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ABSTRACT

The separation of musical instruments acoustically mixed in one
source is a very active field which has been approached from
many different viewpoints. This article compares the blind
source separation perspective and oscillatory correlation theory
taking the auditory scene analysis as the point of departure
(ASA).

The former technique deals with the separation of a particular
signal from a mixture with many others from a statistical point
of view.  Through the standard Independent Component Analysis
(ICA), a blind source separation can be done using the particular
and the mixed signals' statistical properties. Thus, the technique
is general and does not use previous knowledge about musical
instruments.

In the second approach, an ASA extension is studied with a
dynamic neural model which is able to separate the different
musical instruments taking a priori unknown perceptual
elements as a point of departure. Applying an inverse
transformation to the output of the model, the different
contributions to the mixture can be recovered again in the time
domain.

1. INTRODUCTION

Source separation, in general, consists of recovering a group of
independent signals from the mixture. When the sources are
environmental sounds or the ones that come from musical
instruments the separation can profit from the human auditory
system segregation perceptual mechanisms. In this case we try to
recover a perceptual description of each constituent sound
source. The process of simulating the peripheral auditory system
has been called auditory scene analysis [1] (ASA) or
computational auditory scene analysis [2] (CASA) when we deal
with a computational  modeling of ASA. The output of these
models is the input to the primary auditory nervous system. In
this context, the algorithms that simulate the CASA relate the
acoustic signals with its auditory representation [9] and are the
input to higher level models of neurobiological hearing
mechanisms. Trying to understand the neurobiological basis of
ASA and the fact that humans can perceptually segregate sound

sources with relative ease suggests the possibility of developing
neural network models of ASA [10].

The separation of sounds and particularly of speech has also
received special attention in the blind source separation
research. As distinguished from CASA, the blind source
separation is a statistical technique whose underlying model is
the observation of m linear combinations (probably noisy) of n
statistically independent signals. The problem lies basically in
recovering the original signals from the mixture [5] with no a
priori  information about the mixture matrix coefficients.
Precisely the ‘blind’ separation term is due to them.

2. COMPUTATIONAL AUDITORY SCENE ANALYSIS

The main task of auditory perception is to recover a mental
description of each sound source from the acoustic source which
is received by our ears composed of sound energy from several
environmental sources [10].

Bregman [1] describes this auditory system function as auditory
scene analysis (ASA). The computational model of ASA
provides the basis for the development of psychological and
physiological theories of perception.

According to Bregman, ASA can be understood as a two stage
process. In the first stage (segmentation) the acoustic mixture
which is received by the ears is decomposed into a collection of
sensory elements segments. The second stage (grouping)
combines segments that probably belong to the same acoustic
event in a perceptual entity named stream. These streams can
lead to higher level processes for the comprehension and
recognition of the scene.

Several auditory neuroscience reports agree on the fact that the
different properties of acoustic events (such as periodicity,
spatial location and spectral shape) are registered in different
locations of the auditory system. However, we perceive the
auditory events as a whole and not in parts. That is, the auditory
system is able to group characteristics represented in remote
neural structures to make a perceptual entity [3].

The traditional solution to the grouping problem stablishes a
hierarchy of detecting cells with increasingly specialized
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characteristics. Von der Malsburg, however, suggested that the
response of the characteristic detecting cells can be grouped by
the temporary synchronicity of their oscillatory firing activity
beginning what has been called oscillatory correlation theory.
According to this view, the detecting cells which represent a
characteristic of the same perceptual event should be
synchronised while the cells which represent characteristics of
different events should be desynchronised.

Wang and Brown [10] propose an oscillatory network model
with two layers which use simple computational methods for the
extraction of auditory characteristics.

2.1. MODEL

In the first stage of  Wang's model peripheral auditory processing
is simulated by passing the input signal through a bank of
cochlear filters. The gains of the filters are chosen to reflect the
transfer function of the outer and middle ears. In turn, the output
of each filter channel is processed by a model of hair  cell
transduction, giving a probabilistic representation of auditory
nerve firing activity which provide the input to subsequent
stages of the model [10].

The second stage of the model produces auditory representation
of ‘mid-level’. The correlogram is formed by calculating a
running autocorrelation of the auditory nerve activity in each
filter channel. The correlogram is computed in intervals of
approximately 10ms, forming a three-dimentional volume in
which time, channel central frequency and autocorrelation lag
are represented on orthogonal axes. Besides, a ‘pooled’
correlogram is formed at each time frame by summing the
periodicity information in the correlogram over frequency. The
largest peak in the pooled function occurs at the period of the
dominant fundamental frequency (FO) in each time frame. This
information is very useful for the third stage of the model to
group the acoustic components according to the fundamental
frequencies (FO). Besides, an analysis of cross-correlation is
made motivated by the observation that filter channels with
center frequency close to the same harmonic or formant exhibit
similar patterns of periodicity. Due to this, the Wang model
computes a running cross-correlation between adjacent
correlogram channels providing the basis for the segment
formation in the third stage of model.

