81 TEXprof INTRODUCTION 3

1. Introduction. This is TEXprof, an implementation of TEX with an extension providing profiling
capabilities. To be useful nowadays, the profiling capability is not the only extension of Donald Knuth’s
original implementation of TEX.

To obtain the present C program, Donald Knuth’s Pascal program was modified in a first step using most
of the e-TEX extensions by Peter Breitenlohner and Phil Taylor. Then further extensions were added using
the PROI'E change file of Thierry Laronde. Then the constants defining the size of TEX’s data structures,
notably the size of the mem array, were increased considerable. All these changes to the Pascal program are
necessary to run a current IATEX on the resulting TEX engine. The next important step was then to translate
this literate Pascal program to a literate C program using the web2w source code translator. The use of the
C based cweb system instead of the Pascal based WEB system greatly simplifies the tool chain necessary for
producing an executable program and allows true source level debugging of the resulting program. The
latter is indispensable to carry out large scale modifications of the TEX program and is of enormous help
even for smaller modifications. The first modification of the resulting C program was then the addition of
C routines from the TEX Live project to enable the use of the kpath search library by Karl Berry. The last
and final step was the addition of profiling capabilities which includes, as the latest addition, the definition
of numerous primitives that enable the TEX profiler to pretend to be pdfTEX. The code used there reuses
parts of the C version of pdfTgX by Han Thé Thanh.

All these changes left their traces in the text that follows. No attempt was made to streamline the text
and rid it from the traces of its exciting history. So with the next paragraph you can start reading Donald
Knuth’s introduction to his TEX program. Enjoy!

This is TEX, a document compiler intended to produce typesetting of high quality. The Pascal program
that follows is the definition of TEX82, a standard version of TEX that is designed to be highly portable so
that identical output will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As
a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.

A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of
difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TEXbook.

4 INTRODUCTION TpXprof §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author
(in the following, unless specified, “the author” refers to D.E. Knuth) had made in May of that year. This
original protoTEX included macro definitions and elementary manipulations on boxes and glue, but it did
not have line-breaking, page-breaking, mathematical formulas, alignment routines, error recovery, or the
present semantic nest; furthermore, it used character lists instead of token lists, so that a control sequence
like \halign was represented by a list of seven characters. A complete version of TEX was designed and
coded by the author in late 1977 and early 1978; that program, like its prototype, was written in the SAIL
language, for which an excellent debugging system was available. Preliminary plans to convert the SAIL
code into a form somewhat like the present “web” were developed by Luis Trabb Pardo and the author at
the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala in 1979 and 1980.
The TEX82 program, which was written by the author during the latter part of 1981 and the early part of
1982, also incorporates ideas from the 1979 implementation of TEX in MESA that was written by Leonidas
Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research Center. Several hundred
refinements were introduced into TEX82 based on the experiences gained with the original implementations,
so that essentially every part of the system has been substantially improved. After the appearance of
“Version 0” in September 1982, this program benefited greatly from the comments of many other people,
notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989 extended the input
character set to eight-bit codes and introduced the ability to hyphenate words from different languages,
based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘PRII'E’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the “SELLETTE test” is available for helping to determine whether a particular
implementation deserves to be known as ‘PRII'E’.

#define eTeX_version 2 /* \eTeXversion */
#define eTeX_revision ".6" /* \eTeXrevision x*/
#define eTeX_version_string "2.6" /* current e-TEX version %/

#define TeX_version_string "3.141592653"

#define TeX_banner "This is TeX,_Version " TeX_version_string /* printed when TEX starts x/
#define TEX ETEX /* change program name into ETEX */

#define eTeX_states 1 /+number of e-TEX state variables in eqtb */

#define Prote_version_string "1.1.0" /*current PROTE version %/

#define Prote_version 1 /* \Proteversion x/
#define Prote_revision ".1.0" /* \Proterevision x/
#define Prote_banner "This_is Prote, Version, " Prote_version_string
/xprinted when PRITE starts */

#define TeXprof_version "1.1"
#define TeXprof_banner

"This is texprof, Version," TeXprof version", using TeX, Version," TeX_version_string
#define banner TeXprof_banner

83 TEXprof INTRODUCTION 5

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29—
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — e-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments double = int; no procedures are declared local
to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE
floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

4. The following is an outline of the program, whose components will be filled in later, using the conventions
of cweb. For example, the portion of the program called ‘(Global variables 13)’ below will be replaced by a
sequence of variable declarations that starts in §13 of this documentation. In this way, we are able to define
each individual global variable when we are prepared to understand what it means; we do not have to define
all of the globals at once. Cross references in §13, where it says “See also sections 20, 26, ...,” also make it
possible to look at the set of all global variables, if desired. Similar remarks apply to the other portions of
the program.

The program starts with inserting header files and occassionaly a function must be placed before declaring
TEX’s macros, because the function uses identifiers that TEXwill declare as macros.

(Header files and function declarations 9)
(Preprocessor definitions)

enum {
(Constants in the outer block 11)
empty_string = 256 /xthe empty string follows after 256 characters x/

Types in the outer block 18)
Forward declarations 52)
Global variables 13)

(Local variables for initialization 19)
(Initialize whatever TEX might access 8);

Basic printing procedures 55)

}
(
(
(
static void initialize (void) /*this procedure gets things started properly */
{
¥
(
(Error handling procedures 71)

6 INTRODUCTION TpXprof §5

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start_here’. If you want to skip down to the main program now, you can look up ‘start_here’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. There is no need to declare labels in C.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘#ifdef DEBUG ... #endif’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘#ifdef STAT...#endif’ that is intended for use
when statistics are to be kept about TEX’s memory usage. The #ifdef STAT ... #endif code also implements
diagnostic information for \tracingparagraphs, \tracingpages, and \tracingrestores.

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘#ifdef INIT...#endif’.

TEX Live has established the common practice to select the initialization code at runtime using the
iniversion variable.

(Initialize whatever TEX might access 8) =

(Set initial values of key variables 21)
#ifdef INIT

if (iniversion) [+ TEX Live*/

{ (Initialize table entries (done by INITEX only) 163) }
#endif

This code is used in section 4.

9. The declaration of the necessary type definitions are contained in header files.
(Header files and function declarations 9) =

#include <stdbool.h>

#include <string.h>

#include <math.h>

See also sections 1686, 1699, 1736, and 1737.

This code is used in section 4.

10. Further it is necessary to define some build in primitives of Pascal that are otherwise not available
in C.

#define odd(X) ((X)&1)

#define chr(X) ((unsigned char)(X))
#define ord(X) ((unsigned int)(X))
#define abs(X) g() > —(X)?(X): —(X))

#define round(X) ((int)((X) > 0.0 ? floor((X)+ 0.5) : ceil ((X) — 0.5)))

811 TEXprof INTRODUCTION 7

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

(Constants in the outer block 11) =
mem_maz = 5000000, /* greatest index in TEX’s internal mem array; must be strictly less than
maz_halfword; must be equal to mem_top in INITEX, otherwise > mem_top */
mem_min = 0, /+smallest index in TEX’s internal mem array; must be min_halfword or more; must
be equal to mem_bot in INITEX, otherwise < mem_bot x/
buf_size = 2000000, /* maximum number of characters simultaneously present in current lines of open
files and in control sequences between \csname and \endcsname; must not exceed maz_halfword */
error_line =79, /*width of context lines on terminal error messages x/
half_error_line = 50, /+width of first lines of contexts in terminal error messages; should be between
30 and error_line — 15 %/
mazx_print_line = 79, /+width of longest text lines output; should be at least 60 */
stack_size = 5000, /* maximum number of simultaneous input sources */
maz_in_open = 15,
/+*maximum number of input files and error insertions that can be going on simultaneously */
font_max = 255, /+* maximum internal font number; must not exceed maz_quarterword and must be
at most font_base + 256 */
font_mem_size = 8000000, /*number of words of font_info for all fonts */
param_size = 10000, /* maximum number of simultaneous macro parameters */
nest_size = 500, /* maximum number of semantic levels simultaneously active %/
mazx_strings = 500000, /+*maximum number of strings; must not exceed maz_halfword */
string_vacancies = 90000, /*the minimum number of characters that should be available for the
user’s control sequences and font names, after TEX’s own error messages are stored */
pool_size = 6250000, /* maximum number of characters in strings, including all error messages and
help texts, and the names of all fonts and control sequences; must exceed string_vacancies by the
total length of TEX’s own strings, which is currently about 23000 %/
save_size = 100000,
/+space for saving values outside of current group; must be at most maz_halfword =/
trie_size = 1000000, /xspace for hyphenation patterns; should be larger for INITEX than it is in
production versions of TEX x/
trie_op_size = 35111, /xspace for “opcodes” in the hyphenation patterns */
dvi_buf_size = 16384, /xsize of the output buffer; must be a multiple of 8 x/
file_name_size = 1024, /*file names shouldn’t be longer than this x/
xchg_buffer_size = 64 | /xmust be at least 64 x/
/xsize of eight_bits buffer for exchange with system routines x/

This code is used in section 4.

8 INTRODUCTION TpXprof — §12

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into the above enum list in order to emphasize this
distinction.
#define mem_bot 0
/+smallest index in the mem array dumped by INITEX; must not be less than mem_min x/
#define mem_top
5000000 /xlargest index in the mem array dumped by INITEX; must be substantially larger

than mem_bot and not greater than mem_maz */
#define font_base 0 /xsmallest internal font number; must not be less than min_quarterword */
#define hash_size 45000 /* maximum number of control sequences; it should be at most about

(mem_maz — mem_min)/(double) 10 x/
#define hash_prime 35999 /*a prime number equal to about 85% of hash_size */
#define hyph_size 8191 /+another prime; the number of \hyphenation exceptions */

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a

global variable called bad.
This is the first of many sections of TEX where global variables are defined.

(Global variables 13) =
static int bad; /xis some “constant” wrong? x/
See also sections 20, 26, 30, 32, 39, 53, 72, 75, 78, 95, 103, 114, 115, 116, 117, 123, 164, 172, 180, 212, 245, 252, 255, 270, 285,
296, 300, 303, 304, 307, 308, 309, 332, 360, 381, 386, 387, 409, 437, 446, 479, 488, 492, 511, 512, 526, 531, 538, 548, 549,
554, 591, 594, 604, 615, 645, 646, 660, 683, 718, 723, 764, 769, 813, 820, 822, 824, 827, 832, 838, 846, 871, 891, 899, 904,
906, 920, 925, 942, 946, 949, 970, 979, 981, 988, 1031, 1073, 1265, 1280, 1298, 1304, 1330, 1341, 1344, 1382, 1390, 1432,
1455, 1496, 1498, 1517, 1528, 1529, 1537, 1541, 1565, 1580, 1607, 1631, 1642, 1643, 1668, 1674, 1688, 1694, 1716, 1725,
1741, 1745, 1746, 1754, 1755, 1758, 1772, 1797, and 1801.

