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ABSTRACT

This paper deals with designing material parameters for
physical models. It is shown that the characteristic relation
between modal frequencies and damping factors of a sound
object is the acoustic invariant of the material from which the
body is made. Thus, such characteristic relation can be used for
designing damping models for a conservative physical model to
represent a particular material.

1. INTRODUCTION

In recent years, physical modeling has gained interest among
computer music researchers and artists. Due to the close
interaction with musical acoustics research, this synthesis
technique is often understood as a tool for reproducing existing
instrument sounds. But, the present work sees the physical model
as an open and challenging framework, allowing musicians to
explore their own imagination.

However, to retain reference to the physical world, the
starting point is observation of traditional instruments and
various sound objects. The sound produced by an acoustic
instrument can be affected by many factors, including the
material from which the instrument is made, its size and shape,
and the way it is played. Approximation techniques such as finite
elements or finite differences enable us to model different shapes
[1,2]. Our aim is to introduce the material as another parameter
in the physical model design.

Geometry and Mathematics have trained our mind to
conceive pure and abstract forms without any matter. The
converse might be more difficult, like imagining a color without
any form. There are probably some correlations between the
sound perception of material and shape. Anyway, in most
situations, it is possible to recognize sound objects as belong to
one of the material categories: metal, wood, plastic, etc.

Leaving the above question open, the problem will be treated
in a purely physical point of view. The first step is to look for
some invariant features in acoustical signals produced by
different resonators made of the same material. We are faced to a
new version of the famous Kac’s problem : “can one hear the
material of a drum?” [3]. Using the viscoelasticity theory, it is
shown that this acoustical invariant is a particular relation
between frequencies and damping factors. The presentation is
organized as follows. In section 2, constitutive equations and
linear viscoelasticity are briefly reviewed. In section 3, it is

shown how constitutive laws of linear viscoelasticity are involved
in vibrating mechanical systems. In the last section, algorithms
for computer simulation and a general framework for physical
modeling design are outlined.

2. CONSTITUTIVE EQUATIONS

Mechanical property of a material is expressed in form of a
constitutive equation, i.e. an equation that is independent of the
geometry of the body and depends only on its material nature.
This equation involves a pair of intensive and extensive
dependent variables stress σ and strain ε. Stress is defined as
force per unit area, while strain is the fractional change of size
(length, volume, angle, etc.). The simplest constitutive equation
is the Hooke’s law of pure elasticity, which states that stress is
proportional to strain: σ = kε. But in real materials, internal
dissipation of energy has also to be considered. When a body of
material is subjected to a deformation, its microscopic structure
may experience local activities. The microscopic rearrangements,
in any real material, necessarily require a finite time. Hence, the
constitutive equation must involve the time variable. Throughout
this work, we consider only vibrations of small amplitudes, so
we may assume linearity. Thus, linear viscoelasticity [4,5] is
considered as the fundamental mechanical behavior of materials.

2.1. Linear viscoelasticity

The mathematical formulation of linear viscoelastic behavior
considers a material as a causal (fixed) linear system, with σ and
ε as input-output variables. Aging phenomenon is then neglected
and temperature assumed to be constant. A general linear system
can be characterized by one of its system’s functions : impulse
response, harmonic response, etc. [6]. Considering the strain ε as
the input and σ as the output, a constitutive equation has the
general form of a convolution integral: σ = kδ*ε, where kδ is the
impulse response of the material sample.

Expressed in the transform plane, the convolution reduces to
multiplication by the relaxance k(s), i.e. the Laplace transform of
kδ(t). The knowledge of viscoelastic properties of materials is
based on measurements. The most easily measurable viscoelastic
functions are the step and the harmonic responses.

The step response kH(t), referred to relaxation, is the gradual
decrease of stress when the material is held at constant strain.
The harmonic response expresses the delay of the strain when
the material is subjected to a harmonic stress. It is expressed by
the complex modulus k*(ω) = k(iω) = k’(ω)+ik” (ω), which is the
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ratio σ/ε when the material sample experiences harmonic
oscillations at frequency ω. The maximum potential energy
stored and the amount of energy dissipated in each cycle are
respectively proportional to the storage and loss modulus k’(ω)
and k” (ω). The loss factor η = k” (ω)/k’(ω) measures the
damping capacity of the material.

