——

CSC

Elmer

Pre-processing utilities
within ElmerSolver

ElmerTeam
CSC - IT Center for Science

Alternatives for increasing mesh resolution *

CscC

v Use of higher order nodal elements
— Elmer supports 2nd to 4th order nodal elements

— Unfortunately not all preprocessing steps are equally well
supported for higher order elements

v E.g. Netgen output supported only for linear elements
v Use of hierarhical p-element basis functions
— Support up to 10th degree polynomials
— In practice Element = p:2, or p:3
— Not supported in all Solvers
v Mesh multiplication
— Subdivision of elements by splitting

Note on bottle-necks in pre-processing *

CscC

v After the solution pre-processing is typically the 2nd
most time- and memory intensive task

v Mesh partitioning is typically less laborious than mesh
generation

— In Elmer we haven’t utilized parallel graph partitioning
libraries (e.g. ParMetis)

@ Serial mesh generation limited to around ~10 M
elements

v Finalizing the mesh in parallel level within EImerSolver
may be used to eliminate this bottle-neck

Finalizing the mesh in parallel level *

CscC

o First make a coarse mesh and partition it

v Bisection of existing elements in each
direction
— 22DIM"n -fold problem-size -
— Known as “Mesh Multiplication”

— Simple inheritance of mesh grading
@ Increase of element order (p-elements)

— p-hierarchy enables the use of p-multigrid

v Extrusion of 2D layer into 3D for special
cases

— Example: Greenland Ice-sheet / /‘ %

Standard parallel workflow *

CscC

v Both assembly and solution is done in parallel using MPI
v Assembly is trivially parallel
o This is the basic parallel workflow used for Elmer

MESHING NETGEN
PARTITIONING MET|S
ASSEMBLY 2%

2
SOLUTION Elmer
VISUALIZATION ’llPa reViow

Parallel workflow *

CscC

v Large meshes may be finilized at the parallel level

MESHING

PARTITIONING

MESH
MULTIP./EXTR.

ASSEMBLY

SOLUTION

VISUALIZATION

Mesh multiplication, example

CscC

Mesh Levels = 2

— Mesh grading nicely
; preserved

Splitting effects visible
in partition interfaces

Mesh Multiplication, example

v Implemented in Elmer as internal strategy ~2005

@ Mesh multiplication was applied to two meshes
— Mesh A: structured, 62500 hexahedrons
— Mesh B: unstructured, 65689 tetrahedrons

@ The CPU time used is negligible

~-

cscC

T _center | T_graded
(s) (s)

w N N W NN

4 M

32 M
420 M
4.20M
33.63 M

128
128
12

128
128

0.469
0.039
0.310
0.369
0.019
0.201

0.769
0.069
0.549

Limitations of mesh multiplication *

CscC

@ Standard mesh multiplication does not increase
geometric accuracy
— Polygons retain their shape

— Mesh multiplication could be made to honor boundary
shapes but this is not currently done

@ Optimal mesh grading difficult to achieve

— The coarsest mesh level does not usually have sufficient
information to implement fine level grading

Extrusion of partitioned meshes *

v Implemented as an internal strategy in EImerSolver
o Star from an initial 2D mesh and then extrude into 3D
v Implemented also for partitioned meshes
— Extruded lines belong to the same partition by construction!

v Deterministic, i.e. element and node numbering determined
by the 2D mesh
— Complexity: O(N)

@ There are many problems of practical problems where the
mesh extrusion of a initial 2D mesh provides a good solution

— One such field is glasiology where glaciers are thin, yet the 2D
approach is not always sufficient in accurary

nternal extrusion example: Aalto Vase

AT ST
A ST
P A s
AN L
S S,
AR
e Pl

=

it
)
:
%

¥,

[y
!‘%\h‘

Y,
Ty,

N
s
e

B
S
BE

Ry W g g 7
il i e A ey
i e T
L i S G e T A
: H LA i %
N A A A A

}'
5
4
o

1
T

Tl

S Yy A et
AN A ATy Ty,
R OO
P S ARy 5 g AT A A L7
A% vie S A A AT AN A N WA Yiow, v
sk b AT YA AT e ¥ AN AN o e ¥ ¥y
vl A o e e LT o N A O A
. AT A Rl b L T
iy, L P o AT ALY RN AYL
£ o e A e
D e s I g n A I Va r & e s o O A L STy
4 OO A PO DO R A
IAV;!‘; 5 .gmﬂmmwa,:.vg;‘ .
) OB
oy
g

AN
Rk

i

Aalto, 1936

|
5%
T
et TR
Rt T e
S e T, S
AL AT
!
S
e RS LR e
g R Sl g
e 2 o
S IR
¥ ey
il LY
4:‘%"‘;‘““
LY S
ol

i
o
0
'

)

ol
5Ny

EN

AR

DT
AR
e

Deforming meshes *

CscC

v Meshes may be internally deformed
v MeshUpdate solver uses linear elasticity to deform the
mesh
¢ RigidMeshMapper uses rigid deformations and their
smooth transitions to deform the mesh
v Deforming meshes have number of uses
— Deforming structures in multiphysics simultion
v E.g. fluid-structure interaction
— Rotating & sliding structures

