
Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

W99-1

FILTER IMPLEMENTATION ON SYNTHUP

Jean-Michel Raczinski
Stéphane Sladek
Luc Chevalier

CEMAMu
CNET-B403

38-40, rue du Général Leclerc
92794 ISSY-LES-MOULINEAUX Cedex 9 France

raczinski@cemamu.asso.fr
sladek@cemamu.asso.fr

chevalier@cemamu.asso.fr

ABSTRACT

This paper presents different implementations of digital filters
on SYNTHUP, a PCI plug-in board based on FPGAs (Field
Programmable Gate Arrays).

The modular architecture of the board features a PCI
interface, seven identical cells dedicated to computing, five
FPGAs dedicated to data exchange, one cell for control and a
total of 128M bytes of dual port SDRAM. The PCI interface
offers bus mastering (scatter-gather DMA) for high speed data
transfer between the board and the host memory. Applications
are downloaded from the host via PCI into the logical resources
of the FPGAs in few milliseconds. Each cell is made up of a
FPGA that drives two independent 4M×16 SDRAM. It is
connected to a 32 bit control bus and to an array of exchange
FPGAs through a 64 bit bus. These FPGAs work as a crossbar
switch. Moreover, they drive five 12 bit ports intended for
communication with other boards.

The paper concentrates on the implementation of FIR serial
filters with distributed arithmetic which allows one FPGA to
drive 48 channels in real time (48 kHz sampling rate, 16 bit data
and coefficients). As the coefficients can be changed, each
channel has its own filter (100 taps, adaptive filter). One can
also build a 4800 taps filter for one channel.

1. INTRODUCTION

SYNTHUP is a PCI plug-in board that has been designed at
CEMAMu (Centre d’Études de Mathématique et Automatique
Musicales) for real-time sound synthesis and can be used for
general purpose digital signal processing. It is based on Xilinx
FPGAs which combine the flexibility of programmable devices
and the performance of a custom hardware solution.

The modular architecture of the board together with the
FPGA technology allows efficient implementation of parallel
computationally intensive algorithms. This makes the board a
good tool for implementing filters, FFTs, etc.

2. SYNTHUP

The architecture of the board has been described in a previous
paper in French [1]. However, we will stress here on a few
points of interest for DSP applications.

update bus

SDRAM B

adress and
control

data

FPGA

exchange bus

SDRAM A

16
16

64

32

Figure 1. SYNTHUP cell.

The basic cell is made up of a FPGA that drives two
independent 4M×16 SDRAM. This allows two accesses (read
and/or write) to take place simultaneously. The memory can also
be configured as a plain 4M×32. When used to store data, this
memory is programmed as a FIFO.

...

control bus

5 exchange FPGAs
external link 4 internal links

PCI PCI 9080

cell 7

SDRAM

FPGA

cell 0

SDRAM

FPGA

cell 1

SDRAM

FPGA

Figure 2. SYNTHUP architecture.

The board gathers eight identical cells, which gives a total of
128 Mbytes of on board memory. Seven cells are dedicated to
computing; cell 0 is intended for control and handles the PCI
interface.

Special attention has been paid to data exchange between the
computing cells. Each cell can exchange 64 bits with the other
cells through an array of five exchange FPGAs. These FPGAs

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

W99-2

work as a crossbar switch. Thanks to the FPGA technology, each
bit can be programmed individually as input or output or general
I/O.

The exchange FPGAs are also responsible for the
communication with other boards. They drive five 12 bit ports:
one link is available on a 37 pin connector on the card bracket,
the four others are intended for communication with other boards
in the PC. Here also, each bit is programmable as input, output
or general I/O with data or control functionality.

The PCI interface is handled by a dedicated component from
PLX (PCI 9080). It features full PCI V2.1 compliance (32 bit,
33 MHz) including 5 volts and 3,3 volts compatibility; true Plug
and Play installation and configuration as well as bus mastering
for high speed transfer between the board and the host memory
(scatter-gather DMA).

Applications are downloaded from the host via PCI into the
logical resources of the FPGAs in few milliseconds. This makes
the system fully re-configurable at will. This makes also the
board to act as a co-processor that implement intensive
calculations independently from the host.

A VxD driver is available allowing access to the board under
Windows 95 and 98. Next WDM version will be Windows 2000
compatible.

Figure 3. SYNTHUP layout.

The footprint of the FPGAs (PQ240) allows us to install any
component of the 4000XL or 4000XLA family, starting with
4013 (10K-30K gates equivalent) up to 4085 (75K-200K gates
equivalent). It will be also possible to install 256 Mbit SDRAM
instead of today’s 64 Mbit.

The board works with a common 40 MHz clock.

