patch-2.3.40 linux/arch/i386/kernel/smp.c

Next file: linux/arch/i386/kernel/smpboot.c
Previous file: linux/arch/i386/kernel/setup.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.39/linux/arch/i386/kernel/smp.c linux/arch/i386/kernel/smp.c
@@ -2,7 +2,7 @@
  *	Intel SMP support routines.
  *
  *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com>
- *	(c) 1998-99 Ingo Molnar <mingo@redhat.com>
+ *	(c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  *
  *	This code is released under the GNU public license version 2 or
  *	later.
@@ -11,18 +11,18 @@
 #include <linux/init.h>
 
 #include <linux/mm.h>
-#include <linux/spinlock.h>
-#include <linux/kernel_stat.h>
-#include <linux/smp_lock.h>
 #include <linux/irq.h>
-
 #include <linux/delay.h>
+#include <linux/spinlock.h>
+#include <linux/smp_lock.h>
+#include <linux/kernel_stat.h>
 #include <linux/mc146818rtc.h>
+
 #include <asm/mtrr.h>
 #include <asm/pgalloc.h>
 
 /*
- *	Some notes on processor bugs:
+ *	Some notes on x86 processor bugs affecting SMP operation:
  *
  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  *	The Linux implications for SMP are handled as follows:
@@ -381,7 +381,7 @@
 
 static inline void do_flush_tlb_all_local(void)
 {
-	local_flush_tlb();
+	__flush_tlb_all();
 	if (!current->mm && current->active_mm) {
 		unsigned long cpu = smp_processor_id();
 
@@ -448,7 +448,6 @@
 	struct call_data_struct data;
 	int ret, cpus = smp_num_cpus-1;
 	static spinlock_t lock = SPIN_LOCK_UNLOCKED;
-	unsigned long timeout;
 