This code is used in section 4.

14. Later on we will say ‘if (mem_maz > maz_halfword) bad = 14’, or something similar. (We can’t do
that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad = 0;
if ((half_error_line < 30) V (half_error_line > error_line — 15)) bad = 1;
if (maz_print_line < 60) bad = 2;
if (dvi_buf_size % 8 # 0) bad = 3;
if (mem_bot + 1100 > mem_top) bad = 4;
if (hash_prime > hash_size) bad = 5;
if (maz_in_open > 128) bad = 6;
if (mem_top < 256 + 11) bad =7; [+ we will want null_list > 255/
See also sections 110, 289, and 1248.

This code is used in section 1331.

815 TEXprof INTRODUCTION 9

15. Labels are given symbolic names by the following definitions, so that occasional goto statements will
be meaningful. We insert the label ‘end’ just before the ‘}’ of a procedure in which we have used the ‘goto
end’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a procedure;
and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases change
the conditions and we wish to branch to the newly applicable case. Loops that are set up with the loop
construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and they
are sometimes repeated by going to ‘resume’. If two or more parts of a subroutine start differently but end
up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

16. Here are some macros for common programming idioms.

#define incr(A) A=A+1 /xincrease a variable by unity */

#define decr(A) A=A—1 /xdecrease a variable by unity */

#define negate(A) A= —A /xchange the sign of a variable x/

#define loop while (true) /+repeat over and over until a goto happens */
format loop else /*WEB’s else acts like ‘while true do’*/

#define do_nothing /* empty statement x/

#define empty 0 /*symbolic name for a null constant %/

10 THE CHARACTER SET TEXprof §17

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = 0101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers.

(Types in the outer block 18) =
typedef uint8_t ASCII_code; /* eight-bit numbers x/
See also sections 25, 38, 100, 108, 112, 149, 211, 268, 299, 547, 593, 919, 924, 1408, and 1636.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 040 through 0176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name unsigned char for the
characters in text files, even though there now are more than 64 such characters, while other Pascals consider
unsigned char to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.
#define text_char unsigned char /*the data type of characters in text files x/
#define first_text_char 0 /+ordinal number of the smallest element of text_char x/
#define last_text_char 255 /*ordinal number of the largest element of text_char x/
(Local variables for initialization 19) =

int 7;
See also sections 162 and 926.

This code is used in section 4.

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.
{ Global variables 13) +=

static ASCII_code zord[256]; /*specifies conversion of input characters x/

static text_char zchr[256]; /+specifies conversion of output characters */

§21 TEXprof THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

(Set initial values of key variables 21) =

zchr[°40] =475
zchr[°41]=217;
zchr[°42] = 2"
xchr[43] = *#7;
zchr[®44] =$";
xchr[°45] =%
xchr[°46] = °&’;
zchr[°47] =\’ 7;
zchr[°50] =7 (5
zchr[°51] =) 7;
xchr[°52] = 2%
xchr[°53] = 2+7;
zchr[°54]=7,";
zchr[°55] = 7=
zchr[°56] = 7.7;
xchr[°57]=7/";
zchr[°60] = 207;
zchr[°61] = 717
zchr[°62] = 227;
zchr[°63] = ?37;
zchr[°64] = *47;
zchr[°65] = °57;
zchr[°66] = ’67;
zchr[°67] =775
zchr[°70] = 87;
xzchr[°71] =97;
zchr[°72] =717
zchr[°73] =757
zchr[°4] = <7
zchr[°75] = 7=7;
zchr[°76] = 2>7;
xchr[°77] =77
zchr[°100] = @7,
zchr[°101] = A’
zchr[°102] = ’B?;
zchr[°103] = °C?;
xzchr[°104] = °D?;
zchr[°105] = °E?;
zchr[°106] = °F?;
zchr[°107] = *G’;
zchr[°110] = *H?;
zchr®111] = 17;
zchr[°112] =37,
zchr[°113] = °K?;
zchr|°114] = L7,
zchr[°115] = *M?;

12~ THE CHARACTER SET TpXprof §21

zchr[°116] = °N?;
zchr[°117] =07,
zchr[°120] = P’
zchr[°121] = Q7
zchr[°122] = *R?;
zchr[°123] = ’8’;
zchr[°124] = °T?;
zchr[°125] = °U?;
xchr[°126] = V7
xchr[°127] = *W?,
zchr[°130] = *X’;
zchr[°131] = °Y?;
zchr[°132] =77,
zchr[°133] = [7;
zchr[°134] = *\\7;
zchr[®135] = °17;
zchr[°136] = "7,
zchr[°137] = _7;
zchr[°140] =<7,
zchr[°141] = ’a’;
zchr[°142] = b’
zchr[°143] = *¢’;
zchr|°144] =47,
zchr[°145] = e’
xchr[°146] = 2 £7;
zchr[°147] =g’
zchr[°150] = *h’;
zchr[°151] =217,
zchr[°152] =37,
zchr[°153] = °k?;
zchr[°154] =17,
zchr[°155] = 'm’;
zchr[°156] = ’n’;
zchr[°157] = 07,
zchr[°160] = ’p?;
zchr[°161] = ’q’;
xchr[°162] = ’r?;
zchr[°163] = ’s’

zchr[°164] = t7;
zchr[°165] = *u’;
zchr[°166] = v ;
xchr[°167] = *w’;
zchr[°170] = *x°;
zchr[°171] =’y ?;
zchr[°172] = ’z7;
zchr[°173] = {7,
zchr[°174] =17,
zchr[°175] = 2}
xchr[°176] = 777

See also sections 23, 24, 73, 76, 79, 96, 165, 214, 253, 256, 271, 286, 382, 438, 480, 489, 550, 555, 592, 595, 605, 647, 661, 684,
770, 927, 989, 1032, 1266, 1281, 1299, 1342, 1433, 1499, 1518, 1530, and 1751.

This code is used in section 8.

822 TEXprof THE CHARACTER SET 13

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

#define null_code °0 /* ASCII code that might disappear %/
#define carriage_return °15 /% ASCII code used at end of line /
#define invalid_code °177 /* ASCII code that many systems prohibit in text files*/

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. °37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of zchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘¢’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than 040. To get the
most “permissive” character set, change ’,’> on the right of these assignment statements to chr(i).

(Set initial values of key variables 21) +=
for (i =0; ¢ <°37; i++) xchr[i]| = chr(i); /* TEX Livesx/
for (i =°177; i < °377; i++) xchr[i] = chr(i); /* TEX Livex/

24. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = zchr[j] where i < j < °177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 040 in case there
is a coincidence.

(Set initial values of key variables 21) +=
for (i = first_text_char; i < last_text_char; i++) zord|[chr(i)] = invalid_code;
for (i =°200; i <°377; i++) zord|zchr[i]] = i;
for (i =0; ¢ <°176; i++) zord[zchr[i]] = i;

14 INPUT AND OUTPUT TEXprof §25

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.

TEX needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual
data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and
reloading base information for its own initialization. We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
typedef uint8_t eight_bits; /+unsigned one-byte quantity */
typedef struct { FILE «f; text_char d; } alpha_file; /«files that contain textual data x/
typedef struct { FILE xf; eight_bits d; } byte_file; /xfiles that contain binary data*/

26. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of_file.

(Global variables 13) +=
static unsigned char name_of_file0 [file_name_size +1] = {0}, xconst name_of_file = name_of_file0 —1;
/*on some systems this may be a record variable */

static int name_length;
/*this many characters are actually relevant in name_of_file (the rest are blank) */

627 TEXprof INPUT AND OUTPUT 15

27. To open files, TEX used Pascal’s reset function. We use the kpathsearch library to implement new
functions in the section on TEX Live Integration. Here we give only the function prototypes.

TEX’s file-opening functions do not issue their own error messages if something goes wrong. If a file
identified by name_of_file cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file) TEX’s file-opening functions return false. This allows
TEX to undertake appropriate corrective action.

static FILE xopen_in(char xfilename, kpse_file_format_type ¢, const char xrwb);
/* TEX Live x/
static bool a_open_in(alpha_file xf); /*open a text file for input */
static bool b_open_in(byte_file xf); /*open a binary file for input */
static bool w_open_in(word_file xf); /xopen a word file for input */
static FILE xopen_out(const char xfile_name, const char xfile_mode); /x TEX Livex/
static bool a_open_out(alpha_file *f); /+open a text file for output */
static bool b_open_out(byte_file xf); /*open a binary file for output */
#ifdef INIT
static bool w_open_out(word_file *f); /*open a word file for output x/
#endif

28. Files can be closed with the Pascal-H routine ‘pascal_close(f)’, which should be used when all input
or output with respect to f has been completed. This makes f available to be opened again, if desired; and
if f was used for output, the pascal_close operation makes the corresponding external file appear on the
user’s area, ready to be read.

These procedures should not generate error messages if a file is being closed before it has been successfully
opened.

static void a_close(alpha_file xf) /xclose a text file */
{ pascal_close((x[));
}

static void b_close(byte_file xf) /*close a binary file x/
{ pascal_close((xf));
}

static void w_close(word_file xf) /*close a word file */
{ pascal_close((xf));
}

29. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/O. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. TEX’s conventions should be efficient, and they should blend nicely with the user’s
operating environment.

30. Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices
into this array representing the beginning and ending of a line of text.

{ Global variables 13) +=
static ASCII_code buffer|[buf_size + 1]; /*lines of characters being read */
static int first; /*the first unused position in buffer =/
static int last; /*end of the line just input to buffer x/
static int maz_buf_stack; /xlargest index used in buffer /

16 INPUT AND OUTPUT TEXprof §31

31. The input_In function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last = first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer[first], buffer[first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # *,°.

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_In, the condition first < buf_size will always hold, so that
there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf_size parameter must be to
accommodate the present job, is also kept up to date by input_In.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the
line; this skips over an eoln that was in f.d. The procedure does not do a get when it reaches the end of the
line; therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f.d will be undefined).

Since the inner loop of input_In is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

static bool input_In(alpha_file xf, bool bypass_eoln) /*inputs the next line or returns false x/
{ int last_nonblank; /* last with trailing blanks removed */

if (bypass_eoln)

if (—eof ((xf))) get((xf)); /+input the first character of the line into f.dx/
last = first; /*cf. Matthew 19:30 %/
if (eof ((*xf))) return false;
else { last_nonblank = first;

while (—eoln((xf))) { if (last > maz_buf_stack) { maz_buf_stack = last + 1;

if (maz_buf_stack = buf_size) (Report overflow of the input buffer, and abort 35);
}

buffer[last] = zord[(xf).d];

get ((«f));

incr (last);

if (buffer[last — 1] # *?) last_nonblank = last;
}
last = last_nonblank;
return true;

}
}

32. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

(Global variables 13) +=
static alpha_file term_in; /*the terminal as an input file x/
static alpha_file term_out; /xthe terminal as an output file */

633 TEXprof INPUT AND OUTPUT 17

33. Here is how to open the terminal files in Pascal-H. The /I’ switch suppresses the first get.

#define t_open_in term_in.f = stdin /*open the terminal for text input */
#define t_open_out term_out.f = stdout /*open the terminal for text output */

34. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

#define update_terminal fflush(term_out.f) /* empty the terminal output buffer x/
#define clear_terminal fflush(term_in.f) /xclear the terminal input buffer x/
#define wake_up_terminal do_nothing /x cancel the user’s cancellation of output */

35. We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto exit(0)’ should be replaced by
something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 35) =
if (format_ident =0) { write_in(term_out, "Buffer,size exceeded!");
exit (0);
}
else { cur_input.loc_field = first;
cur_input.limit_field = last — 1;
overflow ("buffer size", buf_size);

}

This code is used in sections 31, 1438, and 1729.

