
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

A GRAPHICAL MODULAR ENVIRONMENT FOR MPEG-4 SA INSTRUMENTS
PROTOTYPING

Guillaume Fayemendy

France Telecom R&D
DIH/HDM

4 rue du Clos Courtel, 35510 Cesson Sevigne Cedex, BP59
guillaume.fayemendy@rd.francetelecom.com

guillaumefy@free.fr

ABSTRACT

This paper presents current work being made in the development
of an ergonomic graphical environment for MPEG-4 SA instru-
ments creation and manipulation. The project goal is to define a
means of giving easy access to the power and flexibility of the
MPEG-4 SA framework.

1. INTRODUCTION

Structured Audio is a sound synthesis framework defined in the
MPEG-4 standard. Its main part is the Music-N model based
Structured Audio Orchestra Language (SAOL). We enlighten some
roadblocks to the use of this tool and propose a software applica-
tion giving an easier access to it. After a general description of
this application, we will present some aspects of the architecture
model it relies on.

2. MPEG-4 STRUCTURED AUDIO

2.1. Presentation

Structured Audio is a component of the MPEG-4 standard frame-
work for sound synthesis. It allows for the efficient and flexible de-
scription of synthetic music and sound effects, and the use of syn-
thetic sound in synchronisation with natural sound in interactive
multimedia scenes [1]. It’s been NetSound [2], sound and music
specification protocol oriented towards networked low-bandwidth
sound synthesis applications, which led Vercoe and al. to formalise
the Structured Audio representations concept [3]. These are de-
scription formats that are made up of semantic information about
the sounds they represent and that make use of high-level or algo-
rithmic models.

At the heart of the MPEG-4 SA toolset is the Structured Audio Or-
chestra Language (SAOL)[4], a music synthesis and effects pro-
cessing language based on the Music-N model. It enables the ef-
ficient and flexible description and transmission of synthesis pro-
cesses controllable by MIDI instructions and/or by the lightweight
Structured Audio Score Language (SASL). It involves a new for-
mat for transmission of samples banks dedicated to wavetable syn-
thesis and called SASBF [5].

2.2. The SAOL Structured Audio Orchestra Language

SAOL is the latest incarnation of the music-N software model. It
is a declarative unit-generator based language, unit-generators be-
ing primitive modules for generating, modifying, and acquiring
audio or control signals (they are called ”opcodes” in SAOL). In-
struments for sound synthesis or effects are obtained by connect-
ing unit-generators, and an orchestra is a collection of instruments.
SAOL extends the syntax of Csound, one popular predecessor (for
which many informations can be found at [6]) in order to make it
more understandable and concise. It adds a number of new features
to the music-N Model. Its design goals have been high modular-
ity, expressiveness, and functionality : anything that can be done
with digital audio could be expressed in SAOL and produced by a
standard desktop computer.

SAOL retains many well established features of music-N languages
: the sample-rate/control-rate distinction, orchestra/score distinc-
tion, the use of instrument variables, global variables and stored-
function tables. It allows the use of signals and unit-generators
arrays and introduces dynamic extension capabilities of the unit-
generators set built into the specification by defining user-opcodes
without requiring to rebuild the language system. It also uses a
metaphor of the mixing console with ”send” and ”return” audio
busses, which serves as a stylish means of expressing chains of
sound effects. Its weaknesses are clear when looking at the ba-
sic model for MIDI control, the distinction between orchestra and
score, and the lack of formalization for object oriented approaches.

The reader interested in a presentation of the SAOL language re-
lating to concurrent music programming languages and other soft-
ware applications devoted to digital audio could refer to [7] in
which aspects regarding to modularity, expressivity, design issues,
performance, extensibility and capabilities to deal with audio ef-
fects are discussed.

3. MOTIVATIONS

Despite its power and flexibility, it remains that SAOL is a pro-
gramming language that requires specific knowledge and there-
fore has a long learning curve (although it uses a ”C-like” syn-
tax which is quite legible). This prevents it from being widely
adopted by musicians and sound designers who may not be par-
ticularly inclined to learn all the intricacies of the language. The
aim of this work is to provide an environment, based on graphical

DAFX-1



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

components, allowing a user to set an orchestra and to create an
output compatible with any compiler conforming to the MPEG-4
Structured Audio format. It should give the user a way to perform
experiments with multiple instruments and give him an access to
the most expressive parameters.

