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ABSTRACT

A rectangular enclosure has such an even distribution of
resonances that it can be accurately modeled using a feed-
back delay network, but a non rectangular shape such as
a sphere has resonances that are distributed according to
the extremal points of the spherical Bessel functions. This
work proposes an extension of the already known feedback
delay network structure to model a non rectangular shape
such as a sphere. A speci�c frequency distribution of reso-
nances can be approximated, up to a certain frequency, by
inserting an allpass �lter of moderate order after the delay
line within the comb �lter structure. The feedback delay
network used for rectangular boxes is therefore augment-
ed with a set of allpass �lters allowing parametric control
over the enclosure size and the boundary properties. This
work was motivated by informal listening tests which have
shown that it is possible to identify a basic shape just from
the distribution of its audible resonances.

1. INTRODUCTION

The feedback delay network (FDN) of order N is a struc-
ture commonly used in arti�cial reverberation [1, 2, 4] to
simulate the distribution of normal modes of vibration in an
enclosure. In a rectangular enclosure, the distribution of
normal modes can be obtained as the composition of (in�-
nite) harmonic series, each series being associated with the
spatial direction of propagation of the plane wave fronts
supporting the modes. For instance, the longitudinal size
of a rectangular box is associated with a low-pitch mod-
e and with all its multiples. Since any harmonic series of
resonances can be reproduced by means of a recursive com-
b �lter, a reference FDN can be constructed as a parallel
of comb �lters or, in other words, with a diagonal feedback
matrix. For the rectangular enclosure, the delay lengths can
be computed exactly from the geometry of the room.

Non-rectangular enclosures usually do not have an even
distribution of resonances. In some relevant cases, howev-
er, the modal distribution can be calculated in closed form
from the geometric speci�cation of the enclosure. In partic-
ular, this paper deals with the spherical resonator, whose
resonances can be found by computing the local extremal
points of Bessel functions. The spherical Bessel functions
tend to cosine functions for larger values of the argument.
A prior realization of the spherical resonator exploited the
fact that the extremal points are asymptotically equidis-
tant, using recursive comb �lters with feedback high-pass

�lters to reproduce the medium- and high-frequency res-
onances [5]. On the other hand, each low-frequency res-
onance was reproduced by a tuned second-order resonant
�lter. Such prior realization was successfully experimented
in the AML j Architecture and Music Laboratory, a muse-
um installation where the visitor can experience how shapes
such as, e.g. a tube, a cube or a sphere imprint a specif-
ic signature on the sounds. Informal reports from many
listeners convinced us that it is indeed possible to identify
basic shapes from the kind of resonance distribution they
display.

Whereas the models used within the AML are speci�c
to each shape, we try here, starting from the Ball-within-
the-Box (BaBo) model [4], to design a single model valid
for all shapes. The BaBo model was initially designed for
rectangular shapes but we extend it to the simulation of
non rectangular ones, in the hope that we can even feature
a \shape control handle". This paper reports the extension
of the BaBo model to spherical enclosures and compares
the audible results with recordings made through acoustical
resonators.

2. RECTANGULAR RESONATOR MODEL

The BaBo model provides parametric control over the geo-
metric and physical properties of a rectangular enclosure [4].
Kernel of the model is a feedback delay network where the
delay lines have length in seconds given by

length =
2

c
p

(l=X)2 + (m=Y )2 + (n=Z)2
(1)

where c is the speed of sound and l;m; n are triplets of small
positive integers sharing no common (nontrivial) divisor.

If the feedback matrix is diagonal we have a parallel
of comb �lters and this corresponds to a perfectly re
ecting
enclosure. In this case the model is a parallel of comb �lters,
each comb representing the triples (l; m; n), (2l; 2m; 2n),
(3l; 3m; 3n), etc. thus giving a perfectly harmonic series
of resonances. Whereas this structure is well suited for
imitations of harmonic resonances, not all shapes can be
characterized by harmonic series of resonances as we will
see in the next section.
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3. ACOUSTICS OF THE SPHERE

The modes fns of a sphere are proportional to the roots zns
of

j0

n(x) = 0 ; n = 0; 1; : : : (2)

where jn is the spherical Bessel function1 of order n and zns
is the sth root of the j0

n function. The theoretical resonance
frequencies of the sphere are

fns =
c

2�a
zns (3)

where c is the propagation speed of sound and a is the radius
of the sphere [6].

Some roots zns of equation (2) are given in Table 1. S-
ince the envelope of the sphere might be vibrating as well as
dissipating some acoustic energy, these frequencies should
be corrected for the e�ects that occur at the boundary [6, 3].