3. FPGA

In the last years, FPGAs have become a new option for
implementing programmable digital signal processing
algorithms. On one hand, general-purpose DSP chips give a lot
of flexibility as they can be programmed at will using a high
level language like C. They allow fast design iterations and
reduce time to market but debugging multi-processor software
may turn out to be a tricky activity. On the other hand,
Application-Specific Integrated Circuits (ASICs) deliver
performance at the expense of high development costs, the
inability to make design modification after production and a high
price per chip when not manufactured in high volume. As an
alternative, FPGAs offer the best of both worlds: flexibility and
performance.

The FPGAs SRAM based technology allows the user to
reconfigure the chip as many times as needed. Moreover, the
designer implements exactly what is required for a given
application through highly parameterized building blocks. He
starts the design by translating the DSP algorithm into a circuit
schematic using a schematic editor or by describing the
algorithm with a high level language like VHDL. Then, a
software environment including simulation and timing analysis
helps him to control how the design is mapped and routed into
the logical resources of the FPGA.

Figure 4. FPGA architecture.

The devices feature a gate-array like architecture with a
matrix of configurable logic blocks (CLBs) surrounded by a
periphery of I/O blocks (IOBs). This regular structure holds an
abundance of registers which enables a high degree of pipelining
and leads to increase performance for parallel processing.

Figure 5. Simplified block diagram of XC4000XL CLB.

Each CLB includes two 4 bit look-up tables (LUT) and two
1 bit registers. A dedicated fast carry chain improves the
performance of adders, accumulators, comparators and counters.
For example, a 32 bit adder takes 16 CLBs and functions at
108 MHz in the 4000XLA family. Moreover, each CLB can be
configured as a 16×1, 16×2 or 32×1 single port synchronous
RAM or as a 16×1 dual port synchronous RAM with
simultaneous read/write. This distributed RAM is a key element
for DSP applications.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

W99-3

Figure 6. Simplified block diagram of XC4000XL IOB.

Eventually, the programmability of each IOB as input, output
or general I/O with or without registers gives a lot of flexibility
and allows fast data transfers between devices.

4. FILTER IMPLEMENTATION

We will focus on Distributed Arithmetic implementations of
FIR filters because they make an intensive use of look-up tables
that are easily implemented in FPGAs.

The response of a K taps FIR filter can be expressed as the
following sum of products:

)()(
1

nxAny
K

k
kk∑ •=

=
(1)

Where y(n) is the response at time n, xk(n) is the kth prior input
data at time n and the Ak are the coefficients of the filter. We
assume data and coefficients are coded on B and C bits
respectively. Input data xk may be written with 2’s complement
notation as follow:

∑+−=
−

=

−1

1
,0, 2

B

b

b
bkkk xxx (2)

Where xk,b is a binary variable and xk,0 is the sign bit. This leads
to explicitly express all product terms of equation (1) as:

)1(
1B,21B,211B,1

1
1,21,211,1

0,20,210,1

2]...[

...

2]...[

]...[)(

−−
−−−

−

•++•+•+

+

•++•+•+

•++•+•−=

B
KK

KK

KK

AxAxAx

AxAxAx

AxAxAxny

(3)

Each term within the brackets involves only one bit of the input
data with all the bits of the coefficients. This allows to construct
a look-up table that can be addressed by the same bit of all input
variables. This look-up table holds all the additive combinations
of the coefficients: 2K elements of A = C + p bits when
2p-1 < K ≤ 2p. One gets each sum of products within the brackets
in one clock cycle. These B partial terms are then added together
to form the output result y(n).

A1

A2

Ak

AK

x1,b

x2,b

xk,b

xK,b

address

A

0

A1

A2

AK +…+ A1

2K words × A bits

0

1

3

2K

2

A2 + A1

data

4 A3

Figure 7. Look-up table addressing and content.

In a fully parallel implementation, the input samples are
stored in a series of registers (one register per tap) which feed a
series of look-up tables. As all B bits of all K data sources
address the B look-up tables, one gets the output in a single
clock cycle. This is the fastest solution as it runs at the system
frequency (40 MHz on SYNTHUP). But speed has its cost: a
high number of CLBs. This is the classic speed – resources
tradeoff. In other words, the number of taps is limited by the
resources of the FPGA installed on the board. For example, an
XC4028XLA (1024 CLBs) will implement a maximum of 16
taps with 16 bit data and coefficients.

 8 bits 16 bits Data Device CLBs
Taps 8 bits 12 bits 16 bits 8 bits 12 bits 16 bits Coef. 4013 576

4 146 186 226 282 354 428 4020 784
8 189 229 269 360 432 506 4028 1024
12 335 411 487 631 772 914 4036 1296
16 365 441 517 685 826 968 4044 1600
20 498 610 722 933 1142 1352 4052 1936
 4062 2304
 4085 3136

Table 1. CLB number for a parallel Distributed
Arithmetic implementation of a symmetric FIR filter.

