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ABSTRACT

With thehugeincreasein theavailability of digitalmusic,it hasbe-
comemoreimportantto automatethetaskof queryinga database
of musicalpieces.At thesametime, a computationalsolutionof
this taskmight give us an insight into how humansperceive and
classifymusic. In this paper, we discussour attemptsto classify
music into threebroadcategories: rock, classicaland jazz. We
discussthe featureextractionprocessandtheparticularchoiceof
featuresthatweused-spectrogramsandmelscaledcepstralcoeffi-
cients(MFCC). We usethetexture-of-texturemodelsto generate
featurevectorsout of these.Together, thesefeaturesarecapable
of capturingthefrequency-power profile of thesoundasthesong
proceeds.Finally, we attemptto classifythegenerateddatausing
a variety of classifiers.we discussour resultsandthe inferences
thatcanbedrawn from them.

1. GENERAL METHODOLOGY

We hadformulatedtheproblemasa supervisedmachinelearning
problem. In general,suchan approachconsistsof mappingthe
trainingdatainto featurevectors.Oneor moreclassificationtech-
niquesare appliedon this dataand a model for the distribution
underlyingthe datais created.Finally, this model is usedto es-
timatethe likelihoodof a particularcategory given the testdata.
Theprocedurecanbedescribedasfollows:

Audio Signal We collected157 songsamplesfrom the internet.
From eachof those,a 20 secondlong clip wasextracted.
These20 sec long clips were usedthroughout,both for
trainingandtesting.

FeatureExtraction Fromeachof thesesongclips, we extracted
variousfeatures.This is describedin detaillater.

Classification Oncefeaturevectorshadbeengeneratedfrom these
musicclips, thesewerefed into classifiersandmodelsfor
theunderlyingdistributionweregenerated

Categorization Oncegenerated,thesemodelswereusedto clas-
sify new songsinto oneof thethreecategories.

2. COLLECTION AND PREPROCESSINGOF THE
AUDIO SIGNALS

Wecollectedourdatafrom theinternet.Mostof themusicsamples
weredownloadedfrom http://www.mp3.com.We choseto down-
loadonly labelledsongsfrom thewebsiteandusedtheselabelsto
assigncategoriesto thesongs.

The approachwe followed was to useMP3 compressionto
preprocessthedata.It isgenerallyagreedthatthelossy-compression
of theMP3formatneverthelesspreservestheperceptualqualityof
themusic(’CD likequality’). Hence,thisaudiosignalwouldshow
high variancesin perceptuallyirrelevant featuresandsowould be
betterfor ourusethantheoriginalCD-audio.

After downsamplingtheMP3 from 44Khzto 11Khz,we ran-
domly chosea20secondclip of thesong.Suchaapproachmeans
that,at times,we might capturethesongat the ‘wrong’ moment.
Still, choosingthe samplinginterval randomlyseemedto be the
bestapproach.

We had a set of 157 songs. Of these52 were rock songs,
53 werefrom theclassicalcategory and52 werelabelledasjazz.
Within eachcategory, we took careto introducesufficient varia-
tion. In classicalsamples,we includedsamplesthatcorresponded
to opera,piano,symphony andchambermusic.Similarly, in jazz,
wemadesurethatthesongshadasufficientvariety- vocal,fusion,
bebopandtraditional.
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Figure1: In the training step,shownin the left box, the data is
processedanda modelis generatedso as to maximizethe likeli-
hoodof thedatagiventhemodel. In the testingphase, (after the
samepreprocessing),the modelparameters are usedto estimate
thecategory fromwhich themusicsamplecame.
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3. FEATURE EXTRACTION

In anapplicationsuchasours,whereweneedto provideadistance
metric betweentwo objects(musicclips) which arenot directly
comparable,wemusttransformthedatainto afeaturespacewhere
we canin factproposesucha metric.Althoughthemetricitself is
givenby theclassifierused,it is definedonthefeaturespace.Since
we want our metric to be perceptuallymeaningful,the choiceof
featuresis critical:

1. Objectsthatmapto nearbypointsin thefeaturespacemust
in factbeobjectsthatwe regardassimilar. Hence,for our
purpose,we musttry to find a featurespacewhereall sam-
plesbelongingto a particularcategory (Rock,Jazz,Classi-
cal) mustclusterclosely. At thesametime, clusterscorre-
spondingto differentcategoriesmusthave a largedistance
betweenthem. That is, the intra-category scattermustbe
smallwhereastheinter-categoryscattermustbehigh.

