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ABSTRACT

In many applications of audio signal processing modeling of
the signal is required. The most commonly used approach for au-
dio signal modeling is to assume the audio signal as an (autoregres-
sive) AR-process where the audio signal is locally stationary over
a relatively short time interval. In this case the audio signal can
be modeled with an all-pole IIR (infinite impulse response) filter,
which leads to LPC (linear predictive coding) where the current
input sample is predicted by a linear combination of past samples
of the input signal.

However, in practice the relatively short time interval (i.e. a
frame) where the signal is stationary will vary significantly in the
audio signal data stream. Also the information content of the
frames will show considerable variation. For a proper modeling
of an audio signal it is essential that a suitable frame size and ap-
propriate number of model parameters is used instead of a constant
frame size and model order.

In this paper we present an adaptive frame-by-frame technique
for modeling audio signals, which automatically adjusts the opti-
mal modeling frame size and the optimal number of model param-
eters for each frame.

1. INTRODUCTION

Linear prediction has been a very popular technique for model-
ing audio signals for the purpose ofe.g. effects, speech compres-
sion, spectral modeling, and signal reconstruction. The signal is
assumed to be an AR-process which is an approximation in the
case of real audio signals. In LPC it is necessary to assume that the
audio signal is stationary, which is not exactly true for real audio
signals. This problem has been overcome by assuming that the au-
dio signals are locally stationary over a short period of time. Music
and speech signals contain fast transients and voiced sounds that
remain stationary over a relatively long time interval. The signals
can be divided into locally stationary sectionsi.e. frames: in the
case of a transient or a stop consonant, the length of the station-
ary frame is very short but for a voiced sound the length can be
several times longer. If the signal is modeled frame-by-frame by
using a constant predetermined frame length, it is highly possible
that the frames will contain several different locally stationary sec-
tions which cannot be properly modeled by using the same model
coefficients.

The optimal number of the model coefficients is achieved when
they contain all the information that the mathematical model is
able to receive from the given signal frame.

The remaining text is organized as follows. In Section 2, the
mathematical model of the signal is introduced and some of its

constraints are pointed out. In Section 3, the optimal frame length
decision is presented. In Section 4, the optimization of the model
order for a given frame is presented. Conclusions are drawn in
Section 5.

2. A MODEL FOR THE SIGNAL

2.1. The mathematical model

A mathematical model for each locally stationary frame of the in-
put signalx(n) is given by

x(n) =
X

i

Ai(n∆t) cos(2πfin∆t+φi)+ε(n∆t), fi ≥ 0,

(1)
whereAi is the amplitude envelope,φi is the phase of each fre-
quencyfi, ∆t is the sampling interval, andε is noise. The linear
prediction model for an AR-process is given by [1]

x(n) = −
pX

k=1

akx(n− k) + e(n) = x̂(n) + e(n), (2)

whereak are the prediction error coefficients,p is the model order,
x̂ is the estimated sample ande(n) is a noise-like signal which
ideally is uncorrelated and statistically independent ofx(n). If
the prediction coefficients are known, we can predict the current
sample fromp previous samples and the forward prediction error
is given by

e(n) = x(n)− x̂(n) = x(n) +

pX
k=1

akx(n− k), (3)

which we call the residual. For a given signalx(n), wheren =
1, 2, ..., j Eq. 3 gives the residuale(n) wheren = p + 1, p +
2, ..., j. The firstp values of the residual can be approximated by
using the backward prediction error given by

e(n) = x(n) +

pX
k=1

bkx(n + k) (4)

and choosing the backward prediction error coefficientsbk = ak.
This can be done when the prediction error coefficients are calcu-
lated by using Burg algorithm [2]. There are several possibilities
to obtain the prediction error coefficientak from the signal. We
shall use the Burg algorithm.
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2.2. The modeling constraints

It is known that a single noiseless cosine wave with constant am-
plitude can be perfectly modeled by using two model parameters.
The number of the model parameters for a signal consisting of a
sum of cosine waves with constant amplitudes is twice the number
of the waves. If the amplitude envelope of a cosine wave is not
constant in time (which often is the case for music signals), the
number of model parameters is higher. For example, a noiseless
signal consisting of a single cosine wave with a quadratic ampli-
tude envelope can be perfectly modeled by using five model pa-
rameters. If a signal consisting of several cosine waves with con-
stant amplitudes is modeled by using fewer model parameters than
is required to perfectly model the entire signal, the cosine waves
with the strongest amplitudes will be modeled. [3]

3. ADAPTIVE OPTIMIZATION OF THE FRAME
LENGTH

Our method for detecting the optimal frame length is based on
forming a long term residual and comparing it to short term resid-
uals obtained from the signal samples given by a sliding win-
dow. These detection residuals are achieved by forming low order
(q ∼ 50) prediction error filters.

