
Proceedings of the 4th COST G-6 Workshop on Digital Audio Effects (DAFx01), Limerick, Ireland, December 6-8, 2001

SOUND MORPHING WITH GAUSSIAN MIXTURE MODELS

Federico Boccardi, Carlo Drioli

Centro di Sonologia Computazionale
Dept. of Electronics and Informatics

University of Padova, Italy
feboccardi@tin.it

drioli@dei.unipd.it

ABSTRACT

In this work a sound transformation model based on Gaus-
sian Mixture Models is introduced and evaluated for audio
morphing. To this aim, the GMM is used to build the acous-
tic model of the source sound, and a set of conversion func-
tions, which rely on the acoustic model, is used to trans-
form the source sound. The method is experimented on a
set of monophonic sounds and results show that it provides
promising features.

1. INTRODUCTION

Gaussian Mixture Models have been widely used in the field
of speech processing, mostly for speech recognition, speaker
identification, and voice conversion [1, 2]. Their capability
to model arbitrary densities and to represent general spectral
features motivates the use of GMMs as part of the acousti-
cal front-end for further processing tasks, such as the ones
mentioned.
In this work a sound transformation model based on Gaus-
sian Mixture Models is introduced and evaluated for audio
morphing, defined here as modifying the time-varying spec-
trum of a source sound to match the time- varying spectrum
of a given number of target sounds. To this aim, the GMM
is used to build the acoustic model of the source sound, and
a set of conversion functions, which rely on the acoustic
model, is used to transform the source sound.
The paper is organized as follows. In Section 2 we recall the
properties of GMMs and introduce the spectral conversion
framework. In Section 3 the design of the acoustic model
and conversion functions for sound morphing purposes is
addressed. In Section 4 the method is experimented on a set
of monophonic sounds and the results are discussed.

2. DESCRIPTION OF THE SPECTRAL
CONVERSION MODEL

The GMM approach assumes that the density of an observed
process can be modelled as a weighted sum of component

densities and given by the equation

f(~x|Λ) =
M∑
i=1

αiN(~x; ~µi,Σi) (1)

where~x is aP -dimensional input vector,N(~x; ~µi,Σi) are
the component densities, andαi are the mixture weights.
Each component density is aP -variate gaussian function of
the form

N(~x; ~µi,Σi) =
1

(2π)p/2
(| Σi |)−1/2e−

1
2 (~x−~µi)

T Σi
−1(~x−~µi)

(2)
with mean vector~µi and covariance matrixΣi. The weights
αi satisfy the constraints

∑M
i αi = 1 andαi ≥ 0.

The gaussian mixture is completely specified by the mean
vectors, covariance matrix and mixture weights, and can be
represented by

Λ = {αi, ~µi,Σi} i = 1 . . .M (3)

An interesting feature of the GMM for sound processing
applications is that the component densities of the mixture
may represent a partition of the underlying sound process
in a set of acoustic classes. The probability that an ob-
served input vector~x belongs to the classλi = (αi, ~µi,Σi)
is given, in terms of density, by the formula

p(λi|~x) =
f(~x|λi)p(λi)

f(~x|Λ)
= αi

N(~x; ~µi,Σi)∑M
j=1 αjN(~x; ~µi,Σi)

(4)

wheref(~x|λi) = N(~x; ~µi,Σi), p(λi) = αi, andf(~x|Λ) is
given by Eq. (1).
When used to model speech, the components of the GMM
represent different phonetic events. When used to model
spectra of a sound from a musical instrument, say a sin-
gle sustained note, we may say that the components of the
GMM represent different portions of the sound (e.g., frames
from the attack, the sustain, or the release portion). How-
ever, depending on the data the model is trained with, it may
represent the notes from the same instrument played with
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different intensities, or notes from different instruments, and
so on. In other words, a conversion function which relies on
this model is in principle able to classify the input sound
frame to be transformed and to perform the transformation
required for that frame.
Let us suppose that a sequence ofP -dimensional column
vectors{~xt}, t = 1, . . . , T , which represents the time- va-
rying spectral envelope of a source signal, has been fitted
by a GMM. Moreover, let assume that a sequence ofP ′-
dimensional column vectors{~yt}, t = 1, . . . , T , having the
same length of the source signal, is the target of the con-
version. We define a spectral conversion function as a map
F : RP → RP ′

able to transform each vector in the input
sequence into the vector which occupies the same position
in the output sequence, thus preserving the time informa-
tion of the input and output data. Although it is not neces-
sary for the input and the output vectors to have the same
dimension, we will assumeP ′ = P in the rest of the paper.
We consider the following parametric form for the spectral
conversion function [2]:

