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ABSTRACT 

Digital sound synthesizers, ubiquitous today in sound cards, 
software and dedicated hardware, use algorithms (Sound 
Synthesis Techniques, SSTs) capable of generating sounds 
similar to those of acoustic instruments and even totally novel 
sounds. The design of SSTs is a very hard problem. It is usually 
assumed that it requires human ingenuity to design an algorithm 
suitable for synthesizing a sound with certain characteristics. 
Many of the SSTs commonly used are the fruit of 
experimentation and a long refinement processes. A SST is 
determined by its functional form and internal parameters. 
Design of SSTs is usually done by selecting a fixed functional 
form from a handful of commonly used SSTs, and performing a 
parameter estimation technique to find a set of internal 
parameters that will best emulate the target sound. A new 
approach for automating the design of SSTs is proposed. It uses a 
set of examples of the desired behavior of the SST in the form of 
inputs + target sound. The approach is capable of suggesting 
novel functional forms and their internal parameters, suited to 
follow closely the given examples. Design of a SST is stated as a 
search problem in the SST space (the space spanned by all the 
possible valid functional forms and internal parameters, within 
certain limits to make it practical). This search is done using 
evolutionary methods; specifically, Genetic Programming (GP).  

1. INTRODUCTION 

Sound synthesizers are usually implemented as computer 
programs and algorithms that run in digital computers and 
produce digital sound samples (waveforms). These algorithms for 
sound generation are termed Sound Synthesis Techniques (SSTs).  
An SST can be dissected into a functional form and internal 
parameters. The functional form (also known as topology) 
describes the relationship between the functions and elements in 
the algorithm, while the internal parameters are variables that 
take a particular value at the moment of implementation of the 
algorithm (depending on the desired behavior). 
Design of a SST is customarily limited to the selection of a 
functional form from a set of algorithms (i.e. “classic” SSTs) 

followed by application of a mathematical technique for 
estimation of the internal parameters to match a target sound. The 
design of SSTs, more specifically their functional form, is a very 
hard problem. It is usually assumed that it requires human 
ingenuity to design an algorithm suitable for synthesizing sound 
with certain characteristics. Many of the SSTs commonly used 
are the fruit of experimentation and a long refinement processes.  
The efforts for automating the design of SSTs have been mainly 
focused into automating the parameter estimation stage of the 
internal parameters for a given functional form. 
Horner et al. [1] proposed an approach for automating the internal 
parameter estimation of FM synthesizers using evolutionary 
methods, in particular Genetic Algorithms (GA). Johnson [2] 
proposed an interesting approach to use evolutionary methods 
and human listeners in an interactive system to explore the 
parameter space of (Fonction d’Onde Formantique) FOF 
synthesis. Wehn [3] used GA to explore the parameter space of 
FM-like synthesizers, and allowed some degree of variation in 
the functional forms. 
Our goal is to propose a general approach capable of suggesting 
valid functional forms and internal parameters for a SST to 
synthesize a target sound, using a known set of inputs (time 
varying signals). This problem is related to the system 
identification, or symbolic regression problem stated in control 
theory. The inputs and outputs of the system are known, but the 
system is unknown. 

1.1. Approach 

The SST space is defined as the space spanned by all the possible 
combinations of a given set of functional elements and their 
connections. Every point in the SST space defines completely a 
functional form and its set of internal parameters. Design of a 
SST is then regarded as a search in the SST space. The goal is to 
“find” a point in this space that is capable of producing a sound 
“close” to the target sound using the given inputs. This measure 
of “closeness” is done using an “error metric”. The search in this 
space is performed using a class of evolutionary computation 
method called Genetic Programming (GP). GP has shown 
outstanding empirical performance in searching complex 
multidimensional spaces [4-6]. Custom SST representations in 
the form of topology graphs and expression trees are used along 
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with their required mapping rules. Topology graphs are the most 
widely used representation for SST, but they are difficult to 
manipulate. Expression trees facilitate the level of manipulation 
required to use GP for exploring the SST space. A complete 
discussion of this research can be found in [7]. 

