
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-1

AUTOMATING THE DESIGN OF SOUND SYNTHESIS TECHNIQUES
USING EVOLUTIONARY METHODS

Ricardo A. Garcia*

MIT Media Lab
Machine Listening Group

20 Ames St., E15-491, Cambridge, MA 02139
rago@media.mit.edu

* Now with Chaoticom. 83 Lafayette Road Hampton Falls, N.H. 03844, USA

ABSTRACT

Digital sound synthesizers, ubiquitous today in sound cards,
software and dedicated hardware, use algorithms (Sound
Synthesis Techniques, SSTs) capable of generating sounds
similar to those of acoustic instruments and even totally novel
sounds. The design of SSTs is a very hard problem. It is usually
assumed that it requires human ingenuity to design an algorithm
suitable for synthesizing a sound with certain characteristics.
Many of the SSTs commonly used are the fruit of
experimentation and a long refinement processes. A SST is
determined by its functional form and internal parameters.
Design of SSTs is usually done by selecting a fixed functional
form from a handful of commonly used SSTs, and performing a
parameter estimation technique to find a set of internal
parameters that will best emulate the target sound. A new
approach for automating the design of SSTs is proposed. It uses a
set of examples of the desired behavior of the SST in the form of
inputs + target sound. The approach is capable of suggesting
novel functional forms and their internal parameters, suited to
follow closely the given examples. Design of a SST is stated as a
search problem in the SST space (the space spanned by all the
possible valid functional forms and internal parameters, within
certain limits to make it practical). This search is done using
evolutionary methods; specifically, Genetic Programming (GP).

1. INTRODUCTION

Sound synthesizers are usually implemented as computer
programs and algorithms that run in digital computers and
produce digital sound samples (waveforms). These algorithms for
sound generation are termed Sound Synthesis Techniques (SSTs).
An SST can be dissected into a functional form and internal
parameters. The functional form (also known as topology)
describes the relationship between the functions and elements in
the algorithm, while the internal parameters are variables that
take a particular value at the moment of implementation of the
algorithm (depending on the desired behavior).
Design of a SST is customarily limited to the selection of a
functional form from a set of algorithms (i.e. “classic” SSTs)

followed by application of a mathematical technique for
estimation of the internal parameters to match a target sound. The
design of SSTs, more specifically their functional form, is a very
hard problem. It is usually assumed that it requires human
ingenuity to design an algorithm suitable for synthesizing sound
with certain characteristics. Many of the SSTs commonly used
are the fruit of experimentation and a long refinement processes.
The efforts for automating the design of SSTs have been mainly
focused into automating the parameter estimation stage of the
internal parameters for a given functional form.
Horner et al. [1] proposed an approach for automating the internal
parameter estimation of FM synthesizers using evolutionary
methods, in particular Genetic Algorithms (GA). Johnson [2]
proposed an interesting approach to use evolutionary methods
and human listeners in an interactive system to explore the
parameter space of (Fonction d’Onde Formantique) FOF
synthesis. Wehn [3] used GA to explore the parameter space of
FM-like synthesizers, and allowed some degree of variation in
the functional forms.
Our goal is to propose a general approach capable of suggesting
valid functional forms and internal parameters for a SST to
synthesize a target sound, using a known set of inputs (time
varying signals). This problem is related to the system
identification, or symbolic regression problem stated in control
theory. The inputs and outputs of the system are known, but the
system is unknown.

1.1. Approach

The SST space is defined as the space spanned by all the possible
combinations of a given set of functional elements and their
connections. Every point in the SST space defines completely a
functional form and its set of internal parameters. Design of a
SST is then regarded as a search in the SST space. The goal is to
“find” a point in this space that is capable of producing a sound
“close” to the target sound using the given inputs. This measure
of “closeness” is done using an “error metric”. The search in this
space is performed using a class of evolutionary computation
method called Genetic Programming (GP). GP has shown
outstanding empirical performance in searching complex
multidimensional spaces [4-6]. Custom SST representations in
the form of topology graphs and expression trees are used along

mailto:rago@media.mit.edu

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-2

with their required mapping rules. Topology graphs are the most
widely used representation for SST, but they are difficult to
manipulate. Expression trees facilitate the level of manipulation
required to use GP for exploring the SST space. A complete
discussion of this research can be found in [7].