The long term residual is formed by using prediction error co-
efficientsa(lt) calculated from the firstW samples of the frame
whose length is to be optimized.W is also the minimum frame
length(W > q). The long term residual is given by

elt(n) = x(n) +

qX
k=1

a
(lt)
k x(n− k), n = W + q + 1, ..., M.

(5)
This equation is used to calculate the long term residual beyond
the minimum frame length up to the maximum frame lengthM .

After the firstW samples, a sliding window of lengthN is
used (q < N < M − W ). In each position of the window new
prediction error coefficientsa(st) are calculated from theN sam-
ples inside the window and they are used to calculate the short term
residual within the window. The short term residual is given by

est(n) = x(n)+

qX
k=1

a
(st)
k x(n−k), n = m+q, ..., m+N−1,

(6)
wherem is the sample number of the first sample in the current
position of the sliding window. A detection value is obtained by
comparing the energy of the long term and short term residuals in
the position of the sliding window

η =

Pm+N−1
i=m+q [elt(i)]

2Pm+N−1
i=m+q [est(i)]

2
, (7)

The q term in the summation index is due to the fact that a for-
ward prediction error is used and the firstq samples in the window
are needed in order to compute the first sample of the short term
residual.

If the value ofη exceeds unity the modelling parameters of the
short term residual will give a better model of the signal than the
parameters of the long term residual. If the value ofη exceeds a
given threshold valueλ, the frame end is set to the sample before
the current position of the sliding window. Otherwise the window

is shifted forward by a step sizeµ. A new prediction error fil-
ter and a short term residual are computed at the new position of
the window andη is updated. This procedure is repeated untilη
exceeds the threshold valueλ or the maximum frame sizeM is
reached. When the length of the current frame is found, the whole
procedure will start again from the first sample beyond the current
frame.

The maximum frame length sets the minimum of the latency
in real time applications. The method can be further optimized
by using a growing window for the calculation of the long term
residual.

In Figs. 1 and 2, the same signal from a guitar is modeled in
two different ways. In Fig. 1 the frame length is optimized, re-
sulting in 26% smaller total energy in the residual. In both figures
the signal is modelled by using the same amount of frames (21)
and in both cases also the same model order (p = 500) for each
frame is used. The length of the frames and the model order are
printed inside the frames in the signal graph and the residual graph
respectively in both figures. The parameters for the frame length
decision are presented in table 1.

Table 1: The parameters for the optimal frame length decision.

Parameter value

max. frame length M 10000
sliding window size N 200
min. frame length W 1000

step size µ 50
threshold λ 2.5

filter order q 50
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Figure 1: A guitar signal modeled by using optimized frame
lengths and constant model order (p = 500). The total energy
of the residual is 9.78 in arbitrary units.
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Figure 2:A guitar signal modeled by using constant frame length
and constant model order (p = 500). The total energy of the
residual is 13.2 in arbitrary units.

4. CHOOSING THE OPTIMAL MODEL ORDER FOR A
GIVEN SIGNAL FRAME

Our method for obtaining the best model order (i.e. the number of
the modeling parameters) for a given signal frame is based on ob-
servation of the power spectrumE(f) of the residuale(n). When
the modeled signal is a random autoregressive process of orderp,
the residuale(n) is white noise [1].

When calculating the model coefficients by using the Burg al-
gorithm, the whole residual vector can be obtained within the pro-
cess by combining the forward and the backward prediction error.
If we model an AR-process of orderp by using a smaller number
of model parametersl < p, then according to the modeling con-
straints all the frequencies will not be modeled, and therefore the
frequencies that could not be modeled will be present in the resid-
ual. They will be shown as peaks in its power spectrum. When
increasing the model order of the same signal frame and observ-
ing the power spectrum of the residual, the optimal model order is
achieved as the peaks vanish.