2. REPRESENTATION OF SSTS 

SSTs are computer algorithms designed to produce sound 
samples. Algorithms are usually represented using: mathematical 
formulas, instruction lists (pseudocode) or topology graphs (flow 
diagrams). All of them are equivalent representation (posses the 
same information), but offer different advantages from the 
viewpoint of a human designer. 

evaluate sin(x)
assign result to P
evaluate 2*P

b) assign result to Q
evaluate Q+0.5
assign result to Y
output Y 
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Figure 1. Representations of algorithm: a) formula, b) 
pseudocode and, c) topology graph 

2.1. Representing SSTs as expression trees 

Topology graphs of complex SSTs are usually in the form of 
cyclic graphs (with closed loops). Manipulating this kind of 
graph is very difficult. Addition, deletion or reconnection of 
functional elements can render a topology invalid very easy. In 

addition, if the “designer” in charge of manipulating these 
topologies is a computer program (as it is the goal), the easier the 
manipulation, the less probability of creating useless SSTs. 
Expression trees are graphs that are very easy to manipulate by 
following a small set of construction rules. It makes sense to try 
to find a mapping between an “easy-to-manipulate” expression 
tree graph into a “difficult-to-manipulate” topology graph. 
An ingenious idea borrowed from developmental biology 
suggests a way of doing this. The idea is to encode in the 
expression tree the instructions for the “development” of an 
embryonic topology. The process begins with a very simple 
embryo, and following the instructions it “grows” the fully 
developed topology. It can even include the development for the 
internal parameters associated with the functional elements. 
Problems similar to this one that involved development of 
topology graphs from expression trees were suggested by Koza et 
al. [6, 8] that used a mapping into analog circuit topologies; and 
Gruau [9] that mapped trees into neural network families. 

2.2. Suggested mapping: expression tree into topology graph 

The nodes in the expression trees are instructions that when 
executed will result in a fully developed topology graph. Every 
expression tree will render a unique topology graph, but it is 
possible to have more than one tree to render the same topology 
graph. The initial topology graph is called embryo, and in our 
case it is a simple topology with four blocks, as seen in Figure 2 
The embryo has a single modifiable object TYPE_A with no 
functional element assigned yet, and connected to two sources 
and one renderer. The sources and the renderer will remain the 
same during the whole development process, but the modifiable 
object will change and new blocks and connections will be 
created. This configuration of the embryo could be different (to 
suit the design specifications, i.e. the number of time varying 
inputs), but has been chosen for explicatory purposes here. Figure 
2 shows a simple expression tree, embryo and first steps of 
development of a topology. The first node of the expression tree 
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Figure 2. Example of mapping from expression tree into topology graph. Note the development of the embryo into a more complex 
topology  
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is the START node, and this is ignored during the development 
process. The second node is “pointing” to the modifiable object 
number 1. When executed, this node will change the topology 
graph, more specifically the object that is pointed to in some way. 
In this case, the node has the instruction MULT, so the type 
MULT is assigned to the particular block in the topology graph. 
The next node has the instruction SERIES1. The effect of this 
instruction is to add some new blocks and connections to our 
topology graph, and to create more “pointers” to different nodes 
in different new branches of the expression tree. After executing 
this Topology Modifying Function, several new blocks and 
connections are introduced into the topology graph. Each one of 
the new objects is modifiable, and has an associated node 
pointing to it. The rest of the nodes are executed, and this adds, 
modifies, or changes blocks and their connections into the 
topology graph. A complete repertoire of topology development 
functions can be found in [7]. 

2.3. Functional elements 

From an analysis of several “classic” SSTs [10-12], a set of 
commonly used basic functional elements was extracted. They 
are called “classic SSTs” because they have been used and 
studied by researchers and musicians over many years, and offer 
a good approximation for a set of functional elements. This is a 
list of the main types of functional elements found in our 
taxonomy: 

• Sinusoidal oscillators (variable amplitude, frequency, 
phase over time) 

• Wavetable oscillator (variable amplitude, read index) 
• Delay (memory) for one or more samples 
• Controlled gain filter 
• Noise generator 
• Time varying filters (coefficients can change over time) 
• Addition 
• Multiplication 

3. DESIGN OF SST 

Design of an algorithm is defined as “the process that conceives 
the structural form and internal parameters of an algorithm, 
capable of producing a desired set of outputs, using a known set 
of inputs”. The specifications for the design are usually given as 
sets of “examples”. Each example comprises a set of inputs and a 
target output (desired behavior). It is necessary to specify as well 
an Error Metric to measure the performance of a given SST. 
Design of an SST is usually a two-stage process: first selection of 
a functional form and, second parameter estimation. 

3.1. Classic design 

In classic SSTs design a human realizes the first stage of the 
process. Functional forms are usually never conceived from 
scratch for a particular target sound. Instead, the designer selects 
one “template” from a set of known functional forms (i.e. the 
classic SST) based on the characteristics of the target sound, and 
the known capabilities of the tentative functional forms. In the 
second stage, the designer selects an approach for parameter 

estimation, and uses it to find the internal parameters that better 
“fit” the selected functional form to produce a sound “close” to 
the target sound. This part of the process has been automated 
with high success [1] for FM synthesis parameter estimation. The 
designer usually tries a handful of functional forms to select the 
one that results in a better match to the target sound. 
 