On the other hand, serial implementation requires less
resources (CLBs) at the expense of a limited sample rate. The B
partial terms x1,b ; x2,b ; …, xK,b (b = 1, …, B) are successively
sent to a single look-up table, LSB first (weight 2-(B-1)). The
output of this look-up table enters a scaling accumulator (scale
by ½) that will accumulate the B contributions so that one gets
the final output result in B clock cycles for a non symmetric
filter and B+1 cycles for a symmetric filter.

 16 bits 24 bits Data Device CLBs
Taps 8 bits 16 bits 24 bits 8 bits 16 bits 24 bits Coef. 4013 576

8 38 55 68 54 63 75 4020 784
16 64 77 93 76 89 105 4028 1024
32 112 142 174 132 162 194 4036 1296
64 201 263 327 238 300 364 4044 1600
80 269 364 460 314 409 505 4052 1936
 4062 2304
 4085 3136

Table 2. CLB number for a serial Distributed Arithmetic
implementation of a symmetric FIR filter.

The output sample rate only depends on the size of the input
samples while the number of taps relies on the abundance of
CLBs in the FPGA. Compared with the parallel implementation,

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

W99-4

for a given FPGA, the sample rate is divided by the input data
size but the number of taps is more than ten times higher. This
makes serial distributed arithmetic implementation to be a good
compromise between speed and density.

 Data 8 bits 12 bits 16 bits 20 bits 24 bits 32 bits
Symmetric filter 4.44 3.07 2.35 1.90 1.60 1.21
48 kHz channels 92 64 49 39 33 25

Non symmetric filter 5 3.33 2.5 2 1.66 1.25
48 kHz channels 104 69 52 41 34 26

 system clock = 40 MHz

Table 3. Output sample rate (in MHz) for a serial
Distributed Arithmetic implementation of FIR filter.

It is possible to use the same resources, i.e. the same CLBs,
to filter different audio channels. For that purpose, we affect one
FPGA for filtering and another FPGA to handle the input
samples of the different channels. The filter receives successive
frames of F samples each, one frame per channel. The filtering
of a new frame starts with the initialization of the input FIFO (K
entries for K taps). During that process, the output of the filter is
inactive. This time is negligible as far as F is much higher than
K. For example, only 10% of the sample rate is lost if F = 10×K.
A drastic method to avoid this problem consists in doubling the
input FIFO: one FIFO feeds the look-up table while the other is
initialized. At the expense of a few CLBs (5 CLBs per 10 taps
for 16 bit data), this allows to filter 48 channels (16 bit input
data sampled at 48 kHz, 16 bit coefficients).

Until this point, the coefficients were stored in a ROM look-
up table. Changing the ROM into a RAM gives the possibility to
change the coefficients: each channel gets its own filter and, in
addition, the coefficients of this filter can be changed as time
goes on. We can implement adaptive filters that are capable of
self adjustment and update their coefficients. The management
of the RAM addresses and data path is not very CLB consuming.
The difficulty comes here also from the initialization of the
coefficients which takes 2K clock cycles for K taps. For
symmetric filters, this time is divided by two but still leads to
reduce the number of channels. Once again, doubling the look-
up table solves the problem and allows to reach the maximum
number of channels listed in table 3. A 100 taps filter with 16 bit
data and coefficients fits in a 4036 device.

5. CONCLUSIONS

We have demonstrated the efficiency of FPGAs for
implementing filters in digital audio applications. Serial
implementation of distributed arithmetic allows us to construct
100 taps FIR adaptive filters for 48 channels (16 bit input data
and coefficients) in one FPGA. Furthermore, the modular
architecture of SYNTHUP will permit to extend the number of
channels and the number of taps. This first step encourages us to
use this board as an efficient tool for digital signal processing
developments.

6. ACKNOWLEDGEMENTS

The authors would like to thank Gérard Marino and Vincent
Fontalirant for their help all along this work.

7. REFERENCES

[1] Raczinski, J.-M., Marino, G., Sladek, S., Fontalirant, V.
"SYNTHUP carte PCI pour la synthèse du son et le
traitement de signal en temps reel", Proceedings of the
JIM99, pp 75-82, Paris, 1999.

[2] "The Fastest Filter in the West", Xilinx publication, 1997.
[3] "The Role of Distributed Arithmetic in FPGA-based Signal

Processing", Xilinx publication, 1997.
[4] Goslin, G. R. "A Guide to Using Field Programmable Gate

Arrays (FPGAs) for Application-Specific Digital Signal
Processing Performance", Xilinx publications, 1995.

[5] Mintzer L. "FIR Filters with Field Programmable Gate
Arrays", Journal of VLSI Signal Processing, No. 6, pp. 120-
127, 1993.

[6] Peled, A. and Liu, B. "A New Hardware Realization of
Digital Filters", IEEE Trans. on Acoust., Speech, Signal
Processing, Vol. ASSP-22, pp. 456-462, Dec. 1974.

[7] Xilinx DSP Overview: http://www.xilinx.com/dsp/

