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ABSTRACT

Discrete-time structures of first-order and second-order equaliza-
tion filters are proposed. They turn to be particularly useful in
applications where the equalization parameters are dynamically
varied, such as in contexts of audio virtual reality. In fact, their
design allows a simplified and more direct control of the filter co-
efficients, at the cost of some more computation cycles that are
required, during each time step, by implementations on real-time
processing devices.

1. INTRODUCTION

Recent developments in multimedia audio and in auditory display
have created a special interest for models, whose parameters can be
easily and directly driven by higher-level control stages. Although
these models may result in sub-optimal algorithms and structures
in terms of computational cost, easy access to their parameters
simplifies the design of the intermediate control stages, and some-
times allows realizing more effective user interfaces. If such a
design philosophy once was heavily limited by unavoidable hard-
ware requirements, now current real time hardware can provide,
without loss of performance, the necessary resources to models
where the control layer has been optimized, despite a sub-optimal
realization of the signal processing layer.

Physical models have been a typical example of this differ-
ent approach in the design of sound synthesis algorithms for elec-
tronic musical instruments: in some cases, their adoption has made
human-machine interaction possible in this application field [1, 2].
More recently, special attention has been deserved by the auditory
display community for models capable of reproducing “sounding
objects”, and their interactions with the human being in the con-
text of a multi-modal, interactive virtual environment: for this type
of human-object interaction, the effectiveness of control parame-
ters like impact force or object position is even more important
than the accuracy of the sound produced by the object itself, that is
generated by a synthesis algorithm working at the signal process-
ing layer [3, 4].

Audio effects are facing a similar change in the design philos-
ophy. Audio virtual reality requires that physical and geometrical
quantities, such as the sound source position or wall reflections in
a virtual listening room, drive the processing algorithm as directly
as possible. This can be achieved if the control layer complex-
ity, that is usually devoted to map these quantities into parameters
such as filter coefficients, has been minimized. Such goal is criti-
cal if those quantities are time-varying, as it happens for instance

in application of human-computer interaction, where the decisions
taken by the user determine changes in the system parameters.

Linear equalization is a processing technique which is well-
known by the effect designer. Graphic equalizers, both analog and
digital, are widely used to change the “color” of sounds. Their
use is very general, and their tuning so immediate to understand
that they can be successfully used in interactive audio systems,
whenever the human-system interaction involves changes of the
sound color, or “presence” [5].

Tunable equalization filters [6], classified as first-order (shelv-
ing) equalization filters and second-order (parametric) equaliza-
tion filters, are perhaps the most common building blocks that are
used in the design of digital graphic equalizers. They provide an
easy and direct access to the equalization parameters, i.e.,

1. low-frequency gain and cutoff frequency for first-order low-
frequency (LF) equalization filters, or LF shelving filters;
symmetrically, high-frequency gain and cutoff frequency
for first-order high-frequency (HF) equalization filters, or
HF shelving filters;

2. center-frequency gain, selectivity and center frequency for
second-order equalization filters; these second-order filters
are in particular peaking filters when the center-frequency
gain is positive, or notch filters when the center-frequency
gain is negative.

Such low-, center- and high-frequency gains are tuned driving one
parameter (denoted with K) of these filters, so that the gain in dB
is simply found out by computing the value 20 log10K. As a re-
sult of this ease of control, a graphic equalizer made by a series
connection of one LF shelving filter (denoted with L), N second-
order equalization filters, and one HF shelving filter (denoted with
H), gives an immediate visual feedback to the user: provided a
proper cutoff frequency and selectivity for each equalization filter,
its overall equalization curve is described by a gain response hav-
ing magnitude KL at LF, magnitude KH at HF, and magnitudes
K1; : : : ; KN that correspond to the N selective gains at the pre-
scribed center frequencies, each one provided by a second-order
equalization filter.

Figure 1 shows, as an example, the equalization curve of a
graphic equalizer (N = 2) having KL = �2 dB, K1 = 1 dB cen-
tered at �40 dB, K2 = �2 dB centered at �20 dB, KH = 1 dB.
The Nyquist frequency has been normalized to unity. The shelving
filters provide an overall shift of the gain level, in a way that the
action of the second-order equalization filters are “shelved” by this
shift.
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Figure 1: Equalization curve of a graphic equalizer (N=2) having
KL = �2 dB, K1 = 1 dB @ �40 dB, K2 = �2 dB @ �20 dB,
KH = 1 dB. Nyquist frequency normalized to unity.

