
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-1

TIME-VARYING FILTER
IN NON-UNIFORM BLOCK CONVOLUTION

Christian Müller-Tomfelde

IPSI - Integrated Publication and Information Systems Institute
Fraunhofer - IPSI, Dolivostr. 15, D-64293 Darmstadt, Germany

mueller-tomfelde@ipsi.fhg.de

ABSTRACT

This paper will describe further research on a real-time
convolution algorithm for long a FIR filter based on non-
uniform bock partitioning. The static behaviour of the
algorithm which solves the dilemma between the computational
load and the latency of the processing operation is well
examined in literature. New directions are investigated to
exploit the inherent features of the algorithm and utilise them
for audio applications. Especially a dynamic exchange of filter
coefficients or subsets of them of a room impulse response is
discussed and implemented. Unlike to traditional DSP
solutions the prototype is realised in portable software objects
and components that can be compiled on multi-propose
processing units like off-the-shelf computers with standard
audio facilities and different operating systems.

Keywords : convolution, spatial sound processing, real-time,
room acoustics, sonification

1. Introduction

In the discipline of three-dimensional audio signal processing
many applications demand for massive convolution. In the
context of room acoustics and binaural or transaural sound
presentation this means that a sound signal is processed by a
linear time-invariant system (LTI) with a finite impulse
response (FIR) that consists of a large amount of coefficients.
The convolution operation can be described by the following
well known equation:

)()(
1

0

inxhny
N

i
i −= ∑

−

=

, (1)

where x(n) denotes a time discrete series of input samples and
y(n) denotes the output. The vector h holds N values which are
the coefficients of FIR filter. The equivalence of the
convolution operation of the in time-domain (eq. 1) is the
multiplication in the frequency-domain :

)()()()(kHkXnhnx →←∗ (2)

This basic signal processing operation (eq.1) requires in a
straight forward implementation a lot of computational load
while on the other hand an efficient realization in the
frequency-domain raises other problems when using it in a
real-time environment. The theoretical complexity per sample
of eg. 1 is proportional to N, the number of filter coefficients,
while in the frequency-domain the complexity can be
proportional to the logarithm of N (see [1]). The resulting
dilemma of the convolution can be described as the tradeoff

between the computational complexity and the latency of the
signal processing algorithm. The latency of the algorithm is not
directly connected to the available computational power of the
target machine: the latency of an implementation will not be
reduced by simply employing a faster processing CPU. The
algorithm has to be readjusted to the new environment to
achieve shorter latencies. This effect is standard to real-time
algorithms, where not the frequency of the CPU but sampling
frequency of the input sample stream is the time reference for
processing. In the context of real-time audio applications a low
latency is a desired property because a too long time delay can
be identified as an echo by the user, can lead to irritation and
the collapse the spatial illusions of virtual acoustical reality
applications.

1.1. Related work

The main theoretical work on non-uniform block processing
was done by Egelmeers and Sommen (see [2]) for the practical
situation of acoustic echo canceling. The implementation of
Gardner for real-time applications shows the possible
realization in a DSP environment [3]. In addition his
realization is a highly efficient solution by using symmetries of
the algorithm. Both approaches use the advantage of the Fast
Fourier transformation to do an efficient convolution in the
frequency-domain. To achieve a low latency resp. zero latency
of the signal processing system in both cases the convolution
problem is dividing the into several sub problems with a
different complexity and latency. A sophisticated organization
and parallel operation of the sub problems fulfil required low
latency by affordable complexity. In [4] a dedicated hardware
environment (see also [5]), that partially correspond to the
algorithm was used to build up an example application for real-
time virtual acoustics. Finally, possible realizations of the low
latency convolution systems on off-the-shelf computer were
investigated and their performance extrapolated in [6].
Other approaches for immersive 3D sound scene projection
base on feedback delay network (FDN) (see [7][8][9] or [10]).
These synthesis techniques for reverberation are more
perceptive orientated than the approach of the convolution,
they are imitating the acoustical room characteristics with
efficient algorithms [11][12].