The third stage of the Wang model consists of a network of
relaxation oscillators with two layers. The first layer is locally-
excitatory globally-inhibitory oscillator network (LEGION),
where the auditory organization takes place. The oscillators in
the second layer are linked by two kinds of lateral connections.
The first kind consists of mutual excitatory connections between
oscillators within the same segment. The second kind consists of
lateral connections between oscillators of different segments, but
within the same time frame. This layer groups the segments in a
stream. The network is bi-dimensional: frequency and time. The
strength of the coupling between oscillators is a ‘distance’
function between time and frequence. The time dimension is
implemented as a delay line series.

The input to the Wang model are bi-dimentional binary matrices
of time and frequency (N channels x M time frames). Each input
matrix represents a auditory sequence whose binary elements
corresponding to time-frequency events are on or off. The
network task is simply to respond to each input matrix with
active time-frequency events triggering the corresponding time-
frequency oscillators [7].

The stream segregation is obtained from the emergent
synchronization between simultaneously active oscillators. The
synchronicity between oscillators, at the same time, is produced
by the excitatory connections between oscillators and is a time-
frequency distance function.

3. BLIND SOURCE SEPARATION

The blind source separation consists in recovering unobserved
signals or ‘sources’ from the several observed mixtures. The
lack of a priori knowledge about the mixture is compensated by
a statistically strong but often physically plausible assumption of
independence between the source signals [4]. The blind
separation algorithms try to invert the mixing process in such a
way that recovering the components in some way independent.
Another frequent strong assumption is to consider the mixing
process linear instead of convolutive.

The blind source separation profits mainly the spatial diversity
(different sensors receive different signal mixtures). The spectral
diversity, if it exists, could be profitable but the separation focus
is essentially ‘spatial’: looking for structures through the
sensors, not through time.

The two main components of a statistical model are: the mixing
matrix and the probability distribution of the source vectors. The
mixing matrix is considered linearly independent so that it is
invertible. The probability distribution of each source is an
annoying parameter because though it is not interesting, it is
necessary to know or estimate it in order to estimate ‘efficiently’
the parameters of interest. The separation techniques in fact
depend on the assumptions related to the individual distribution
of the sources.

The simplest way of mixing process is

( ) ( )tAstx =

where ( ) ( ) ( )[ ]tststs n,,1 �=  is a n x 1 column vector that

contains the source signals, ( )tx  is a vector that contains the n

observed signals and A is a square matrix of n x n  that contains
the mixture coefficients .

The problem of blind source separation consists of recovering

the vector ( )ts  only from the observed data ( )tx . This can be

formulated as the computation of an n x n ‘separating matrix’

whose output ( )ty
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( ) ( )tBxty =

is an estimate of the vector ( )ts  of the source signals.

Normally the use of second order information (decorrelation)
allows to reduce the blind separation problem to a simpler form.
If a vector has variance unit and covariance unit it is said that the
vector is spatially white. Therefore, ‘whitening’ or ‘sphering’
the data reduce the mixture to a rotation matrix. It means that a
separating matrix B can be found as a product B = UW where W
is a whitening matrix and U is a rotation matrix. Therefore

( ) ( )tUWxty =

The ‘contrast’ functions are real functions of the distributions of
the output y = Bx and they serve as objectives: they must be
designed in such a way that source separation is achieved when
they reach their minimum value and are generically denoted by
φ[y]. High order statistics can be used to define contrast
functions and can be simply expressed  using the cumulants.

Statistical independence implies that the joint moments of the
source signals of all the orders is zero. For zero mean random
variables the second order cumulants are identical to the second
order moments. The algorithms which guarantee that only the
second order joint moments are zero (e.g., the covariance matrix
is the unit) are classified as principal component analysis
(PCA). However, the algorithms which explicitly operate with
higher order statistics are classified as independent component
analysis (ICA) [4].

The Comon [6] procedure minimizes the fourth order cumulants
given by

[ ] [ ]∑
≠

° =
iiiiijkl

ijklICA C yy 2φ

Independence can also be tested over a small subset of cross-
cumulants with:

[ ] [ ]∑
≠

° =
ijkkijkl

ijklJADE C yy 2φ

This is a criterion of ‘joint diagonalization’ criterion of eigen-
matrices (JADE). It has been proved that both algorithms are
equivalent but a faster optimization process exists for JADE.
JADE assumes a linear mixing model and is not iterative but it
reacts directly over the statistics of the complete data set.

