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ABSTRACT

With thehugeincreasen theavailability of digital music,it hasbe-
comemoreimportantto automatethe taskof queryinga database
of musicalpieces.At the sametime, a computationabkolutionof
this taskmight give us aninsightinto how humansperceie and
classifymusic. In this paper we discussour attemptsto classify
music into three broad categories: rock, classicalandjazz. We
discusghe featureextractionprocessandthe particularchoiceof
featureghatwe used-spectrogramandmel scaledcepstrakoefi-
cients(MFCC). We usethe texture-of-texture modelsto generate
featurevectorsout of these. Together thesefeaturesare capable
of capturingthe frequeng-power profile of the soundasthe song
proceedsFinally, we attemptto classifythe generatediatausing
a variety of classifiers.we discussour resultsandthe inferences
thatcanbedravn from them.

1. GENERAL METHODOLOGY

We hadformulatedthe problemasa supervisednachinelearning
problem. In general,suchan approachconsistsof mappingthe
training datainto featurevectors.Oneor moreclassificatiortech-
niquesare appliedon this dataand a model for the distribution
underlyingthe datais created. Finally, this modelis usedto es-
timate the likelihood of a particularcategory given the testdata.
The procedureanbedescribedasfollows:

Audio Signal We collected157 songsamplesfrom the internet.
From eachof those,a 20 secondlong clip was extracted.
These20 seclong clips were usedthroughout,both for
trainingandtesting.

Feature Extraction Fromeachof thesesongclips, we extracted
variousfeatures Thisis describedn detaillater.

Classification Oncefeaturevectorshadbeengeneratefromthese
musicclips, thesewerefed into classifiersand modelsfor
theunderlyingdistribution weregenerated

Categorization Oncegeneratedthesemodelswereusedto clas-
sify new songsinto oneof thethreecategories.

2. COLLECTION AND PREPROCESSINGOF THE
AUDIO SIGNALS

We collectedour datafrom theinternet.Mostof themusicsamples
weredownloadedfrom http://www.mp3.com.We choseto down-
loadonly labelledsongsfrom the websiteandusedtheselabelsto
assigncategoriesto thesongs.
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The approachwe followed was to use MP3 compressiorto
preprocesthedata.lt is generallyagreedhatthelossy-compression
of theMP3formatneverthelespreserestheperceptuafjuality of
themusic('CD like quality’). Hencethisaudiosignalwould shav
high variancesn perceptuallyirrelevantfeaturesandsowould be
betterfor our usethantheoriginal CD-audio.

After dowvnsamplingthe MP3 from 44Khzto 11Khz,we ran-
domly chosea 20 seconctlip of thesong.Sucha approachmeans
that, at times,we might capturethe songat the ‘wrong’ moment.
Still, choosingthe samplinginterval randomlyseemedo be the
bestapproach.

We had a setof 157 songs. Of these52 were rock songs,
53 werefrom the classicalcategory and52 werelabelledasjazz.
Within eachcategory, we took careto introducesuficient varia-
tion. In classicalsamplesyve includedsampleshatcorresponded
to opera,piano,symphory andchambemusic. Similarly, in jazz,
we madesurethatthesongshadasufficientvariety- vocal,fusion,
bebopandtraditional.
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Figurel: In the training step,shownin the left box, the data is
processedand a modelis generated so as to maximizethe likeli-
hoodof the datagiventhe model. In thetestingphase (after the
samepreprocessing)the modelparametes are usedto estimate
the category fromwhich the musicsamplecame
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3. FEATURE EXTRACTION

In anapplicationsuchasours,wherewe needto provide adistance
metric betweentwo objects(music clips) which are not directly
comparablewe musttransformthedatainto afeaturespacevhere
we canin factproposesucha metric. Althoughthe metricitself is
givenby theclassifielused,t is definedonthefeaturespace Since
we wantour metric to be perceptuallymeaningful,the choiceof
featureds critical:

1. Objectsthatmapto nearbypointsin thefeaturespacenust
in factbe objectsthatwe regardassimilar. Hence for our
purposewe musttry to find afeaturespacewvhereall sam-
plesbelongingto a particularcategory (Rock,Jazz,Classi-
cal) mustclusterclosely At the sametime, clusterscorre-
spondingto differentcateyoriesmusthave a large distance
betweenthem. Thatis, the intra-catgory scattermustbe
smallwhereagheinter-categyory scattemustbe high.