1.2. Overview

In the following a brief description of the block processing
algorithm and the relation to multirate systems is given. Then
the system architecture is presented and their parts are
described. The processing module which is the core of the
architecture is explained in more details. The focus of the next
section concerns the dynamic behavior of the system. Mainly
the possibility of exchanging the filter coefficients in real-time

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-2

is considered and strategies are discussed that allow to realize
applications for real-time sound projection.

2. Low latency convolution

The algorithm mainly consists of concurrently processing
modules, each performing a convolution in the frequency-
domain of a subpart of the complete filter response h(n) (see
figure 1). The filter response in divided into non-uniform
blocks. The output blocks of all sub-convolutions are added up
to perfectly reconstruct the response of the overall filter.

3
2
1
0m

od
ul

e

filter coefficients h(n)
0 N 2N 4N 6N 10N 14N n

Figure 1. Diagram of the decomposition of an impulse
response h(n) organized in non-uniform blocks

The input sample stream is converted from serial (sample by
sample) to parallel (vectors of samples) to allow the
transformation of the signal blocks into the frequency-domain
by applying the Fast Fourier transformation. The complexity of
the transformation and multiplication is significantly better
then the time-domain convolution (see [1],[6]). But with the
serial/parallel conversion the block operation obtains the
property of latency for real-time applications.

2.1. Processing Mechanism

As shown in figure 2, the processing of blocks of samples in a
module has three states over time: fill the incoming samples
into a block, process the block, i.e., applying the filtering in the
frequency-domain and finally the output of the filter.

2
1
0m

od
ul

e

system time

 0 N 2N 4N 6N 10N 14N t

������
����������������������

���������������������
���������������������

�������������������
�������������������

������
�����������

�������������������
�������������������

�����

 fill process out

Figure 2. The different states of the parallel operating
modules. The latency of module m is covered by the
output of all the preceding modules.

Under real-time constrains the filling and the following
processing of the vector takes a distinct amount of time before
the response of the filter appears at the output. This latency can
be described by:

s

m
m f

N
D 2= (3)

where fs denotes the sampling frequency and Nm the sample
block/vector size of the module m. The decomposition of the
filter coefficients as shown in figure 1 has the following effect
on the latency of the overall system: The delay of module 0 is
2N so that the first output of the module happens at time 2N
and lasts until t=4N (see figure 2). In parallel at t=0 module 1
starts also filling the input signal but the output is delayed by
4N because N1 = 2N0. Thus the latency of module 1 is exactly

the latency plus the output sequence of module 0. In general,
the latency of a module m is as long as the latency
supplemented by the output of the preceding module m-1.
Hence the segmentation of the filter response (see figure 1) and
its processing guaranties that no gap occurs in the output of the
filter and that the total latency remains 2N0 samples. The entire
length L of the filter is built by the sum over all modules:

∑∑
−

=

+
−

=

==
1

0

1
0

1

0
0 22),(

M

m

m
M

m
m NNMNL (4)

Where the M the amount of processing modules and N0
determines the block size of the first modules m=0. Thus, the
number of filter coefficients is not free selectable. These
determined lengths of a filter depend also on the latency of the
system. In addition, the module processing frequency fm is
defined to be the frequency in which the signal vector of the
size Nm is filled:

m

s
m N

ff = or
s

m
m f

NT = (5)

Usually the block size of module 0 is in the range 64 up to
1024 samples so that the module processing frequency is in the
range of 690 Hz down to 43 Hz (sampling frequency 44100
Hz). Modules with higher order can have processing
frequencies of 1 Hz and below.