2. MAGNITUDE-COMPLEMENTARY EQUALIZATION

It would seem quite obvious that reciprocating the K value results
in a magnitude-complementary gain response, exactly canceling
the former one. Unfortunately, this is not true: two tunable equal-
ization filters having inverse K values do not have responses that
are symmetrical around 0 dB. For example, Figure 2 shows gain
responses coming from an LF shelving filter, providing respec-
tively a cut of 5 dB (K = 0:562, dashed line) and a boost of 5 dB
(K = 1:778, solid line). Evidently, they are not complementary.
A similar example is given in the case of a second-order equalizer
(Figure 3). Notice also that a bandpass response can be obtained
only by setting K to be greater than one, in any case.

Complementary gain responses can be in principle obtained,
due to the minimum-phase property of the transfer function real-
ized by this class of filters, if another parameter, denoted with �,
accounting for the filter cutoff frequency (first-order case) or the
selectivity (second-order case), is tuned according to the value of
K [6]. Tuning � together withK allows in practice to select a new
value for the cutoff frequency or the selectivity each time the gain
varies. Hence, complementary gain responses are provided if the
user-level control operates in general on bothK and �. This means
that a system, having the functionality of synthesizing magnitude-
complementary equalization functions, must be provided with an
intermediate stage, which maps each selective gain control from
the user interface into two parameters of the tunable equalization
filter.

Parameters K and � must be mapped, in their turn, into filter
coefficients. The number of the mapped coefficients is at least two,
in realizations of the tunable equalization filter where � maps, di-
rectly and independently from K, into one filter coefficient. This
happens when a lattice structure realizes the allpass block of the fil-
ter [5]. In general cases this number is higher, up to four, for exam-
ple in realizations involving biquadratic filters that minimize the
computational cost of the processing algorithm, meanwhile sacri-
ficing the ease of control [7].

In the next Section we present a different approach to the in-
verse tunable equalization filter design. This approach minimizes
the cost of the coefficients control, and the memory that is required
for storing the filter coefficient values during fast lookup opera-
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Figure 2: Gain responses of an LF shelving filter. Dashed line: 5
dB cut (K = 0:562); solid line: 5 dB boost (K = 1:778). Nyquist
frequency normalized to unity.
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Figure 3: Gain responses of a second-order equalizer. Dashed
line: 5 dB cut (K = 0:562); solid line: 5 dB boost (K = 1:778).
Nyquist frequency normalized to unity.

tions. As a rule of thumb, this solution increases the number of
computation cycles that are required for computing a signal sam-
ple, although this increase is far from being dramatic.

3. DESIGN OF THE INVERSE FILTER

Consider the transfer function H(z) of a bandstop tunable equal-
ization filter, HBS. It provides a gain response such as the one
in dashed line of Figure 2 or Figure 3. HBS(z) can be put in the
following form [6]:

HBS(z) =
1 +K

2

�
1 +

1�K

1 +K
A(z)

�
; 0 < K < 1 (1)

where A(z) is an allpass filter. When A(z) is a first-order allpass,

A(z) =
�� z�1

1� �z�1
(2)
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Figure 4: Structure for the computation of the bandpass tunable equalization filter. The terms 1 �K must be changed into K � 1 when
realizing an HF shelving filter.
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Figure 5: Bandpass/bandstop equalizer. When switches are set to position BS a bandstop transfer function is provided. When switches are
set to position BP a complementary (bandpass) transfer function is provided. HF shelving is realized by swapping the branch containing
the multiplier by K with the one terminating at the adder common to both of them.

we have an LF shelving filter. When A(z) is a second-order all-
pass,

A(z) =
�� �(1 + �)z�1 + z�2

1� �(1 + �)z�1 + �z�2
(3)

then we have a second-order equalizer. An LF shelving filter is
turned into an HF shelving filter by changing the sign of 1�K in
(1).

Let HBP(z) be the inverse of HBS(z), this being possible due
to the minimum phase property of the bandstop transfer function:

HBP(z) =
1

HBS(z)
(4)

=
2

1 +K

1

1 + 1�K

1+K
A(z)

; 0 < K < 1

We see thatK is still factored out from the allpass block in the
denominator of the bandpass transfer function. This suggests that
the independence of gain tuning might be preserved in the inverse

filter, too. Unfortunately, this filter does not straightforwardly re-
sult in a structure preserving the nature of the rational function
HBP(z), since it contains a delay-free loop, which is known to be
non-computable.

Recent research [8] has shown that, for rational functions con-
taining delay-free loops like the one seen above, techniques ex-
ist to solve the non-computability, while preserving the structural
properties of the function. In this case, using the techniques just
mentioned, the inverse (bandpass) filter preserves the allpass block
(where the � coefficient is embedded) that is contained in the orig-
inal tunable equalization filter.