2. REPRESENTATION OF SSTS

SSTs are computer algorithms designed to produce sound
samples. Algorithms are usually represented using: mathematical
formulas, instruction lists (pseudocode) or topology graphs (flow
diagrams). All of them are equivalent representation (posses the
same information), but offer different advantages from the
viewpoint of a human designer.

evaluate sin(x)
assign result to P
evaluate 2*P

b) assign result to Q
evaluate Q+0.5
assign result to Y
output Y

5.0)sin(2 += xy

a)

c)

sin()

0.5

X

Y

2

+

x

Figure 1. Representations of algorithm: a) formula, b)
pseudocode and, c) topology graph

2.1. Representing SSTs as expression trees

Topology graphs of complex SSTs are usually in the form of
cyclic graphs (with closed loops). Manipulating this kind of
graph is very difficult. Addition, deletion or reconnection of
functional elements can render a topology invalid very easy. In

addition, if the “designer” in charge of manipulating these
topologies is a computer program (as it is the goal), the easier the
manipulation, the less probability of creating useless SSTs.
Expression trees are graphs that are very easy to manipulate by
following a small set of construction rules. It makes sense to try
to find a mapping between an “easy-to-manipulate” expression
tree graph into a “difficult-to-manipulate” topology graph.
An ingenious idea borrowed from developmental biology
suggests a way of doing this. The idea is to encode in the
expression tree the instructions for the “development” of an
embryonic topology. The process begins with a very simple
embryo, and following the instructions it “grows” the fully
developed topology. It can even include the development for the
internal parameters associated with the functional elements.
Problems similar to this one that involved development of
topology graphs from expression trees were suggested by Koza et
al. [6, 8] that used a mapping into analog circuit topologies; and
Gruau [9] that mapped trees into neural network families.

2.2. Suggested mapping: expression tree into topology graph

The nodes in the expression trees are instructions that when
executed will result in a fully developed topology graph. Every
expression tree will render a unique topology graph, but it is
possible to have more than one tree to render the same topology
graph. The initial topology graph is called embryo, and in our
case it is a simple topology with four blocks, as seen in Figure 2
The embryo has a single modifiable object TYPE_A with no
functional element assigned yet, and connected to two sources
and one renderer. The sources and the renderer will remain the
same during the whole development process, but the modifiable
object will change and new blocks and connections will be
created. This configuration of the embryo could be different (to
suit the design specifications, i.e. the number of time varying
inputs), but has been chosen for explicatory purposes here. Figure
2 shows a simple expression tree, embryo and first steps of
development of a topology. The first node of the expression tree

Step 1
SOURCE 0

SOURCE 1

1
RENDER 0MULT

Step 0
SOURCE 0

SOURCE 1

1
RENDER 0

EMBRYO

Step 2
SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

Step 3
SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

ADD

Step 4
SOURCE 0

SOURCE 1 RENDER 0
3 2

1
MULT

ADDKOSCIL

Figure 2. Example of mapping from expression tree into topology graph. Note the development of the embryo into a more complex
topology

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-3

is the START node, and this is ignored during the development
process. The second node is “pointing” to the modifiable object
number 1. When executed, this node will change the topology
graph, more specifically the object that is pointed to in some way.
In this case, the node has the instruction MULT, so the type
MULT is assigned to the particular block in the topology graph.
The next node has the instruction SERIES1. The effect of this
instruction is to add some new blocks and connections to our
topology graph, and to create more “pointers” to different nodes
in different new branches of the expression tree. After executing
this Topology Modifying Function, several new blocks and
connections are introduced into the topology graph. Each one of
the new objects is modifiable, and has an associated node
pointing to it. The rest of the nodes are executed, and this adds,
modifies, or changes blocks and their connections into the
topology graph. A complete repertoire of topology development
functions can be found in [7].