18 INPUT AND OUTPUT TEXprof §36

36. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by TEX is in buffer|[loc].
This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘\input’ need not be typed immediately
after ‘x*’.)

#define loc cur_input.loc_field /*location of first unread character in buffer x/

37. The following routine calls input_command_line to retrieve a possible command line.

static bool init_terminal(void) /% gets the terminal input started %/
{ t_open_in;
if (input_command_line()) return true; /+ TEX Live */
loop { wake_up_terminal;
pascal_write (term_out, "**");
update_terminal;
if (—input_In(&term_in, true)) /*this shouldn’t happen x/
{ write_In(term_out);
pascal_write (term_out, " ! ,End 0f file on the terminal. .. why?");
return false;

}

loc = first;
while ((loc < last) A (buffer[loc] = *?)) incr(loc);
if (loc < last) { return true; /+return unless the line was all blank x/

write_In (term_ out, "Please jtype the name jof jyour,input file.") ;

838 TEXprof STRING HANDLING 19

38. String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the
strings, and the array str_start contains indices of the starting points of each string. Strings are referred
to by integer numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j <
str_start[s 4+ 1]. Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far
in str_pool and str_start, respectively; locations str_pool[pool_ptr| and str_start[str_ptr] are ready for the
next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

#define si(A) A /xconvert from ASCII_code to packed_ASCII_code x/
#define so(A) A /xconvert from packed_ASCII_code to ASCII_code */

(Types in the outer block 18) +=
typedef int32_t pool_pointer; /x for variables that point into str_pool %/
typedef int32_t str_number; /*for variables that point into str_start /
typedef uint8_t packed_ASCII_code; /*elements of str_pool array */

39. (Global variables 13) +=
static packed_ASCII_code str_pool|[pool_size + 1]; /xthe characters x/
static pool_pointer str_start[maz_strings + 1]; /+the starting pointers /
static pool_pointer pool_pitr; /* first unused position in str_pool x/
static str_number str_ptr; /xnumber of the current string being created */
static pool_pointer init_pool_ptr; /* the starting value of pool_ptr */
static str_number init_str_ptr; /xthe starting value of str_ptr */

40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

#define length(A) (str_start[A + 1] — str_start[A]) /*the number of characters in string number # %/

41. The length of the current string is called cur_length:
#define cur_length (pool_ptr — str_start[str_ptr])

20 STRING HANDLING TEXprof 8§42

42. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used. There is also a flush_char macro, which erases the last character appended.

To test if there is room to append ! more characters to str_pool, we shall write str_room(l), which aborts
TEX and gives an apologetic error message if there isn’t enough room.

#define append_char(A) /+xput ASCII_code # at the end of str_pool x/
{ str_pool[pool_ptr] = si(A);
incr (pool_ptr);

#define flush_char decr(pool_ptr) /+forget the last character in the pool x/
#define str_room(A) /+make sure that the pool hasn’t overflowed %/
{ if (pool_ptr + A > pool_size) overflow("pool size", pool_size — inil_pool_ptr);

}

43. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

static str_number make_string(void) /*current string enters the pool x/

{ if (str_ptr = maz_strings) overflow ("number of strings", maz_strings — init_str_ptr);
incr (str_ptr);
str_start[str_ptr] = pool_ptr;
return str_ptr — 1;

}

44. To destroy the most recently made string, we say flush_string.

#define flush_string
{ decr(str_ptr);
pool_ptr = str_start[str_ptr];
}

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal. Empirical tests indicate
that str_eq_buf is used in such a way that it tends to return true about 80 percent of the time.

static bool str_eq_buf (str_number s,int k) /xtest equality of strings x/
{ /*loop exit x/

pool_pointer j; /+running index */

bool result; /+result of comparison x/

J = str_start|[s];
while (j < str_start[s + 1]) { if (so(str_pool[j]) # buffer[k]) { result = false;
goto not_found;
}
iner(j);
incr(k);
}
result = true;
not_found: return result;

}

846 TEXprof STRING HANDLING 21

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length.

static bool str_eq_str(str_number s, str_number t) /* test equality of strings */
{ /*loop exit %/
pool_pointer j, k; /* running indices */
bool result; /xresult of comparison x/
result = false;
if (length(s) # length(t)) goto not_found;
j = str_start[s];
k = str_start][t];
while (j < str_start[s + 1]) { if (str_pool[j] # str_pool[k]) goto not_found;
incr (j);
incr(k);
}
result = true;
not_found: return result;

}

(Declare PRAI'E procedures for strings 1564)

47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

static bool get_strings_started (void) /*initializes the string pool /
{int k,I; /xsmall indices or counters */

pool_ptr = 0;

str_ptr = 0;

str_start[0] = 0;

(Make the first 256 strings 48);

(Add the empty string to the string pool 50);
return true;

}

48. #define app_lc_hex(A) | = A;
if (I <10) append_char(l+°07) else append_char(l —10+ *a’)

(Make the first 256 strings 48) =
for (k=0; k <255; k++) { if (({ Character k cannot be printed 49))) { append_char(’>~?);
append_char(’~?);
if (k< °100) append_char(k +°100)
else if (k < °200) append_char(k —°100)
else { app_lc_hex(k/16);
app_lc_hex (k % 16);
}
}

else append_char(k);
make_string ();

}

This code is used in section 47.

22 STRING HANDLING TEXprof 8§49

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘~~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr[°32] = “#°, would like string 032 to be the single
character 032 instead of the three characters 0136, 0136, 0132 (~~Z). On the other hand, even people with
an extended character set will want to represent string 015 by ~~M, since 015 is carriage_return; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless TEX internal code number k corresponds to a
non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TgXbook would, for example, be ‘k € [0,°10 .. °12,°14,°15,°33,°177 .. °377]’.
If character k cannot be printed, and k& < °200, then character k + °100 or k — °100 must be printable;
moreover, ASCII codes [°41 ..°46,°60 ..°71,°156,°141 ..°146,°160 ..°171] must be printable. Thus, at
least 80 printable characters are needed.

(Character k cannot be printed 49) =

(k<’u)V(k>"")

This code is used in section 48.

50. The pool_file variable is no longer needed and has been removed.

Instead of reading the other strings from the TEX.POOL file, it is sufficient here to add the empty string.
(Add the empty string to the string pool 50) =

make_string ();

This code is used in section 47.

51. Without a string pool file there is no need for a pool check sum either. But this is a convenient place
to define the function s_no that will add literal strings to the string pool at runtime, thereby obtaining their
string number.
static int s_no(const char xstr)
{ if (str[0] = 0) return empty_string;
if (str[l] =0) return sir[0];
str_room (strlen(str));
while (xstr # 0) append_char (xstr++);
return make_string();

}

52. The function s_no is used in initialize and needs a forward declaration.
(Forward declarations 52) =

static int s_no(const char xstr);
See also sections 1560, 1562, 1690, 1697, 1710, 1714, and 1730.

This code is used in section 4.

853 TEXprof ON-LINE AND OFF-LINE PRINTING 23

53. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that
routine we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print +1 = term_only, no_print +2 = log_only, term_only +2 = log_only +1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

#define no_print 16 /* selector setting that makes data disappear */
#define term_only 17 /* printing is destined for the terminal only */
#define log_only 18 /= printing is destined for the transcript file only x/
#define term_and_log 19 /+normal selector setting x/

#define pseudo 20 /xspecial selector setting for show_context x/
#define new_string 21 /* printing is deflected to the string pool x/
#define max_selector 21 /*highest selector setting */

(Global variables 13) +=
static alpha_file log_file; /* transcript of TEX session x/

static int selector; /xwhere to print a message */

static int8_t dig[23]; /= digits in a number being output */

static int tally; /+the number of characters recently printed */

static int term_offset; /*the number of characters on the current terminal line x/
static int file_offset; /*the number of characters on the current file line */

static ASCII_code trick_buf [error_line +1]; /*circular buffer for pseudoprinting */
static int trick_count; /* threshold for pseudoprinting, explained later %/

static int first_count; /+another variable for pseudoprinting */

54. (Initialize the output routines 54) =
selector = term_only;
tally = 0;
term_offset = 0;
file_offset = 0;
See also sections 60, 527, and 532.

This code is used in section 1331.

24 ON-LINE AND OFF-LINE PRINTING TEXprof §55

55. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm, wterm_In, and wterm_cr in this section.

(Basic printing procedures 55) =

#define put(F)fwrite(&((F).d),sizeof ((F).d),1,(F).f)

#define get(F) (void) —fread (&((F).d), sizeof ((F).d),1,(F).f)
#define pascal_close(F) fclose((F).f)

#define eof (F') feof (F).f)

#define eoln(F) ((F).d =’\n’ V eof (F))

#define erstat(F) ((F).f = A7 —1: ferror((F).f))

#define pascal_read (F, X) ((X) = (F).d, get(F))

#define read_In(F') do get(F); while (—eoln(F))

#define pascal_write(F,FMT, ...) fprintf (F.f,FMT,##__VA_ARGS__)
#define write_In(F, ...) pascal_write(F, __VA_ARGS__"\n")

#define wterm (FMT, ...) pascal_write(term_out,FMT,##__VA_ARGS__)
#define wierm_In (FMT, ...) wterm (FMT"\n", ##__VA_ARGS__)
#define wierm_cr pascal_write (term_out,"\n")

#define wlog(FMT, ...) pascal_write(log_file, FMT, ##__VA_ARGS__)
#define wlog_In(FMT, ...) wlog (FMT"\n", ##__VA_ARGS__)

#define wlog_cr pascal_write(log_file,"\n")

See also sections 56, 57, 58, 59, 61, 62, 63, 64, 261, 262, 517, 698, 1354, 1504, and 1726.

This code is used in section 4.

56. To end a line of text output, we call print_In.

(Basic printing procedures 55) +=
static void print_In(void) /*prints an end-of-line */
{ switch (selector) {
case term_and_log:
{ wterm_cr;
wlog_cr;
term_offset = 0;
file_offset = 0;
} break;
case log_only:
{ wlog_cr;
file_offset = 0;
} break;
case term_only:
{ wterm_cr;
term_offset = 0;
} break;
case no_print: case pseudo: case new_string: do_nothing; break;
default: write_In(write_file[selector]);

}

} /xtally is not affected x/

657 TEXprof ON-LINE AND OFF-LINE PRINTING 25

57. The print_char procedure sends one character to the desired destination, using the xchr array to map
it into an external character compatible with input_In. All printing comes through print_In or print_char.