F(~xt) =
M∑
i=1

p(λi|~xt)[~θi + ΓiΣ−1
i (~xt − ~µi)]. (5)

This conversion equation is equivalent to the solution of the
following set of equations:

~yt =
M∑
i=1

p(λi|~xt)[~θi + ΓiΣ−1
i (~xt − ~µi)] (6)

for all t = 1 . . . T . Eq. (6) can be gathered into a single
matrix equation by:

Y = P ·Θ + ∆ · Γ, (7)

where
Y = [~y1 · · · ~yT ]T , (8)

P =

p(λ1|~x1) · · · p(λM |~x1)
· · · · · · · · ·

p(λ1|~xT ) · · · p(λM |~xT )

 , (9)

∆ is a matrix that depends on the conditional probabilities,

Θ = [~θ1...~θM ]T ,

and
Γ = [Γ1...ΓM ]T

are the unknown parameters of the conversion function.
In this work we omit the termΓiΣ−1

i (~xt−~µi) in (5) and we
use the following reduced form of the conversion function
[2]

F(~xt) =
M∑
i=1

p(λi|~xt)[θi]. (10)

3. SOUND MORPHING WITH THE GMM

The investigation relies on the well known sinusoidal plus
noise model (SMS) of the signal [3]. The analysis algo-
rithm acts on windowed portions (here calledframes) of
the signal, and produces a time-varying representation as
sum of sinusoids (here calledpartials). Assuming that the
number of partialsP is constant for all frames, for thei-th
frame the result of the sinusoidal modelling is a set of triples
(fh(i), ah(i), φh(i)) (h = 1, . . . , P ) of frequency, magni-
tude and phase parameters describing each partial, and a
residual noise component that will not be considered in this
work. We focus here on the transformation of partials ma-
gnitude only. We thus omit to model the differences of fre-
quency and phase among the partials of the source and tar-
get sounds. For this assumption to be considered reasona-
ble, we also restrict the choice of the source and the target
sounds to a set of compatible signals (e.g., morphing among
piano notes with different spectral characteristics, morphing
among sustained notes of wind or string instruments, etc.).

3.1. Computation of the acoustic model

An observed soundX is represented by the matrix:

X =

x11 · · · x1N

· · · · · · · · ·
xP1 · · · xPN

T

=
[
~x1 · · · ~xN

]T
(11)

where P is the number of partials,N is the number of
frames, andxij = ai(j) are the magnitudes of the par-
tials. The soundX is referred to its modelΛ by the den-
sity p(X|Λ). The Gaussian Mixture density is paramete-
rized by the mean vectors, covariance matrices and mixture
weights from all component densities. We adopt the method
of maximum likelihood (ML) estimation to compute the pa-
rameters of a GMM. For a sequence ofT training vectors
S = {~s1, ...~sT } (e.g., a set of columns selected from an ob-
servation sound matrixX, see (11)), the ML estimate com-
puted using the expectation-maximization (EM) algorithm
maximize the likelihood of the GMM, defined by:

p(S|Λ) =
T∏

t=1

p(~st|Λ). (12)

The original formulation of the GMM is founded on the
assumption that the observation vectors are independent of
one another. This simplifying assumption makes the GMM
model suited to cases where the sequential aspect of the ob-
servations (the time index) is believed to be irrelevant. In
speech recognition or conversion tasks the performances of
the GMM are fairly satisfactory even with such assumption.
However, if we are interested in reaching a high level of
accuracy in the target sound reproduction, as is often the
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case for audio and musical applications, then the sequential
aspect may turn out to be a critical factor. Since this was
the case in our experience, we managed to include some
knowledge on the dynamics of the process in the GMM so
to further improve the acoustic model of the source. This
can be achieved by augmenting the dimension of the input
with one or more delayed versions of the source process.
Fig. 3.1 shows this realization for a doubling in the dimen-
sion of the input process. If we include the information on

Figure 1: The canonical GMM (upper figure) and the aug-
mented version if the input is duplicated and delayed (lower
figure).

the past and we focus on the case were the dimension of
each input component is doubled, Eq. (4) becomes:

p(λ̃i|~xt, ~xt−τ ) = α̃i
N(~xt,t−τ ; ~̃µi, Σ̃i)∑M

j=1 α̃jN(~xt,t−τ ; ~̃µi, Σ̃i)
(13)

with ~xt,t−τ , [x1,t, x1,t−τ , . . . , xP,t, xP,t−τ ]T , and where
the component densitiesN(~xt,t−τ ; ~̃µi, Σ̃i) are now2P - va-
riate gaussian functions. The extension to the case where
more than one delayed version of each input component is
considered is straightforward.