The storage modulus is an increasing function of ω. In fact,
at high rate strain, fewer relaxation processes have enough time
to be completed. A relaxation phenomenon requires time but
also kinetic energy. Thus, each relaxation process has best
efficiency at an optimal strain rate. Hence, the plot of k” (ω) may
exhibit several peaks at various frequencies. Roughly speaking,
the frequency axis can be divided intro three regions:

1. the rubbery region, where k’ and k”  are low and have
slow variations

2. the transition region, where k’ increases fast and k”
have one or several relaxation peaks.

3. the glassy region, k’ attains a high stationary value and
k”  has again a low value.

2.2. Lumped parameters models

By considering two idealized elements, the pure spring and
the pure dashpot and combining them in series-parallel
assembly, one obtains a wide variety of viscoelastic behaviors.
Relaxance of such model is a rational fraction k(s) = P(s)/Q(s)
and the convolution integral may be replaced by a constant
coefficient differential equation. The simplest combinations
involves a pair of spring and dashpot in series (Maxwell unit) or
in parallel (Kelvin unit).

Kelvin unit has an infinite relaxation time, while Maxwell
model has no equilibrium elasticity (i.e. kH(�) = 0). Relaxation
function of a Maxwell unit is a decaying exponential exp(-t/τ)
where τ = z/k is the ratio of the dashpot and spring constants. By
adding a pure spring k

�
 in parallel one obtains the Zener unit

which is the simplest model of linear viscoelastic solid. The
Zener model is defined by three parameters (k

�
,k,z) or

equivalently by (k
�

,τ,χ) where χ =  (k
�

+k)/k
�

 = k’(�)/k’(0) is a
measure of the strength of the viscoelastic process. A generalized
Maxwell or a n-order Wiechert model [4] is the series assembly
of a pure spring k

�
 to n parallel Maxwell units (ki,zi) (Fig. 1).

Relaxance of a Wiechert model is shown below:
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Relaxed and instantaneous modulus of a Wiechert model are
k’(0) = k

�
 and k’(�) = k

�
+6ki. Here again, the ratio χ =

k’(�)/k’(0) measures the overall viscoelastic strength.
Relaxation function of a Wiechert model is a sum of decaying
exponentials k(�)-Σexp(-t/τi)/ki, where τi = zi/ki is the relaxation
time of the i-th underlying Maxwell unit. If the relaxation times
τi are spread enough, the loss modulus k” (ω) has n peaks located
at ωi = 1/τi.

Every lumped parameter model may be represented as a
Wiechert model. The decomposition is close to the partial
fraction decomposition of the rational relaxance k(s) = P(s)/Q(s).
In real materials, there are many causal mechanisms responsible

for viscoelastic behavior: thermoelasticity, relaxation by point
defects or solute atoms motions, interface motion and air flow in
composite and porous materials, etc. [5,7]. Each relaxation
process corresponds to a particular peak of the loss modulus
k” (ω). Wiechert models with n = 4 to 10 elements can represent
linear viscoelastic properties of solids with a good
approximation. Relaxation times τi and weighting coefficients ki

may be calculated by model fitting methods so that ∑exp(-t/τi)/ki

approaches an observed relaxation function [4].
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Figure 1 Plots of storage and loss modulus of a Zener
(top) and a 2-order Wiechert (bottom) models.

3. VIBRATING SYSTEMS

We consider now the influence of the viscoelasticity on
vibrations. Let us investigate first the case of a single degree of
freedom.

3.1. Single degree of freedom

Let us consider a single mass m, connected to the ground by
an n-order Wiechert model. The equation of free oscillations, in
the transform plane is
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Examination of pole-zero positions of equation (2) shows that
viscoelastic oscillators have at least n overdamped free solutions
exp(-αit) and at most, a single underdamped solution exp(-

αt)exp(±iωt), where -αi and -α±iω are the n+2 zeros of equation
(2). Except for the case n = 1, we cannot hope to solve
analytically this equation. However, some general features of the
solutions can be outlined. Let us first introduce the ‘natural’
frequency ω0, defined by ω0

2 = k’(�)/m. From (2) we may
deduce
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which entails that the damping factors have an upper bound, in
particular 2α <τn

-1, where τn is smallest relaxation time.
According to the location of ω0 in respect to relaxation peaks,
the following features can be stated (see Fig. 2):
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1. If ω0 iτ1
-1 (i.e. rubbery region), ω � ω0/√χ, and α � ω0

2

2. For ω0±[τ1
-1

,τn
-1] (i.e. transition region), α grows by stages

3. If τn
-1
i ω0  (i.e. glassy region), ω � ω0 and α reaches a

stationary value.