— Geometry optimization
v Mesh topology remains unchanged

Conclusions on internal meshing features *

CscC

v There are number of ways to increase the resolution of
solution within ElmerSolver that eliminate meshing
bottle-necks

— For complex cases these may still be unsatisfactory

v Internal mesh deformation may be used to solve complex
problems without a need for remeshing

— Large deformations may be problematic and topological
changes impossible

——

CSC
Elmer
Post-processing utilities within
ElmerSolver
ElmerTeam

CSC - IT Center for Science

Postprocessing utilities in EImerSolver 4‘

@ Apart from saving distributed data there is a larger
number of capabilities within EImerSolver to treat data
within ElmerSolver

— Data reduction
@ nD->1D, 0D
— Data averaging and filtering over time (FilterTimeSeries)
— Derived fields (gradient, curl, divecgence,...)
— Creating fields of material properties

@ This functionality is often achieved by use of atomic
auxialiry solvers

Exporting 2D/3D data: ResultOutputSolve *

CscC

@ Apart from saving the results in .ep format it is possible
to use other postprocessing tools

v ResultOutputSolve offers several formats
— vtk: Visualization tookit legacy format
— vtu: Visualization tookit XML format
— Gid: GiD software from CIMNE: http://gid.cimne.upc.es
— Gmsh: Gmsh software: http://www.geuz.org/gmsh
— Dx: OpenDx software

@ Vtu is the recommended format!
— offers parallel data handling capabilities

— Has binary and single precision formats for saving disk space
— Suffix .vtu in Post File does this automatically

~-

Exporting 2D/3D data: ResultOutputSolve

An example shows how to save data in unstructured XML VTK (.vtu) files to
directory “results” in single precision binary format.

Solver n
Exec Solver = after timestep
Equation = '"result output"
Procedure = "ResultOutputSolve" "ResultOutputSolver"
Output File Name = '"case"
Output Format = String ”“vtu”
Binary Output = True
Single Precision = True
End

Derived fields *

CscC

¢ Many solvers have internal options for computing derived
fields (fluxes, heating powers,...)

v Elmer offers several auxiliary solvers
— SaveMaterials: makes a material parameter into field variable
— Streamlines: computes the streamlines of 2D flow
— FluxComputation: given potential, computes the flux g =-c V¢
— VorticitySolver: computes the vorticity of flow, w = Vx¢
— PotentialSolver: given flux, compute the potential - c Vg =q

— Filtered Data: compute filtered data from time series
(mean, fourier coefficients,...)

@ Usually auxiliary data need to be computed only after the
iterative solution is ready
— Exec Solver = after timestep
— Exec Solver = after all
— Exec Solver = before saving

Derived nodal data *

CscC

v By default EImer operates on distributed fields but sometimes
nodal values are of interest

— Multiphysics coupling may also be performed alternatively using nodal
values for computing and setting loads

v Elmer computes the nodal loads from Ax-b where A, and b are
saved before boundary conditions are applied
— Calculate Loads = True

@ This is the most consistant way of obtaining boundary loads

@ Note: the nodal data is really pointwise

— expressed in units N, C, W etc.
(rather than N/m”2, C/m”2, W/mA”2 etc.)

— For comparison with distributed data divided by the ~size of the
surface elements

Derived lower dimensional data *

CscC

@ Derived boundary data

— Saveline: Computes fluxes on-the-fly

@ Derived lumped (or OD) data

— SaveScalars: Computes a large number of different
guantities on-the-fly

— FluidicForce: compute the fluidic force acting on a surface

— ElectricForce: compute the electrostatic froce using the
Maxwell stress tensor

— Many solvers compute lumped quantities internally for
later use
(Capacitance, Lumped spring,...)

Saving 1D data: Saveline

v Lines of interest may be defined on-the-fly

v Data can either be saved in uniform 1D grid,
or where element faces and lines intersect

v Flux computation using integration points on the
boundary — not the most accurate

v By default saves all existing field variables

CscC

Saving 1D data: Saveline... *

CscC

Solver n

Equation = "SaveLine"

Procedure = File "SaveData" "SavelLine"
Filename = '"g.dat"

File Append = Logical True
Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0
End

Boundary Condition m
Save Line = Logical True
End

Saving 0D data: SaveScalars *

cCscC

Operators on bodies
@ Statistical operators

— Min, max, min abs, max abs, mean, variance, deviation
@ Integral operators (quadratures on bodies)

— volume, int mean, int variance

— Diffusive energy, convective energy, potential energy
Operators on boundaries

@ Statistical operators

— Boundary min, boundary max, boundary min abs, max abs, mean,
boundary variance, boundary deviation, boundary sum

— Min, max, minabs, maxabs, mean
@ Integral operators (quadratures on boundary)
— area
— Diffusive flux, convective flux
Other operators
— nonlinear change, steady state change, time, timestep size,...