3.2. Conversion functions

Let X = {X1, ..., XK} be the set ofK given sounds, each
one organized in an observation sound matrix. The num-
ber of selected training frames for each sound is assumed to
be T . Our idea is to represent only one of theK sounds,
sayX1, by hisL-dimensional modelΛ, defined as a model
in which each input is replicated and delayedL times and
the component densities arePL-variate gaussian functions.
The whole set of data sounds is then achieved by a set of
conversion functionsFj , j = 1, . . . ,K, of the form intro-
duced in Eq. (5) in which the diagonal matrix elementsΓi

have been omitted:

X̃j = Fj(X1) = P(Λ|X1)Θj , j = 1, ...,K (14)

whereX1 is the sound represented by the model, i.e. the
source sound,P(Λ|X1) is a P × M matrix given by Eq.
(4), andΘj is anM × P matrix of coefficients computed
by:

Θj = (P(Λ|X1)′P(Λ|X1))−1P(Λ|X1)′Xj , j = 1, ...,K.
(15)

In particular the soundX1 is obtained by the equation:

X̃1 = F1(X1) =
m∑

i=1

P (λi|X1)Θ1. (16)

To perform a morphing whit percentageβ1, ..., βK , we use
the equation:

Xmorph = F(X1) =
M∑
i=1

(β1P (Λi|X1)Θ1 + ...

+βKP (Λi|X1)ΘK) (17)

Figure 2: Diagram of the audio morphing based on the
transformation ofX1 by means of the conversion functions

4. RESULTS AND DISCUSSION

Since the investigation is restricted to the conversion of par-
tials magnitude, the method was used to convert sounds with
compatible time evolution of frequency tracks. A set of two
piano notes, two samples of Fazioli and of Bosendorfer, was
considered as the training data, all having the same funda-
mental frequency and different spectral characteristics. The
proposed method was applied to the data set to represent all
the sounds by transformation of one note selected to be the
source sound. This assumption of limiting the conversion
to partials magnitude is not restricting since the method can
be extended in order to perform the conversion of frequency
tracks as well.
The SMS analysis was performed on ranged sounds, with
60 partials and a reverse analysis direction, for better be-
havior with attack part. The SMS data set was corrected to
run the killed partials [3] and to range the partials of two
sounds. The sound of BosendorferXb, see (11), was repre-
sented by the 3-dimensional modelΛb, with delays of100
and200 samples.
The sound of Fazioli is obtained by the equation:

X̃f = P(Λb|Xb)Θf ,

whereΘf is obtained by (15)
Fig. 3 shows the conversion of the source data into the tar-
get data (only the23th partial is shown). The upper figure
shows the result forM = 128 and7 iterations of EM the
algorithm. The lower figure shows the same conversion per-
formed by augmenting the dimension of the GMM fromP
to 3P , with delays of100 and200 samples.
To perform a morphing with percentage

βb(t), βf (t),

where the weight are functions of time, we use (see (17))

X =
M∑
i=1

(βb(t)P(Λb|Xb)Θb + βf (t)P(Λb|Xb)Θf ).
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Fig. 4 shows the conversion of the source data into the target
data (only the23th partial is shown), by gradually rising
the weight of the conversion. The upper figure shows the
result forM = 128 and7 iterations of the EM algorithm.
The lower figure shows the same conversion performed by
augmenting the dimension of the GMM fromP to 3P , with
delays of100 and200 samples.

Figure 3: Comparison of the conversion of the23th partial
of the source sound into the23th partial of the target sound
with a 1-dimensional (upper plot) and a3-dimensional
(lower plot) model (time evolution of the amplitudes is
shown)

Figure 4: Comparison of morphing which transform the
source sound into the target sound with a1-dimensional
(upper plot) and a3-dimensional (lower plot) model. The
morphing is performed by gradually rising the weight of the
conversion (time evolution of the amplitude of the23th par-
tial is shown)

5. CONCLUSIONS

We presented a sound morphing framework based on GMM.
The results show that the method is effective in performing
spectral transformations while preserving the time evolu-
tion of the source sound. The information on the dynamics
of the process, obtained by augmenting the model’s dimen-
sion, improve the quality of conversion because of the im-
proved modelling of time evolution.
With this method we were able to change a source sound
into a target sound by the conversion matricesP(Λ|X) and
Θ, making sound morphing considerably intuitive.
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