(Basic printing procedures 55) +=
static void print_char (ASCII_code s) /xprints a single character x/
{ if ({Character s is the current new-line character 243})
if (selector < pseudo) { print_in();
return;

switch (selector) {
case term_and_log:
{ wterm("%c", xzchr|s]);
wlog ("%he", zchr(s]);
incr (term_offset);
incr(file_offset);
if (term_offset = max_print_line) { wterm_cr;
term_offset = 0;

if (file_offset = maz_print_line) { wlog_cr;
file_offset = 0;
}
} break;
case log_only:
{ wlog("%he", zchr|s]);
incr(file_offset);
if (file_offset = maz_print_line) print_In();
} break;
case term_only:
{ wterm ("%ec", zchr|s]);
incr (term_offset);
if (term_offset = max_print_line) print_in();
} break;
case no_print: do_nothing; break;
case pseudo:
if (tally < trick_count) trick_buf [tally % error_line] = s; break;
case new_string:
{ if (pool_ptr < pool_size) append_char(s);
} break; /xwe drop characters if the string space is full x/
default: pascal_write (write_file[selector], "he", zchr|s]);

}

incer(tally);

26 ON-LINE AND OFF-LINE PRINTING TEXprof 858

58. An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print(’c?), since >c’ = 99 is the number of a single-character string, as explained
above. But print_char(’c’) is quicker, so TEX goes directly to the print_char routine when it knows that
this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)

(Basic printing procedures 55) +=
static void print(char xs) /* the simple version x/
{if (s=A) s="7???7"; /«xthis can’t happen x/
while (xs # 0) print_char (xs++); }
static void printn(int s) /xprints string s */
{ pool_pointer j; /* current character code position x/
int nl; /*new-line character to restore */
if (s> str_ptr) {
print ("??77");
return;
} /«this can’t happen x/
else if (s < 256)
if (s<0) {
print ("?77");
return;
} /xcan’t happen*/
else { if (selector > pseudo) { print_char(s);
return; /+internal strings are not expanded x/

if (((Character s is the current new-line character 243)))
if (selector < pseudo) { print_in();
return;
}
nl = new_line_char;
new_line_char = —1, /* temporarily disable new-line character x/
J = str_start]s];
while (5 < str_start[s + 1]) { print_char(so(str_pool[j]));
incr (4);
}
new_line_char = nl;
return;

J = str_start]s];
while (j < str_start[s + 1]) { print_char (so(str_pool[5]));
incr(j);
}
}

659 TEXprof ON-LINE AND OFF-LINE PRINTING 27

59. Control sequence names, file names, and strings constructed with \string might contain ASCII_code
values that can’t be printed using print_char. Therefore we use slow_print for them:

(Basic printing procedures 55) +=
static void slow_print(int s) /+prints string sx/
{ pool_pointer j; /x current character code position x/
if ((s > str_ptr) V (s < 256)) printn(s);
else { j = str_start[s];
while (j < str_start[s + 1]) { printn(so(str_pool[j]));
iner(4);
}
}
}

60. Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we
assume that this part of the program is system dependent.

According to the conventions of TEX Live, we print the dump_name if no format identifier is known.

(Initialize the output routines 54) +=
wterm ("%s", banner);
if (format_ident =0) wterm_In (", (preloaded format=Y%s)", dump_name);
else { slow_print(format_ident);
print_In();

}

update_terminal;

61. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.

(Basic printing procedures 55) +=
static void print_nl(char xs) /x prints string s at beginning of line x/
{ if (((term_offset > 0) A (odd (selector))) V
((file_offset > 0) A (selector > log_only))) print_In();
print(s);

}

28 ON-LINE AND OFF-LINE PRINTING TEXprof 862

62. The procedure print_esc prints a string that is preceded by the user’s escape character (which is usually
a backslash).

(Basic printing procedures 55) +=
static void printn_esc(str_number s) /* prints escape character, then sx*/
{int ¢; /+the escape character code*/

(Set variable ¢ to the current escape character 242);
if (¢>0)

if (¢ < 256) printn(c);
slow_print(s);

}

static void print_esc(char xs) /xthe fast way */
{ int ¢ /*the escape character code %/

{Set variable ¢ to the current escape character 242);
if (¢>0)

if (c < 256) printn(c);
print(s);

63. An array of digits in the range 0 .. 15 is printed by print_the_digs.

(Basic printing procedures 55) +=
static void print_the_digs(eight_bits k) /xprints dig[k — 1] ... dig[0] x/
{ while (k > 0) { decr(k);
if (dig[k] < 10) print_char(’0° + dig[k]);
else print_char(’A’ — 10 + dig[k]);
}
}

864 TEXprof ON-LINE AND OFF-LINE PRINTING 29

64. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (—n) would cause overflow. It does not apply % or
/ to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

(Basic printing procedures 55) +=

static void print_int(int n) /+prints an integer in decimal form */
{int k; /xindex to current digit; we assume that |n| < 10%3 %/

int m; /+used to negate n in possibly dangerous cases x/

k=0;

if (n <0) { print_char(’-’);
if (n > —100000000) negate(n);

else {m=-1-mn;
n =m/10;
m = (m%10) + 1;
k=1,

if (m < 10) dig[0] = m;
else { dig[0] = 0;
iner(n);
}
}

}
do {
dig[k] = n % 10;
n = n/10;
incr(k);
} while (=(n = 0));
print_the_digs (k);

}

65. Here is a trivial procedure to print two digits; it is usually called with a parameter in the range
0<n<99.
static void print_two(int n) /* prints two least significant digits x/
{ n = abs(n) % 100;
print_char(’0’ + (n/10));
print_char(’0’ + (n % 10));

}

66. Hexadecimal printing of nonnegative integers is accomplished by print_hez.

static void print_hex(int n) /*prints a positive integer in hexadecimal form %/
{int k; /xindex to current digit; we assume that 0 < n < 1622 %/
k=0;
print_char(’"?);
do {
dig[k] = n % 16;
n = n/16;
incr(k);
} while (=(n =0));
print_the_digs (k);

30 ON-LINE AND OFF-LINE PRINTING TEXprof §67

67. Old versions of TEX needed a procedure called print_ ASCII whose function is now subsumed by print.
We retain the old name here as a possible aid to future software archacologists.

#define print_ASCII printn

68. Roman numerals are produced by the print_roman_int routine. Readers who like puzzles might enjoy
trying to figure out how this tricky code works; therefore no explanation will be given. Notice that 1990
yields mcmxc, not mxm.

static void print_roman_int (int n)

{ pool_pointer j,k; /*mysterious indices into mystery */
nonnegative_integer u, v; /* mysterious numbers */
const char mystery[] = "m2d5c215x2v5i";
7=0
v = 1000;
loop { while (n > v) { print_char(so(mystery[j]));
n=n-—u
}
if (n <0) return; /+nonpositive input produces no output */
k=j+2

u=wv/(so(mystery[k —1]) —>07);
if (mystery[k — 1] =si(’2°)) { k=k+2;
u=u/(so(mystery[k —1]) — >0?);

if (n+4u >wv) { print_char(so(mystery[k]));
n=n-+u;
}
else { j=j+2
) v =uv/(so(mystery[j —1]) — ’07);
}
}

69. The print subroutine will not print a string that is still being created. The following procedure will.

static void print_current_string (void) /* prints a yet-unmade string */
{ pool_pointer j; /+points to current character code */

j = str_start[str_ptr];
while (j < pool_ptr) { print_char(so(str_pool[j]));
incr(5);
}
}

670 TEXprof ON-LINE AND OFF-LINE PRINTING 31

70. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.

This procedure is never called when interaction < scroll_mode.

#define prompt_input(A)
{ wake_up_terminal;
print (A);
term_input();
} /*prints a string and gets a line of input */
static void term_input(void) /* gets a line from the terminal %/
{int k; /+index into bujffer =/
update_terminal; /xnow the user sees the prompt for sure */
if (—input_in(&term_in, true)) fatal_error("End of file on the terminal!");
term_offset = 0; /*the user’s line ended with (return) */
decr (selector); /* prepare to echo the input x/
if (last # first)
for (k = first; k <last — 1; k++) printn(buffer|[k]);
print_In();
incr(selector); /+restore previous status x/

32 REPORTING ERRORS TEXprof §71
71. Reporting errors. When something anomalous is detected, TEX typically does something like this:

print_err ("Something ,anomalous has been detected");
help8 ("This_is the first,line of my offer to help.")
("This_is_the second line._ I’m trying to")

("explain, the best_ way for you to_proceed.");

error ;

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that maz_print_line will not be exceeded.)

The print_err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user,
during which time the help message may be printed.

(Error handling procedures 71) =
static void print_err(char xs)
{ if (interaction = error_stop_mode) wake_up_terminal;
if (filelineerrorstylep) print_file_line(); /+ TEX Live */
else print_nl("!,");
print(s);
¥
See also sections 77, 80, 81, 92, 93, 94, and 1813.

This code is used in section 4.

72. The global variable interaction has four settings, representing increasing amounts of user interaction:

#define batch_mode 0 /+omits all stops and omits terminal output */
#define nonstop_mode 1 /xomits all stops x/

#define scroll_mode 2 /+omits error stops */

#define error_stop_mode 3 /* stops at every opportunity to interact x/

(Global variables 13) +=
static int interaction; /* current level of interaction */

73. (Set initial values of key variables 21) +=
if (interaction_option < 0) interaction = error_stop_mode;
else interaction = interaction_option; /x TEX Live */

74. TgX is careful not to call error when the print selector setting might be unusual. The only possible
values of selector at the time of error messages are

no_print (when interaction = batch_mode and log_file not yet open);
term_only (when interaction > batch_mode and log_file not yet open);
log_only (when interaction = batch_mode and log_file is open);
term_and_log (when interaction > batch_mode and log_file is open).

(Initialize the print selector based on interaction 74) =
if (interaction = batch_mode) selector = no_print; else selector = term_only
This code is used in sections 1264 and 1336.

§75 TEXprof REPORTING ERRORS 33

75. A global variable deletions_allowed is set false if the get_next routine is active when error is called;
this ensures that get_mext and related routines like get_token will never be called recursively. A similar
interlock is provided by set_box_allowed .

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless, warning_issued, error_message_issued, and fatal_error_stop.

Another global variable, error_count, is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every paragraph. If error_count reaches 100, TEX decides that
there is no point in continuing further.