2.3. Functional elements

From an analysis of several “classic” SSTs [10-12], a set of
commonly used basic functional elements was extracted. They
are called “classic SSTs” because they have been used and
studied by researchers and musicians over many years, and offer
a good approximation for a set of functional elements. This is a
list of the main types of functional elements found in our
taxonomy:

• Sinusoidal oscillators (variable amplitude, frequency,
phase over time)

• Wavetable oscillator (variable amplitude, read index)
• Delay (memory) for one or more samples
• Controlled gain filter
• Noise generator
• Time varying filters (coefficients can change over time)
• Addition
• Multiplication

3. DESIGN OF SST

Design of an algorithm is defined as “the process that conceives
the structural form and internal parameters of an algorithm,
capable of producing a desired set of outputs, using a known set
of inputs”. The specifications for the design are usually given as
sets of “examples”. Each example comprises a set of inputs and a
target output (desired behavior). It is necessary to specify as well
an Error Metric to measure the performance of a given SST.
Design of an SST is usually a two-stage process: first selection of
a functional form and, second parameter estimation.

3.1. Classic design

In classic SSTs design a human realizes the first stage of the
process. Functional forms are usually never conceived from
scratch for a particular target sound. Instead, the designer selects
one “template” from a set of known functional forms (i.e. the
classic SST) based on the characteristics of the target sound, and
the known capabilities of the tentative functional forms. In the
second stage, the designer selects an approach for parameter

estimation, and uses it to find the internal parameters that better
“fit” the selected functional form to produce a sound “close” to
the target sound. This part of the process has been automated
with high success [1] for FM synthesis parameter estimation. The
designer usually tries a handful of functional forms to select the
one that results in a better match to the target sound.

INPUTS OUTPUT
target

Parameter
Estimation

LPC
ADDITIVE

FM FM

…

selection
by human

human
judgement

use SST

Figure 3 Classic design of SST. Human selects a fixed
Functional Form from a pre-defined set (i.e. “classic”
SST) and uses a parameter estimation method. Human
judges if the results are satisfactory or repeats process
with new functional form

3.2. Proposed approach for design

Our proposed approach tries to remove as much human
intervention from the design process as possible. The first change
(and maybe the most important) is to replace the first stage of
selection of a pre-made functional form, with a “functional-form
suggesting mechanism”. This mechanism will suggest valid
functional forms that can be tested to see if they are good or not
for the desired goal. The second stage remains the same, and it
consists in the parameter estimation for the “selected” functional
form to try to match the target sound. Another point where the
human intervention can be reduced is in the “error comparison”
between the output sound and the target sound. This comparison
(error metric) will return a value that will be used for suggesting
a new functional form, and it will try to minimize the error. The
procedure is repeated until the error falls within acceptable limits.

INPUTS OUTPUT
target

Parameter
Estimation

SST suggestion
use SST

“error”
function

functional form +
initial parameters

functional
elements

Figure 4 Suggested approach for design. Automated
suggestion of Functional Forms, parameter estimation,
and automated comparison of target/output sounds fed
back in suggestion block.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-4

3.3. Parameter estimation

Once a functional-form has been selected (or suggested), the
number and type of internal parameters remains fixed. A
technique for parameter estimation can be used to find a set of
values for those parameters that will reduce the error between the
produced output and the target sound. This is usually done using
either mathematical analysis or optimization methods. The
approach selected depends mainly in the type of functional form
to be optimized and in the precision needed for its internal
parameters. Some of the mathematical analysis tools commonly
used include Fourier and Cepstral analysis. When a direct
mathematical analysis is not convenient, it is possible to use a
numerical method to approximate a “good” set of internal
parameters. These methods explore the parameter space in a
guided manner, and return usually a locally optimal set of
parameters that accomplish the desired behavior for the SST.
Note that the error metric plays a fundamental role in the
exploration of the parameter space and, ultimately, in the
selection of the parameters.

4. DESIGN AS A SEARCH IN SST SPACE

All the possible valid combinations of functional elements,
connections and internal parameters compose the SST space.
Hypothesis: Given a set of inputs, a target sound and an error
metric, it is possible to find the functional-form and internal
parameters of a SST capable of synthesizing an output sound
“close” to the target sound.
Our original goal of designing a SST (functional form and
internal parameters) can then be stated as a search problem in the
SST space. The next step is to define a search strategy to
efficiently and adaptively explore this space and find an
acceptable solution to our problem. The SST space has many
dimensions and is highly non linear. Each point in this space
represents a different SST (with different functional form and
internal parameters). Evolutionary methods have been shown to
perform very well in complex search spaces. [4, 13].