4.1. Detection of the peaks in the power spectrum

A novel peak-detection method is introduced here to enable accu-
rate detection of the peaks in the residual power spectrumE(f).
The peak detection is based on observing the absolute value of the
derivative of the residual power spectrum given by

D(f) =
|Ef+1 − Ef |

∆f
. (8)

Eq. (8) gives the derivative of the power spectrum in a middle point
between the two frequencies. To make the peaks more distinct
from the rest of the residual power spectrum, the differentiation
can be applied several times. In practice, the fourth order deriva-
tive has been proven to be very good. By applying Eq. (8) four
times in succession and by compensating the shift resulting from
the differentiation we obtain

D(4)(f) =
|Ef−2 − 4Ef−1 + 6Ef − 4Ef+1 + Ef+2|

(∆f)4
. (9)

The optimal model order has been reached when all the peaks fall
below a given threshold value. However, a constant threshold level
is not very good, since there might be a background in the residual
power spectrum.

An adaptive threshold curve can be formed by applying a me-
dian filter to the absolute value of the fourth derivative of the resid-
ual power spectrum. The median filter is a nonlinear signal en-
hancement technique for smoothing of signals. The median of a
set is defined as the middlemost value of an ordered table of the
set values. The median filter has been used for impulsive and ran-
dom noise suppression of image data [4]. The adaptive threshold
curve formed by using the median filter is given by

T (f) = a + k(median(Yf )) (10)

wherek is a threshold scaling factor,a is the threshold offset, and
Y (f) is a subset of the absolute value of the fourth derivative of
the residual power spectrum given by

Y (f) = {D(4)
f−i, ..., D

(4)
f−1, D

(4)
f , D

(4)
f+1, ..., D

(4)
f+i}, (11)

and2i + 1 is the length of the median filter.
In the upmost graph in Fig. 3D(4)(f) is plotted with the

model orderp = 0, i.e. the residual is the signal itself. In the
middle graph, wherep = 50, most of the strongest frequencies
have vanished from the residual. In the lowest graph all the peaks
in D(4)(f) are decreased below the adaptive threshold curveT (f)
and the optimal model order is reached. The length of the median
filter is 51.
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Figure 3: The optimal model order has been achieved when the
frequencies are decreased below the adaptive threshold curve in
the fourth derivative of the residual power spectrum.
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5. EXPERIMENTS

In Figs. 4, 5, and 6 the adaptive modeling technique, presented
in this paper, is applied to different types of source material. The
signals are modeled by optimizing the length of the processing
frames. The length of the frames is printed inside the frames in
the signal graphs in each figure. Within each frame the minimum
number of modeling parameters, which will give optimal results,
is searched. Further increasing the number of model coefficients
would not result in significant improvement of the model. It would,
however, increase the computational complexity proportional to
the square of the number of the model coefficientsO(p2). The
number of the model parameters for each frame is printed in the
residual graph in each of the figures.

In Fig. 4 the automatic decision of the frame size divided the
speech signal in frames that contain different sounds in spoken
words. For example the third frame contains the letter ”s” from
the word ”sound”. This section of the signal is not very close to
an ideal AR-process and the optimal model order for this frame is
as low as 70. In Figs. 5 and 6 the the frames in guitar and music
signals are basically divided from places where the note of the
signal changes or a transient, such as drum hit, occur.
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Figure 4:Speech signal modeled by optimized frame lengths and
optimal number of model coefficients for each frame.

6. CONCLUSIONS

In this paper, we presented an adaptive frame-by-frame model-
ing technique for audio signals and applied it to different types of
source material. The input signal is divided into variable length
frames to obtain better starting point for the mathematical model.
The signal frames are modeled with LPC prediction error filters.
The number of the modeling parameters for a given frame is in-
creased until all the significant information is obtained from the
signal.

This modeling technique is suitable for a frame-by-frame real
time application, where modeling of the signal is needede.g.audio
signal coding and compression, effects, spectral estimation, and
noise reduction.
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Figure 5: Guitar signal modeled by optimized frame lengths and
optimal number of model coefficients for each frame.
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Figure 6: Music signal modeled by optimized frame lengths and
optimal number of model coefficients for each frame.
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