3.1. Working with music programming languages

Numerous difficulties have been revealed by users of previous mu-
sic programming languages such as Csound (this language has
been around for a long time and has developed a large commu-
nity of users).

Even for the user who masters a language, some difficulties
arise :

1. the necessity to gather all the resources needed. These be-
ing text editor, sound file player and editor, a conform de-
coder...

2. the inconvenience of having to use text to describe time-
based functions.

3. text score generation : in MPEG-4, SASL language enables
the definition of a collection of time-stamped invocations
of instrument events in text form. Utilities for graphical or
high level handling are needed.

4. one aspect that is particularly clear with Csound is the dif-
ficulty to re-use code for a different purpose it has been
designed for. Yet there’s a large number of instruments that
have been designed by fellow sound designers and which
are freely available. With the numerous parameters involved
in the definition of an instrument, it can be difficult finding
the most significant and appropriate ones to use and to mod-
ify for a different context.

3.2. Front-Ends

In the Csound world, several graphical helpers applications have
been proposed. They provide a user interface to the sound synthe-
sis engine. They aim to propose alternatives to some of the more
tedious tasks involved in making sounds with programming lan-
guages, and they produce reasonably user-friendly capabilities.

Some of these applications rely on the graphical programming
approach initiated by Miller Puckette [8] with the MAX package.
Others may involve no programming but will be limited to the use
of a particular dedicated sound synthesis method. Therefore, much
effort in the handling of score production oriented tasks have re-
sulted in useful tools for classic music representation/manipulation
or algorithmic composition (see [9] for example).

A widely recognized complete production system is Cecilia
[10], which makes use of the Csound language biased towards the
production of sound-object oriented composition and offers a high
level language for complex score production.

When looking at SAOL and MPEG4-SA, we must recognize the
efforts of the ”saol.net” team [11] and the Snet text editor appli-
cation dedicated to SAOL. It’s a simple editor that includes such
features as syntax coloration, embedded decoder, and wave player.

The aim of our work is to propose an optimal environment focus-
ing on the manipulation and creation of instruments in the MPEG4-
SA context. We hope to establish an efficient relationship between
the textual nature of the programming language and the creation

of graphical user interfaces (the system proposed isn’t merely an-
other graphical patch editor in the MAX style). Our approach to
this problem has been entirely led by the interaction capabilities
needed for both novice SAOL users and experienced ones. We are
not investigating aspects of music composition but we shall pro-
pose a simple graphical tool derived from the classical piano-roll
representation to provide a means of adding synthetic materials in
a real musical context.

4. ENVIRONMENT DESCRIPTION

As mentioned earlier, both novice and expert SAOL users are to
be catered for. Novice users will play with and modify predefined
instruments, with all the intricacies of the language being hidden.
For SAOL programming language experts, the environment pro-
vides facilities for the creation of new instruments. The idea is to
propose an environment which enables the description of a user
interface when designing a new instrument. The graphical user in-
terface must be efficiently modular to adapt itself to the variety of
possible sound generation algorithms. The expert user will have to
put in evidence the parameters conveying the most relevant infor-
mation for edition and manipulation.

For this purpose we shall consider an instrument as the sum of
agents contributing to its entire definition. ”Agent” belongs to the
vocabulary of the underlying software architecture model we rely
on. The latter will be detailed in section 5.
The principal agent (called ”core-code element”) is a classic text
element describing partially, in the SAOL syntax, a sound gener-
ation algorithm. Other agents are graphical elements conveying
an abstraction of an opcode. Their shared role is to produce code
depending on their graphical state. The agent’s contribution to the
whole code production of the instrument is dealt with a supervising
agent.