2.2. Relation to multirate systems

In multirate systems the usable frequency-domain is divided in
sub bands. Within these bands filters manipulate input signal
and each filter is processed at a reduced sampling rate due to
the decimation of the sample stream. A perfect reconstruction
of the overall filter output signals is achieved by interpolating
and adding up the output of each filter. In the special case of
dyadic multirate systems the frequency-domain is non-uniform
divided, i.e, the next higher band could have the double width
of its predecessor. This structure can be used to represent the
critical bands of human audition (for more detail see [13][14]).
The latter structure of a of dyadic multirate systems strongly
resembles to the decomposition of the filter response in figure
1. Comparing both structures one must swap the meaning of
time and frequency. The consequences are briefly discussed
without a complete theoretical foundation: The first obvious
correspondence is the partitioning of the bands in the
frequency-domain of multirate systems with that of the blocks
of samples in the time-domain. For multirate systems the block
length of N=1 (processing sample by sample) is fixed in every
operation within the structure, while for time-domain block
processing structures the numbers of bands is always 1, i.e., the
full bandwidth is used. The dyadic organization is done in
multirate systems among the frequency bands and in block
processing systems the lengths of the blocks have a relation
based on the factor 2. The correspondence of the signal
sampling frequency fs in dyadic multirate filter band
architecture is the block processing frequency fm in the time-
domain.
A detailed description has to be worked out more theoretically.
But interesting results could appear from these considerations
using a block processing system for audio signal analyze
application. Due to the parallel processing of the modules
auditory events could be detected in time- and frequency-
domain in the modules with different properties: high time
precision and low frequency resolution for modules with lower

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-3

order, i.e., m=0. In modules of higher order the representation
becomes more precise in the frequency-domain while the time
resolution gets worse.

3. Block processing architecture

The architecture for block processing is simple and well
described in literature. In previous work a general theoretical
description is provided in [2]. In [4] a dedicated commercial
hardware is employed to build up a real-time system with low
or zero latency for auralization purposes. The architecture used
in this work is designed to be flexible in terms of
implementation on standard computer environment and in
terms of scalability. The latter property is achieved by using
parameterized processing modules that are simple to instantiate
and to easy to control in a parallel process environment.
Specific optimizations as in [3] or the application of signal
processing libraries (like [15]) which make use of processor
specific assembler optimization are not considered in the
current realization.

3.1. Processing Module

The signal processing inside the module consists of a
parenthesis of a Fast Fourier transformation (FFT) operator and
its inverse (IFFT) that transform the signal input blocks into the
frequency-domain and after a certain processing back into the
time-domain (see fig. 3).

out

in

X
H1H0

∆t

+

FFT

IFFT
Y

Figure 3. Signal block processing structure of a module
m for frequency-domain filtering. The block size of all
the vectors is Nm and the overall latency of this module
is 2Nm

The operation in the presented module follows mainly equation
2, where the convolution is replace by the multiplication of the
corresponding element of the signal vector X and the filter H
(Note that the filter vector H is split up into two blocks of the
length Nm named H0 and H1. The concatenation of H0 and H1 is
H). The module operation is complemented by a multiplication
of previous input signal vector, i.e., the vector X delayed by Tm
(see eq. 5), with the filter coefficients H1. The result of both
multiplication are then added and transformed back into the
time-domain. The reason for the second multiplication with the
filter set H1 lies in the demand that this module should produce
2Nm samples output that fills half of the latency of the next
higher module m+1 (see also fig. 1 and 2).

3.2. Processing system

The processing system consists of M modules that operate in
parallel. The input signal is converted from serial to parallel,
i.e., the samples are grouped into blocks of samples. These
blocks are then distributed into the modules depending on the
width of their internal block length Nm. A real-time scheduler
has to guarantee the concurrent triggering and execution of
each sub-convolution with respect to its priority and has to
manage the input and output queue of the signal samples (see
figure 4).

p
s

s
p

in

out

 N0 N1 N2 NM-1

block distribution

reconstruction

m
od

ul
e

0

m
od

ul
e

1

m
od

ul
e

2

m
od

ul
e

M
-1

Figure 4. The architecture of a processing system with
the M parallel processing modules, each performing a
sub-convolution with 2Nm coefficients.