#define spotless 0 /* history value when nothing has been amiss yet */

#define warning_issued 1 /* history value when begin_diagnostic has been called */
#define error_message_issued 2 /* history value when error has been called */
#define fatal_error_stop 3 /* history value when termination was premature x/

(Global variables 13) +=
static bool deletions_allowed; /x1s it safe for error to call get_token? x/
static bool set_boz_allowed; /x1s it safe to do a \setbox assignment? x/
static int history; /*has the source input been clean so far? %/
static int error_count; /*the number of scrolled errors since the last paragraph ended */

76. The value of history is initially fatal_error_stop, but it will be changed to spotless if TEX survives the
initialization process.

(Set initial values of key variables 21) +=
deletions_allowed = true;
set_box_allowed = true;
error_count = 0; /* history is initialized elsewhere x/

77. Since errors can be detected almost anywhere in TEX, we want to declare the error procedures near
the beginning of the program. But the error procedures in turn use some other procedures, which need to
be declared forward before we get to error itself.

It is possible for error to be called recursively if some error arises when get_token is being used to delete
a token, and/or if some fatal error occurs while TEX is trying to fix a non-fatal one. But such recursion is
never more than two levels deep.

(Error handling procedures 71) 4=
static void normalize_selector (void);
static void get_token(void);
static void term_input(void);
static void show_context(void);
static void begin_file_reading (void);
static void open_log_file(void);
static void close_files_and_terminate(void);
static void clear_for_error_prompt(void);
static void give_err_help(void);

4ifdef DEBUG
static void debug_help(void);

F#else

#define debug_help() do_nothing

#endif

34 REPORTING ERRORS TEXprof §78

78. Individual lines of help are recorded in the array help_line, which contains entries in positions O ..
(help_ptr — 1). They should be printed in reverse order, i.e., with help_line[0] appearing last.
#define hlp1(A) help_line[0] = A4; }
#define hip2(A, B) help_line[l] = A;
help_line[0] = B; }
#define hip3(A, B,C) help_line[2] = A;
help_line[l] = B;
help_line[0] = C;
#define hlp4 (A, B,C,D) help_line[3] = A;
help_line[2
help_line[l
help_line|0)

=D; }
#define hlp5(A,B,C,D,E) help_linel[d] = A;

}
,E,F) help_linel5] = A;

#define help0 help_ptr =0 /*sometimes there might be no help */
#define help1 (A) { help_ptr =1; hip1 (A) /xuse this with one help line x/
#define help2(A, B) { help_ptr = 2; hip2(A, B) /* use this with two help lines %/
#define help3 (A, B,C) { help_ptr = 3; hip3(A, B,C) /xuse this with three help lines */
#define help4 (A, B,C, D) { help_ptr = 4; hip4 (A, B,C, D) /xuse this with four help lines x/
#define help5 (A, B,C,D,E) { help_ptr =5; hip5(A,B,C,D, E) /*use this with five help lines %/
#define help6 (A, B,C,D,E,F) { help_ptr = 6; hip6(A,B,C,D,E, F)
/*use this with six help lines /

(Global variables 13) +=

static char xhelp_line[6]; /*helps for the next error x/

static int help_ptr; /*the number of help lines present */

static bool use_err_help; /+should the err_help list be shown? %/

79. (Set initial values of key variables 21) +=
help_ptr = 0;
use_err_help = false;

80. The jump_out procedure just cuts across all active procedure levels and goes to end_of TEX. This
is the only nontrivial goto statement in the whole program. It is used when there is no recovery from a
particular error.

Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump_out
should simply be ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly
terminates the program.

(Error handling procedures 71) 4+=
static void jump_out(void)
{ close_files_and_terminate();
exit (0);
}

681 TEXprof REPORTING ERRORS

81. Here now is the general error routine.

(Error handling procedures 71) +=

static void error (void) /#completes the job of error reporting */
{ ASCII_code ¢; /*what the user typesx/
int s1,s2,s83,s4; /*used to save global variables when deleting tokens %/

if (history < error_message_issued) history = error_message_issued;

print_char(?.”);

show_context();

if (interaction = error_stop_mode) (Get user’s advice and return 82);

incr (error_count);

if (error_count = 100) { print_nl(" (That_makes 100 errors; please try again.)");
history = fatal_error_stop;
Jump_out();

(Put help message on the transcript file 89);

}

82. (Get user’s advice and return 82) =

loop { resume:
if (interaction # error_stop_mode) return;
clear_for_error_prompt ();
prompt_input ("7,");
if (last = first) return;
¢ = buffer[first];
if (¢>’a’)c=c+’A’ —’a’; /xconvert to uppercase */
(Interpret code ¢ and return if done 83);

}

This code is used in section 81.

36 REPORTING ERRORS TEXprof 683

83. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

(Interpret code ¢ and return if done 83) =
switch (c¢) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’: case ’5’: case ’6’: case '7’: case ’8’:
case ’9’:
if (deletions_allowed) (Delete ¢ — "0" tokens and goto resume 87) break;

#ifdef DEBUG
case ’D’:
{ debug_help();
goto resume; }
#endif
case ’E’:
if (base_ptr > 0)
if (input_stack [base_ptr].name_field > 256) { print_nl("You want to edit file,");
slow_print (input_stack [base_ptr].name_field);
print("uat,line ");
print_int (line);
interaction = scroll_mode;
jump_out();
} break;
case ’H’: (Print the help information and goto resume 88)
case I’: (Introduce new material from the terminal and return 86)
case ’Q’: case ’R’: case ’S’: (Change the interaction level and return 85)
case ’X’:
{ interaction = scroll_mode;
jump_out();
} break;
default: do_nothing;
}
(Print the menu of available options 84)

This code is used in section 82.

84. (Print the menu of available options 84) =

{ print ("Typey<return> toproceed, S to,scroll future error messages,");
print_nl ("Ryto,run without stopping, Quto run quietly,");
print_nl ("I to,insert,something, ");
if (base_ptr > 0)

if (input_stack[base_ptr].name_field > 256) print("E to edit your file,");

if (deletions_allowed) print_nl("1 0ry,. .. 0r 9 to ignore the next, 1, to_ 9 tokens of input,");
print_nl("H,for help, X to,quit.");

}

This code is used in section 83.

685 TEXprof REPORTING ERRORS 37

85. Here the author of TEX apologizes for making use of the numerical relation between ’Q’, *R’, ’S’,
and the desired interaction settings batch_mode, nonstop_mode, scroll_mode.

(Change the interaction level and return 85) =
{ error_count = 0;

interaction = batch_mode +c— ’Q’;
print("0K, entering,");
switch (c¢) {
case ’Q’:

{ print_esc("batchmode");

decr (selector);

} break;
case ’R’: print_esc("nonstopmode"); break;
case ’S’: prini_esc("scrollmode");
} /*there are no other cases */
print("...");
print_In();
update_terminal;
return;

}

This code is used in section 83.

86. When the following code is executed, buffer[(first +1) .. (last — 1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with TEX’s input stacks.

(Introduce new material from the terminal and return 86) =
{ begin_file_reading (); /xenter a new syntactic level for terminal input */
/xnow state = mid_line, so an initial blank space will count as a blank */
if (last > first +1) { loc = first + 1;
buffer|first] = *,°;

else { prompi_input("insert>");
loc = first;
}

first = last;
cur_input.limit_field = last — 1, /*no end_line_char ends this line x/
return;

}

This code is used in section 83.

38 REPORTING ERRORS TEXprof 687

87. We allow deletion of up to 99 tokens at a time.

(Delete ¢ — "0" tokens and goto resume 87) =
{ 81 = cur_tok;

s$2 = cur_cmd;

88 = cur_chr;

s4 = align_state;

align_state = 1000000;

OK_to_interrupt = false;

if ((last > first + 1) A (buffer[first + 1] > 20?) A (buffer|[first +1] < 297))
¢ =cx 10+ buffer|first + 1] — >0 x 11;

else c=c—0";

while (¢ > 0) { get_token(); /xone-level recursive call of error is possible x/
decr(c);

}

cur_tok = si;

cur_cmd = s2;

cur_chr = s3;

align_state = s4;

OK_to_interrupt = true;

help2("I_have just deleted some text,_ as you asked.",
"You,,can, now_delete more, or insert, or whatever.");
show_context();

goto resume;

This code is used in section 83.

88. (Print the help information and goto resume 88) =
{ if (use_err_help) { give_err_help();
use_err_help = false;

else { if (help_ptr =0) help2("Sorry, I don’t know_ how to help,in this situation.",
"Maybe you ;should, try asking a human?");
do {
decr (help_ptr);
print (help_line[help_ptr]);
print_In();
} while (—(help_ptr =0));
}
help4 ("Sorry, I already gave_ what help I could...",
"Maybe_you,should, try ,asking ,a human?",
"An error might, have occurred before I, noticed any problems."
"C¢Tf all else fails,_ read the instructions.’");
goto resume;

}

This code is used in section 83.

689 TEXprof REPORTING ERRORS 39

89. (Put help message on the transcript file 89) =

if (interaction > batch_mode) decr(selector); /+avoid terminal output */
if (use_err_help) { print_in();

give_err_help();
¥
else

while (help_ptr > 0) { decr(help_ptr);

print_nl (help_line[help_ptr]);

print_In();
if (interaction > batch_mode) incr(selector); /*re-enable terminal output %/
print_In()

This code is used in section 81.

90. A dozen or so error messages end with a parenthesized integer, so we save a teeny bit of program space
by declaring the following procedure:
static void nt_error(int n)
{ print("u(");
print_int(n);
print_char(’)’);
error () ;

}

91. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.
static void normalize_selector (void)
{ if (log_opened) selector = term_and_log;
else selector = term_only;
if (job_name = 0) open_log_file();
if (interaction = batch_mode) decr(selector);

}

92. The following procedure prints TEX’s last words before dying.
#define succumb
{ if (interaction = error_stop_mode) interaction = scroll_mode; /*1no more interaction %/
if (log_opened)
error () ;
if (interaction > batch_mode) debug_help();
history = fatal_error_stop;
gump_out(); /xirrecoverable error */
}
(Error handling procedures 71) +=
static void fatal_error(char xs) /*prints s, and that’s it x/
{ normalize_selector();
print_err ("Emergency stop");
help1 (s);
succumb;

}

40 REPORTING ERRORS TEXprof §93

93. Here is the most dreaded error message.

(Error handling procedures 71) +=
static void overflow(char *s,int n) /xstop due to finiteness */
{ normalize_selector();
print_err ("TeX capacity exceeded, sorry,[");
print(s);
print_char(’=");
print_int(n);
print_char(’1°);
help2 ("Ifuyouureal1y|_,absolutely._,need,_,more._,capacity N
"youycanyask a wizard to enlarge me.");
succumb;

}

94. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index
entries for ‘this can’t happen’ may help to pinpoint the problem.

