
Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

THE CPLD AS A GENERAL PHYSICAL MODELING

SYNTHESIS ENGINE

Sergio D. Baron Daniel A. Gil

Universidad Nacional de La Plata Universidad Nacional de La Plata
Centro de Técnicas Analógico Digitales (CeTAD)

Calle 48 y 116, La Plata 1900, Argentina
Centro de Técnicas Analógico Digitales (CeTAD)

Calle 48 y 116, La Plata 1900, Argentina
s.d.baron@ieee.org dgil@gioia.ing.unlp.edu.ar

ABSTRACT

In this paper we propose a system based on a Complex
Programmable Logic Device (CPLD) as a physical modeling
synthesis engine and a hardware description language (VHDL)
to implement the physical modeling synthesis algorithms. An
evaluation of VHDL and CPLD technologies for this application
was performed. As an example we have programmed the
Karplus-Strong plucked string algorithm using VHDL on an
Altera CPLD.

1. INTRODUCTION

When implementing algorithms, one has the choice of hardware
or software implementation. Before the existence of high-level
hardware description languages, hardware algorithm
implementation was costly and a very long process. Now with
the powerful VHDL description languages and the availability of
high density CPLDs, it can be a suitable choice.

We have found that physical modeling synthesis (PM)
algorithms are very suitable for hardware implementation. In PM
algorithms one will find mainly delay lines, look-up tables
(LUT), simple addition operations, simple multiplication and
division operations, etc., all of which are very easily
implemented in hardware.

In this paper we don’t compare between the combination of
VHDL and CPLD implementation of PM algorithms and other -
for example DSP - implementations. We just demonstrate the
use of a proven technology in the field of music synthesis.

2. THE PM ALGORITHM IMPLEMENTATION
IN VHDL

In the process of implementing PM algorithms in VHDL [1] we
are faced with two tasks. One is to map the basic signal
processing elements to their hardware equivalent, and the other
is to program the algorithm itself using those building blocks.
Since there are many elements that are common to most of the
PM synthesis algorithms, we use the ability of VHDL to build
proprietary libraries, which in turn are called on the main VHDL
model.

When a large library of basic PM synthesis building blocks
is completed one can program almost any synthesis engine using
a relatively small number of code lines. We can even envision a
visual programming environment, similar to CCRMA’s Synth
Builder [2], whose output is VHDL code for the programmable
platform.

3. THE PROGRAMMABLE LOGIC (CPLD)

Since the introduction of the CPLD to the market, there have
been improvements on the density and speed of this type of
device. We have reached a point where the programmable logic
devices are widely used in diverse designs, from
reprogrammable CPUs and reconfigurable radio (software radio)
[3], to music synthesis.

For hardware implementation we use Altera devices. We
choose this specific brand because we have used these devices
on different projects, we know the architecture of the different
families of Altera CPLDs and mainly because it has a very
effective programming environment.

It is clear we need a microgranular programmable logic
architecture with a flexible signal path allocation capability, so
we use the FLEX family of Altera devices [4]. These
programmable chips use an external configuration memory, this
memory can be an EEPROM or a RAM. So it is possible to use a
double port RAM memory for configuration, making the system
reprogrammable on the fly and enabling its use on a PC-based
synthesis board or a stand alone synthesizer that could change
from timbre to timbre at the push of a button.

4. IMPLEMETATION OF THE KARPLUS-STRONG
PLUCKED STRING ALGORITHM

To probe the feasibility of our project we had to try to implement
a physical modeling synthesis algorithm. The Karplus-Strong (K-
S) plucked string algorithm [5] was the logic choice: it started
the modern waveguide filter [6] physical modeling synthesis
theory and it is very simple and straightforward to implement.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

4.1. The basic Karplus-Strong algorithm

The K-S algorithm started as a modification of the simple
wavetable synthesis. Kevin Karplus and Alex Strong added a
modifier consisting of a FIR filter in the form of a mean value
operator and a feedback loop. This is represented by the
following function:

 Yt = 1/2 (Yt-p + Yt-p-1) (1)

For an easier hardware mapping figure 1 represents the
block diagram of the algorithm.

 p-taps Delay Line Mean Value
1-tap Delay Line

Figure 1. Block Diagram of the basic K-S algorithm.

4.2. Mapping the algorithm to the hardware using VHDL.

For this example we implemented the algorithm shown in
figure 2, excluding the noise generator:

 p-taps Delay Line Mean Value
1-tap Delay Line

 Noise
Generator

Figure 2. Block Diagram of the implemented algorithm.

4.2.1. The Library

We built a basic library where some basic components were
implemented:
--

LIBRARY ieee;

USE ieee.std_logic_1164.all;

--

PACKAGE pm IS

 COMPONENT Adder8a

 PORT(dataa,datab:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 aclr: IN STD_LOGIC := '0';

 clock: IN STD_LOGIC := '0';

 cin: IN STD_LOGIC := '0';

 add_sub: IN STD_LOGIC := '1';

 result: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 cout, overflow: OUT STD_LOGIC);

 END COMPONENT;

 COMPONENT Mux8

PORT(Noisy,Plunky:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 selm1: IN STD_LOGIC;

 Outy: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

 END COMPONENT;

 COMPONENT Divis

 PORT(D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 cin: IN STD_LOGIC;

 pre: IN STD_LOGIC;

 clr: IN STD_LOGIC;

 load: IN STD_LOGIC;

 res: OUT STD_LOGIC;
 Q: INOUT STD_LOGIC_VECTOR(7 DOWNTO 0));

 END COMPONENT;

 COMPONENT Shifter

PORT(D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 pre: IN STD_LOGIC;

 clr: IN STD_LOGIC;

 load:IN STD_LOGIC;

 Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

 END COMPONENT;

 COMPONENT barrelns

PORT (D: IN STD_LOGIC_VECTOR(7 downto 0);

 pre: IN STD_LOGIC;

 clr: IN STD_LOGIC;

 load: IN STD_LOGIC;
 Q: OUT STD_LOGIC_VECTOR(7 downto 0));

 END COMPONENT;

 END pm;

Adder8a is an eight-bit adder with carry-out from the Altera
library. This is used in the mean value operation.