In the case of a Zener model, it can be shown that, in the
rubbery region, α ≈ τω0

2/2, while in the glassy region α ≈ (χ-
1)/(2τχ). The behavior of α should be compared with the
damping factor of a standard harmonic oscillator (i.e. with a
Kelvin unit), in which case α = τω0

2/2, for every ω0.
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Figure 2 Plots of α and ω versus ω0 for a 2-order
Wiechert oscillator with τi = 0.1 and  0.001, χi = 5 and 3.

3.2. Multiple degrees of freedom

Let us consider a set of p little masses m1,…,mp

interconnected by a viscoelastic network, defined by the
symmetric transfer matrix [K(s)]. Let [M] be the mass matrix.
The equation of equilibrium in the transform plane is

)()()])([]([ 2 sFsXsKsM =+  (4)

Multiplying by an appropriate polynomial Q(s) (i.e. the roots
of Q are the n relaxation times of the whole edges), this equation
is transformed into the following form

)()()()]([ sFsQsXsP = (5)

where the [P(s)] is a matrix polynomial. Thus, the free vibration
of the network is a combination of underdamped and
overdamped exponentials : exp(-ατ)exp(±iωt) and exp(-αιt),
where -αi and -α±iω are the zeros of the p(n+2)-order
characteristic polynomial P(s) = det([P(s)]). Elementary
solutions involving polynomials in t, may appear if the matrix
polynomial [P(s)] is defective [8].

A special case of interest is when all of the edges have the
same relaxation times and the same viscoelastic strength ki. In
other words all the edges represent the same material. Then,
equation (5) reduces to

)()(]))[(]([ 2 sFsXKsksM =+ (6)

where k(s) is the normalized relaxance of the material, i.e. k(�)
= 1 and [K] a constant matrix. The (real) mode shape matrix [Q]
of the underlying elastic network is characterized by the

following equations [9,10]:

1]][[][ =QMQ T (7)

{ }2
0

2
01,...,]][[][ p

T diagQKQ ωω= (8)

Thus, in the coordinates system defined by the mode shapes,
equation (4) may be expressed as a set of p equations:

)()(2
0

2 sfsks ii =+ ω (9)

corresponding each to a single degree of freedom viscoelastic
Wiechert oscillator of unitary masse and relaxance ki(s) =
ω0i

2k(s). Now the main point of our argument is here:
multiplying k(s) by the scalar ω0i

2 does not affect relaxation
times and relaxation strengths. Thus, the underdamped
homogeneous solutions of (9) obey to the same frequency /
damping factor relation defined by the material. This frequency /
damping factor relation is what we refer to the signature of the
material.

The homogeneity condition above may be extended in order
to include external viscoelasticity, proportional viscoelasticity
and product viscoelastic networks [9]. Extension to continuous
viscoelastic systems can be done by replacing matrices by their
corresponding differential operators and boundary conditions.
The homogeneity condition can be expressed as at each point x,
k(s,x) = k(s)E(x), where E(x) is a elastic constant and k(s) the
normalized relaxance of the material. Then, underdamped
frequencies ω and damping factors α obey to the same frequency
/ damping factor relation defined by the equation s2+ω0

2k(s) = 0.