(Error handling procedures 71) +=
static void confusion(char xs) /x consistency check violated; s tells where */
{ normalize_selector();
if (history < error_message_issued) { print_err("This can’t happen,(");
print(s);
print_char(?)?);
help1 (" I’m broken. Please show this, to someone who can fix can fix");
}
else { print_err("I can’t go on meeting you, like this");
help2 (" One of ;your ,faux, pas seems to have wounded, me deeply...",
"in,fact,I’m barely conscious. Please fix it and try,again.");
}

succumb;

}

95. Users occasionally want to interrupt TEX while it’s running. If the Pascal runtime system allows this,
one can implement a routine that sets the global variable interrupt to some nonzero value when such an
interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the Pascal
debugger.
#define check_interrupt
{ if (interrupt # 0) pause_for_instructions();
}
{ Global variables 13) +=
static int interrupt; /*should TEX pause for instructions? */
static bool OK_to_interrupt; /*should interrupts be observed? x/

96. (Set initial values of key variables 21) +=
interrupt = 0;
OK_to_interrupt = true;

897 TEXprof REPORTING ERRORS 41

97. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have nearly the full flexibility of the error routine. TEX checks for interrupts only at times when it is
safe to do this.

static void pause_for_instructions(void)

{ if (OK_to_interrupt) { interaction = error_stop_mode;
if ((selector = log_only) V (selector = no_print)) incr(selector);
print_err("Interruption");
help3 ("You, rang?",
"Try toyinsert an instruction for me,(e.g., I\\showlists’),",
"unless_you,just want, to,quit by typing ‘X’.");
deletions_allowed = false;
error () ;
deletions_allowed = true;
mterrupt = 0;

42 ARITHMETIC WITH SCALED DIMENSIONS TEXprof §98

98. Arithmetic with scaled dimensions. The principal computations performed by TEX are done
entirely in terms of integers less than 23! in magnitude; and divisions are done only when both dividend
and divisor are nonnegative. Thus, the arithmetic specified in this program can be carried out in exactly
the same way on a wide variety of computers, including some small ones. Why? Because the arithmetic
calculations need to be spelled out precisely in order to guarantee that TEX will produce identical output
on different machines. If some quantities were rounded differently in different implementations, we would
find that line breaks and even page breaks might occur in different places. Hence the arithmetic of TEX has
been designed with care, and systems that claim to be implementations of TEX82 should follow precisely the
calculations as they appear in the present program.

(Actually there are three places where TEX uses / with a possibly negative numerator. These are harmless;
see / in the index. Also if the user sets the \time or the \year to a negative value, some diagnostic
information will involve negative-numerator division. The same remarks apply for % as well as for /.)

99. Here is a routine that calculates half of an integer, using an unambiguous convention with respect to
signed odd numbers.

static int half (int z)
{ if (odd(z)) return (z +1)/2;
else return z/2;

}

100. Fixed-point arithmetic is done on scaled integers that are multiples of 2716, In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

#define unity °200000 /%26, represents 1.00000 */
#define two °400000 /%27 represents 2.00000 */

(Types in the outer block 18) +=
typedef int scaled; /*this type is used for scaled integers %/
typedef int32_t nonnegative_integer; /0 <z <231 x/
typedef int8_t small_number; /xthis type is self-explanatory */

101. The following function is used to create a scaled integer from a given decimal fraction (.dod; ... dg—1),
where 0 < k < 17. The digit d; is given in dig|[i], and the calculation produces a correctly rounded result.

static scaled round_decimals(small_number k) /* converts a decimal fraction */
{int a; /+the accumulator x/
a = 0;

while (k > 0) { decr(k);
a = (a+ dig[k] * two)/10;
}
return (a+1)/2;
}

6102 TEXprof ARITHMETIC WITH SCALED DIMENSIONS 43

102. Conversely, here is a procedure analogous to print_int. If the output of this procedure is subsequently
read by TEX and converted by the round_decimals routine above, it turns out that the original value will
be reproduced exactly; the “simplest” such decimal number is output, but there is always at least one digit
following the decimal point.

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield
the original number if and only if they form a fraction f in the range s — 6§ < 10-2!6f < 5. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

static void print_scaled (scaled s) /= prints scaled real, rounded to five digits %/
{ scaled delta; /+amount of allowable inaccuracy */

if (s <0) { print_char(’-");
negate(s); /+print the sign, if negative x/
}
print_int(s/unity); /xprint the integer part */
print_char(’.”);
s =10 % (s % unity) + 5;
delta = 10;
do {
if (delta > unity) s = s+ °100000 — 50000; /«round the last digit x/
print_char(’0° + (s/unity));
s =10 * (s % unity);
delta = delta = 10;
} while (—(s < delta));
}

103. Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2716 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 23° — 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.

The present implementation of TEX does not check for overflow when dimensions are added or subtracted.
This could be done by inserting a few dozen tests of the form ‘if (x > °10000000000) report_overflow’, but
the chance of overflow is so remote that such tests do not seem worthwhile.

TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,
and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith_error to true instead of reporting errors directly to the user. Another global
variable, rem, holds the remainder after a division.

{ Global variables 13) +=
static bool arith_error; /*has arithmetic overflow occurred recently? */
static scaled rem; /* amount subtracted to get an exact division %/

44 ARITHMETIC WITH SCALED DIMENSIONS TeXprof §104

104. The first arithmetical subroutine we need computes nx + y, where z and y are scaled and n is an
integer. We will also use it to multiply integers.

#define nz_plus_y(A, B,C) mult_and_add (A, B,C,°7777777777)

#define mult_integers(A, B) mult_and_add (A, B,0,°1777777T7777)

static scaled mult_and_add (int n,scaled z,scaled y, scaled maz_answer)
{if (n < 0) { negate(z);
negate(n);

if (n=0) return y;
else if (((z < (maz_answer —y)/n) A (—x < (maz_answer +y)/n))) return n * z + y;
else { arith_error = true;

return 0;

}
}

105. We also need to divide scaled dimensions by integers.

static scaled z_over_n(scaled z,int n)
{ bool negative; /xshould rem be negated? x/
scaled z_over_n;
negative = false;
if (n=0) { arith_error = true;
z_over_n = 0;
rem = ;

else { if (n < 0) { negate(x);
negate (n);
negative = true;

if (x> 0) { z_over_n = x/n;
rem = x %n;

else { z_over_n = —((—z)/n);
rem = —((—z) % n);

}
if (negative) negate(rem);
return z_over_n;

}

6106 TEXprof ARITHMETIC WITH SCALED DIMENSIONS 45

106. Then comes the multiplication of a scaled number by a fraction n/(double)d, where n and d are
nonnegative integers < 2'6 and d is positive. It would be too dangerous to multiply by n and then divide
by d, in separate operations, since overflow might well occur; and it would be too inaccurate to divide by d
and then multiply by n. Hence this subroutine simulates 1.5-precision arithmetic.

static scaled zn_over_d(scaled z,int n,int d)
{ bool positive; /xwas x > 07 %/
nonnegative_integer t, u, v; /*intermediate quantities x/
scaled xn_over_d;
if (z > 0) positive = true;
else { negate(x);
positive = false;
}
t=(x%°100000) n;
u = (x/°100000) x n + (t/°100000);
v = (u%d)*°100000 + (t % °100000);
if (u/d > °100000) arith_error = true;
else u = °100000 x (u/d) + (v/d);
if (positive) { zn_over_d = u;
rem = v % d;
}
else { zn_over_d = —u;
rem = —(v % d);

}

return zn_over_d;

46 ARITHMETIC WITH SCALED DIMENSIONS TpXprof §107

107. The next subroutine is used to compute the “badness” of glue, when a total ¢ is supposed to be made
from amounts that sum to s. According to The TEXbook, the badness of this situation is 100(¢/s)?; however,
badness is simply a heuristic, so we need not squeeze out the last drop of accuracy when computing it. All
we really want is an approximation that has similar properties.

The actual method used to compute the badness is easier to read from the program than to describe
in words. It produces an integer value that is a reasonably close approximation to 100(t/s)3, and all
implementations of TEX should use precisely this method. Any badness of 2% or more is treated as infinitely
bad, and represented by 10000.

It is not difficult to prove that

badness(t + 1,s) > badness(t,s) > badness(t,s + 1).

The badness function defined here is capable of computing at most 1095 distinct values, but that is plenty.
#define inf_bad 10000 /*infinitely bad value */

(Declare PRATE arithmetic routines 1633)
static halfword badness(scaled t,scaled s) /* compute badness, given ¢t > 0x/
{'int r; /+approximation to at/s, where a® ~ 100 - 21® x/
if (t =0) return 0;
else if (s <0) return inf_bad;
else { if (t <7230584) r = (tx297)/s; /%2973 =99.94 x 218/
else if (s > 1663497) r =t/(s/297);
else r =t;
if (r > 1290) return inf_bad; /x1290% < 23! < 12913 %/
else return (r*r 7+ °4£00000)/°1000000;
} /xthat was r®/28 rounded to the nearest integer %/

}

108. When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.

We shall use the type glue_ratio for such proportionality ratios. A glue ratio should take the same
amount of memory as an int (usually 32 bits) if it is to blend smoothly with TEX’s other data structures.
Thus glue_ratio should be equivalent to short_real in some implementations of Pascal. Alternatively, it is
possible to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982),
10-27. (But the routines cited there must be modified to allow negative glue ratios.)

#define set_glue_ratio_zero(A) A=10.0 /«store the representation of zero ratio */
#define set_glue_ratio_one(A) A =1.0 /«store the representation of unit ratio*/
#define unfir(A) ((double)(A)) /+convert from glue_ratio to type double */
#define fizr(A) ((glue_ratio)(A)) /+convert from double to type glue_ratio %/
#define float_constant(A) ((double)(A4)) /*convert int constant to double */

(Types in the outer block 18) +=
#if __SIZEOF_FLOAT__ =4
typedef float float32_t;
#else
#error float type must have size 4
#endif
typedef float glue_ratio; /x one-word representation of a glue expansion factor x/

8109 TEXprof PACKED DATA 47

109. Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory_word, which contains either a (signed) integer, possibly scaled, or a (signed) glue_ratio, or a
small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

x4 (an int)

x.s¢ (a scaled integer)

z.gr (a glue_ratio)
x.hh.lh, x.hh.rh (two halfword fields)

x.hh.b0, x.hh.b1, x.hh.Th (two quarterword fields, one halfword field)
r.9qqq.b0, x.qqqq.b1, x.qqqq.b2, x.qqqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_max as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs all
of the memory_word variants into the space of a single integer. This means, for example, that glue_ratio
words should be short_real instead of double on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘—128 .. 127".