The basic block size N0 is defined by the first module m=0. It is
also the processing base for the distribution and reconstruction
unit. The block size of every following module has the double
size, so that: Nm+1 = 2Nm. The block distribution unit provides
each module m with blocks at the right time, in the right length.
On the other side reconstruction unit adds up the output block
of all modules to form the response of the overall system, i.e.,
perfect reconstruction. Thus between the inlet and the outlet the
system fulfils eq. 1 with a latency of 2N0 samples under real-
time constrains.

4. Time-varying filter

For real-time applications in the domain of virtual acoustics not
only the change of the input signal with low latency is needed.
When the projected scene changes, i.e., the user navigates
through the virtual space or simply turns his head also the
varying of the filter coefficients has to be considered (as in
[16]). Traditionally filter structures operate as static linear
time-invariant systems (LTI) where only the input signal varies
over time. But this can not be sufficient for a coherent auditory
scene illusion where also the scene or, more precise the
constellation between sound source and listener is dynamic.
Changing all coefficients of a FIR filter (eq. 1) at once can
produce sound artifacts or transients within the output signal of
the filter. A moderate and secure way to mitigate and avoid
these artifact is to use a crossfading unit in the time-domain: to
blend from one filter output to the output of the filter with the
new coefficients, thus to build a linear time-varying system
(LTV). This operation guarantees a smooth transition from one
filter output to the new one. The main drawback of such an
operation is that two LTI systems need to be computed at the
same time. The computational load is increased by the factor 2.
In addition, the output of the LTV system is a mixture of two
LTI filter signals which may not correspond to a true

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-4

intermediate out signal. A modification of the module
architecture shown in figure 3 allows crossfading with an
increased complexity less then factor 2. Therefore the
transformation of input vector X is reused for the second
temporary FIR filter. The extra computational load vanished
after the crossfading operation is finished, i.e., the module falls
back into static processing mode. When only a smaller sets of
coefficients has to be changed it is useful only partially
exchange filter coefficients in the appropriate module.

4.1. Crossfading function

The crossfading process for the initial module m=0 is assumed
to range over the complete block size N0. For the other
modules m>0 with greater block sizes different fading
strategies can be used. This is useful when concurrent
crossfading of multiple modules occurs. The crossfading can
either range over the full length Nm of the array (full fade) or
always only on the first N0 elements of the array (primary block
fade).

am
pl

itu
de

block system timemodule 0
1
2

Firgure 5. For the linear crossfading of the modules
different modes are possible: full fade or primary block
fade.

In figure 5 the full fade mode occurs in the doted line for
module 0 and in the dashed line for module 2. The primary
block fade mode for module 2 is the doted line too. As
mentioned above the latter mode concentrates on crossfading
only the first block no matter what order of module is actual.
This effect is useful when all modules are triggered in that way
to crossfade in the same moment and so to achieve a minimum
of transition time. The drawback of this mode is discussed in
the following.

4.2. Exchange strategies

Depending on the point of time the exchange of coefficients is
triggered the delay dm until the execution of the exchange and
the crossfading within a module m reaches the output can range
from

mmm NdN 2<< (6)

This means that the interference of the trigger time with the
block processing frequency can lead to the same time span as
the latency of the module. This has certain consequences to the
dynamic behavior of the real-time coefficients exchange. The
system response time, important for interactive applications is
not predictable, only the relation 6 is valid. Thus two strategies
are proposed to handle and solve the trade-off between the
concurrent exchange and the system response time:

 A triggering at the same time, fading at different times
 B triggering at different times, fading at the same time