2. Secondly, wewantto makesurethatthefeaturescaptureall
of thephysicalknowledgewe haveof theobjects.Thenwe
canbesurethat,in theory, wearenotmissingany informa-
tion andawell-trainedandexpressiveclassifierwill beable
to do a goodjob.

3.1. Transforming fr om the audio to the visual domain

At this stage,we map our audio-classificationtask to a visual-
classificationone. There is a promisingnew approachfor fea-
tureextractionfrom images,theTexture-of-Texturesapproach(de-
scribedin Section3.4) proposedby DeBonetandViola [BV97],
that seemsto pick out featuresin an imagethat are indeedper-
ceptuallymeaningful. We can make useof this approachif we
transformour probleminto an imageclassificationtask. This is
rathereasilydone,even thoughwe areconstrainedby the above
two criteria.WeusethespectrogramsandMel-Frequency Cepstral
Coefficients(MFCC)to go from theaudioto thevisualdomain.

3.2. Spectrograms

We usea time window sizeof 512samples,at a samplingrateof
11025Hz, with a linear scaleto convert from power to the gray-
valueof thepixel.

We arguethatthespectrogramimageis a goodrepresentation
of the audioclip becausewe can invert a spectrogramto recon-
structthe signal,thuswe have not lost any of the physicalinfor-
mation contained. Secondly, as we seefrom Table 1, we seea
distinctdifferencebetweenthecharacteristicsof thespectrograms
for thethreecategories:

� Rock tendsto producestrongvertical lines-highpower in
all frequencieswithin ashorttimeinterval-correspondingto
thehigh transientsseenin instrumentssuchasguitarsused
for rock music. Also seenarecharacteristicback-quote(‘)
shapedcurveswhich correspondto thebendsandslideson
theguitars.

� Classicaltendsto besmooth- fadinghorizontallines- cor-
respondingto the fact that mostclassicalinstruments(pi-
ano)producea purepitch, which slowly decaysin volume
acrosstime. Thelowerpartof thesespectrogramsis almost
totally black indicatingtheabsenceof high frequenciesor
transientsasin Rock.

� Jazzspectrogramsshow a hugevariation. But if wind in-
strumentshavebeenusedthenwecanseeacontinuouszig-
zagcurve correspondingto tremolos.

Thusweseethatspectrogramsareoftenvisually interpretable,
andshouldbea goodway to convert anaudioclip to animage.

3.3. Mel-fr equencycepstralcoefficients

MFCCscanbeconsideredastheresultsof thefollowing process:

1. Take theshort-termFourier transformof thesignal,we di-
vide it accordingto theMel-scale.TheMel scalehasfixed-
size(266Hz) frequency binsat the lower frequencies,and
log-scalesizedbins (separatedby a factorof 1.07) in the
high frequencies

2. We now have about40 frequency bins. To reducedimen-
sionality, we performa DCT on the 40 values(equivalent
to a PCA) andget 12 resultantcoefficients which are the
MFCCs.

Thus,12MFCCsarecalculatedfor eachtimewindow, andwe
geta resultantpictureasshown in Table1, with thesameparam-
etersas for the spectrogram.MFCCsare thoughtto capturethe
perceptuallyrelevantpartsof theauditoryspectrum.

3.4. The Texture-of-Textureapproach

Now thatwe have convertedfrom theaudioto thevisualdomain,
wecanusetherecursive texture-of-texturesapproachproposedby
DeBonetandViola [BV97]. Themethoduses

�
filters to operate

recursively � timesonanimageandresultsin avectorin ��� space
where��� �
	 . A summaryin follows:

1. An imageis convolved with
�

differentfilters to result in�
different images. In our case,

� ����
 andthesefilters
representGaussiansandderivativesof Gaussiansoriented
in differentdirections. Thusconvolving with thesefilters
would imply that we are eitherblurring the imageor de-
tectingedgesorientedin differentdirections. Eachof the
resultantimagesarethereforezero,exceptat pointswhere
theoriginal imagehasthe featurethat is beingdetectedby
this image.

2. We make the
�

imagespositive, by taking absolutevalues
of pixels. (Note: DeBonettakesthesquareof thevalue,but
we found that for our classof images,that would lead to
drowning out of all but few pixels.) We thensubsampleto
reduceimagesizeby half soasto reducethecomputational
burdenastherecursiondepthincreases.