INPUTS OUTPUT
target

Parameter
Estimation

LPC
ADDITIVE

FM FM

…

selection 
by human

human 
judgement

use SST

 
Figure 3 Classic design of SST. Human selects a fixed 
Functional Form from a pre-defined set (i.e. “classic” 
SST) and uses a parameter estimation method. Human 
judges if the results are satisfactory or repeats process 
with new functional form 

 

3.2. Proposed approach for design 

Our proposed approach tries to remove as much human 
intervention from the design process as possible. The first change 
(and maybe the most important) is to replace the first stage of 
selection of a pre-made functional form, with a “functional-form 
suggesting mechanism”. This mechanism will suggest valid 
functional forms that can be tested to see if they are good or not 
for the desired goal. The second stage remains the same, and it 
consists in the parameter estimation for the “selected” functional 
form to try to match the target sound. Another point where the 
human intervention can be reduced is in the “error comparison” 
between the output sound and the target sound. This comparison 
(error metric) will return a value that will be used for suggesting 
a new functional form, and it will try to minimize the error. The 
procedure is repeated until the error falls within acceptable limits. 
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Figure 4 Suggested approach for design. Automated 
suggestion of Functional Forms, parameter estimation, 
and automated comparison of target/output sounds fed 
back in suggestion block. 
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3.3. Parameter estimation 

Once a functional-form has been selected (or suggested), the 
number and type of internal parameters remains fixed. A 
technique for parameter estimation can be used to find a set of 
values for those parameters that will reduce the error between the 
produced output and the target sound. This is usually done using 
either mathematical analysis or optimization methods. The 
approach selected depends mainly in the type of functional form 
to be optimized and in the precision needed for its internal 
parameters. Some of the mathematical analysis tools commonly 
used include Fourier and Cepstral analysis. When a direct 
mathematical analysis is not convenient, it is possible to use a 
numerical method to approximate a “good” set of internal 
parameters. These methods explore the parameter space in a 
guided manner, and return usually a locally optimal set of 
parameters that accomplish the desired behavior for the SST. 
Note that the error metric plays a fundamental role in the 
exploration of the parameter space and, ultimately, in the 
selection of the parameters. 

4. DESIGN AS A SEARCH IN SST SPACE 

All the possible valid combinations of functional elements, 
connections and internal parameters compose the SST space.  
Hypothesis: Given a set of inputs, a target sound and an error 
metric, it is possible to find the functional-form and internal 
parameters of a SST capable of synthesizing an output sound 
“close” to the target sound. 
Our original goal of designing a SST (functional form and 
internal parameters) can then be stated as a search problem in the 
SST space. The next step is to define a search strategy to 
efficiently and adaptively explore this space and find an 
acceptable solution to our problem. The SST space has many 
dimensions and is highly non linear. Each point in this space 
represents a different SST (with different functional form and 
internal parameters). Evolutionary methods have been shown to 
perform very well in complex search spaces. [4, 13]. 

4.1. Genetic Programming (GP) 

Genetic Programming  (GP) is an optimization/search method 
that has been gaining popularity in the last decade. It is an 
extension of Genetic Algorithms, and both belong to the field of 
Evolutionary Computation. The idea with GP is to have a 
population of candidate solutions (in our case, suggested SSTs) 
that will be evaluated and a fitness value assigned to each. The 
fitness function gives an analytical measure of the performance 
of the individual and its output. Once all the individuals in the 
population have computed their fitness value, a new population 
of candidate solutions is created by probabilistically selecting 
individuals and performing genetic operations on them. The 
probability of being selected to be part of a genetic operation is 
directly related to the fitness of the individual: the better the 
fitness, the higher the probability. The genetic operations will 
create new individuals by: copy (identical copy of an individual), 
mutation (random alteration of an individual functional form 
and/or internal parameters), or crossover (characteristics of two 
individuals are fused together to create a new one).  The process 

is repeated until a candidate solution that shows a fitness value 
that fulfills the specifications is found, or a maximum allowed 
number of generations have been tested. 
 

