer courses yearly.
 Several Elmer related scientife posits to CSC yearly

Elmer finite element software

- Elmer is actually a suite of several programs • Components may also be used independently
- ElmerGUI Preprocessing
- ElmerSolver FEM Solution

 Each physical equation is a dynamically loaded library to the main program

• ElmerGrid - structured meshing, mesh import & partitioning

CSC

ElmerGUI

- Graphical user interface of Elmer

 Based on the **Qt** library (GPL)
 Developed at CSC since 2008
 Facelift by Saeki Takayuki in 2020!
- Mesh generation

 Plugins for Tetgen, Netgen, and ElmerGrid

 $\odot\,\text{CAD}$ interface based on OpenCascade

- Easiest tool for case specification

 Even educational use
 Parallel computation
- New solvers easily supported through GUI
 XML based menu definition

CSC

ElmerSolver

- Assembly and solution of the finite element equations and beyond
- Large number of auxiliary routines
- Note: When we talk of Elmer we mainly mean ElmerSolver
- ~95% of development effort

ELMER SOLVER (v 8.3) STARTED AT: 2017/06/19 18:35:01 ParCommInit: Initialize #PEs: 1
MAIN: ====================================
MAIN: MAIN: Reading Model: flux.sif LoadMesh: Base mesh name: ./angle MAIN:
Loading user function library: [HeatSolve][HeatSolver] HeatSolve:
HeatSolve: Assembly: DefUtils::DefaultDirichletBCs: Setting Dirichlet boundary conditions ComputeChange: NS (ITER=1) (NRM,RELC): (0.25941344E-01 2.0000000) :: heat equation
CompareToReferenceSolution: Solver 1 PASSED: Norm = 2.59413436E-02 RefNorm = 2.5941343 CompareToReferenceSolution: Relative Error to reference norm: 1.512027E-09 CompareToReferenceSolution: PASSED all 1 tests! ElmerSolver: *** Elmer Solver: ALL DONE ***
ElmerSolver: The end SOLVER TOTAL TIME(CPU,REAL): 0.10 0.15 ELMER SOLVER FINISHED AT: 2017/06/20 01:35:01

ElmerGrid (standalone + built-in ElmerGUI)

- Creation of 2D and 3D structured meshes

 Rectangular basic topology + simple mapping
 Extrusion, rotation
- Mesh Import

About ten different formats:
 Ansys, Abaqus, Fidap, Comsol, Gmsh,...

- Mesh manipulation
 - \circ Increase/decrease order
 - \circ Scale, rotate, translate
- Partitioning

Simple geometric (upper figure)Metis library (lower figure)

SERIAL WORKFLOW: VISUALIZATION

Some core features of ElmerSolver

Physical Models

- Fluid mechanics
- Structural mechanics
- Electromagnetics
- Acoustics
- Heat transfer
- Species transport
- Free surface problems
- Particle tracking & transport

• ...

= ~50 physical models as DLLs

Numerical Methods

- Time dependency: steady, transient, harmonic, eigenmode
- Large selection of element types (nodal, Hcurl, Hdiv, p-elements)
- Several stabilization methods
- Large selection of direct, iterative and multigrid linear solvers
- Mortar finite elements for nonconforming meshes
- Extensive support of parallel algorithms

Tetrahedron

Prism with triangular base

Hexahedron

Elmer is part of the open source ecosystem

- Elmer utilizes many libraries and software and vice versa
- Developers **of EOF library** and **pyelmer** will present their work in the Webinar series!

Poll on application fields (status 2/2021)

What are your main application fields of Elmer?

Heat transfer	7	8 28%
Fluid mechanics	72	26%
Solid mechanics	57	20%
Electromagnetics	53	19 %
Quantum mechanics	5	2%
Something else (please specify)	16	6 %
	Total votes: 281	

Elmer for Crystal Growth

- The main application when Elmer development was started
- Focused on the Czhockralski (CZ) growt of silicon crystals
- Multiphysics problem: Heat transfer, radiation, fluid flow, transport phenomena,...

V. Savolainen et al., *Simulation of large-scale silicon melt flow in magnetic Czochralski growth*, J. Crystal Growth 243 (2002), 243-260.