4. SOURCES

When the sources are acoustic signals, the linear mixture model
that perfectly aligns in time the source signals observed by the
microphones is not true due to the differing pathlengths to the
microphone. Another complication in the real acoustic
environment is the distortion that signals suffer due to echoes
and hall acoustic response. A more reasonable mixing model
should include these effects, it should be convolutive of the kind

( ) ( )( )∑ ∗=
j

iji tshtx

where h is the filter impulse response. Another choice is the
election of a non-linear mixing model.

The statistic independence suggestion is strong enough when the
source signals come from musical instrument. The inner
harmonic nature of most of musical instruments can bring about
strong non-stationary harmonic correlations. Besides, the sound
that come from musical instruments are not stationary and
difficult to model statistically.

Our report has been written taking into consideration a simple
case of  linear mixing under a strong suggestion of acoustic
signal independence. In general, the mixtures with white noise
are rich in higher order joint statistics and the mixtures with
narrow band signals are poor in higher order joint statistics.

5. CONCLUSIONS

Both approaches can be evaluated in terms of signal noise
relation (SNR) though they are not identical.

The power of Wang's oscillator network to model streaming lies
in three primary components of the model [7]. First, auditory
sequences are translated into a special array via a series of delay
lines, so that sequence of time-frequency events are processed
all-at-once. Second, lateral excitatory connections between
oscillators based on time and frequency proximity enable
oscillators corresponding to time-frequency events to achieve
synchrony if and only if they are sufficiently near in time and
frequency. Third, the global inhibitor counteracts lateral
excitation by desynchronizing the oscillators. It is the
competition between the synchronizing lateral connections and
the desynchronizing global inhibitor that permits the model to
form streams based on time and frequency proximity, providing
a successful model of the basic phenomena.

The Wang model fails to capture some significant aspects like
high-low tone sequences [7] (which are perceived as an
integrated sequence or as two separate sequences: one only with
high tones and other with low tones). In general, architecture has
serious problems regarding the granularity of time dimension
which does not allow to obtain details from many experiments y
and losing many important characteristics [8].

According to von der Malsburg correlation theory, the brain
functions imply synchronicity of neural firing but does not
require neural oscillation per se Error! Unknown switch
argument.. In fact, there are dynamic systems where isolated
cells can show oscillatory activity without being synchronized to
other cells. Equally, the firing activity of different cells can be
synchronized without showing oscillations. In other words,
though the neural oscillations and synchronicity occur together,
they are not necessarily dependent.

The oscillatory segregation network functioning is controlled by
a great amount of non directly related parameters with
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neurophysiological findings and far from a standard which
guarantees a universal functioning before several sources.

The segregation is led by the dominant frequency (FO) extracted
from the running correlogram which excludes the identification
of sounds coming from musical instruments noisy or poorly
tonal.

The Wang's model keeps a record of the auditory sequence
events through a series of delay lines in such a way that
sequences are processed by the oscillatory network all at once.
The segregation of a stream through the oscillator synchronicity
keeps itself only while the input sequence persists. However,
most of the auditory streams do not remain in memory when
there
is a lack of input, and when the stream formation does not take
into consideration memory storing and extracting.

Memory, thus, is not a key consequence of the model. The model
does not need a learning sequence. As a consequence of this, the
sequence processing does not influence the previous sequences
exposed to the model. The formation of auditory streams is
determined by two kinds of changes which specify the dynamics
of oscillator synchronization: changes in the oscillator activations
and changes in the weights that modulate the oscillator
interaction.

The segregation network can be a reasonable point of departure
to model the auditory perception but must be improved from
several viewpoints.

The statistical techniques of the blind source separation impose
strong statistical restrictions to the mixed signals and to the
mixture. Besides, the knowledgement of the source number is
required and the number of mixed signals should be equal to the
source number. Even when the mixing process is linear, the
mixing matrix should be far from singular (if the microphones
are relatively close, the effective mixing matrix can nearly be
singular). If the sources move in space, the coefficients of the
mixing matrix change in time, however, the blind source
separation algorithms like JADE require stationary source
signals.

Human beings also have enourmous limitations when
simultaneously distinguishing many auditory events. In such
scenes, the power to separate a source from the mixture consists
of isolating selected events which introduces complex attentional
mechanisms.

Both approaches work successfully when separating sound
mixtures assuming several restrictions more or less significant
but very far from a natural hearing environment.
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