2. Secondlywewantto make surethatthefeaturescaptureall
of the physicalknowvledgewe have of theobjects. Thenwe
canbesurethat,in theory we arenot missingary informa-
tion andawell-trainedandexpressie classifiewill beable
to doagoodjob.

3.1. Transforming from the audio to the visual domain

At this stage,we map our audio-classificatiortask to a visual-
classificationone. Thereis a promisingnen approachfor fea-
tureextractionfrom imagesthe Texture-of-Texturesapproachde-
scribedin Section3.4) proposedby DeBonetand Viola [BV97],

that seemsto pick out featuresin animagethat areindeedper

ceptuallymeaningful. We can make useof this approachif we
transformour probleminto animageclassificationtask. This is

rathereasily done,even thoughwe are constrainedoy the above
two criteria. We usethespectrogramandMel-Frequeng Cepstral
Coeficients(MFCC)to go from theaudioto the visualdomain.

3.2. Spectrograms

We useatime window sizeof 512 samplesat a samplingrate of
11025Hz, with a linear scaleto corvert from power to the gray-
valueof the pixel.

We arguethatthe spectrogranimageis a goodrepresentation
of the audioclip becauseve caninvert a spectrogranto recon-
structthe signal,thuswe have not lost ary of the physicalinfor-
mation contained. Secondly aswe seefrom Table 1, we seea
distinctdifferencebetweerthe characteristicef the spectrograms
for thethreecategories:

e Rocktendsto producestrongvertical lines-highpower in
all frequenciesvithin ashorttime intenval-correspondintp
thehigh transientseenin instrumentsuchasguitarsused
for rock music. Also seenare characteristidback-quote(*)
shapecturveswhich correspondo the bendsandslideson
theguitars.

e Classicakendsto be smooth- fadinghorizontallines- cor
respondingo the fact that most classicalinstrumentgpi-
ano)producea pure pitch, which slowly decaysn volume
acrosgdime. Thelower partof thesespectrogramss almost
totally black indicatingthe absencef high frequenciesor
transientsasin Rock.

e Jazzspectrogramshav a hugevariation. But if wind in-
strumenthave beenusedthenwe canseea continuouszig-
zagcune correspondingo tremolos.

Thuswe seethatspectrogramareoftenvisually interpretable,
andshouldbeagoodway to corvert anaudioclip to animage.

3.3. Mel-fr equencycepstral coefficients

MFCCscanbeconsidereastheresultsof thefollowing process:

1. Take theshort-termFouriertransformof the signal,we di-
videit accordingo the Mel-scale. TheMel scalehasfixed-
size(266 Hz) frequeng bins at the lower frequenciesand
log-scalesizedbins (separatedy a factorof 1.07)in the
highfrequencies

2. We now have about40 frequeng bins. To reducedimen-
sionality we performa DCT on the 40 values(equialent
to a PCA) andget 12 resultantcoeficients which are the
MFCCs.

Thus,12 MFCCsarecalculatedor eachtime window, andwe
getaresultantpictureasshavn in Tablel, with the sameparam-
etersasfor the spectrogram.MFCCs are thoughtto capturethe
perceptuallyrelevantpartsof the auditoryspectrum.

3.4. The Texture-of-Texture approach

Now thatwe have corvertedfrom the audioto the visualdomain,
we canusetherecursve texture-of-texturesapproactproposedy

DeBonetandViola [BV97]. The methodusesk filters to operate
recursvely d timesonanimageandresultsin avectorin " space
wheren = k¢. A summaryin follows:

1. An imageis convolved with k differentfilters to resultin
k differentimages. In our case,k = 25 andthesefilters
representGaussiangnd derivatives of Gaussian®riented
in differentdirections. Thus convolving with thesefilters
would imply that we are either blurring the imageor de-
tectingedgesorientedin differentdirections. Eachof the
resultanimagesarethereforezero,exceptat pointswhere
the originalimagehasthe featurethatis beingdetectedy
thisimage.

2. We malke the k imagespositive, by taking absolutevalues
of pixels. (Note: DeBonettakesthe squareof thevalue,but
we found that for our classof images,that would lead to
drowning out of all but few pixels.) We thensubsampleo
reduceimagesizeby half soasto reducethecomputational
burdenastherecursiondepthincreases.