These two strategies of triggering the exchange are illustrated
in figure 6a and 6a. Strategy A triggers all modules at once, so
that depending of the trigger time a gap can occur in the output.
In this gap no output of a crossfading block occurs the
reconstructed filter output consists of mixed filter H (see block
5 and 6 after the trigger in figure 6a). The time to exchange a
complete set of filter coefficients can last up to twice of the
filter length (eg. 4), while the minimum is one filter length.
This strategy gives the shortest response time, i.e. maximum
2N0. But the behavior of reconstruction of the output is
unclear.
The aim of strategy B is to reduce the crossfading time to a
minimum of N0. As show in figure 6b the modules are
triggered at different times to guarantee that the output of all
modules fade from one filter to the other within the same block
of N0 samples. Therefore the crossfading mode must be set to
the primary block mode as described in 4.1. The computational
load of each module usually concentrates on the first part of the
processing slot, thus the exchange strategy B is fortunately also
moderate in terms of additional computational load. The
additional filter load is spread over time. The main drawback of
the strategy B is that system response time will be dM (eq. 6),
that means that the coefficients can changed at most at the
block processing frequency of module M of the system fM .

a)

�����
�����

�����
����� - dual filter processing - crossfading output

��������������������

b)

���������
��������
��������

���������
���������

�����������������
�����������������

����������������
����������������

��������������������������������

block

- trigger

��������������������
�����
�����

�����
�����

�����������������
����������������
����������������

�����������������
�����������������

��������������������������������

block

m
od

ul
e 3

2
1
0

m
od

ul
e 3

2
1
0

system time

system time

Figure 6. Different ways to initiate the full exchange of
coefficients of an example system that consists of four
modules: a) all modules are triggered at the same time
b) all output changes at the same time.

5. Application: Real-time sound projection

The following suggested application should demonstrate the
usage of the non-uniform block processing for an individual
dynamic sound projection in real-time. The listener is placed in
the center of a virtual sound field while the sound source has a
fixed orientation and position (see figure 7). For simplification
only the horizontal plane is considered. In this example module
0 of the system contains 16 sets of sub filters that correspond to
the view angle of the listener. The next module has only 8
distinct set, etc.. When the user now turns his head in the
horizontal plane with a constant speed each module has to
update the filter coefficients in a different frequency: the lower
the order of the module the higher the update frequency, while
those of modules with higher is less. The hierarchy of the
update frequency matched ideally with the time structure of a
room impulse response so that rapid early reflections are
considered more often than the late reverb parts. On the other
hand audio path rendering algorithm can take advantage of this
timing structure of the different modules where the direct path

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

DAFX-5

and early reflections can be calculated faster than the late
reverb.

 2N 6N 14N

α

Vieworientation

module 0 1 2

Figure 7. The arrow and the angle alpha illustrate the
head orientation of the listener in the horizontal plane.
The circles represent the modules and the segments the
time-varying filter coefficients of each module.

6. Implementation

The current implementation of the convolution prototype is
realized with portable software objects and components for
multi-purpose CPUs without a graphical user interface.
Different areas of computer system programming like multi
threading, inter process communication, real time (RT)
clock/process and process priority scheduling are involved by
the implementation of the described non-uniform block
algorithm on a off-the-shelf computer. A general interface
guarantees access to these functions under different operating
systems (OS). Although these features are nearly state of the art
in all operating system, like multi thread processes, some like
true real-time process support is not widespread. Currently
three OSs are used as a target environment: Window98, BeOS,
and OpenStep. The first is used the have a comfortable
programming environment, the second was chosen due its RT
capabilities and the third is used as a general Unix reference. It
is planed to recompile the convolution program also under
Window 2000,Unix systems and MacOS X. The file and audio
i/o is by now merely implemented to provide the basic
functionality for demonstration and validation purposes. The
software is strictly written in ANSI-C following guidelines
from [17][18][19] concerning the art of signal processing.
Despite of using C instead of C++ as the implementation
language an object-orientated (OO) like approach of
programming is realized to combine speed of execution of
direct function calls and flexibility of programming for the
implementation. The described modules are realized, e.g. as a
software object class which can be instantiated dynamically
multiple times during runtime. The Windows implementation
suffers under the non optimal real-time properties of the
operating system, so that the theoretical load of the hardware
resources is hardly reached because of too many drop-outs in
the signal output. Therefore BeOS 5 and its RT capabilities
were used and the behavior of the convolution system operated
as expected. An implementation of the low latency convolution
under Max MSP or in a Matlab environment seemed not
feasible because of the lack of parallel processing features with
different priorities.

