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ABSTRACT

Physical modelling of musical instruments is one possible
approach to digital sound synthesis techniques. By the term
physical modelling, we refer to the simulation of sound
production mechanism of a musical instrument, which is modelled
with reference to the physics using wave-guides. One of the
fundamental parameters of such a physical model is the pitch, and
so pitch period estimation is one of the first tasks of any analysis
of such a model.
In this paper, an algorithm based on the Dyadic Wavelet
Transform has been investigated for pitch detection of musical
signals. The wavelet transform is simply the convolution of a
signal f(t) with a dialated and translated version of a single
function called the mother wavelet that has to satisfy certain
requirements. There are a wide variety of possible wavelets, but
not all are appropriate for pitch detection. The performance of
both linear phase wavelets (Haar, Morlet, and the spline wavelet)
and minimum phase wavelets (Daubechies’ wavelets) have been
investigated. The algorithm proposed here has proved to be
simple, accurate, and robust to noise; it also has the potential of
acceptable speed. A comparative study between this algorithm and
the well-known autocorrelation function is also given. Finally,
illustrative examples of different real guitar tones and other sound
signals are given using the proposed algorithm.
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1. INTRODUCTION

During the last two decades, physical modelling of real musical
instruments has gained popularity as a tool for sound synthesis
and computer music. The term physical modelling refers to the
simulation of sound production mechanism and the behaviour of a
real musical instrument [1] [2] [3].
In physical modelling of a guitar (as a plucked string instrument),
the ideal vibrating string is considered as the main source of
vibration. It satisfies the one-dimensional wave equation, which
can be modelled very accurately using digital wave-guide
techniques [4]. Starting with a recorded real guitar tone,
estimating the model parameters is one of the main tasks of the
analysis process. Hence, pitch period estimation is essential for
extracting the other parameters. Unlike speech signals, musical
signals have a broader range of frequencies, so there are some

difficulties in estimating their pitch period [5]. The autocorrelation
function is one of the well-known time-domain pitch detectors.
Despite its simplicity, the autocorrelation function has some
disadvantages.
An algorithm based on the dyadic wavelet transform has been
investigated for pitch estimation of musical signals. The basic idea
of this algorithm is that, for an appropriately chosen wavelet, the
dyadic wavelet transform exhibits local maxima at the points of
sharp variation of the signal [6].
In this paper, the application of the proposed algorithm to a wide
range of stringed musical signals as well as some other musical
signals has been investigated. Further, a comparative study
between this algorithm and the autocorrelation function is
presented. This paper is organized as follows: section 2 is devoted
to the pitch detection problem and the autocorrelation algorithm.
In section 3, principles of the dyadic wavelet transform and its
properties is presented. In section 4, implementation of the
proposed algorithm and the autocorrelation algorithm to a wide
range of musical signals as well as singing voices is studied.
Discussions and results are presented in section 5. Finally, section
6 is devoted to the conclusion.

2.  PITCH DETECTION OF MUSICAL SIGNALS

Pitch period is a fundamental parameter in the analysis process of
any physical model. A pitch detector is basically an algorithm that
determines the fundamental pitch period of an input musical
signal. Pitch detection algorithms can be divided into two groups:
time-domain pitch detectors and frequency-domain pitch
detectors. Pitch detection of musical signals is not a trivial task
due to some difficulties such as the attack transients, low
frequencies, and high frequencies.
The autocorrelation function is a time-domain pitch detector. It is
a measure of similarity between a signal and translated (shifted)
version of itself. The basic idea of this function is that periodicity
of the input signal implies periodicity of the autocorrelation
function and vice versa.
For non-stationary signals, short-time autocorrelation function for
signal f(n) is defined as [7]:
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where w(n) is an appropriate window function, N is the frame
size, l is the index of the starting frame, m is the autocorrelation



parameter or time lag and 0M  is the total number of points to be

computed in the autocorrelation function.
The autocorrelation function has its highest peak at m=0 which
equals to the average power of the input signal. For each l, one
searches for the local maxima in a meaningful range of m. The
distance between two consecutive maxima is the pitch period of
the input signal )(nf . Different window functions such as

rectangular, Hanning, Hamming, and Blackman windows have
been used in the analysis. The choice of an analysis window and
the frame size are among the main disadvantages of the
autocorrelation function.

3.  DYADIC WAVELET TRANSFORM

Wavelet transform is based on the idea of filtering a signal f(t)
with a dialated and translated versions of a prototype
function )(tΨ . This function is called the mother wavelet and it

has to satisfy certain requirements [8]. The Continuous Wavelet
Transform (CWT) for f(t), is defined as [9];
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b R∈  is the translation parameter. In addition to its simple
interpretation, the CWT satisfies some other useful properties
such as linearity and conservation of energy [8] [9]. For practical
implementations, CWT is computationally very complex.
Dyadic Wavelet Transform (DWT), is the special case of CWT
when the scale parameter is discretized along the dyadic grid

( j2 ), j=1, 2… and b Z∈ [10], i.e.,
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appropriately chosen wavelet, the wavelet transform modulus
maxima denote the points of sharp variations of the signal [6] [10]
[12]. This property of DWT has been proven very useful for
detecting pitch periods of speech signals [11]. An appropriately
chosen wavelet is a wavelet that is the first derivative of a smooth
function [6]. Zero-crossings of musical signals can be considered
as points of sharp variation of the signal and hence the dyadic
wavelet transform exhibits local maxima at these points across
several consecutive scales. The pitch period is evaluated by
measuring the time distance between two such consecutive
maxima.