3. We now apply thesameprocessto the
�

images,andcon-
tinueto dosorecursively, till wereachourdesiredrecursion
depth� . Doingsomeansthatthenew imagescapturesome
extremelyselective feature.e.g. at recursiondepth �����
we cancapturehorizontalalignmentsof verticaledges.

4. We now have
�
	

images- eachof which capturesa selec-
tive feature. How strongly this featurewaspresentin the
original imageis indicatedby the total power containedin
thesenew images. We thereforesumacrossall the pixel
valuesin eachimageto yield a vectorof

� 	
images.

We testedour classificationschemesfor recursiondepthlev-
els from 1, 2 and3, yielding featurevectors15, 625 and15625
elementslong, for eachof thespectrogramandMFCCimages.
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Spectrogramof a rock song

MFCCof a rock song

Spectrogramof a classicalsong

MFCCof a classicalsong

Spectrogramof a jazzsong

MFCC of a jazzsong

Table 1: The above figures show images of spectrogram and
MFCCdatafor rock, classicandjazzmusic.

4. CLASSIFICA TION

We choseto use17(randomlyselected)songsfrom eachcategory
astrainingpoints.Theremaining106songswereusedfor valida-
tion andtesting. Unlike mostmachinelearningproblems,in our
formulation,thedimensionalityof the featurevectorsusuallyex-
ceeds(by far) the availablenumberof datapoints. Due to high
processingtime requiredfor eachclip, we wererestrictedin our
capabilityto usemoresongsfor analysis.

4.1. ClassificationMethods

Given the high dimensionalityof the problem,it washardto vi-
sualizethedistribution of thedatapoints. As such,we couldnot
pre-decidewhich techniquemight bethebest. We tried a variety
of techniques.A lot of our implementation(in C & Matlab)used
publicly availablelibraries:

K-NearestNeighbour Thistechniquereliesonfindingthe
�

near-
est training points to the given testpoint. This approach,
thoughnonparametric,is known to beextremelypowerful
andtherearetheoreticalproofsthat its error is, asymptot-
ically, atmost2 timestheBayesianerror rate. In our case,
we usedtheEuclideandistancemetric. We performedcal-
culationsfor upto10nearestneighbours.

Model eachcategoryasa Gaussian : If we assumethat theun-
derlying distribution for eachcategory is a Gaussiandis-
tribution, then we can usethe datapoints to estimatethe
maximumlikelihood valuesof the parameters(meanand
covariancematrix) of theGaussians.Theseparameterscan
thenbeusedto estimatethecategory of any new testpoint.
Note that we consideronly diagonalcovariancematrices
for easycomputation.

Support Vector Machines : SVMs area techniquethat rely on
projectingthedatainto ahigherdimensionalspaceandlook-
ing for a linear separatorin that space.Of late, they have
foundincreasingpopularityasaclassificationtool.

4.2. Results

1. Thebest3-way classificationaccuracy thatwe got wasfor
KNNs. Wemanagedto getuptoabout75%3-wayaccuracy.

2. Thereseemedto be only a weak positive correlationbe-
tweenclassificationaccuracy andincreasingrecursiondepth.
Theincreasein performancein goingfrom recursiondepth
of onetoadepthof two wasnotmatchedby thecorrespond-
ing increasein performancein going from two to three.
Intuitively, this could be becausethe spectrogramandthe
MFCCimagescontainedrelatively simplefeaturesthatcould
beinferredevenafterjustoneor two levelsof recursion.As
such,the ��� 	 level of recursionwasprobablysuperfluous.

3. Theperformanceof theclassifierswhenonly spectrogram
datawasconsideredwasroughlyto theperformancewhen
only MFCC datawasconsidered.However, whenthe two
werecombined,the resultingdatasetled to slightly better
performance.

4. TheGaussianmodelneverperformedreallywell. Thismight
be indicating that the assumptionthat the distribution for
eachcategory is beinggeneratedby a Gaussianis not cor-
rect.
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5. TheSVM wasusedto get2-way classifications(i.e ’Rock
vs non-Rock’ etc.). SVM gave bestresultsin identifying
classicalmusic. It distinguishedclassicalmusicfrom non-
classicalmusic with a ¿90%accuracy. However, its per-
formancein identifying rock andclassicalmusicwasnot
thatgood.Having observedthis,wewentbackto theKNN
resultsand studiedthem again. Even KNN did betterat
classifyingclassicalsamplesratherthanrock or jazzsam-
ples.
Interestingly, SVM’s resultsdegraded slightly as the di-
mensionalityof the featurevector increased.This canbe
understoodif werealizethatSVM blowsupthedimension-
ality by itself andsoaveryhigh-dimensionalfeaturevector
wouldprobablybeblown into ’ too-big’ a size.