3. We now apply the sameprocesgo the k images,andcon-
tinueto dosorecursvely, till wereachourdesiredecursion
depthd. Doing someanghatthennew imagescapturesome
extremelyselectve feature. e.g. at recursiondepthd = 2
we cancapturehorizontalalignmentof verticaledges.

4. We now have k¢ images- eachof which capturesa selec-
tive feature. How strongly this featurewas presentin the
original imageis indicatedby the total power containedn
thesenew images. We thereforesum acrossall the pixel
valuesin eachimageto yield avectorof k¢ images.

We testedour classificationschemedor recursiondepthlev-
elsfrom 1, 2 and 3, yielding featurevectors15, 625 and 15625
elementdong, for eachof the spectrogranandMFCC images.
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Table 1: The above figures show images of spectogram and
MFCC datafor rodk, classicandjazzmusic.

4. CLASSIFICATION

We choseto usel7 (randomlyselectedsongsfrom eachcateory
astraining points. Theremaining106 songswereusedfor valida-
tion andtesting. Unlike mostmachinelearningproblems,in our
formulation, the dimensionalityof the featurevectorsusually ex-
ceeds(by far) the available numberof datapoints. Due to high
processingime requiredfor eachclip, we wererestrictedin our
capabilityto usemoresongsfor analysis.

4.1. ClassificationMethods

Given the high dimensionalityof the problem,it washardto vi-

sualizethe distribution of the datapoints. As such,we could not
pre-decidewnhich techniquemight be the best. We tried a variety
of techniquesA lot of ourimplementatior(in C & Matlab)used
publicly availablelibraries:

K-NearestNeighbour Thistechniqueeliesonfindingthek near
esttraining pointsto the given testpoint. This approach,
thoughnonparametricis known to be extremely powerful
andtherearetheoreticalproofsthatits erroris, asymptot-
ically, atmost2 timesthe Bayesianerrorrate. In our case,
we usedthe Euclideandistancemetric. We performedcal-
culationsfor upto 10 nearesheighbours.

Model eachcategoryasa Gaussian : If we assumehattheun-
derlying distribution for eachcategory is a Gaussiardis-
tribution, then we can usethe datapointsto estimatethe
maximumlik elihood valuesof the parametergmeanand
covariancematrix) of the GaussiansTheseparametergsan
thenbe usedto estimatethe cateyory of ary new testpoint.
Note that we consideronly diagonalcovariancematrices
for easycomputation.

Support Vector Machines : SVMs are a techniquethatrely on
projectingthedatainto ahigherdimensionaspaceandlook-
ing for a linear separatoin that space.Of late, they have
foundincreasingpopularityasa classificatiortool.

4.2. Results

1. Thebest3-way classificatioraccurag thatwe got wasfor
KNNs. We managedo getuptoabout75%3-way accurag.

2. Thereseemedo be only a weak positive correlationbe-
tweenclassificatioraccurag andincreasingecursiordepth.
Theincreasen performancen goingfrom recursiondepth
of oneto adepthof two wasnotmatchedy thecorrespond-
ing increasein performancen going from two to three.
Intuitively, this could be becausehe spectrogramandthe
MFCCimagescontainedelatively simplefeatureghatcould
beinferredevenafterjustoneortwo levelsof recursion As
such,the3™ level of recursiorwasprobablysuperfluous.

3. The performanceof the classifiersvhenonly spectrogram
datawasconsideredvasroughlyto the performancavhen
only MFCC datawasconsidered However, whenthe two
were combined the resultingdataseted to slightly better
performance.

4. TheGaussiamodelnever performedeallywell. Thismight
be indicating that the assumptiorthat the distribution for
eachcatgory is beinggeneratedy a Gaussiaris not cor
rect.
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5. The SVM wasusedto get 2-way classificationgi.e 'Rock
vs non-Ro&’ etc.). SVM gave bestresultsin identifying
classicaimusic. It distinguishectlassicalmusicfrom non-
classicalmusic with a ¢90%accurag. However, its per
formancein identifying rock and classicalmusic was not
thatgood.Having obseredthis, we wentbackto the KNN
resultsand studiedthem again. Even KNN did betterat
classifyingclassicalsamplesatherthanrock or jazz sam-
ples.

