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31, chemin Joseph Aiguier Plateau de Moulon 46, rue Barrault
13402 Marseille Cedex 20 91192 Gif-sur-Yvette Cedex 75634 Paris Cedex 13
FRANCE FRANCE FRANCE

(verfaille@lma.cnrs-mrs.fr)
(charbit@tsi.enst.fr)

(pierre.duhamel@lss.supelec.fr)

ABSTRACT

We propose a new method for analysing the time-frequency do-
main, called LiFT. It is especially designed for partial tracking in a
polyphonic automatic transcription model. After the signal passes
through a Q-constant filter bank, composed of twenty four quarter-
tone filters, it is analysed thanks to a generalized maximum like-
lihood approach. Two hypotheses are tested: the first one is that
the output signal of a filter is a cosine plus noise, the second one
is that it corresponds to colored noise. This likelihood analysis is
developed in two ways: temporally treating the samples and fre-
quentially treating the short time Fourier transform of the signal.
For these two approaches, we have tested the robustness to noise
and the cosine detection power.

1. INTRODUCTION

The automatic transcription of music is an active field of research
in musical signal processing. Several approaches exist, all of them
using pitch detection algorithms. The first class of methods looks
for a periodicity in the time domain after the input signal is fil-
tered [1]. The second class uses the frequency domain, to detect
the harmonic peaks in the short term Fourier transform and then
determine the corresponding fundamental frequency or pitch ([2],
[3]), or thanks to cepstrum techniques [4]. Other methods exists,
using both time and frequency methods, and pattern matching, for
example psychoacoustic models [5].

A limit due to the short term Fourier transform is that the fre-
quency resolution is the same for low and high frequency, whereas
it is not in the way the ear functions. A way to solve this problem
is to use a Q-constant analysis, such as described in [6] (one could
also use wavelets). Like this, any harmonic pattern (correspond-
ing to an equidistant repetition in the frequency domain) becomes
the translation of an original pattern in the log-frequency domain.
Separating harmonic sounds from a polyphony will be easier to do.

To this aim, we developed the generalized maximum like-
lihood-time-frequency analysis proposed in this paper. It consists
of a Q-constant filter bank analysis of the time-frequency domain
without aliasing effect, combined with a general maximum likeli-
hood analysis, both described in this article, and a partial tracking

for polyphonic music with pattern recognition methods (work in
progress).

The likelihood analysis is developed in two ways. The first
one is temporal, directly treating the samples. The second one is
frequential, treating the short time Fourier transform of the signal.
For these two approaches, we have tested the robustness to noise
and the efficiency of cosine detection.

2. METHODS USED

First, the signal is analysed thanks to a Q-constant filter bank. The
24 quarter-tone F.I.R. filters are accurately calibrated in order to
avoid aliasing during the whole analysis. Then, the time-frequency
domain obtained out of this filter bank is analysed thanks to a
strong statistical tool: the generalized maximum likelihood ratio.

2.1. Q-constant filter bank
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Figure 1: Structure of the analysis of the input signal xm(n) at the
mth octave: the signal passes through each of the 24 filters of the
filter bank, after which 
k is calculated. Thenxm(n) is decimated,
the resulting signal xm�1(n) will be analysed according to the
same technique.

A description of a quarter-tone Q-constant filter bank can be
found in [6]. The main idea is to keep the same analysis structure
of a signal for every octave (cf. fig.1), while avoiding aliasing.
After the analysis of the mth octave, one should make a low-pass
filtering to assure having no aliasing on the lower octave. Then,
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the (m� 1)th octave can be analysed. Time separation for on-sets
and off-sets get half accuracy for each lower octave.
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Figure 2: Full line: first filter of the bank, with highly selective
properties ("PB = 0:001, "COB = 0:01 and p = 1). Each
other filter (plotted lines) correspond to this one, after transla-
tion to higher frequencies and dilatation. Note that the decreasing
band of the filter are smaller than half the pass band width (p = 1).

We define the filter Fk (cf. fig.2) by its central normalized
frequency f ck and its bandwidth:

Lck = 21=48fck � 2�1=48fck = 2�ck

corresponding to a quarter-tone interval. The maximum deviation
for the passing-band "PB , the maximum deviation for the cut-off
band "COB and the decay bandwidth d ck = p:�ck define the accu-
racy and the separation power of the filter bank. The value for the

quality factor Q is given by Q =
fc
k

Lc
k

� 34 for p = 1, which is

highly selective.