6. Someparticularsongsweremisclassifiedby all classifiers.
Often,jazzpieceswhichhadpianowereconfusedfor clas-
sicalby mostof theclassifiers.

4.3. Mor eAnalysis

Thebadperformanceof theGaussianmodelonrockandjazzgen-
res and the excellent performanceof the classifierson classical
musicled usto suspectthatwhile thedatapointscorrespondingto
classicalmusicwere‘neatly clustered’,this wasnot sofor jazzor
rockmusic.To confirmthis,we tried2 things:

� We ran the K-meansclusteringalgorithm on the dataset
with K=3. It turnedout thatalmostall theclassicalpoints
were clusteredneatly in one cluster. However, both jazz
androckwerebadlyspreadout into thethreeclusters(rock
beingespeciallyso). This suggestedthat while therewas
indeeda singleclusterfor classical,thesamewasnot true
for rock or jazz.

� For eachcategory of music,we did the following: calcu-
late the first 25 eigenvectorsof the datasetcorresponding
to thatcategory. Projectall thedatapointsontotheseeigen-
vectors.Thenprojectthesetransformedcoordinatesbackto
theoriginal featurespace.Calculatehow muchthe points
in eachcategory have shiftedfrom their original position.
The intuition is that for a particularcategory, if it is well-
clustered,thefirst 25eigenvectorscapturemostof thevari-
ance.Sothedifferencebetweentheinitial locationof adat-
apointandits final locationshouldnot bemuch. This pre-
dictionheldout for datapointsbelongingto classicalmusic.
However, for rock andjazz, this did not happen.As such,
ourguessbecameevenstronger.

5. EVALUATION OF THE RESULTS

The resultsare reasonablygood, but therehave beenbetter re-
sults in classifyingmusicsamples[ZK99a],[LKSS98]. However,
we hadvery few datapoints,especiallyconsideringthe high di-
mensionalityof the featurespace.As such,it is a valid question
to askif our approachwill really scaleup andgive betterperfor-
manceif moreandmoretrainingsamplesareprovided.An obser-
vationthatwemadewasthat,at leastin somecases,theclassifiers
seemedto bemakingthe ‘right’ mistakes. Therewasa songclip
that wasclassifiedby all classifiersasrock while it hadbeenla-
belledasclassical. Whenwe listenedto it, we realizedthat the
clip was the final part of an operawith a significantelementof
rock in it. As such,even a normalpersonwould alsohave made

suchan‘erroneous’classification.As mentionedbefore,piecesof
jazzmusicwhichhadahighpianocomponentwereoftenconfused
for classicpieces.

Exceptfor classicalmusic,our currentclassifierscouldn’t re-
ally find ‘neat’ clustersfor the rock andjazzgenres.Theperfor-
manceof a non-parametricmethodlike KNN is muchbetterthan
theperformanceof a model-basedapproachlike GaussianModel.
This couldmeanthateitherwe don’t have thecorrectparameters
for themodelor thatwedon’t havethecorrectmodel.It is possible
that for, say, rock thereare independentsub-categories(isolated
manifoldsin the featurespace)andhencemodelingit with a sin-
gle Gaussianis boundto fail. Theopposingargumentcanbethat
classifiershave not beenableto estimatethe correctparameters.
This is certainlyplausiblegiven the small numberof testpoints,
comparedto thedimensionality.

6. CONCLUSION

In this paperwe have tried to attemptthe classificationof mu-
sic into rock, classicalandjazz. We achieved reasonablesuccess,
especiallyin thecaseof classicalmusic.Our approachhasraised
many interestingquestionsonwhichfuturework canbedone.One
would be do an analysisof the variation in how peopleclassify
music into differentgenres.That would provide a goodestimate
of thedifficulty of theproblemanda gold standardto benchmark
automatedclassifiersagainst.Anotherapproachwould be to get
many moredatapointsandseeif the performanceof our classi-
fiersimproves.Wewouldalsohavelikedto try otherclassification
techniquesandtry to fit differentmodelsto the data. This could
alsobeexploredfurther.
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