4.  IMPLEMENTATION

Theoretically, the Dyadic wavelet transform has to be evaluated

for all scales ( j2 ),  for j varying from -∞ to +∞ . For practical
implementation, one is limited to a finite larger scale and a
nonzero finer scale, since the input signal is generally measured
with a finite resolution. The finer scale is equal to 1 (for

normalization purposes) and the larger scale is equal to J2 . The
wavelet used in this analysis is the quadratic spline wavelet, which
is the first derivative of the cubic spline )(tθ , i.e.,
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This wavelet is an anti-symmetric, regular and of compact
support. The corresponding scale function)(tΦ is the quadratic

spline with Fourier transform given by
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Figure 1. show both )(tΨ and )(tΦ respectively.

Two FIR filters, namely, a low-pass filter {h(n)} and a high-pass
filter { g(n)} characterize the discrete dyadic wavelet transform,
and the number of levels J.  Starting with 0S f = f, 0h =h and

0g =g, the recursive algorithm is defined as
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    j=0,1…J-1.
where jh and jg denotes the filters obtained from h and g by

inserting 12 −j  zeros between each two consecutive coefficients
of the two filters respectively. Hence the DWT can be
implemented as a FIR non-subsampled octave-band filter bank.

(a) quadratic spline wavelet     (b) quadratic spline function

Figure (1)

5.   RESULTS AND DISCUSSONS

The proposed algorithm has been implemented on a wide range of
musical signals such as a saxophone signal (wind instrument), a
tanpura signal (an Indian drone instrument), a singing voice
signal, and a conga rim-hit signal (drum family) but with
emphasis on plucked string signals (a classical guitar tone, bass,
pizzacato cello ...etc).
The sampling rate for all test signals is 44.1 kHz and different
window size of 22.7 and  34 ms has been used. Experiments have
shown that it is adequate to evaluate the dyadic wavelet transform

across three consecutive scales only ,24  52 , and 62 .
In the analysis of plucked string signals, the results show that it is
sufficient to estimate the pitch period from the steadily decaying
part of the signal several hundred milliseconds after the attack
[13]. This is due to the fact that pitch period of plucked-string
signal decreases as the signal attenuates. The test signal is a D-
tone guitar and the estimated pitch period is 147 Hz. In this case,
the relative error is (0.001). Results for guitar tone is shown in
figure (2).



The estimated pitch of a D#-sax signal is 154.7368 Hz with
relative error 0.005. Figure (3) shows results of the sax signal.
The tanpura signal is a very harmonically rich signal. Our results
show that the proposed algorithm has the ability to detect not only
the fundamental frequency but also the frequency with  the most
energy present in the signal. In the case of the autocorrelation
function, the effect of the window function is to taper the function
smoothly to 0. Hence, a longer frame size has to be used in order
to detect the fundamental of the tanpura signal not the strongest
harmonic. The estimated pitch period of this signal is 157.5 Hz.
Results of this signal are shown in figure (4).
Figure (5) shows results of the analysis of a male singing voice.
The estimated pitch is 110.8040 Hz.
Moreover, in the analysis of conga-rim signal, the algorithm
classified this signal as unpitched one since it failed to find local
maxima that satisfy the previous criteria.
For all test signals, the results can be further improved by using
several methods of curve fitting for best estimate of local maxima.
The computational complexity of the proposed algorithm is
O(NJ), for an input signal of length N evaluated across J scale.
The constant depends on the number of the nonzero coefficients
present in the filters h and g. The algorithm is faster than the
autocorrelation function since the length of the analysis wavelet is
less than 0M .

Different wavelets like Haar wavelet [14], a minimum-phase
wavelet [14], and Morlet wavelet [15], have been used in the
analysis to compare their performance. The spline wavelet has a
superior performance. Results also show that the Haar wavelet has
the potential of real-time implementation due to its simplicity and
its accurate results.
Despite its simplicity, the autocorrelation function is
computationally expensive when the appropriate frame size is
used. Its main drawback is the choice of a window function and
assuming stationarity of the signal within the frame, hence using a
fixed frame size during the analysis process. More about the
analysis process of all test signals is found in [16].

6.  CONCLUSIONS

An algorithm based on the Dyadic Wavelet Transform is
investigated for pitch detection of musical signals. The results
show that the algorithm can be applied to a wide range of musical
signals such as guitar, sax, cello, bass, tanpura as well as some
singing voices. The algorithm is simple since only two FIR-filters
are required for the analysis. It is accurate, efficient and robust to
noise. The main advantage of the proposed algorithm is that it is
fast compared to the autocorrelation function. Besides, the
algorithm takes into account the non-stationarity of the input
signal. Unlike the autocorrelation function, the frame size in not a
crucial parameter since different frame sizes have been used
successfully.  On comparing the performance of different
wavelets, the quadratic spline wavelet has a superior performance.
Nevertheless, the algorithm has the potential of real-time
implementation using the Haar wavelet due to its simplicity with
minimal loss of accuracy. Finally, the algorithm can classify
unpitched signals.
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Figure 2. scale52 and scale 62 of a of the guitar
tone using quadratic spline wavelet

Figure 3.  top: scale52 and bottom: scale62 of the
sax signal using quadratic spline wavelet

Figure 4. Scale52 (top) and scale 62 (bottom) of
a tanpura signal using quadratic spline wavelet

Figure 5.  top: scale52 and bottom: scale62 of a
 singing voice signal using quadratic spline wavelet