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. maz_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. maz_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve
this unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

#define min_quarterword 0 /*smallest allowable value in a quarterword */
#define maz_quarterword 65535 /xlargest allowable value in a quarterword =/
#define min_halfword 0 /+smallest allowable value in a halfword */
#define maz_halfword #3FFFFFFF /*largest allowable value in a halfword x/

48 PACKED DATA TpXprof §110

110. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
#ifdef INIT

if ((mem_min # mem_bot) V (mem_max # mem_top)) bad = 10;
#endif

if ((mem_min > mem_bot) V (mem_max < mem_top)) bad = 10;

if ((min_quarterword > 0) V (maz_quarterword < 127)) bad = 11;

if ((min_halfword > 0) V (max_halfword < 32767)) bad = 12;

if ((min_quarterword < min_halfword) vV

(maz_quarterword > maz_halfword)) bad = 13,
if ((mem_min < min_halfword) V (mem_max > maz_halfword) Vv
(mem_bot — mem_min > maz_halfword + 1)) bad = 14;

f ((font_base < min_quarterword) V (font_maz > max_quarterword)) bad = 15;
f (font_maz > font_base + 256) bad = 16;
if ((save_size > maz_halfword) V (maz_strings > maz_halfword)) bad = 17;
£ (b
£

i

1

i uf_size > max_halfword) bad = 18;
max_quarterword — min_quarterword < 255) bad = 19;

1

111. The operation of adding or subtracting min_quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros ¢i and go for input and output to and from
quarterword format.

The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘z + 0’
and ‘z — 0, if these macros are simplified in the obvious way when min_quarterword = 0.

#define ¢i(A) A+ min_quarterword /+to put an eight_bits item into a quarterword */

#define qo(A) A — min_quarterword /xto take an eight_bits item out of a quarterword x/
#define hi(A) A+ min_halfword /*to put a sixteen-bit item into a halfword */
#define ho(A) A — min_halfword /+to take a sixteen-bit item from a halfword x/

6112 TpXprof PACKED DATA

112. The reader should study the following definitions closely:
#define sc i /+scaled data is equivalent to int %/

(Types in the outer block 18) +=
typedef uintl6_t quarterword; /x1/4 of a word =/
typedef int32_t halfword; /%1/2 of a word x/
typedef int8_t two_choices; /xused when there are two variants in a record */
typedef int8_t four_choices; /*used when there are four variants in a record */
typedef uint64_t fullword;
typedef struct {

halfword rh;
union {
halfword [h;
struct {
quarterword b0;
quarterword b1 ;
5
b
} two_halves;
typedef struct {

quarterword b0;
quarterword b1;
quarterword b2;
quarterword b3;
} four_quarters;
typedef struct {
union {
Sfullwordw;
int i;
glue_ratio gr;
two_halves hh;
four_quarters qqqq;
b
} memory_word;
typedef struct { FILE xf; memory_word d; } word_file;

49

50 PACKED DATA TpXprof — §113

113. When debugging, we may want to print a memory_word without knowing what type it is; so we
print it in all modes.

4#tifdef DEBUG

static void print_word (memory_word w) /*prints w in all ways */

{ print_int (w.q);
print_char(’’);
print_scaled (w.sc);
print_char(’,’);
print_scaled (round (unity * unfiz(w.gr)));
print_In();
print_int (w.hh.lh);
print_char(’=");
print_int (w.hh.b0);
print_char(?:?);
print_int(w.hh.b1);
print_char(’;’);
print_int (w.hh.rh);
print_char(’,’);
print_int (w.qqqq.b0);
print_char(?:”);
print_int (w.qqqq.b1);
print_char(’:’);
print_int (w.qqqq.b2);
print_char(’:’);
print_int (w.qqqq.b3);

¥
#endif

6114 TEXprof DYNAMIC MEMORY ALLOCATION 51

114. Dynamic memory allocation. The TEX system does nearly all of its own memory allocation, so
that it can readily be transported into environments that do not have automatic facilities for strings, garbage
collection, etc., and so that it can be in control of what error messages the user receives. The dynamic storage
requirements of TEX are handled by providing a large array mem in which consecutive blocks of words are
used as nodes by the TEX routines.

Pointer variables are indices into this array, or into another array called eqtb that will be explained later.
A pointer variable might also be a special flag that lies outside the bounds of mem, so we allow pointers to
assume any halfword value. The minimum halfword value represents a null pointer. TEX does not assume
that mem[null] exists.

#define pointer halfword /*a flag or a location in mem or eqtb */
#define null min_halfword /+the null pointer */

(Global variables 13) +=
static pointer temp_ptr; /*a pointer variable for occasional emergency use */

115. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_maz are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi_mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_bot and mem_top may be dumped as part of preloaded format files, by
the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem_min and mem_bot are always used for variable-size nodes, and
locations between mem_top and mem_maz are always used for single-word nodes.

The key pointers that govern mem allocation have a prescribed order:

null < mem_min < mem_bot < lo_mem_maz < hi_mem_min < mem_top < mem_end < mem_max.

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

{ Global variables 13) +=
static memory_word mem0[mem_maz — mem_min + 1], xconst mem = mem0 — mem_min;
/*the big dynamic storage area */
static pointer lo_mem_maz; /+the largest location of variable-size memory in use */
static pointer hi_mem_min; /+the smallest location of one-word memory in use */

116. In order to study the memory requirements of particular applications, it is possible to prepare a
version of TEX that keeps track of current and maximum memory usage. When code between the delimiters
#ifdef STAT ... #endif is not “commented out,” TEX will run a bit slower but it will report these statistics
when tracing_stats is sufficiently large.

(Global variables 13) +=
static int var_used, dyn_used; /*how much memory is in use */
#ifdef STAT
#define incr_dyn_used incr(dyn_used)
#define decr_dyn_used decr(dyn_used)
#else
#define incr_dyn_used
#define decr_dyn_used
#endif

52 DYNAMIC MEMORY ALLOCATION TEXprof §117

117. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable
mem_end holds the highest-numbered location of mem that has ever been used. The free locations of
mem that occur between hi_mem_min and mem_end, inclusive, are of type two_halves, and we write
info(p) and link (p) for the [h and rh fields of mem[p] when it is of this type. The single-word free locations
form a linked list

avail, link (avail), link (link (avail)), ...

terminated by null.

#define link(A) mem[A].hh.th /xthe link field of a memory word x/
#define info(A) meml[A].hh.lh /xthe info field of a memory word %/

{ Global variables 13) +=
static pointer avail; /*head of the list of available one-word nodes %/
static pointer mem_end; /*the last one-word node used in mem */

118. If memory is exhausted, it might mean that the user has forgotten a right brace. We will define some
procedures later that try to help pinpoint the trouble.

(Declare the procedure called show_token_list 291)
(Declare the procedure called runaway 305)

119. The function get_avail returns a pointer to a new one-word node whose link field is null. However,
TEX will halt if there is no more room left.

If the available-space list is empty, i.e., if avail = null, we try first to increase mem_end. If that cannot
be done, i.e., if mem_end = mem_mazx, we try to decrease hi_mem_min. If that cannot be done, i.e., if
hi_mem_min = lo_mem_max + 1, we have to quit.

static pointer get_avail(void) /xsingle-word node allocation %/
{ pointer p; /xthe new node being got x/

p = avail; /* get top location in the avail stack */
if (p # null) avail = link(avail); /*and pop it off x/
else if (mem_end < mem_mazx) /*or go into virgin territory =/

{ incr(mem_end);
p = mem_end;

else { decr(hi_mem_min);
p = hi_mem_min;
if (hi_mem_min < lo_mem_maz) { runaway();
/*if memory is exhausted, display possible runaway text x/
overﬂow("main._,memoryusize" ,mem_max + 1 — mem_min);
/*quit; all one-word nodes are busy */
}

}

link(p) = null; /xprovide an oft-desired initialization of the new node x/
#ifdef STAT

incr (dyn_used);
#endif /xmaintain statistics x/

return p;

}

6120 TEXprof DYNAMIC MEMORY ALLOCATION 53

120. Conversely, a one-word node is recycled by calling free_avail. This routine is part of TEX’s “inner
loop,” so we want it to be fast.

#define free_avail (A) /= single-word node liberation */
{ link(A) = avail;
avail = A;
decr_dyn_used;

}

121. There’s also a fast_get_avail routine, which saves the procedure-call overhead at the expense of extra
programming. This routine is used in the places that would otherwise account for the most calls of get_avail.

#define fast_get_avail (A)
{ A= avail; /xavoid get_avail if possible, to save time */
if (A=null) A= get_avail();
else { avail = link(A);
link (A) = null;
incr_dyn_used;
}
}

122. The procedure flush_list(p) frees an entire linked list of one-word nodes that starts at position p.

static void flush_list(pointer p) /+makes list of single-word nodes available x/
{ pointer ¢,r; /xlist traversers */
if (p # null) { r=p;
do {
q=r;
r = link(r);
#ifdef STAT
decr (dyn_used);
#endif
} while (=(r = null)); /*now ¢ is the last node on the list */
link (q) = avail;
avail = p;
}
}

123. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover.

FEach empty node has size 2 or more; the first word contains the special value maz_halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two_halves, and its link field is
never equal to maz_halfword. Otherwise there is complete flexibility with respect to the contents of its other
fields and its other words.

(We require mem_maz < maz_halfword because terrible things can happen when maz_halfword appears

in the link field of a nonempty node.)
#define empty_flag maz_halfword /xthe link of an empty variable-size node */
#define is_empty(A) (link(A) = empty_flag) /*tests for empty node /
#define node_size(A) info(A) /xthe size field in empty variable-size nodes */
#define llink(A) info(A+1) /xleft link in doubly-linked list of empty nodes */
#define rlink(A) link(A+1) /xright link in doubly-linked list of empty nodes x/
{ Global variables 13) +=

static pointer rover; /*points to some node in the list of empties */

54 DYNAMIC MEMORY ALLOCATION TEXprof §124

124. A call to get_node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If get_node is called with s = 230 it simply merges adjacent free areas and returns the value maz_halfword.

static pointer get_node(int s) /xvariable-size node allocation */
{ pointer p; /xthe node currently under inspection x/
pointer g; /*the node physically after node p*/
int 7; /*the newly allocated node, or a candidate for this honor */
int t¢; /* temporary register */
restart: p = rover; /xstart at some free node in the ring*/
do {

(Try to allocate within node p and its physical successors, and goto found if allocation was
possible 126);

p=rlink(p); /*move to the next node in the ring*/
} while (—(p = rover)); /+repeat until the whole list has been traversed */
if (s = °10000000000) { return maz_halfword;
}
if (lo_mem_mazx 4+ 2 < hi_mem_min)

if (lo_mem_maz + 2 < mem_bot + maz_halfword)

{ Grow more variable-size memory and goto restart 125);

overflow ("main_memory size", mem_maz + 1 — mem_min); /+sorry, nothing satisfactory is left x/
found: link(r) = null; /*this node is now nonempty */
#ifdef STAT
var_used = var_used + s; /+maintain usage statistics x/
#endif
return 7;

}

125. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when TEX is implemented on “virtual memory” systems.