4.1. Genetic Programming (GP)

Genetic Programming (GP) is an optimization/search method
that has been gaining popularity in the last decade. It is an
extension of Genetic Algorithms, and both belong to the field of
Evolutionary Computation. The idea with GP is to have a
population of candidate solutions (in our case, suggested SSTs)
that will be evaluated and a fitness value assigned to each. The
fitness function gives an analytical measure of the performance
of the individual and its output. Once all the individuals in the
population have computed their fitness value, a new population
of candidate solutions is created by probabilistically selecting
individuals and performing genetic operations on them. The
probability of being selected to be part of a genetic operation is
directly related to the fitness of the individual: the better the
fitness, the higher the probability. The genetic operations will
create new individuals by: copy (identical copy of an individual),
mutation (random alteration of an individual functional form
and/or internal parameters), or crossover (characteristics of two
individuals are fused together to create a new one). The process

is repeated until a candidate solution that shows a fitness value
that fulfills the specifications is found, or a maximum allowed
number of generations have been tested.

Figure 5 Genetic Programming loop

4.2. Fitness functions

In any kind of optimization or search method, it is fundamental to
have a way to measure the performance of the candidate solution.
This performance metric is usually called a fitness function or
error metric. Fitness functions (FF) give some numerical grade to
the difference between the outputs of the system compared to a
desired target. The features that are measured in a fitness function
vary from application to application. In our case, for sound
synthesis techniques and sound sample sequences (waveforms) as
targets, it is usual to define fitness functions that measure the
distance between two sounds, or how “similar” they are. An
analytical fitness function that uses the Least Squares Error
(LSE) of the magnitude spectrograms (of Target and produced
sounds) has been successfully applied by Horner et al. [1], and
showed good results with this project. An enhancement for this
fitness function was to include phase information. The LSE of the
phase spectrograms, weighted with the magnitude of the target
sound was successfully used in most of the test performed [7, 14].
Perceptual fitness functions are more difficult to compute
because of their subjective nature. A fitness function that
incorporates a psychoacoustic model of simultaneous frequency
masking [15-17] was developed and used successfully in some
tests performed [7].

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-5

5. AGeSS SYSTEM

A system implementing the proposed approach called AGeSS
(Automatic Generation of Sound Synthesizers) has been
developed and tested. The system is implemented as a set of
binaries (compiled for ANSI C++) and Matlab scripts. The user is
required to supply the parameters for the GP run, as well as the
“examples” for the system.

USER
AGeSS

SYSTEM
Inputs
- Run parameters
- Examples

Output
Suggested expression tree

Figure 6 AGeSS system: user input (parameters, examples
of control signals and Target). Output (suggested
expression tree)

6. EXAMPLE

The developed AGeSS system was used to perform a series of
experiments to explore the potential of the suggested approach.
One of them is outlined here.
A simple FM synthesis formula was chosen for this experiment
[10, 12], as shown in equation 1. This SST has been explored in
depth by many researchers and musicians. The value of the
internal parameters was taken from the original values suggested
by Chowning for simulating a woodwind sound [18].



















+=

FS
M

IM
FS
C

tAts f
f

f πππ 2sin22sin)()((1)

fC = Carrier frequency = 880 , 988 = f(t)

fM = Modulator frequency = 880/3, 988/3 = f(t)/3

I = index of modulation = 2
FS = sampling frequency = 8000
A(t) = time varying envelope
This SST uses two time varying inputs: A(t) and f(t) and 3
internal parameters I, D, M. For the generation of the Target
sound, two time varying signals were generated (using Matlab) to
simulate the brass sound of two distinct notes (A880, B988) of
0.3 seconds each. These can be seen in Figure 7.

Figure 7 Input signals (top) Envelope for two notes.
(bottom) Normalized pitch for two notes (A880, B988).

The selected fitness function uses the simultaneous frequency
masking fitness function. It calculates the spectrogram of the

target sound and uses this to calculate the threshold of masking of
the target. This information, along with the spectrogram of the
output sound is used to calculate a distance metric.

Figure 8 Spectrogram and waveform of TARGET signal
formed by two notes (A880, B988).

Figure 9 Spectrogram, waveform and topology for best
individual of Generation 220

Note that the final spectrum agrees with the target in all the
frequencies of the harmonics. But the final spectrum has higher
energy at the high end of the spectrum. The topology evolved in
generation 220 is shown in Figure 9. It is possible to analyze the
functional elements and their connections to find the close form
formula representation of the topology. In this case, it is
represented in equation 2.