Figure by Jari Järvinen

Elmer for Micro-electro-mechanical systems, MEMS

- MEMS provides an ideal field for multi-physical simulation software
- Electrostatics, elasticity and fluid flow are often inherently coupled
- Accelerometers and microphone studied

Figure by VTI Technologies

SImulations by Peter Råback

Elmer in Acoustics

- Elmer used in the research and design of mobile phones for Nokia
- Several new models saw the daylight

 Helmholtz equation
 linearized time-harmonic Navier-Stokes
 Large amplitude thermal Navier-Stokes
 Vibroacoustics

Elmer for glaciology: Elmer/ICE

- Elmer/Ice is a leading software used in 3D computational glaciology
- Full 3D Stokes equation to model the flow
- Large number of tailored models to deal with the special problems
- Motivated by climate change and sea level rise
- Currently ~100 peer-reviewed publications in the area
- Dedicated community portal elmerice.elmerfem.org

Elmer for fluid-stucture interaction, FSI

- Modeling of blood flow in elastic arteries poses a challenging case of fluid-structure-interaction
- Geometrically nonlinear elastivity equation & novel coupling procedures implemented

accounting FSI interaction, Simulation by Esko Järvinen

Elmer for electromechanics

- Latest major development focus of Elmer

 SEMTEC project: Project with 7 companies and 5 research
 institutions
- Work buildnig on Hcurl conforming elements • Utilizes so called AV formulation of Maxwell's equations
- Rotating boundaries & Electrical circuits add to the complexity

Some remarks about Elmer

- Genuine Multiphysics code by design from early on
 Favour modularity and generality
- Developed mainly via tens of collaborative projects with academia and industry Missing features where no active projects
- Focus on developments where open source approach is natural

 Science: Compatibe with the scientific method
 Novel developments: agility of open source software
- Little emphasis on the GUI & systematic user support

 Serious users mainly use Elmer in scripted workflows
 Often complementary rather than competing to commercial codes
- Value stability and backward compability consistency tests
- Comes from HPC center Parallellism a high priority

Running Elmer different paths to your FEM simulations

CSC

ElmerTeam CSC – IT Center for Science, Finland

Elmer FEM webinar

2021

5 ways to run Elmer

- 1. Compile from **source code**
- 2. Install ready pre-compiled **package** (Linux, Windows)
- 3. Run virtual appliance in **virtual machine**
- 4. Run inside a pre-defined **container** (Docker)
- 5. Run **remotely** on system with Elmer installation

Compile Elmer from source

Elmer CSC Elmer developer team http://elmerfem.org/ ¥@elmerfem ⊠elmeradm	@csc.fi	
Repositories 11 (Packages A People III Projects		
Q Find a repository	Type 🔹 Language 👻	
elmerfem-docker Elmer recipes for docker	^	<mark>ōp languages</mark> ● GLSL ● C ● CMake ● Ruby
● CMake ♀0 ☆0 ① 0 📫 0 Updated 1 hour ago		Lua
	۹ ۹ ۳	Lua People his organization has no public members fou must be a member to see who's a p

- Elmer source code is on GitHub
 - Direct address:

https://github.com/ElmerCSC/elmerfem

• Clone with git from command line:

git clone https://github.com/ElmerCSC/elmerfem.git

CSC

 For simple instructions see <u>https://www.csc.fi/web/elmer/sources-and-</u> <u>compilation</u>

Compile Elmer from source

C Elmer	
---------	--

Search...

Q

Elmer Binaries Sources an	d compilation Documentation White papers			
Application examples User f	orums Links Services and contact			
Elmer / Sources and compilation				
Elmer Sources and compilation When to compile?				
Binaries	Ready-compiled binaries exist for a few platforms. If these work with your system there may be no reason to compile Elmer from the source codes. Even most of the code development may be done without compiling the main program as new solvers may be dynamically linked. However,			
Sources and compilation				
Documentation				
White papers	local compilation usually gives the best performance and is often needed for non-standard systems. Also it is often usefu to download the source code just for checking the functionalities of different solvers when the documentation			
Application examples				
User forums	not completed.			
Links	These provide the basic instructions for compiling Elmer under cmake. In the wiki and discussion forum you may find			

Services and contact

Obtaining the source code

https://www.csc.fi/web/elmer/sources-and-compilation

- Minimum requirement:
 - C, C⁺⁺ and Fortran 90 (2008 standard) compiler
 - 2. Cmake
 - 3. Patience (it takes a while to compile)
- Strongly recommended additional libraries:
 - 1. BLAS (optimized for platform, e.g. MKL)
 - 2. MPI
- Lots of more options (Hypre, MUMPS, ...)