 
Figure 5 Genetic Programming loop 

4.2. Fitness functions 

In any kind of optimization or search method, it is fundamental to 
have a way to measure the performance of the candidate solution. 
This performance metric is usually called a fitness function or 
error metric. Fitness functions (FF) give some numerical grade to 
the difference between the outputs of the system compared to a 
desired target. The features that are measured in a fitness function 
vary from application to application. In our case, for sound 
synthesis techniques and sound sample sequences (waveforms) as 
targets, it is usual to define fitness functions that measure the 
distance between two sounds, or how “similar” they are.  An 
analytical fitness function that uses the Least Squares Error 
(LSE) of the magnitude spectrograms (of Target and produced 
sounds) has been successfully applied by Horner et al. [1], and 
showed good results with this project. An enhancement for this 
fitness function was to include phase information. The LSE of the 
phase spectrograms, weighted with the magnitude of the target 
sound was successfully used in most of the test performed [7, 14]. 
Perceptual fitness functions are more difficult to compute 
because of their subjective nature. A fitness function that 
incorporates a psychoacoustic model of simultaneous frequency 
masking [15-17] was developed and used successfully in some 
tests performed [7]. 
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5. AGeSS SYSTEM 

A system implementing the proposed approach called AGeSS 
(Automatic Generation of Sound Synthesizers) has been 
developed and tested. The system is implemented as a set of 
binaries (compiled for ANSI C++) and Matlab scripts. The user is 
required to supply the parameters for the GP run, as well as the 
“examples” for the system. 
 

USER
AGeSS

SYSTEM
Inputs
- Run parameters
- Examples

Output
Suggested expression tree

 
Figure 6 AGeSS system: user input (parameters, examples 
of control signals and Target). Output (suggested 
expression tree) 

6. EXAMPLE 

The developed AGeSS system was used to perform a series of 
experiments to explore the potential of the suggested approach. 
One of them is outlined here. 
A simple FM synthesis formula was chosen for this experiment 
[10, 12], as shown in equation 1. This SST has been explored in 
depth by many researchers and musicians. The value of the 
internal parameters was taken from the original values suggested 
by Chowning for simulating a woodwind sound [18]. 

 


















+=

FS
M

IM
FS
C

tAts f
f

f πππ 2sin22sin)()(  (1) 

fC  =  Carrier frequency = 880 , 988 = f(t) 

fM  = Modulator frequency = 880/3, 988/3 = f(t)/3 

I = index of modulation = 2 
FS = sampling frequency = 8000 
A(t) = time varying envelope 
This SST uses two time varying inputs: A(t) and f(t) and 3 
internal parameters I, D, M. For the generation of the Target 
sound, two time varying signals were generated (using Matlab) to 
simulate the brass sound of two distinct notes (A880, B988) of 
0.3 seconds each. These can be seen in Figure 7. 

 
Figure 7 Input signals (top) Envelope for two notes. 
(bottom) Normalized pitch for two notes (A880, B988). 

The selected fitness function uses the simultaneous frequency 
masking fitness function. It calculates the spectrogram of the 

target sound and uses this to calculate the threshold of masking of 
the target. This information, along with the spectrogram of the 
output sound is used to calculate a distance metric. 
 

 
Figure 8 Spectrogram and waveform of TARGET signal 
formed by two notes (A880, B988). 

 

 
Figure 9 Spectrogram, waveform and topology for best 
individual of Generation 220 

Note that the final spectrum agrees with the target in all the 
frequencies of the harmonics. But the final spectrum has higher 
energy at the high end of the spectrum. The topology evolved in 
generation 220 is shown in Figure 9. It is possible to analyze the 
functional elements and their connections to find the close form 
formula representation of the topology. In this case, it is 
represented in equation 2. 
 

( )( ) ( )( )2010021 )()()()()()( ktfkosciltfosciltftfkosciltAkts +×+=
   (2) 

Comparison between equations1 and 2 shows a close similarity in 
their functional form. 

7. CONCLUSIONS 

Design is stated as a search in the multidimensional SST space. 
Each point in this space will represent a different functional form 
and set of internal parameters. The goal is then to find a point in 
the SST space that will fulfill the specifications of design. It is 
not clear how neighboring points are related in this 
representation. In addition, the number of possible points in this 
space is huge, making it impossible to do a thorough search of the 
space. These characteristics make the search of the SST space a 
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very complex problem. Evolutionary methods, such as Genetic 
Programming, have proved satisfactory when dealing with these 
types of problems. The experiments show that the selected set of 
functional elements and the representation scheme are effective 
for the automated design of some common synthesis algorithms, 
especially the frequency modulation techniques.  
For more information about this research project, please visit 
http://www.ragomusic.com/research/ 
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