
Elmer
Pre-processing utilities

within ElmerSolver

ElmerTeam
CSC – IT Center for Science

Alternatives for increasing mesh resolution

Use of higher order nodal elements

– Elmer supports 2nd to 4th order nodal elements

– Unfortunately not all preprocessing steps are equally well
supported for higher order elements

E.g. Netgen output supported only for linear elements

Use of hierarhical p-element basis functions

– Support up to 10th degree polynomials

– In practice Element = p:2, or p:3

– Not supported in all Solvers

Mesh multiplication

– Subdivision of elements by splitting

Note on bottle-necks in pre-processing

After the solution pre-processing is typically the 2nd
most time- and memory intensive task

Mesh partitioning is typically less laborious than mesh
generation

– In Elmer we haven’t utilized parallel graph partitioning
libraries (e.g. ParMetis)

Serial mesh generation limited to around ~10 M
elements

Finalizing the mesh in parallel level within ElmerSolver
may be used to eliminate this bottle-neck

Finalizing the mesh in parallel level

First make a coarse mesh and partition it

Bisection of existing elements in each
direction

– 2^DIM^n -fold problem-size

– Known as ”Mesh Multiplication”

– Simple inheritance of mesh grading

Increase of element order (p-elements)

– p-hierarchy enables the use of p-multigrid

Extrusion of 2D layer into 3D for special
cases

– Example: Greenland Ice-sheet

Standard parallel workflow

Both assembly and solution is done in parallel using MPI

Assembly is trivially parallel

This is the basic parallel workflow used for Elmer

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

Parallel workflow

Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

MESH
MULTIP./EXTR.

Mesh multiplication, example

Splitting effects visible
in partition interfaces

Mesh grading nicely
preserved

Mesh Levels = 2

Mesh Multiplication, example

Implemented in Elmer as internal strategy ~2005

Mesh multiplication was applied to two meshes
– Mesh A: structured, 62500 hexahedrons

– Mesh B: unstructured, 65689 tetrahedrons

The CPU time used is negligible

Mesh #splits #elems #procs T_center
(s)

T_graded
(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Limitations of mesh multiplication

Standard mesh multiplication does not increase
geometric accuracy

– Polygons retain their shape

– Mesh multiplication could be made to honor boundary
shapes but this is not currently done

Optimal mesh grading difficult to achieve

– The coarsest mesh level does not usually have sufficient
information to implement fine level grading

Extrusion of partitioned meshes

Implemented as an internal strategy in ElmerSolver

Star from an initial 2D mesh and then extrude into 3D

Implemented also for partitioned meshes

– Extruded lines belong to the same partition by construction!

Deterministic, i.e. element and node numbering determined
by the 2D mesh

– Complexity: O(N)

There are many problems of practical problems where the
mesh extrusion of a initial 2D mesh provides a good solution
– One such field is glasiology where glaciers are thin, yet the 2D

approach is not always sufficient in accurary

Internal extrusion example: Aalto Vase

2D mesh by Gmsh

3D internally extruded mesh

Design Alvar
Aalto, 1936

Deforming meshes

Meshes may be internally deformed

MeshUpdate solver uses linear elasticity to deform the
mesh

RigidMeshMapper uses rigid deformations and their
smooth transitions to deform the mesh

Deforming meshes have number of uses

– Deforming structures in multiphysics simultion

E.g. fluid-structure interaction

– Rotating & sliding structures

– Geometry optimization

Mesh topology remains unchanged

Conclusions on internal meshing features

There are number of ways to increase the resolution of
solution within ElmerSolver that eliminate meshing
bottle-necks

– For complex cases these may still be unsatisfactory

Internal mesh deformation may be used to solve complex
problems without a need for remeshing

– Large deformations may be problematic and topological
changes impossible

Elmer
Post-processing utilities within

ElmerSolver
ElmerTeam

CSC – IT Center for Science

Postprocessing utilities in ElmerSolver

Apart from saving distributed data there is a larger
number of capabilities within ElmerSolver to treat data
within ElmerSolver

– Data reduction

nD -> 1D, 0D

– Data averaging and filtering over time (FilterTimeSeries)

– Derived fields (gradient, curl, divecgence,…)

– Creating fields of material properties

This functionality is often achieved by use of atomic
auxialiry solvers

Exporting 2D/3D data: ResultOutputSolve

Apart from saving the results in .ep format it is possible
to use other postprocessing tools

ResultOutputSolve offers several formats

– vtk: Visualization tookit legacy format

– vtu: Visualization tookit XML format

– Gid: GiD software from CIMNE: http://gid.cimne.upc.es

– Gmsh: Gmsh software: http://www.geuz.org/gmsh

– Dx: OpenDx software

Vtu is the recommended format!

– offers parallel data handling capabilities

– Has binary and single precision formats for saving disk space

– Suffix .vtu in Post File does this automatically

Exporting 2D/3D data: ResultOutputSolve

An example shows how to save data in unstructured XML VTK (.vtu) files to
directory ”results” in single precision binary format.