()() ()()2010021)()()()()()(ktfkosciltfosciltftfkosciltAkts +×+=
 (2)

Comparison between equations1 and 2 shows a close similarity in
their functional form.

7. CONCLUSIONS

Design is stated as a search in the multidimensional SST space.
Each point in this space will represent a different functional form
and set of internal parameters. The goal is then to find a point in
the SST space that will fulfill the specifications of design. It is
not clear how neighboring points are related in this
representation. In addition, the number of possible points in this
space is huge, making it impossible to do a thorough search of the
space. These characteristics make the search of the SST space a

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-6

very complex problem. Evolutionary methods, such as Genetic
Programming, have proved satisfactory when dealing with these
types of problems. The experiments show that the selected set of
functional elements and the representation scheme are effective
for the automated design of some common synthesis algorithms,
especially the frequency modulation techniques.
For more information about this research project, please visit
http://www.ragomusic.com/research/

8. REFERENCES

[1] A. Horner, J. Beauchamp, and L. Haken, "Machine Tongues
.16. Genetic Algorithms and Their Application to Fm
Matching Synthesis," Computer Music Journal, vol. 17, pp.
17-29, 1993.

[2] C. G. Johnson, "Exploring the sound-space of synthesis
algorithms using interactive genetic algorithms," presented at
Proceedings of the AISB Workshop on Articial Intelligence
and Musical Creativity, Edinburgh, 1999.

[3] K. Wehn, "Using ideas from natural selection to evolve
synthesized sounds," presented at Proceedings of the Digital
Audio Effects DAFX98 workshop, Barcelona, 1998.

[4] J. R. Koza, Genetic programming : on the programming of
computers by means of natural selection. Cambridge, Mass.:
MIT Press, 1992.

[5] J. R. Koza, Genetic programming II : automatic discovery of
reusable programs. Cambridge, Mass.: MIT Press, 1994.

[6] J. R. Koza, Genetic programming III : darwinian invention
and problem solving. San Francisco: Morgan Kaufmann,
1999.

[7] R. A. Garcia, "Automatic Generation of Sound Synthesis
Techniques," in Program in Media Arts & Sciences:
Massachusetts Institute of Technology, 2001, pp. 98 p.

[8] J. R. Koza, F. H. Bennett, III, D. Andre, M. A. Keane, and F.
Dunlap, "Automated synthesis of analog electrical circuits by
means of genetic programming," IEEE Transactions on
Evolutionary Computation, vol. 1, pp. 109 - 128, 1997.

[9] F. Gruau, "Cellular encodign of genetic neural networks,"
Ecole Normale Superiéure de Lyon, Lyon 92-21, May 1992
1992.

[10] C. Roads, The computer music tutorial. Cambridge, Mass.:
MIT Press, 1994.

[11] G. Depoli, "A Tutorial on Digital Sound Synthesis
Techniques," Computer Music Journal, vol. 7, pp. 8-26,
1983.

[12] R. C. Boulanger, "The Csound book : perspectives in
software synthesis, sound design, signal processing, and
programming,". Cambridge, Mass.: MIT Press, 2000.

[13] N. A. Gershenfeld, The nature of mathematical modeling.
New York: Cambridge University Press, 1999.

[14] R. A. Garcia, "Growing Sound Synthesizers using
Evolutionary Methods," presented at Sixth European
Conference on Artificial Life. Workshop on Artificial Life
Models for Musical Applications, Prague, Czech Republic,
2001.

[15] J. G. Roederer, The physics and psychophysics of music : an
introduction, 3rd ed. New York: Springer-Verlag, 1995.

[16] K. C. Pohlmann, Principles of digital audio, 3rd ed. New
York: McGraw-Hill, 1995.

[17] P. R. Cook, "Music, cognition, and computerized sound : an
introduction to psychoacoustics,". Cambridge, Mass.: MIT
Press, 1999.

[18] J. Chowning, "The synthesis of complex audio spectra by
means of frequency modulation," Journal of the Audio
Engineering Society, vol. 21, pp. 526-534, 1973.

http://www.ragomusic.com/research/