 	if(cpus == 0)
 		return 0;
@@ -550,430 +549,5 @@
 	(*func)(info);
 	if (wait)
 		atomic_inc(&call_data->finished);
-}
-
-/*
- * This interrupt should _never_ happen with our APIC/SMP architecture
- */
-asmlinkage void smp_spurious_interrupt(void)
-{
-	ack_APIC_irq();
-	/* see sw-dev-man vol 3, chapter 7.4.13.5 */
-	printk("spurious APIC interrupt on CPU#%d, should never happen.\n",
-			smp_processor_id());
-}
-
-/*
- * This interrupt should never happen with our APIC/SMP architecture
- */
-
-static spinlock_t err_lock = SPIN_LOCK_UNLOCKED;
-
-asmlinkage void smp_error_interrupt(void)
-{
-	unsigned long v;
-
-	spin_lock(&err_lock);
-
-	v = apic_read(APIC_ESR);
-	printk("APIC error interrupt on CPU#%d, should never happen.\n",
-			smp_processor_id());
-	printk("... APIC ESR0: %08lx\n", v);
-
-	apic_write(APIC_ESR, 0);
-	v |= apic_read(APIC_ESR);
-	printk("... APIC ESR1: %08lx\n", v);
-	/*
-	 * Be a bit more verbose. (multiple bits can be set)
-	 */
-	if (v & 0x01)
-		printk("... bit 0: APIC Send CS Error (hw problem).\n");
-	if (v & 0x02)
-		printk("... bit 1: APIC Receive CS Error (hw problem).\n");
-	if (v & 0x04)
-		printk("... bit 2: APIC Send Accept Error.\n");
-	if (v & 0x08)
-		printk("... bit 3: APIC Receive Accept Error.\n");
-	if (v & 0x10)
-		printk("... bit 4: Reserved!.\n");
-	if (v & 0x20)
-		printk("... bit 5: Send Illegal Vector (kernel bug).\n");
-	if (v & 0x40)
-		printk("... bit 6: Received Illegal Vector.\n");
-	if (v & 0x80)
-		printk("... bit 7: Illegal Register Address.\n");
-
-	ack_APIC_irq();
-
-	irq_err_count++;
-
-	spin_unlock(&err_lock);
-}
-
-/*
- * This part sets up the APIC 32 bit clock in LVTT1, with HZ interrupts
- * per second. We assume that the caller has already set up the local
- * APIC.
- *
- * The APIC timer is not exactly sync with the external timer chip, it
- * closely follows bus clocks.
- */
-
-int prof_multiplier[NR_CPUS] = { 1, };
-int prof_old_multiplier[NR_CPUS] = { 1, };
-int prof_counter[NR_CPUS] = { 1, };
-
-/*
- * The timer chip is already set up at HZ interrupts per second here,
- * but we do not accept timer interrupts yet. We only allow the BP
- * to calibrate.
- */
-static unsigned int __init get_8254_timer_count(void)
-{
-	extern rwlock_t xtime_lock;
-	unsigned long flags;
-
-	unsigned int count;
-
-	write_lock_irqsave(&xtime_lock, flags);
-
-	outb_p(0x00, 0x43);
-	count = inb_p(0x40);
-	count |= inb_p(0x40) << 8;
-
-	write_unlock_irqrestore(&xtime_lock, flags);
-
-	return count;
-}
-
-void __init wait_8254_wraparound(void)
-{
-	unsigned int curr_count, prev_count=~0;
-	int delta;
-
-	curr_count = get_8254_timer_count();
-
-	do {
-		prev_count = curr_count;
-		curr_count = get_8254_timer_count();
-		delta = curr_count-prev_count;
-
-	/*
-	 * This limit for delta seems arbitrary, but it isn't, it's
-	 * slightly above the level of error a buggy Mercury/Neptune
-	 * chipset timer can cause.
-	 */
-
-	} while (delta<300);
-}
-
-/*
- * This function sets up the local APIC timer, with a timeout of
- * 'clocks' APIC bus clock. During calibration we actually call
- * this function twice on the boot CPU, once with a bogus timeout
- * value, second time for real. The other (noncalibrating) CPUs
- * call this function only once, with the real, calibrated value.
- *
- * We do reads before writes even if unnecessary, to get around the
- * P5 APIC double write bug.
- */
-
-#define APIC_DIVISOR 16
-
-void __setup_APIC_LVTT(unsigned int clocks)
-{
-	unsigned int lvtt1_value, tmp_value;
-
-	tmp_value = apic_read(APIC_LVTT);
-	lvtt1_value = SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV) |
-			APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR;
-	apic_write(APIC_LVTT, lvtt1_value);
-
-	/*
-	 * Divide PICLK by 16
-	 */
-	tmp_value = apic_read(APIC_TDCR);
-	apic_write(APIC_TDCR, (tmp_value