Mux8 is an eight-bit wide 2-in 1-out multiplexer that is used
to select the input to the p-taps delay line as seen on figure 2.

Divis is nine-bit register that divides its input by 2. This is
used in the mean value operation.

Shifter is an eight-bit-wide shift register used to map the
p-taps delay line.

Barrelns is an eight-bit-wide shift register used to map the
1-tap delay line.

4.2.2. The K-S algorithm architecture implementation.

This is the VHDL structural description code for our K-S
algorithm architecture implementation:

-- K-S algorithm.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

library work;

USE work.pm.all;

ENTITY Pmunit2 IS

PORT(selmux : IN STD_LOGIC;

 preshi,clrshi,ldshi : IN STD_LOGIC;

 prebns,clrbns,ldbns : IN STD_LOGIC;

 zero : IN STD_LOGIC;

 predv,clrdv,lddv : IN STD_LOGIC;

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

 aclr,clock,add_sub : IN STD_LOGIC;

 Noisy : IN STD_LOGIC_VECTOR(7 downto 0);

 overflow,res : OUT STD_LOGIC;

 Q : OUT STD_LOGIC_VECTOR(7 downto 0));

END Pmunit2;

ARCHITECTURE structure OF Pmunit2 IS

SIGNAL ismp1 : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL ismp2 : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL ismp3 : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL ismp4 : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL ismp5 : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL ismp10 : STD_LOGIC;

SIGNAL ismp11 : STD_LOGIC;

BEGIN

m8: mux8 PORT MAP(noisy,ismp5,selmux,ismp1);

 sh: shifter PORT MAP(ismp1,preshi,clrshi,ldshi,ismp2);

bns: barrelns PORT MAP(ismp2,prebns,clrbns,ldbns,ismp3);

a8: adder8a PORT MAP

 (ismp2,ismp3,aclr,clock,zero,add_sub,smp4,ismp10,overflow);

 d: divis PORT MAP(ismp4,ismp10,predv,clrdv,lddv,ismp11,ismp5);

Q<= ismp5;

res<=ismp11;

END structure;

As seen in this code, the main architecture makes use of the
library components and maps the input/output of each to perform
the K-S algorithm.

Note: the code for the library components can be found at
http://www.ing.unlp.edu.ar/sergio/cpldpm.html

To simplify its interpretation this architecture is depicted in
figure 3:

Shifter

B
ar

re
ln

s

Mux8
Noisy

ismp5

A
dd

er
8a

D
iv

is

ismp1

ismp5

ismp2

ismp2

ismp3

ismp4

ismp10

Output

Figure 3. Block Diagram of the K-S algorithm architecture

4.3. Testing

While working on this project we used the ability of the
development environment to test designs directly mapping to a
CPLD, so the output of the simulation is guaranteed to be
exactly the output of the actual hardware. We have pre-fed the
delay-line with a random wave and run the circuit many times

obtaining mostly very pleasant plucked string sounds. Figure 4
depicts a time domain waveform of an example:

Figure 4. Plucked string sound generated using a CPLD

At the time of this writing we are testing the algorithms on
the Altera educational boards and there’s work done on a
hardware prototype of our system. These examples can be heard
at:

http://www.ing.unlp.edu.ar/sergio/cpldpm.html

5. CONCLUSIONS

In this paper, we propose the use of VHDL and programmable
logic for physical modeling synthesis. A basic PM component
library was compiled and an architecture for the Karplus-Strong
plucked string algorithm was designed.

While working on the K-S implementation we were faced
with some drawbacks, such as synchronization problems,
glitches, arithmetic overflows, etc. None of which are found in
software implementations. In contrast we have a system capable
of generating one sample word per clock cycle for the K-S
synthesis algorithm.

 Since the above mentioned problems were solved, we are
now working on this technology implementing many other PM
algorithms.

6. ACKNOWLEDGMENTS

The basis for this work was developed by the first author when
he was a visiting scholar at Stanford University CCRMA’s “DSP
for Synthesis: Physical and Spectral Modeling” workshop in the
summer of 1995. The authors would like to thank professors
Perry R. Cook for his support and Julius O. Smith III for advice.

Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects (DAFx99), NTNU, Trondheim, December 9-11, 1999

7. REFERENCES

[1] Compass Design Automation, VHDL Scout: A Practical
Introduction to IEEE Std 1067-1987, the VHSIC Hardware
Description Language.

[2] http://www-ccrma.stanford.edu/
CCRMA/Software/SynthBuilder/SynthBuilder.html
[3] Mark Cummings, Shinichiro Haruyama, “FPGA in the

Software Radio”, IEEE Communications Magazine, Vol. 37
No. 2, February 1999.

[4] http://www.altera.com
[5] Kevin Karplus, Alex Strong, “Digital Synthesis of Plucked-

String and Drum Timbres”, Computer Music Journal, Vol.
7, No. 2, summer 1983.

[6] Julius O. Smith III, “Music Applications of Digital
Waveguides”, Technical Report Stan-M-39, CCRMA,
Department of Music, Stanford University. Stanford,
California.