2.2. Non aliasing conditions

Two conditions are to be respected in order to avoid aliasing. First,
the higher frequency analysed should not go over the aliasing limit,
which is half the sampling frequency. Each filter been designed
according to it central frequency, it means that f+ � Fs

2 , with the
maximum frequency analysed :

f+ = fc24 + (1 + p)�c24

= 2�1=24 fc1
�
2 + (21=48 � 2�1=48)(1 + p)

�
Note that frequency are normalized, soFs = 1. Reporting this

condition to the filter bank calibrating frequency f c1 , it becomes:

fc1 � 2�23=24
�
2 + (21=48 � 2�1=48)(1 + p)

��1
(1)

Secondly, when decimating the signal we must apply a low-
pass filter (cf. fig. 3). The shorter �c24 the desired decay bandwidth
of the filter F24, the greater nc the number of coefficients of the
low-pass filter. However, we can reduce this constraint by accept-
ing aliasing on the frequency band which has already been anal-

ysed, namely
h
f+
2
; Fs

2
� f+

2

i
(that is to say a ( Fs

2
� f+) width

interval around Fs
4 ). For example with an FIR Hamming filter, the

half bandwidth is �c24 � 4
nc

; the second condition is:
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Figure 3: Low pass filtering with respect of the two non aliasing
conditions, for two nc values: the left filters (full lines) are the up-
per ones of the (m � 1)th octave, the right filters (dashed lines)
are the lower of the mth octave, vertical bars represent (from left
to right) f+=2 the higher frequency analysed for the (m�1) th oc-
tave,Fs=4 and Fs=2�f+ the higher frequency for which aliasing
will not affect the analysis of the lower octave. For a n c = 120
coefficients low pass filter (full line), non-aliasing conditions are
respected, but the power of the two upper filters are too much mod-
ified (a maximum loss of 5 dB): this will affect the LiFT detection.
To avoid this, it is recommended to use higher values of n c: for
example with 250 coefficients (dashed line: loss of 1 dB), only a
small part of the last filter is affected.

2 �c24 � 2
�
Fs
4
� f+

�

Reported to the bank filter calibration frequency f c1 , to the
number of coefficients nc and to the dilatation coefficient p, we
finally obtain the second condition:

fc1 � 21=24 (Fs=2� 4=nc)

[2 + (21=48 � 2�1=48)(1 + p)]
(2)

This second condition is stronger than the first one: when it is
verified, the first one is also verified.

2.3. Generalized Maximum Likelihood Ratio analysis (GLR)

Let us consider the signal x(n) as the sum of cosines x 0(n) and
a white noise b(n) with variance �2 (which is supposed to be
known).

x0(n) =
X
j

�j cos (2�f0;jn+ �j)

=
X
j

c0;j cos (2�f0;jn) + s0;j sin (2�fj;0n)

Out of the filter Fk , the signal yk(n) is the sum of a filtered cosine
y0;k(n) defined by(f0; c0; s0) and a filtered noise bk(n) (we con-
sider that no more than one partial exists in one filter bandwidth),
or just a filtered noise bk(n). This output is analysed statistically
over a sliding window (a 512 points window is enough), evaluating
the GLR upon two hypothesis for each window.
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The first hypothesis H0 to be tested is that there is only noise
in the signal out of the filter. The second hypothesis H 1 is that
there is a sine wave plus noise. Under each of both hypotheses,
we perform the maximum of the probability density function, and
give the GLR of H1 against H0, defined as:

� =
max�2H1 PH1

max�2H1 PH0

(3)

Since � varies exponentially, we also give 
 = log � the log-
likelihood function [7]. We used two approaches: the first one
deduced from the time representation and the second one from the
frequency representation of the output signal.

2.4. First approach: temporal representation

Let us consider N observations of the output signal y k(n); n =

0; :::;N � 1. We note y = (yk(0); : : : ; yk(N � 1))T 2 RN
and � = (c0; s0)

T 2 R2 the cosine amplitude vector. Under the
hypothesis H0, y is gaussian with � = �0 = (0; 0)T . Under the
hypothesis H1, y is gaussian with � 6= (0; 0)T . H0 is simple
because the hypothesis is completely described by the value of �,
whereas H1 is not.