Saving 0D data: SaveScalars... $

cscC

Solver n

Exec Solver = after timestep
Equation = String SaveScalars
Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature
Operator 1 = String max
Variable 2 = String Temperature
Operator 2 = String min
Variable 3 = String Temperature
Operator 3 = String mean

End

Boundary Condition m
Save Scalars = Logical True
End

CscC

Case: TwelveSolvers

Natural convection with ten auxialiary solvers

Case: Motivation *

CscC

v The purpose of the example is to show the flexibility of
the modular structure

o The users should not be afraid to add new atomistic
solvers to perform specific tasks

v A case of 12 solvers is rather rare, yet not totally
unrealitistic

Case: preliminaries

@ Square with hot wall
on right and cold wall
on left

o Filled with viscous
fluid

@ Bouyancy modeled
with Boussinesq

approximation
COLD

v Temperature
difference initiates a
convection roll

CscC

HOT

Case: 12 solvers *

CscC

1. HeatSolver

2. FlowSolver

3. FluxSolver: solve the heat flux

StreamSolver: solve the stream function

VorticitySolver: solve the vorticity field (curl of vector field)
DivergenceSolver: solve the divergence

ShearrateSolver: calculate the shearrate

IsosurfaceSolver: generate an isosurface at given value

0 0 N U &

ResultOutputSolver: write data

10. SaveGridData: save data on uniform grid
11. Saveline: save data on given lines

12. SaveScalars: save various reductions

Case: Computational mesh *

CscC

10000 bilinear
elements

Case: Navier-Stokes, primary fields

'—

e

Pressure Velocity

Case: Heat equation, primary field *

CcscC

Case: Derived field, vorticity *

CcscC

Case: Derived field, Streamlines *

CcscC

Case: Derived field, diffusive flux *

CcscC

Case: Derived field, Shearrate *

CcscC

Example: nodal loads *

cscC

v If equation is solved until convergence nodal loads
should only occur at boundaries

v Element size h=1/20 ~weight for flux

Nodal heat loads

Project: case -=-[_l A nﬁl

Files ‘iew Utiities Docuts View results Options Window Help

Example: CO0leR RS BS 2|8 ke
. . . Pe®
view in GiD

N
=
&=
LD
B
*
2.
2
#

temperature

1
l 0.88889
0.77778
- 0.66667
0.55556
044444
0.33333
0.22222
011111

v 0

h.

Contour Fill 'velocity_2" Min = -0.019643, Max = 0.019649 .‘J w=1339
Contour Fill temperature’: Min = 0, Max =1 1 '1 .
y=1.

2=0

Contour Fill of temperature.

Command: |

+ |4

File Tools Help
: IPusl-pruuessing ﬂ

Example:

. o [temperature o>
VIew In GmSh I pressure [11»
I vorticity 21»

[stream [31»

stream

0.00515

XY ZS11@5 21 40 0 |Postprocessing [

Case: View in Paraview

W ParaView 3.8.1 64-bit

| File Edit View Sources Filters Tools Macros Help

pE B wa & ?

Pipeline Browser || @ I
[buitin: F

@& -mse_qurhsﬂﬂﬂl.vﬁ

@ -I Glyphi

» lozm

< temperature
2 temperature loads
@ pressure

@ stream

o vorticity
s]
>
>
o

k
)

== -
ety S L u Sty ~ gl S 8 -
=

divergence

T T T e
shearrate velocity

/.

. -

b

J" f
. B
velocity

2 temperature flux

////‘_'___,___,_ . o P g iy

r

V/
)

A - e f
R U § i

|
— e R e M e e e e e e e T / !

]

‘2$.

d
"_"-'_"—'_"'—""—"-—-—-——n-—-—n..-—n..—-—-.—'—"/ 1

3 o
P e e i R e e e L s e St TR T \. 3
- . 0

A
/

!
!
}
L
}
|
}

-
= [

=

Example: total flux

v Saved by SaveScalars ¢

3.5

¢ Two ways of

computing the total al

flux give different
approximations

Wim

2+

@ When convergence is
reached the agreement
is good

15+

1

0.5
1

2.5

~-

cscC

Fluxes during iteration
T T T T

: r
—int flux
—min flux
— max flux
—sum loads

10

Example: boundary flux

v Saved by Saveline

v Three ways of
computing the
boundary flux give
different
approximations

o At the corner the
nodal flux should be

normalized using only
h/2

~-

cscC

Fluxes at the boundary

—20*(nodal flux)
— {boundary flux) [
— flux at boundary

0

0.2

04

0.6

Exercise *

CscC

v Study the command file with 12 solvers

v Copy-paste an appropriate solver from there to some
existing case of your own

— ResultOutputSolver for VTU output
— StreamSolver, VorticitySolver, FluxSolver,...

v Note: Make sure that the numbering of Solvers is
consistant

— Solvers that involve finite element solution you need to
activate by Active Solvers

@ Run the modified case
@ Visualize results in ElImerPost or Paraview

Conclusions *

CscC

v Itis good to think in advance what kind of data you need
— 3D volume and 2D surface data
— Derived fields
— 1D line data
— OD lumped data

v Internal strategies may allow better accuracy than doing
the analysis with external postprocessing software

— Consistent use of basis functions to evaluate the data

v Often the same reduction operations may be done also
at later stages but with significantly greater effort