7. Conclusion

In this paper described further research on a real-time
convolution algorithm based on non-uniform bock partitioning.
The test implementation on off-the-shelf computers encouraged
the author to adapt the low latency convolution algorithm for
the use beyond standard static filter applications. The
realisation of a time-varying filter system is demonstrated and
the different update rates of the processing system are exploit
and used the fit in applications of real-time sound projection.

8. REFERENCES

[1] Kammeyer, K.D. and Kroschel, K., Digitale
Signalverarbeitung. B.G. Teubner, Stuttgart, 1989.

[2] Egelmeers, G. P. and Sommen, P. C. W., A new method
for efficient convolution in frequency domain by non-
uniform partitioning. In Proceeding EUSIPCO, volume 2,
pp 1030-1033, Edinburgh, September 1994.

[3] Gardner, W.G., Efficient convolution without input-
output delay. Journal of Audio Engineering Society,
43(3):127-136, March 1995.

[4] Dalenbäck, B.-I. and McGrath, D., The narrow gap
between virtual reality and auralisation. In Proc. 15th
ICA, volume 2, pages 429-432, July 1995.

[5] Huron , Lake DSP, http://www.lakedsp.com/
[6] Müller-Tomfelde, C., Low Latency convolution for real

time application, In Proceedings of the AES 16th
International Conference: Spatial Sound Reproduction,
Rovaniemi, Finland, 1999 April 10-12, pp. 454-460.

[7] Stautner, J. and Puckette, M., Designing multichannel
reverberators. Computer Music Journal, 6(1), 1982.

[8] Moorer, J.A., About This Reverberation Business, chapter
Perception and Digital Signal Processing, pp 605-639.
Foundations of Computer Music. MIT Press, 1987.

[9] Griesinger, D., Practical processors and programs for
digital reverberation. In Audio in digital times, pp 187-
195, Toronto, May 1989. Audio Engineering Society.

[10] Schröder, M.R., Digital Simulation of Sound
Transmission in Reverberant Spaces. Journal Acoust. Soc.
Amer., 47:424-431, February 1970.

[11] Jot, J.-M., Etude et Realisation d'un Spatialisateur de sons
par Modèles Physique et Perceptifs. PhD thesis, Telecom
Paris, September 1992.

[12] Dutilleux, P., Müller-Tomfelde, C., AML: Architecture
and Music Laboratory, In Proceedings of the AES 16th
International Conference: Spatial Sound Reproduction,
Rovaniemi, Finland, 1999 April 10-12, pp. 191-206.

[13] Zölzer, U., Digital Audiosignalverarbeitung
Vorlesungsskriptum der TU Hamburg Harburg.

[14] Fliege, N.J., Multirate Digital Signal Processing. Wiley,
1994.

[15] Signal Processing Library, Intel,
http://developer.intel.com/software/products/perflib/spl/

[16] Wenzel, E.M., J.D. Miller, and J.S. Abel, “A software-
based system for interactive spatial sound synthesis,”
ICAD’2000, May 2000.

[17] Freed, A., Clear, efficient audio signal processing in ansi
c. C Users Journal, 11(9), September 1993.

[18] Dannenberg, R.B., The Platform Blues or Looking for Mr.
Real Time. ICMA Array, 16(1):31-32, 1996.

[19] Dannenberg, R.B., A Perspective on Computer Music,
Computer Music Journal, 20(1):52{56, 1996.