A closer look at the set of roots shows that they are
not uniformly distributed, unlike the resonances in tubes
or between parallel boundaries. The roots are wider apart
at low frequencies than at high frequencies. This e�ect is
stronger for higher values of n but any series of roots tend to
be periodic in � for higher z values. This can be interpreted
as a dispersion at low frequencies and will give us a hint how
to implement the spherical resonator.

n n s 1 2 3 4
0 0.00 4.49 7.73 10.90
1 2.08 5.94 9.21 12.40
2 3.34 7.29 10.61 13.85
3 4.51 8.58 11.97 15.24
4 5.65 9.84 13.30 16.61
5 6.76 11.07 14.59 17.95
6 7.85 12.28 15.86 19.26
7 8.93 13.47 17.12 20.56
8 10.01 14.65 18.36 21.84
9 11.08 15.82 19.58 23.11

Table 1: Roots of j0

n(x) = 0 for order n = 0; : : : ; 9 and root
number s = 1; : : : ; 4.

4. MEASUREMENTS

Data are available from 3 experiments: Moldover et al. [6]
display a spectrum measured in an argon-�lled thick metal
shell and we have measured resonances in a rigid plastic
shell as well as in an in
atable plastic ball.

The resonant frequencies of a spherical loudspeaker whe-
re 12 transducers are mounted on a spherical ABS plastic
enclosure 2 were measured. The fundamental frequency f11
is very accurate and most other resonances match the the-
ory fairly well.

The resonances of an in
atable plastic ball having a
diameter of 0:67m were also measured by posing the plastic
ball onto a small loudspeaker. The loudspeaker was playing

1The spherical Bessel function of order 0 is just the popular
sinc function sinx=x.

2We thank Speaker Array Logic for providing the loudspeaker.

test signals through the ball and a microphone recorded the
sound �ltered by the ball. The position of the microphone
was chosen in order to balance the amplitude of the various
resonances. Fig. 4 shows the frequency response measured
with a white noise generator and a spectrum analyzer. We
found that the low-frequency resonances are systematically
sharper than the theoretical values. These deviations might
be due to the compliance o�ered by the plastic boundary,
which can not be considered as a rigid wall at low frequency.
The prominent resonances could be identi�ed with f11, f21,
f31, f41, f51, f61, f71 and f91.

5. SPHERICAL RESONATOR MODEL

Consider the perfectly-re
ecting rectangular box and it-
s representation in the BaBo model. Let us see how the
model can be extended to spherical enclosures.

Indeed we would like to consider a perfectly re
ecting
sphere as a parallel of non-harmonic comb �lters. The res-
onances of the nth comb �lter correspond to the local ex-
tremal points of the nth order spherical Bessel function.

Given the resonance frequencies, we can sketch the ideal
phase response of the nth comb �lter loop, since the loop
phase has to be equal to a multiple of 2� in order to sustain
the mode associated with a resonance. Fig. 1.a shows with
crosses the phase response of the 0 order feedback loop at
the resonance points. A monotonic phase curve interpo-
lating those points can be obtained as the sum of a linear
ramp and a nonlinear residual, also shown in �g. 1.a with
dots and circles, respectively. The linear component is giv-
en by a delay line whose length is equal to the slope of the
linear ramp. The nonlinear residual can be provided by an
allpass �lter. The nonlinear phase curve can be roughly ap-
proximated by a couple of linear segments, a low-frequency
slope and a high-frequency slope. With this observation,
the allpass �lter for the 0 order Bessel function can be de-
signed by placing the poles on the unit circle according to
these two slopes. Fig. 1.b shows a zero-pole distribution
that gives the two-slope phase response depicted in solid
line in �g. 1.a.

6. DESIGN PROCEDURE AND EXAMPLES

We have written a design procedure that �nds the combi-
nations of allpass �lter and delay length for a set of sphere
radii by iterative optimization over the position of the knee
and the second, largest slope of the curve. In other word-
s, the procedure iteratively changes the angle of the low-
frequency pole and the relative, constant distance between
all the other poles. The relative contribution of the delay
line to the loop phase response is also subject to optimiza-
tion. The distance of the poles from the center is kept �xed
as it is mainly responsible for the magnitude of the ripples
in the phase response.

The design procedure can be run for several values of
radius, in such a way to have a complete set of parameters
for the resulting inharmonic comb �lters. Notice that, even
though a sixth-order allpass �lter has six coeÆcients, our
initial observation allows to implement it as three second-
order sections that can be controlled by two parameters:
the angle of the �rst pole, and the angular distance of the
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Figure 1: (a): Phase response of the feedback loop of a in-
harmonic comb �lter reproducing the resonances of a spher-
ical resonator (r = 0:188m) associated with the Bessel func-
tion of order 0: �: phase response at resonance points; �:
phase provided by the delay (8 samples); Æ: target phase
residue to be approximated by the allpass �lter; dashed line:
polynomial curve approximating the target phase points;
solid lines: designed allpass �lter phase response and over-
all approximated phase response. (b): Pole-zero plot of the
designed allpass �lter.

following poles. Since the precise position of resonances
is of some importance only in the �rst few thousands Hz
(say, 4kHz) [7], we see that a low order allpass �lter is ade-
quate for small spheres, e.g. order 6 or less for radii smaller
than 0:5m. For larger spheres, the �lter order should be
increased in order to have a decent approximation at least
under the �rst kHz.