4.1. Interaction elements

Of the hundred unit generators built into the SAOL specification,
there are some that are biased towards to a (reasonably standard)
graphical representation and provide a good set of elements for in-
teraction. Good examples are the ”kline” generator or the wavetable
”lineseg” opcode which handle the abstraction of the break-point
function, very useful for temporal variable definition.
In its elementary form, an agent will deal with a single SAOL vari-
able. On request, it can provide the code for its declaration or for
its initialization.
We now need to identify the different types of elements that com-
pose a SAOL instrument :

� Parameter fields (these being the variables defined in the
score by the SASL language)

� Initialization rate variables (these are represented by a sin-
gle fader)

� Control rate variables

� Wave tables variables

� Core-code element

This is currently being research into : all generators in the el-
ementary set that prove inclination in being graphically interfaced
are not yet implemented and the direct interfacing of selected user-
opcodes is being looked into. For example a user-opcode defining

DAFX-2



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

a common recurrent element such as LFO (which is not defined
in the set of elementary unit-generators) should be chosen and in-
terfaced with a graphical panel allowing the specification of the
waveform used, the frequency, and of the speed.

4.2. Instrument creation and manipulation

An instrument window contains all of the elements involved in the
composition of an instrument. It’s split in two horizontal panels
(See Figure 1). The panel at the bottom is devoted to the construc-
tion and definition of the instrument. It’s not naturally visible and
its different parts can be edited individually. It’s where the expert
user will choose and parameterize the graphical elements, define
the core-code element by writing the SAOL code in the text editor,
and defines the parameter fields of the instrument.
The panel above is the control panel where graphical elements take
place. Buttons for selecting the elements/variables to edit are verti-
cally aligned according to their types (initialization/control/wavetable).

A snapshot mechanism permits the user to save and reload any
particular instrument configuration.

Figure 1: Edition of a simple granular instrument.

4.3. Score management

A simple tool (figure 2) has been designed and implemented to
put instruments in a real ”musical” context. It’s derived from the
traditional piano-roll representation. Event representations, made
of rectangular symbols of assorted lengths, with colours ranging
from white to black, are added and transferred into the grid with
the mouse. The resultant difference from piano-roll resides in the
capability to choose which variable of the parameter fields will
be assigned to the vertical axis (generally attributed to pitch), to
the length of the event representation (which can be used to set a
parameter for percussive sounds), and to its colour.

At the bottom of the score window, a panel of faders representing
the whole parameter fields for an edited event is used to complete
the score definition. The handling of import variables is undergo-
ing study.

Figure 2: A graphical tool to produce little scores.

4.4. Orchestra management

The whole environment is composed of two windows that allow in-
tuitive and clear navigation. One can select an instrument from the
orchestra’s instruments list to edit or to identify its score counter-
part. For the moment, however, only instruments used in conjunc-
tion with the SASL language are available. A few modifications to
the environment for the handling of MIDI instruments and effects
instruments need to be carried out.

5. SOFTWARE DESIGN ISSUES

5.1. The PAC (Presentation Abstraction Control) architecture

We constructed our software using the PAC architecture model.
It’s a design abstraction introduced by Coutaz [12] for the software
conception and development of interactive systems. This model
defines a system as a collection of specialized computational units
called agents. Those agents feature facets that are used to express
different yet complementary and firmly paired computational per-
spectives of the same entity. These facets are the Presentation, the
Abstraction and the Control. This architecture model extends the
”separation of the functional core from the user interface” princi-
ple.

5.2. The PAC agent

The PAC agent has three facets which are :

� the Presentation defines the system image, i.e. its perceiv-
able input and output behavior;

� the Abstraction defines its functional core;

� the Control is in charge of communicating with other agents,
as well as expressing dependencies between the Abstract
and Presentation facets of the agent.

Note that the Presentation facet can be decomposed in multiple
elements and thus permits to expose a concept with multiple views.

5.3. PAC’ing a SAOL opcode

We describe the ”kline-opcode” agent (see Figure 3). Its first pre-
sentation is a rendering surface to set break-point function values.

DAFX-3



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

name

min

max

increment

Control

Presentation 1 Presentation2

Abstraction

- declaration code

- instaciation code

Figure 3: ”Kline opcode” agent.

Its second presentation is used to define the settings (like minimal
and maximal values).

The abstraction facet of the ”kline-opcode” will handle the data
needed for the SAOL code production.