Solver n

Exec Solver = after timestep

Equation = "result output"

Procedure = "ResultOutputSolve" "ResultOutputSolver"

Output File Name = "case"

Output Format = String ”vtu”

Binary Output = True

Single Precision = True

End

Derived fields

Many solvers have internal options for computing derived
fields (fluxes, heating powers,…)

Elmer offers several auxiliary solvers
– SaveMaterials: makes a material parameter into field variable

– Streamlines: computes the streamlines of 2D flow

– FluxComputation: given potential, computes the flux q = - c

– VorticitySolver: computes the vorticity of flow, w = 

– PotentialSolver: given flux, compute the potential - c = q

– Filtered Data: compute filtered data from time series
(mean, fourier coefficients,…)

– …

Usually auxiliary data need to be computed only after the
iterative solution is ready
– Exec Solver = after timestep

– Exec Solver = after all

– Exec Solver = before saving

Derived nodal data

By default Elmer operates on distributed fields but sometimes
nodal values are of interest
– Multiphysics coupling may also be performed alternatively using nodal

values for computing and setting loads

Elmer computes the nodal loads from Ax-b where A, and b are
saved before boundary conditions are applied

– Calculate Loads = True

This is the most consistant way of obtaining boundary loads

Note: the nodal data is really pointwise
– expressed in units N, C, W etc.

(rather than N/m^2, C/m^2, W/m^2 etc.)

– For comparison with distributed data divided by the ~size of the
surface elements

Derived lower dimensional data

Derived boundary data

– SaveLine: Computes fluxes on-the-fly

Derived lumped (or 0D) data

– SaveScalars: Computes a large number of different
quantities on-the-fly

– FluidicForce: compute the fluidic force acting on a surface

– ElectricForce: compute the electrostatic froce using the
Maxwell stress tensor

– Many solvers compute lumped quantities internally for
later use
(Capacitance, Lumped spring,…)

Saving 1D data: SaveLine

Lines of interest may be defined on-the-fly

Data can either be saved in uniform 1D grid,
or where element faces and lines intersect

Flux computation using integration points on the
boundary – not the most accurate

By default saves all existing field variables

Saving 1D data: SaveLine…

Solver n

Equation = "SaveLine"

Procedure = File "SaveData" "SaveLine"

Filename = "g.dat"

File Append = Logical True

Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0

End

Boundary Condition m

Save Line = Logical True

End

Saving 0D data: SaveScalars

Operators on bodies

Statistical operators
– Min, max, min abs, max abs, mean, variance, deviation

Integral operators (quadratures on bodies)
– volume, int mean, int variance

– Diffusive energy, convective energy, potential energy

Operators on boundaries

Statistical operators
– Boundary min, boundary max, boundary min abs, max abs, mean,

boundary variance, boundary deviation, boundary sum

– Min, max, minabs, maxabs, mean

Integral operators (quadratures on boundary)
– area

– Diffusive flux, convective flux

Other operators
– nonlinear change, steady state change, time, timestep size,…

Saving 0D data: SaveScalars…

Solver n

Exec Solver = after timestep

Equation = String SaveScalars

Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature

Operator 1 = String max

Variable 2 = String Temperature

Operator 2 = String min

Variable 3 = String Temperature

Operator 3 = String mean

End

Boundary Condition m

Save Scalars = Logical True

End

Case: TwelveSolvers

Natural convection with ten auxialiary solvers

Case: Motivation

The purpose of the example is to show the flexibility of
the modular structure

The users should not be afraid to add new atomistic
solvers to perform specific tasks

A case of 12 solvers is rather rare, yet not totally
unrealitistic

Case: preliminaries

Square with hot wall
on right and cold wall
on left

Filled with viscous
fluid

Bouyancy modeled
with Boussinesq
approximation

Temperature
difference initiates a
convection roll

COLD HOT

Case: 12 solvers

1. HeatSolver

2. FlowSolver

3. FluxSolver: solve the heat flux

4. StreamSolver: solve the stream function

5. VorticitySolver: solve the vorticity field (curl of vector field)

6. DivergenceSolver: solve the divergence

7. ShearrateSolver: calculate the shearrate

8. IsosurfaceSolver: generate an isosurface at given value

9. ResultOutputSolver: write data

10. SaveGridData: save data on uniform grid

11. SaveLine: save data on given lines

12. SaveScalars: save various reductions

Case: Computational mesh

10000 bilinear
elements

Case: Navier-Stokes, primary fields

Pressure Velocity

Case: Heat equation, primary field

Case: Derived field, vorticity

Case: Derived field, Streamlines

Case: Derived field, diffusive flux

Case: Derived field, Shearrate

Example: nodal loads

Nodal heat loads

If equation is solved until convergence nodal loads
should only occur at boundaries

Element size h=1/20 ~weight for flux

Example:
view in GiD

Example:
view in Gmsh

Case: View in Paraview

Example: total flux

Saved by SaveScalars

Two ways of
computing the total
flux give different
approximations

When convergence is
reached the agreement
is good

Example: boundary flux

Saved by SaveLine

Three ways of
computing the
boundary flux give
different
approximations

At the corner the
nodal flux should be
normalized using only
h/2

Exercise

Study the command file with 12 solvers

Copy-paste an appropriate solver from there to some
existing case of your own

– ResultOutputSolver for VTU output

– StreamSolver, VorticitySolver, FluxSolver,…

Note: Make sure that the numbering of Solvers is
consistant

– Solvers that involve finite element solution you need to
activate by Active Solvers

Run the modified case

Visualize results in ElmerPost or Paraview

Conclusions

It is good to think in advance what kind of data you need

– 3D volume and 2D surface data

– Derived fields

– 1D line data

– 0D lumped data

Internal strategies may allow better accuracy than doing
the analysis with external postprocessing software

– Consistent use of basis functions to evaluate the data

Often the same reduction operations may be done also
at later stages but with significantly greater effort