The density probability is:

PHi(y; �; �
2) =

exp
�
� 1

2
"H Rb

�1 "
�

(2�)n=2 det(Rb)
1=2

with Rb the correlation matrix and "(f0; �) = y �D(f0)�. The
covariance matrix Rb cannot be inversed since it is badly condi-
tioned. A solution is to consider that the noise out of the filter is
still white (in the bandwidth concerned). In that case,Rb � �2

2
IN

in the bandwidth concerned.
The density probability becomes:

PHi(y; �; �
2) =

exp
�
� 1
�2

"H "
�

�
(2�)nN �2

2

�1=2
The generalized likelihood ratio is defined by:

�T =
max�2H1 PH1(y; �; �

2)

PH0(y; �0; �2)
(4)

The value � that maximize PH1 is obtained by derivating this
probability density function:

� = arg max
�2H1

PH1(y; �; �
2)

= [DH(f0) D(f0)]
�1

DH(f0) y

� 2

N
DH(f0) y

where D(f0) is the cosine-sine matrix:

D(f0) =

�
: : : cos(2� k f0) : : :
: : : sin(2� k f0) : : :

�T

with k = 0; : : : ;N � 1 and f0 the frequency (in the filter band-
width) that minimize the mean-square error between the signal and
the model k"(f0; �)k22:

f0 = arg max
f0

yH D(f0) D
H(f0) y

We now know the cosine amplitude vector � = (c 0; s0)
T and

the frequency f0 of the cosine. The log-likelihood 
T is approxi-
mated by:


T � 1

�2
yH D(f0) D

H(f0) y (5)

According to its value, we can decided either the hypothesis
of the presence of a cosine is true or not.

2.5. Frequency representation

In the frequency representation, we know the joint probability den-
sity function of the real part � and the imaginary part � of the
STFT (short time Fourier Transform). It can be expressed as a
function of the modulus � and the phase !. By integrated accord-
ing to the phase (a 0-order modified Bessel function), we obtain the
probability density function of the modulus. We note the STFT:

ŷ(fi) =
1

N

N�1X
n=0

y(n) exp
�
�2j�n i

N

�

= �+ j � = � ej!

where � and � are gaussian, with their respective means m cos �,
m sin � (m being the modulus of the sinusoidal component and�
its phase) and their respective variance� 2

A and�2B . The covariance

matrix is noted C2(f0) and the error is " =

�
��m cos �
� �m sin �

�
.

The joint probability density function is:

PHi(�; �;m;�; �2) =
exp

�� 1
2
"T C2(f0)

�1 "
�

2 �
p

detC2(f0)

since �A �B I2 � �2 I2 for frequencies in the filter bandwidth.
Under the hypothesis H0 , � and � are gaussian with m = m0 =
0. Under the hypothesisH1, � and � are gaussian with m 6= m0.

The covariance matrix C2(f0) can be approached by �2

2 I2 for
big enough data vectors (typically, 256 or 512 elements); it gives:

PHi(�; �;m;�; �2) �p
2

2� �
exp

h
� 1

�2

�
�2 +m2 � 2 �m cos(! � �)

�i

The relation between the joint probability density function for
(�;!) and the joint probability density function for (�;�) is given
by PHi(�; !;m;�; �2) = � PHi(�;�;m;�; �2). We obtain the
modulus probability density function by integrating the joint prob-
ability function of (�; !) following the phase!:

PHi(�;m;�; �2) =

Z 2�

0

PHi(�; !;m;�; �2) d!

=

p
2�

2 � �2
exp

�
��2 +m2

�2

�
I0

�
2 �m

�2

�

Reminding the generalized maximum likelihood ratio:

�F =
max�2H1 PH1

(�;m;�; �2)

max�2H0 PH0
(�;m;�; �2)
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and given done � = maxf02[fck��
c
k
;fc
k
+�c

k
] � the maximum esti-

mated of the sinusoidal part modulus in the filter bandwidth at the
frequency f0 = arg maxf02[fck��

c
k
;fc
k
+�c

k
] �, we finally obtain:

�F � exp

�
�m2

�2

�
I0

�
2
� m

�2

�
(6)

with the 0-order modified Bessel function:

I0(x) =

Z �

0

exp(x cos !)

�
d !

In order to know the value of m, we have an implicit equation
to solve:

� I1

�
2
�m

�2

�
�m I0

�
2
�m

�2

�
= 0 (7)

It is easily done by tabuling (cf. fig.4).
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Figure 4: Value of m
� , solution of the implicit equation for small

values of �
�

.