The control’s role is to ensure the coherence between the abstrac-
tion facet and the presentation facet. The abstraction facet with
its specific semantic, deals with data expressed in SAOL while the
data of the presentation are expressed relatively to the graphical
referential.

5.4. Agents organization and code production

An agent is a unit of competence which operates in parallel and in
coordination with other agents by the mean of their Control facet.
They are organized in a hierarchical tree, a parent agent having the
responsibility of its children (Figure 4).

Instrument
agent

graphical
element 1

saol
variable 1

C

P

A

graphical
element 2

saol
variable 2

C

P

A

text
editor

saol
core code

C

P

A

C

A

...

Figure 4: The instrument agent and its children.

Some agents have neither abstraction nor presentation facet. In our
application, it’s the case of the instrument agent for which the pre-
sentation is the sum of its constituents graphical’s parts. It’s then

defined by its abstraction and its control, this one ensuring coher-
ence between its children (mainly the graphical SAOL variables
relative to an opcode’s abstraction and the core-code element).

The code is produced in a simple way according to the SAOL syn-
tax. At the instrument level :

� in a first pass, the instrument agent collects from its children
the code necessary for the variables declaration,

� in a second pass, it collects the code necessary for the graph-
ical variables initialization according to their state and ap-
pends the core-code element’s contributing part of code.

6. CONCLUSIONS AND PERSPECTIVES

We have studied, in the light of actual software applications ded-
icated to digital audio, some difficulties relevant to the work with
music programming languages. Then we have proposed a front-
end application to the SAOL language relying on the simple but
robust object-oriented PAC architecture. Its strengths are its mul-
tiple views capabilities, and the re-usability and evolutivity of the
application components. It should be simple to modify the appli-
cation for other music programming languages.

The whole implementation has been made in java and the XML
format is used to handle instruments and score data. Some part
of code for the score utility has been derived from a little origi-
nal open source java application dedicated to Csound [13]. Our
application is powered up by the Sfront SAOL decoder [14].

The development is in working progress but the application reveals
to be particularly responsive, and seems to really provide friendly
ways for experimenting with sound synthesis. One next step will
be the integration of sound analysis tools.

7. REFERENCES

[1] E.D. Scheirer, ”The MPEG-4 Structured Audio Standard”,
IEEE Trans. Speech and Audio Proc., 1998.

[2] M.A. Casey, P. Smaragdis, ”Netsound” Proc. ICMC 1996,
Hong Kong.

[3] B.L. Vercoe, W.G. Gardner, E.D. Scheirer, ” Structured Au-
dio: Creation, Transmission, and Rendering of Parametric
Sound Representations ”, Proc. IEEE 86:5 (May 1998), pp.
922-940 (invited paper).

[4] E.D. Scheirer, ”The MPEG-4 Structured Audio Orchestra
Language”, Proc. ICMC, 1998.

[5] E.D. Scheirer, L. Ray, ”Algorithmic and Wavetable Synthesis
in the MPEG-4 Multimedia Standard”, 105th convention of
the Audio Engineering Society 1998, San Francisco, Calif.

[6] http://csounds.com

[7] N. Bernardini, D. Rochesso, ”Making Sounds with Num-
bers: A tutorial on music software dedicated to digital au-
dio”, Proc. COST G-6 DAFX, 1998.

[8] http://crca.ucsd.edu/ msp/index.html

[9] M. Gogins, ”Music Graphs for Algorithmic Composition and
Synthesis with an Extensible Implementation in Java,” Proc
ICMC, September 1998.

DAFX-4



Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8,2001

[10] J. Piche, and A. Burton, ”Cecilia: A Production Interface to
Csound”, Computer Music Journal Volume 22, Number 2,
Summer 1998.

[11] http://www.saol.net

[12] J. Coutaz, ”PAC, an Implementation Model for Dialog De-
sign”, Proc. of Interact’87, Stuttgart, September, 1987, pp.
431-436.

[13] http://www.oberlin.edu/ pblasser/rocky.html

[14] http://www.cs.berkeley.edu/ lazzaro/sa/index.html

DAFX-5