Install Elmer from package Windows

- Installer as well as ZIP-archives are under https://www.nic.funet.fi/pub/sci/physics/elmer/bin/windows/

 Different flavours available
 Might be in need of some system adjustment (path, ...)
- Before you start, please check the <u>Readme</u> file

- Don't use the outdated Debian package!
- Use <u>launchpad</u> instead:

\$ sudo apt-add-repository ppa:elmer-csc-ubuntu/elmer-csc-ppa
\$ sudo apt-get update
\$ sudo apt-get install elmerfem-csc

Virtual appliance

• Virtual machines are by software emulated computers

Elmer-team provides (mainly for their courses) a pre-configured virtual appliance to be used inside a virtual machine
 Disclaimer: This appliance comes without any warranty

 The appliance can be downloaded (size 4 GB!!) from https://www.nic.funet.fi/pub/sci/physics/elmer/bin/VirtualMachines/
 Before you start, please read the <u>Readme1st.txt</u> file
 Provided <u>OVA-file</u> can be directly imported into <u>VirtualBox</u>

Elmer in a container

✓ Sign in Sign u
iges C ●CMake ●Ruby
ation has no public members. a member to see who's a part nization.
be

• Container are pre-built environments (containing all necessary libraries)

CSC

- Docker works on Windows, Linux, Mac
- Find a (makefile-based) way of constructing Docker images under: <u>https://github.com/ElmerCSC/elmerfem-docker</u>
- Disclaimer: Dockerfiles come without any warranty

How to teach yourself Elmer

CSC

ElmerTeam CSC – IT Center for Science, Finland

Elmer FEM webinar

2021

How to teach yourself Elmer – Individual routes

- Do you know FEM in advance?
- Are you command line or GUI person?
- Where do you aim to?

 \odot Basic school assignment vs. bleeding edge research?

- Do you know programming
- What software do you already use e.g. for meshing
- What is your platform
 - \circ Linux, Windows, Mac
- Two basic approaches: GUI and CL
- Documentation: <u>http://www.nic.funet.fi/pub/sci/physics/elmer/doc</u>

Using Elmer via ElmerGUI

- You should install Elmer with ElmerGUI
- Start going through ElmerGUI tutorials

 Currently 27 tutorials
 Some repetition (2D vs. 3D etc.)
 Start with your favorite 1-field examples
- ElmerGUI includes only a fraction of capabilities of ElmerSolver!
- ElmerGUI tutorials include only a fraction of capabilities of ElmerGUI!
- Still good way to start for most people
- Tutorials are also available under GitHub and orecently updated by Rich Bayless, thank you!

Tutorial 1	Tutorial 2		Tutorial 4	Tutorial 5
Tutorial 6	Tutorial 7	Tutorial 8	Tutorial 9	Tutorial 10
Tutorial 11	Tutorial 12	Tutorial 13	Tutorial 14	Tutorial 15

Tutorial 16	Tutorial 17	Tutorial 18	Tutorial 19	Tutorial 20
Tutorial 21	Tutorial 22	Tutorial 23	Tutorial 24	Tutorial 25
		6		
Tutorial 26	Tutorial 27	Tutorial 28	Tutorial 29	Tutorial 30

Using Elmer via command line

- Boils down how to write the command file using your favorite editor O In the end ElmerGUI is just a nice way to write the .sif file
- There are some non-GUI tutorials

Mainly historical ones before the current GUI

- Every test case may be used also as a starting point: 700 test cases!

 \$ELMERSRC/elmerfem/fem/tests
 Here also many novel features are available
 - \odot Each new feature should have a test for it!
- Elmer manuals gives you ideas what features you need
 - Elmer Models Manuals
 - o ElmerSolver Manual
- Then search for the relevant keyword among the sif files
 - \circ "grep" is your friend in Linux

Most important Elmer resources

• <u>http://www.csc.fi/elmer</u>

 $_{\odot}$ Official Homepage of Elmer at CSC

• <u>http://www.elmerfem.org</u>

o Discussion forum, wiki, elmerice community

• <u>https://github.com/elmercsc/elmerfem</u>

GIT version control

<u>http://youtube.com/elmerfem</u>

Youtube channel for Elmer animations

- <u>http://www.nic.funet.fi/pub/sci/physics/elmer/</u>
 Download repository
- Further information: elmeradm@csc.fi