We now know the cosine amplitude modulus � and the fre-
quency f0 of the cosine (we also know the phase! from the max-
imization of �). For great values of �, the generalized maximum
likelihood ratio is no more calculable, since it increases exponen-
tially. We calculate the log-likelihood function 
F = log �F , and
approximate it thanks to its series development (cf. [8]):


F � m2

�2
� 1

2
log

�
4 �

m2

�2

�
(8)

For small values of �, we use the general form:


F � �m2

�2
+ log

h
I0

�
2
�m

�2

�i
(9)

3. RESULTS

3.1. Re-synthesis

Since we know precisely (�;�; f0) for the cosine y0;k existing out
of the filter, we can calculate a re-synthesized signal y r . When a
cosine exists in a filter bandwidth (cf. fig.5), we obtain the same

signal with a very small relative error " =
ky0;k�yrk2
ky0;kk2

(around

1 %). When only noise exist in the filtered signal, we synthesize a
cosine with a very small modulus, but when taking into account the
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Figure 5: Re-synthesis of a cosine detected out of a filter. For a
cosine detected, both methods give the same curve.
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Figure 6: Re-synthesis of a signal considered as noise after maxi-
mum likelihood estimation.

threshold on 
T and 
F ,, the decision is taken that it corresponds
to noise.

A precise re-synthesis can be done for partials, but the LiFT
method is not developed to re-synthesize the residual part of a sig-
nal.

3.2. Likelihood-time-frequency smoothing
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Figure 7: Time frequency domain of a signal with one cosine plus
noise (SNR = 5) after the bank filtering (left figure), and with
frequency approach (right figure, 
 F ). Time is plotted among X
and normalized frequency among Y . The noise does not appear
anymore and the output of the filter bank is smoothed.

We represented on figure 7 the output of the bank filter for
just one cosine plus noise with a 5dB signal-to-noise ratio (left
figure) and the LiFT analysis (right figure). The filter bank used
was a low quality filter bank, with "EP = 0:01, "COB = 0:01
and p = 1:5. The smoothing effect of our analysis immediately
appears: the right figure clearly indicates where a cosine exists,
even when there is noise around.

3.3. Robustness to noise

We calculated the log-likelihood functions 
T and 
F with given
signal-to-noise ratios SNR, and for different estimated SNR in
the 
 computation (cf. fig.8).

This figure depicts that for sinus emerging from noise, both
methods will easily detect its presence if SNR > 0: in the sound,
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Figure 8: 
 for temporal method (left figure) and frequencymethod
(right figure), for SNR values in [�40; 40]. Gamma (z, grey level)
is calculated for both methods with SNR varying (y), with a sound
synthesized with different values of � 2 = 10�SNR=10 (x).

even with a bad estimated value of the SNR. However, for the fre-
quency method, if SNR < 0 in the sound, nothing will be de-
tected. The temporal method seems more performant to detect low
level partials, but needs much more computational time.
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Figure 9: log10 of the relative error between the F k output signal
and the re-synthesized signal by both methods. For SNR > 0, the
relative error is around 1 %.

We calculated the relative error between the analysed sound
and the synthesized sound, for different SNR values (cf. fig.9).
Both methods give the same results: for noisy sounds, the relative
error is great (around 10 % up to SNR = �10), and goes down
around 1 % for SNR > 10.

3.4. Cosine detection

We compared the cosine detection for the two approaches. For
this, we constructed a synthetic signal with one cosine and white
noise, and a signal-to-noise ratio fixed to 1. 
 is calculated for both
methods, with or without frequency refining (cf. fig.10). The de-
tection are similar with both approaches, and have their maximum
value for the true frequency f0 of the given cosine. This means
that with frequency refining, we can determine very precisely the
frequency of the cosine, if needed for the forthcoming polyphonic
pitch analysis.

4. CONCLUSIONS

The likelihood-time-frequency analysis proposed is a good tool
for multi-partial detection. The time-frequency domain is repre-
sented with the maximum likelihood statistical approach, which is
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Figure 10: Detection power for both methods: we represent nor-
malized 
 versus normalized frequency, i) with 200 frequency
points refining (right figure), and ii) without refining and with the
cosine frequency between two frequency bins (left figure). Dashed
lines represents, from left to right, the minimum analysed fre-
quency, the cosine frequency, the filter central frequency and the
maximum analysed frequency.

very consistent to noise. The time methods is more accurate than
the frequency method for low level partials, but needs much more
computational time. With strong selectivity for the Q-constant fil-
ters, the LiFT analysis allows a good quality re-synthesis of the si-
nusoidal part of the signal, and even with lower selectivity, it gives
a good representation of the equivalent smoothed sonagram. The
good detection power and the robustness to noise promise the fea-
sibility of a strong polyphonic automatic transcription tool, based
on this analysis.
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