Interestingly SVM'’s resultsdegraded slightly as the di-

mensionalityof the featurevectorincreased.This canbe
understoodf we realizethatSVM blows up thedimension-
ality by itself andsoavery high-dimensionaleaturevector
would probablybe blown into 'too-big’ a size.

6. Someparticularsongsweremisclassifiedby all classifiers.
Often,jazz pieceswhich hadpianowereconfusedor clas-
sicalby mostof theclassifiers.

4.3. Mor e Analysis

Thebadperformancef the Gaussiaimodelonrock andjazzgen-
res and the excellent performanceof the classifierson classical
musicled usto suspecthatwhile thedatapointorrespondingo
classicamusicwere‘neatly clustered’ this wasnot sofor jazzor
rock music. To confirmthis, we tried 2 things:

e We ran the K-meansclusteringalgorithm on the dataset
with K=3. It turnedout thatalmostall the classicalpoints
were clusteredneatlyin one cluster However, both jazz
androck werebadly spreadutinto thethreeclustergrock
being especiallyso). This suggestedhat while therewas
indeeda singleclusterfor classical the samewasnot true
for rock or jazz.

e For eachcategory of music, we did the following: calcu-
late the first 25 eigervectorsof the datasetcorresponding
to thatcateyory. Projectall the datapointontotheseeigen-
vectors.Thenprojectthesdransformedoordinatedackto
the original featurespace.Calculatehov muchthe points
in eachcategory have shifted from their original position.
The intuition is that for a particularcategory, if it is well-
clusteredthefirst 25 eigervectorscapturemostof thevari-
ance.Sothedifferencebetweertheinitial locationof adat-
apointandits final locationshouldnot be much. This pre-
diction heldoutfor datapointdelongingto classicamusic.
However, for rock andjazz, this did not happen.As such,
our guesshecamesvenstronger

5. EVALUATION OF THE RESULTS

The resultsare reasonablygood, but there have beenbetterre-
sultsin classifyingmusic samples[ZK99h[LKSS98]. However,
we hadvery few datapoints, especiallyconsideringthe high di-
mensionalityof the featurespace.As such,it is a valid question
to askif our approachwill really scaleup andgive betterperfor
manceif moreandmoretrainingsamplesareprovided. An obser
vationthatwe madewasthat, atleastin somecasestheclassifiers
seemedo be makingthe ‘right’ mistales. Therewasa songclip
thatwasclassifiedby all classifiersasrock while it hadbeenla-
belled as classical. Whenwe listenedto it, we realizedthat the
clip wasthe final part of an operawith a significantelementof
rockin it. As such,evena normalpersonwould alsohave made

suchan‘erroneous’classification As mentionecdefore,piecesof
jazzmusicwhichhadahigh pianocomponentvereoftenconfused
for classicpieces.

Exceptfor classicalmusic,our currentclassifierscouldnt re-
ally find ‘neat’ clustersfor the rock andjazz genres.The perfor
manceof a non-parametrienethodlike KNN is muchbetterthan
the performancef amodel-basedpproacHike GaussiarModel.
This could meanthat eitherwe don't have the correctparameters
for themodelor thatwe don't have thecorrectmodel. It is possible
that for, say rock thereareindependensub-catgories (isolated
manifoldsin the featurespace)andhencemodelingit with a sin-
gle Gaussians boundto fail. The opposingargumentcanbe that
classifiershave not beenableto estimatethe correctparameters.
This is certainly plausiblegiven the small numberof testpoints,
comparedo thedimensionality

6. CONCLUSION

In this paperwe have tried to attemptthe classificationof mu-
sicinto rock, classicalandjazz. We achieved reasonablsuccess,
especiallyin the caseof classicaimusic. Our approacthasraised
mary interestingquestion®onwhich futurework canbedone.One
would be do an analysisof the variationin how peopleclassify
musicinto differentgenres.Thatwould provide a good estimate
of the difficulty of the problemanda gold standardo benchmark
automatectlassifiersagainst. Anotherapproachwould be to get
mary more datapointsand seeif the performanceof our classi-
fiersimproves.Wewould alsohave likedto try otherclassification
techniquesandtry to fit differentmodelsto the data. This could
alsobe exploredfurther.
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