4. SOUND SYNTHESIS

Section 3 stated that in the case of a homogeneous vibrating
system (i.e. the same strengths χi = ki/k� and relaxation times τi =
zi/k�) all of the vibrating modes α+iω verify the same frequency /
damping factor relation. Therefore, one can use this property for
organizing the physical model design in two steps:

1. Design of the elastic skeleton, i.e. [M] and [K] matrices

2. Wearing the conservative skeleton with a particular material

The first step consists of determining relative frequencies as
well as their relative amplitudes. Finite element and finite
difference methods as well as experimental methods like modal
testing can be used to derive this underlying elastic skeleton
[1,2,10]. This conservative model can be obtained also by
abstract constructions including assemblies, products, fibrations,
etc. [9]. The next step is to choose a material reference for the
model. This can be achieved by various ways. One can define
time domain attributes (relaxation function, relaxation times and
respective strengths) as well as frequency domain attributes
(relaxance, storage or loss modulus). This can be done by
collecting physical data on real material, as well as designing
abstract imaginary material in the form of a Wiechert model.
Note that guaranteeing physicality, in particular causality,
requires some restrictions on the complex modulus [5].
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4.1. State space simulation

The time domain differential equation of a lumped parameter
viscoelastic vibrating system has the following general form:

FqFqXPXP n
n

n
n ++=++ +

+ ...][...][ )(
02

)2(
0 (10)

where, X is the nodes displacement vector. Note that the order of
the equation is n+2, where n is the number of relaxation
processes in the whole system. By a standard transformation,
equation (10) can be rewritten in the state space as a first order

equation FBYAY ][][ +=� , where Y is the state variable
containing displacements at the p nodes as well as their first n+1
derivatives. Simulation of this first order equation can be done
by standard finite difference methods (Euler forward/backward
or Runge-Kutta). Note that for stability, the sampling period
must be smaller than the smallest relaxation time in the whole
system [2].

4.2. CORDIS-ANIMA simulation

CORDIS-ANIMA system is a mechanical model simulator
developed by A.C.R.O.E. based on the two step finite difference
simulation of Kelvin (non-linear) oscillators [11]. However,
simulation of general viscoelastic behaviors is not possible with
the standard version of CORDIS. Nevertheless, Kelvin models
(defined by inertia, elasticity and viscosity matrices [M], [K] and
[Z]) can however generate all frequency-damping factor
relations. Indeed, given a finite set of frequency / damping factor
pairs (αi,ωi) there exists a unique matrix [Z] having the
prescribed spectrum and eigenvectors. Moreover, by polynomial
curve fitting methods, one may approximate a given material
signature by a polynomial P, in which case the [Z] matrix has to
be chosen such that [M]-1/2[Z][M]-1/2 = P([M]-1/2[K]1/2[M]-1/2).
Kelvin models cannot however generate the overdamped
components and derivations in the right hand of (10) are
ignored. Hence, this method works well as far as only free
oscillations are considered.

4.3. Modal synthesis

Classical modal synthesis [9,12,13] enables us to synthesize
material sound by a direct control of modal damping factors
according to a α(ω0) material signature. But, this approach is
similar to 4.2 since it neglects overdamped components.

Complex modal synthesis deals with the whole set of
solutions, including derivations of the right hand of equation
(10). Complex modes are characterized by complex mode-shapes
(resulting from non homogeneity) and a set of p(n+2) first-order
differential equations with complex coefficients:

jn
n

jjjj fbfbyiy ++=±−+ ...)( )(
0ωα� (11)

Note that every complex data occurs in a conjugate pair
corresponding to a single real solution. So, each pair gives rise to
two one-order differential equations with real coefficients. Digital
simulation of this equation can be done by standard finite
difference methods or by  digital IIR filters [14]. Modal
(complex) displacements weighted by (complex) mode-shapes

add then to the real displacements.

For homogeneous materials a third modal synthesis can be
considered. According to 3.2, homogeneous material can be
decomposed in high order viscoelastic real modes. The synthesis
algorithm is then similar to classical modal synthesis. But, here
each mode corresponds to a high order differential equation:
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Every modal equation can be simulated by the same
techniques as before, i.e. finite differences or IIR digital filters.

5. CONCLUSION

A general framework for introducing materials in physical
modeling sound synthesis was presented. It was shown that the
acoustic invariant of each material has to be found in some
specific frequency/damping factor function. Thus, a physical
model may be designed in two step: 1) modeling of geometric
data (i.e. strain operator discretization and boundary conditions),
2) wearing this conservative skeleton by a viscoelastic dress to
represent a particular material.
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