-				& ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
-				| APIC_TDR_DIV_16);
-
-	tmp_value = apic_read(APIC_TMICT);
-	apic_write(APIC_TMICT, clocks/APIC_DIVISOR);
-}
-
-void setup_APIC_timer(void * data)
-{
-	unsigned int clocks = (unsigned int) data, slice, t0, t1, nr;
-	unsigned long flags;
-	int delta;
-
-	__save_flags(flags);
-	__sti();
-	/*
-	 * ok, Intel has some smart code in their APIC that knows
-	 * if a CPU was in 'hlt' lowpower mode, and this increases
-	 * its APIC arbitration priority. To avoid the external timer
-	 * IRQ APIC event being in synchron with the APIC clock we
-	 * introduce an interrupt skew to spread out timer events.
-	 *
-	 * The number of slices within a 'big' timeslice is smp_num_cpus+1
-	 */
-
-	slice = clocks / (smp_num_cpus+1);
-	nr = cpu_number_map[smp_processor_id()] + 1;
-	printk("cpu: %d, clocks: %d, slice: %d, nr: %d.\n",
-		smp_processor_id(), clocks, slice, nr);
-	/*
-	 * Wait for IRQ0's slice:
-	 */
-	wait_8254_wraparound();
-
-	__setup_APIC_LVTT(clocks);
-
-	t0 = apic_read(APIC_TMCCT)*APIC_DIVISOR;
-	do {
-		t1 = apic_read(APIC_TMCCT)*APIC_DIVISOR;
-		delta = (int)(t0 - t1 - slice*nr);
-	} while (delta < 0);
-
-	__setup_APIC_LVTT(clocks);
-
-	printk("CPU%d<C0:%d,C:%d,D:%d,S:%d,C:%d>\n",
-			smp_processor_id(), t0, t1, delta, slice, clocks);
-
-	__restore_flags(flags);
-}
-
-/*
- * In this function we calibrate APIC bus clocks to the external
- * timer. Unfortunately we cannot use jiffies and the timer irq
- * to calibrate, since some later bootup code depends on getting
- * the first irq? Ugh.
- *
- * We want to do the calibration only once since we
- * want to have local timer irqs syncron. CPUs connected
- * by the same APIC bus have the very same bus frequency.
- * And we want to have irqs off anyways, no accidental
- * APIC irq that way.
- */
-
-int __init calibrate_APIC_clock(void)
-{
-	unsigned long long t1 = 0, t2 = 0;
-	long tt1, tt2;
-	long result;
-	int i;
-	const int LOOPS = HZ/10;
-
-	printk("calibrating APIC timer ... ");
-
-	/*
-	 * Put whatever arbitrary (but long enough) timeout
-	 * value into the APIC clock, we just want to get the
-	 * counter running for calibration.
-	 */
-	__setup_APIC_LVTT(1000000000);
-
-	/*
-	 * The timer chip counts down to zero. Let's wait
-	 * for a wraparound to start exact measurement:
-	 * (the current tick might have been already half done)
-	 */
-
-	wait_8254_wraparound();
-
-	/*
-	 * We wrapped around just now. Let's start:
-	 */
-	if (cpu_has_tsc)
-		rdtscll(t1);
-	tt1 = apic_read(APIC_TMCCT);
-
-	/*
-	 * Let's wait LOOPS wraprounds:
-	 */
-	for (i = 0; i < LOOPS; i++)
-		wait_8254_wraparound();
-
-	tt2 = apic_read(APIC_TMCCT);
-	if (cpu_has_tsc)
-		rdtscll(t2);
-
-	/*
-	 * The APIC bus clock counter is 32 bits only, it
-	 * might have overflown, but note that we use signed
-	 * longs, thus no extra care needed.
-	 *
-	 * underflown to be exact, as the timer counts down ;)
-	 */
-
-	result = (tt1-tt2)*APIC_DIVISOR/LOOPS;
-
-	if (cpu_has_tsc)
-		printk("\n..... CPU clock speed is %ld.%04ld MHz.\n",
-			((long)(t2-t1)/LOOPS)/(1000000/HZ),
-			((long)(t2-t1)/LOOPS)%(1000000/HZ));
-
-	printk("..... host bus clock speed is %ld.%04ld MHz.\n",
-		result/(1000000/HZ),
-		result%(1000000/HZ));
-
-	return result;
-}
-
-static unsigned int calibration_result;
-
-void __init setup_APIC_clocks(void)
-{
-	__cli();
-
-	calibration_result = calibrate_APIC_clock();
-	/*
-	 * Now set up the timer for real.
-	 */
-	setup_APIC_timer((void *)calibration_result);
-
-	__sti();
-
-	/* and update all other cpus */
-	smp_call_function(setup_APIC_timer, (void *)calibration_result, 1, 1);
-}
-
-/*
- * the frequency of the profiling timer can be changed
- * by writing a multiplier value into /proc/profile.
- */
-int setup_profiling_timer(unsigned int multiplier)