Fig. 2 shows the frequency response of the parallel of
dispersive comb �lters here designed for radius 0.188. The
crosses represent the ideal modal positions for Bessel func-
tions of order 0 to 4. In order to have a good match between
the �rst resonance of each comb and its theoretical position,
we properly shaped a weighting function to be used in the
iterative optimization procedure. Maximum weight is used
around the �rst resonance, while the following resonances
become gradually less important. Psychoacoustic investi-
gations should be conducted in order to better understand
if the approximations introduced can be perceived and if
they a�ect the perceived object shape. However, informal

listening seems to indicate that signi�cant deviations from
the theoretical partial positions can be tolerated without
loosing the \sense of sphericity".
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Figure 2: Frequency response of the parallel of dispersive
comb �lters designed for radius 0.188. +: resonance posi-
tions of the ideal sphere up to Bessel series of order 4.

Fig. 3 shows how the comb �lters from order 0 to 3 sepa-
rately contribute to the response of �g. 2, which is obtained
by pure summation of the comb outputs. Around some
resonances di�erent modes coming from di�erent Bessel se-
ries interact with each other, and the local result is either
a magni�cation or an attenuation of the peak. As well as
with actual enclosures where the shape of the frequency re-
sponse is dependent on the positions of exciter and pickup,
with the FDN we can vary the shape of the response, with-
out moving the resonances, just by changing the input and
output coeÆcients [4].
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Figure 3: Superimposition of the responses of the dispersive
comb �lters designed for radius 0.188. Solid line: Bessel
order 0. Dashed line: Bessel order 1. Dash-dotted line:
Bessel order 2. Dotted line: Bessel order 3.

7. TUNING AND TRIALS

The FDN has been optimized according to the theory of the
sphere, but, in order to compare it with the plastic ball, de-
viations from the theoretical tuning had to be implement-
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ed. Such deviations can be introduced in our model just by
moving the theoretical resonance positions in the procedure
for designing the allpass �lters. This can be done fairly eas-
ily if the deviations are small, otherwise it can be diÆcult
to assign a certain resonance to an inharmonic comb series.
Alternatively, one can start with the �lters designed for the
ideal sphere and adjust the position of the �rst pole, as we
did to obtain the frequency response of �g. 5, which should
be compared with 4. In the feedback loop, we used second
order FIR �lters (exhibiting a one-sample delay) to simu-
late the faster attenuation of higher modes. Moreover, a
�rst-order lowpass �lter has been cascaded with the whole
structure in order to resemble the lowpass characteristic of
�g. 4.

In order to test the ability of the model to simulate actu-
al objects, we have processed sounds through the FDN and
have listened to the output and compared it with sounds
that were recorded through the plastic ball.

Figure 4: Measured frequency response of the plastic ball.
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Figure 5: Frequency response of the FDN model of the
plastic ball. +: resonance positions of the ideal sphere. �:
measured resonance positions.

8. CONCLUSION

We have demonstrated the feasibility of the extension of
the BaBo model to spherical geometries. We have shown

that a simple design procedure and, possibly, some manual
tweaking, allow to realize an eÆcient structure that can be
tuned either like an ideal sphere or like a real one. An open
question is nevertheless how accurate this design has to be,
since it is still unsettled which are the relevant parameters
that a�ect the \perceived sphericity" of the object.

An important aspect of the model is that very few pa-
rameters are added to the BaBo model to control the allpass
�lters of the spherical model. Even deviations from ideality
are reasonably achieved by moving only the position of one
pole per inharmonic series. So far, we have simulated inhar-
monic series given by Bessel functions of order ranging from
0 to 6. In many cases, higher order inharmonic series are
needed to achieve realism, but the fundamental resonance
of those series seems to be most important while the higher
resonances get drowned in the dense mixture of resonances
from other series and their position is out of the bandwidth
of perceived inharmonicity. So, we suggest to implemen-
t higher-order series as harmonic comb �lters tuned (with
some form of interpolation) to the fundamental frequency
of that series.

If the inharmonic series, each corresponding to a Bessel
function of a certain order, are recreated by comb �lters
having a delay line and an allpass �lter in the feedback
loop, it is conceivable to control the degree of \roundness"
of the enclosure by changing the relative contribution to the
overall phase response given by the delay and by the allpass
�lter. Namely, if all the delays are increased we gradually
move from a sphere to a cube with rounded faces. This
continuous shape control, as well as the extension of the
BaBo model to cylindrical shapes will be covered in future
research.
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