The algorithm that computes the bandpass filter consists of the
following three steps that are repeated at each time step n:

1. feed the allpass block with zero, computing the value l0[n];

2. calculate the output y[n] of the bandpass tunable equaliza-
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Figure 6: Gain responses of the proposed system in LF shelving
configuration (K = 0:562). Dashed line: 5 dB cut; solid line: 5
dB boost. Nyquist frequency normalized to unity.
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Figure 7: Gain responses of the proposed system in HF shelving
configuration (K = 0:562). Dashed line: 5 dB cut; solid line: 5
dB boost. Nyquist frequency normalized to unity.

tion filter in the following way, x being the input signal:

y[n] =
1

1 + � 1�K

1+K

�
2

1 +K
x[n]�

1�K

1 +K
l0[n]

�

=
2

(1 +K) + �(1�K)

�
x[n]�

1�K

2
l0[n]

�

3. feed the allpass filter with y[n] to update its state variables.

The algorithm that we have just outlined can be computed by
the structure depicted in Figure 4. That structure contains in par-
ticular a hold block (labeled with H) devoted to retain the output
sample y[n], that must be fed back to the allpass block after the
computation of the output itself. In more detail, such a structure
performs the following procedure:

� the two switches are at the position labeled with I; steps 1
and 2 are computed. y[n] is retained by the hold block H;

� the switches move to position labeled with II: H feeds the
allpass block with y[n] to update its internal state;
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Figure 8: Gain responses of the proposed system configured as a
second-order equalizer (K = 0:562). Dashed line: 5 dB cut; solid
line: 5 dB boost. Nyquist frequency normalized to unity.

� the switches move back to position I. The system is ready
to process the next input sample.

The same procedure can be computed also by a pure linear fil-
ter structure, both in the case of the shelving filters and the second-
order tunable equalization filters. In this case, a reformulation of
the algorithm leads to an allpass filter network that is free of non-
computable loops. This technique has been successfully used in
the solution of non-computable loops arising in Warped IIR (WIIR)
filter structures [9].

The similarity of the inverse filter structure with the origi-
nal tunable equalization filter is quite evident: the blocks that are
present in both systems are the same, except for differences ex-
isting in the multipliers. The bandstop and the bandpass (inverse)
filters can be embedded together in a single structure, containing
some switches that are alternatively set according to the (bandstop
or bandpass) configuration of the system.

Such a structure is shown in Figure 5, accounting for all the
cases we treated. When the switches are in the position labeled
with BS, the system implements a bandstop tunable equalization
filter. When they are in the position labeled with BP, the system
implements a complementary (bandpass) tunable equalization fil-
ter. Shelving filtering is provided using first-order allpass blocks,
whereas second-order equalization filters come up using second-
order allpass blocks as defined by (3).

Finally, note that switching between BS and BP in principle
does not introduce transients in the output signal and the internal
state. In fact, the configuration changes when K = 1: under this
condition the switches positions are insignificant.

4. SIMULATIONS

Figure 6 shows, in dashed line, the gain response of the system in
Figure 5 configured as an LF shelving filter, providing a cut of 5
dB (K = 0:562); clearly, this response equals the one given in
Figure 2. When the system switches to position BP, a complemen-
tary boost of 5 dB is provided: the new gain response is depicted
in solid line in the same figure. Figure 7 and Figure 8 show identi-
cal situations in the case of HF shelving and for the second-order
equalizer.
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Simulations confirm that the system provides complementary
transfer functions.

It can be seen from Figure 5 that the overall number of compu-
tations in the bandpass configuration involves, for each time step,
two sums and two multiplies more than the bandstop configuration.
This means that our realization of the inverse tunable equaliza-
tion filter is less efficient than the tunable equalization filter itself.
Conversely, the control of the system is easy and efficient, since
the synthesis of complementary transfer functions does not need
access the allpass block. Moreover, it can be figured out that the
proposed system synthesises bandpass transfer functions without
making use of coefficients whose magnitude is greater than one.

One possible implementation (in MatlabTM code) of the rou-
tine that realizes, for example, an inverse LF shelving filter is re-
ported in the following lines. Here, N is the number of time sam-
ples to be processed, and it is a = �, K = K, input is the input
signal vector, out sh is the output signal vector, S is the state
of the allpass filter (2). The first line inside the iteration computes
steps 1 and 2 of the algorithm outlined in Section 3, and the second
line computes step 3:

for i = 1:N

out_sh(i) =
2/((1+K)+a*(1-K))*input(i) -
(1-K)/((1+K)+a*(1-K))*filter([a,-1],[1,-a], 0, S) ;

[none, S] = filter([a, -1],[1, -a], out_sh(i), S) ;

end

5. SUMMARY

We have proposed a versatile structure that realizes shelving and
second-order tunable equalization filters. Although slightly less
efficient computationally than the original tunable equalization fil-
ter [6], it provides magnitude-complementary transfer functions.
Moreover, its control layer allows an easy and direct access to the
equalization parameters.
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