-{
-	int i;
-
-	/*
-	 * Sanity check. [at least 500 APIC cycles should be
-	 * between APIC interrupts as a rule of thumb, to avoid
-	 * irqs flooding us]
-	 */
-	if ( (!multiplier) || (calibration_result/multiplier < 500))
-		return -EINVAL;
-
-	/* 
-	 * Set the new multiplier for each CPU. CPUs don't start using the
-	 * new values until the next timer interrupt in which they do process
-	 * accounting. At that time they also adjust their APIC timers
-	 * accordingly.
-	 */
-	for (i = 0; i < NR_CPUS; ++i)
-		prof_multiplier[i] = multiplier;
-
-	return 0;
-}
-
-#undef APIC_DIVISOR
-
-/*
- * Local timer interrupt handler. It does both profiling and
- * process statistics/rescheduling.
- *
- * We do profiling in every local tick, statistics/rescheduling
- * happen only every 'profiling multiplier' ticks. The default
- * multiplier is 1 and it can be changed by writing the new multiplier
- * value into /proc/profile.
- */
-
-inline void smp_local_timer_interrupt(struct pt_regs * regs)
-{
-	int user = (user_mode(regs) != 0);
-	int cpu = smp_processor_id();
-
-	/*
-	 * The profiling function is SMP safe. (nothing can mess
-	 * around with "current", and the profiling counters are
-	 * updated with atomic operations). This is especially
-	 * useful with a profiling multiplier != 1
-	 */
-	if (!user)
-		x86_do_profile(regs->eip);
-
-	if (--prof_counter[cpu] <= 0) {
-		int system = 1 - user;
-		struct task_struct * p = current;
-
-		/*
-		 * The multiplier may have changed since the last time we got
-		 * to this point as a result of the user writing to
-		 * /proc/profile. In this case we need to adjust the APIC
-		 * timer accordingly.
-		 *
-		 * Interrupts are already masked off at this point.
-		 */
-		prof_counter[cpu] = prof_multiplier[cpu];
-		if (prof_counter[cpu] != prof_old_multiplier[cpu]) {
-			__setup_APIC_LVTT(calibration_result/prof_counter[cpu]);
-			prof_old_multiplier[cpu] = prof_counter[cpu];
-		}
-
-		/*
-		 * After doing the above, we need to make like
-		 * a normal interrupt - otherwise timer interrupts
-		 * ignore the global interrupt lock, which is the
-		 * WrongThing (tm) to do.
-		 */
-
- 		irq_enter(cpu, 0);
-		update_one_process(p, 1, user, system, cpu);
-		if (p->pid) {
-			p->counter -= 1;
-			if (p->counter <= 0) {
-				p->counter = 0;
-				p->need_resched = 1;
-			}
-			if (p->priority < DEF_PRIORITY) {
-				kstat.cpu_nice += user;
-				kstat.per_cpu_nice[cpu] += user;
-			} else {
-				kstat.cpu_user += user;
-				kstat.per_cpu_user[cpu] += user;
-			}
-			kstat.cpu_system += system;
-			kstat.per_cpu_system[cpu] += system;
-
-		}
-		irq_exit(cpu, 0);
-	}
-
-	/*
-	 * We take the 'long' return path, and there every subsystem
-	 * grabs the apropriate locks (kernel lock/ irq lock).
-	 *
-	 * we might want to decouple profiling from the 'long path',
-	 * and do the profiling totally in assembly.
-	 *
-	 * Currently this isn't too much of an issue (performance wise),
-	 * we can take more than 100K local irqs per second on a 100 MHz P5.
-	 */
-}
-
-/*
- * Local APIC timer interrupt. This is the most natural way for doing
- * local interrupts, but local timer interrupts can be emulated by
- * broadcast interrupts too. [in case the hw doesnt support APIC timers]
- *
- * [ if a single-CPU system runs an SMP kernel then we call the local
- *   interrupt as well. Thus we cannot inline the local irq ... ]
- */
-unsigned int apic_timer_irqs [NR_CPUS] = { 0, };
-
-void smp_apic_timer_interrupt(struct pt_regs * regs)
-{
-	/*
-	 * the NMI deadlock-detector uses this.
-	 */
-	apic_timer_irqs[smp_processor_id()]++;
-
-	/*
-	 * NOTE! We'd better ACK the irq immediately,
-	 * because timer handling can be slow.
-	 */
-	ack_APIC_irq();
-	smp_local_timer_interrupt(regs);
 }
 

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)