{ Grow more variable-size memory and goto restart 125) =
{ if (hi_mem_min — lo_mem_maz > 1998) t = lo_mem_maz + 1000;
else t = lo_mem_maxz + 1 4+ (hi_mem_min — lo_mem_maz)/2;
/*lo_mem_maz + 2 < t < hi_mem_min */
p = llink (rover);
q = lo_mem_maz;
rlink (p) = ¢;
llink (rover) = g;
if (t > mem_bot + maz_halfword) t = mem_bot + maz_halfword;
rlink (q) = rover;
llink (q) = p;
link(q) = empty_flag;
node_size(q) =t — lo_mem_maz;
lo_mem_max = t;
link (lo_mem_max) = null;
info(lo_mem_max) = null;
rover = ¢;
goto restart;

}

This code is used in section 124.

6126 TEXprof DYNAMIC MEMORY ALLOCATION 55

126. Empirical tests show that the routine in this section performs a node-merging operation about 0.75
times per allocation, on the average, after which it finds that » > p + 1 about 95% of the time.

(Try to allocate within node p and its physical successors, and goto found if allocation was possible 126) =
q = p + node_size (p); /*find the physical successor */
while (is_empty(q)) /+*merge node p with node ¢ x/
{ t = rlink(q);
if (¢ = rover) rover =t;
link (t) = llink (q);
rlink (llink (q)) = t;
q = q + node_size(q);

}

r=q-—5;
if (r>p+1) (Allocate from the top of node p and goto found 127);
if (r=p)

if (rlink(p) # p) (Allocate entire node p and goto found 128);
node_size(p) =q—p /xreset the size in case it grew =/
This code is used in section 124.

127. ({ Allocate from the top of node p and goto found 127) =

{ node_size(p) =r —p; /*store the remaining size */
rover = p; /* start searching here next time */
goto found;

}

This code is used in section 126.

128. Here we delete node p from the ring, and let rover rove around.

(Allocate entire node p and goto found 128) =
{ rover = rlink(p);
t = llink (p);
llink (rover) = t;
rlink (t) = rover;
goto found;

}

This code is used in section 126.

129. Conversely, when some variable-size node p of size s is no longer needed, the operation free_node(p, s)
will make its words available, by inserting p as a new empty node just before where rover now points.
static void free_node(pointer p, halfword s) /xvariable-size node liberation */
{ pointer ¢; /x llink (rover) */
node_size (p) = s;
link (p) = empty_flag;
q = llink (rover);
llink (p) = ¢;
rlink (p) = rover; /xset both links*/
llink (rover) = p;
rlink(q) =p; /*insert p into the ring*/
#ifdef STAT
var_used = var_used — s;
#endif /+maintain statistics x/

56 DYNAMIC MEMORY ALLOCATION TEXprof §130

130. Just before INITEX writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover, the next-smallest by rlink (rover), etc.
#ifdef INIT
static void sort_avail (void) /*sorts the available variable-size nodes by location */
{ pointer p,q,r; /xindices into mem */
pointer old_rover; /*initial rover setting*/

p = get_node(°10000000000); /+merge adjacent free areas */
p = rlink (rover);
rlink (rover) = maz_halfword;
old_rover = rover;
while (p # old_rover) (Sort p into the list starting at rover and advance p to rlink(p) 131);
p = rover;
while (rlink (p) # max_halfword) { link (rlink(p)) = p;
p = rlink(p);

rlink (p) = rover;
llink (rover) = p;
}
#endif

131. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
max_halfword during the sorting procedure.

(Sort p into the list starting at rover and advance p to rlink(p) 131) =
if (p < rover) { q=p;
p = rlink(q);
rlink (q) = rover;
rover = g;
}
else { ¢ = rover;
while (rlink(q) < p) q = rlink(q);

r = rlink(p);

rlink (p) = rlink(q);
rlink(q) = p;

p=r;

}

This code is used in section 130.

8132 TEXprof DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 57

132. Data structures for boxes and their friends. From the computer’s standpoint, TEX’s chief
mission is to create horizontal and vertical lists. We shall now investigate how the elements of these lists are
represented internally as nodes in the dynamic memory.

A horizontal or vertical list is linked together by link fields in the first word of each node. Individual
nodes represent boxes, glue, penalties, or special things like discretionary hyphens; because of this variety,
some nodes are longer than others, and we must distinguish different kinds of nodes. We do this by putting
a ‘type’ field in the first word, together with the link and an optional ‘subtype’.

#define type(A) mem[A]l.hh.b0 /xidentifies what kind of node this is*/
#define subtype(A) mem[A].hh.b1 /*secondary identification in some cases */

133. A char_node, which represents a single character, is the most important kind of node because it
accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure that a char_node
does not take up much memory space. Every such node is one word long, and in fact it is identifiable by this
property, since other kinds of nodes have at least two words, and they appear in mem locations less than
hi_mem_min. This makes it possible to omit the type field in a char_node, leaving us room for two bytes
that identify a font and a character within that font.

Note that the format of a char_node allows for up to 256 different fonts and up to 256 characters per font;
but most implementations will probably limit the total number of fonts to fewer than 75 per job, and most
fonts will stick to characters whose codes are less than 128 (since higher codes are more difficult to access
on most keyboards).

Extensions of TEX intended for oriental languages will need even more than 256 x 256 possible characters,
when we consider different sizes and styles of type. It is suggested that Chinese and Japanese fonts be handled
by representing such characters in two consecutive char_node entries: The first of these has font = font_base,
and its link points to the second; the second identifies the font and the character dimensions. The saving
feature about oriental characters is that most of them have the same box dimensions. The character field of
the first char_node is a “charext” that distinguishes between graphic symbols whose dimensions are identical
for typesetting purposes. (See the METAFONT manual.) Such an extension of TEX would not be difficult;
further details are left to the reader.

In order to make sure that the character code fits in a quarterword, TEX adds the quantity min_quarterwordll
to the actual code.

Character nodes appear only in horizontal lists, never in vertical lists.

#define is_char_node(A) (A > hi_mem_min) /*does the argument point to a char_node? x/
#define font(A) type(A) /+the font code in a char_node */
#define character(A) subtype(A) /+the character code in a char_node */

58 DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXprof 8134

134. An hlist_node stands for a box that was made from a horizontal list. FEach hlist_node is seven
words long, and contains the following fields (in addition to the mandatory type and link, which we shall
not mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift_amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list_ptr field, which points to the beginning of the list
from which this box was fabricated; if list_ptr is null, the box is empty. Finally, there are three fields that
represent the setting of the glue: glue_set(p) is a word of type glue_ratio that represents the proportionality
constant for glue setting; glue_sign (p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue_order(p) specifies the order of infinity to which glue
setting applies (normal, fil, fill, or filll). The subtype field is not used.

#define hlist_node 0 /* type of hlist nodes x/

#define boz_node_size 7 /xnumber of words to allocate for a box node */
#define width_offset 1 /x position of width field in a box node */

#define depth_offset 2 /*xposition of depth field in a box node */

#define height_offset 3 /* position of height field in a box node %/

#define width(A) mem[A + width_offset].sc ~ /+width of the box, in sp */
#define depth(A) mem[A + depth_offset].sc /+depth of the box, in sp */
#define height(A) mem[A + height_offset].sc ~ /xheight of the box, in sp*/
#define shift_amount(A) mem[A +4].sc /+repositioning distance, in sp */
#define list_offset 5 /* position of list_ptr field in a box node */

#define list_ptr(A) link(A+ list_offset) /xbeginning of the list inside the box */
#define glue_order(A) subtype(A + list_offset) /+applicable order of infinity */
#define glue_sign(A) type(A + list_offset) /*stretching or shrinking /

#define normal 0 /*the most common case when several cases are named */
#define stretching 1 /* glue setting applies to the stretch components x/
#define shrinking 2 /= glue setting applies to the shrink components */

#define glue_offset 6 /xposition of glue_set in a box node */

#define glue_set(A) mem[A + glue_offset].gr /+a word of type glue_ratio for glue setting x/

135. The new_null_box function returns a pointer to an hlist_node in which all subfields have the values
corresponding to ‘\hbox{}’. (The subtype field is set to min_quarterword, for historic reasons that are no
longer relevant.)

static pointer new_null_box(void) /xcreates a new box node x/
{ pointer p; /+the new nodex/

p = get_node (box_node_size);
type (p) = hlist_node;

subtype (p) = min_quarterword;
width (p) = 0;

depth (p) = 0;

height(p) = 0;

shift_amount (p) = 0;

list_ptr (p) = null;

glue_sign(p) = normal;
glue_order (p) = normal;
set_glue_ratio_zero(glue_set (p));
return p;

}

136. A vlist_node is like an hlist_node in all respects except that it contains a vertical list.
#define vlist_node 1 / type of vlist nodes x/

8137 TEXprof DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 59

137. A rule_node stands for a solid black rectangle; it has width, depth, and height fields just as in an
hlist_node. However, if any of these dimensions is —23Y, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

#define rule_node 2 /* type of rule nodes */

#define rule_node_size 4 /xnumber of words to allocate for a rule node */
#define null_flag —°10000000000 /% —230_ signifies a missing item */
#define is_running(A) (A = null_flag) /*tests for a running dimension */

138. A new rule node is delivered by the new_rule function. It makes all the dimensions “running,” so
you have to change the ones that are not allowed to run.

static pointer new_rule(void)
{ pointer p; /+the new nodex/

p = get_node(rule_node_size);

type (p) = rule_node;

subtype(p) = 0; /xthe subtype is not used */
width (p) = null_flag;

depth(p) = null_flag;

height(p) = null_flag;

return p;

}

139. Insertions are represented by ins_node records, where the subtype indicates the corresponding box
number. For example, ‘\insert 250’ leads to an ins_node whose subtype is 250 + min_quarterword. The
height field of an ins_node is slightly misnamed; it actually holds the natural height plus depth of the vertical
list being inserted. The depth field holds the split_maz_depth to be used in case this insertion is split, and
the split_top_ptr points to the corresponding split_top_skip. The float_cost field holds the floating_penalty
that will be used if this insertion floats to a subsequent page after a split insertion of the same class. There
is one more field, the ins_ptr, which points to the beginning of the vlist for the insertion.

#define ins_node 3 /* type of insertion nodes */

#define ins_node_size 5 /*number of words to allocate for an insertion x/
#define float_cost(A) mem[A+1].i /«the floating_penalty to be used */
#define ins_ptr(A) info(A+4) /xthe vertical list to be inserted */
#define split_top_ptr(A) link(A+4) /xthe split_top_skip to be used */

140. A mark_node has a mark_ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark_class field that contains the mark class.

#define mark_node 4 /x type of a mark node */

#define small_node_size 2 /+*number of words to allocate for most node types */
#define mark_ptr(A) link(A+1) /xhead of the token list for a mark x/
#define mark_class(A) info(A+1) /xthe mark classx/

141. An adjust_node, which occurs only in horizontal lists, specifies material that will be moved out into
the surrounding vertical list; i.e., it is used to implement TEX’s ‘\vadjust’ operation. The adjust_ptr field
points to the vlist containing this material.

#define adjust_node 5 /* type of an adjust node */
#define adjust_ptr(A) mem[A+1].i /*xvertical list to be moved out of horizontal list */

60 DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXprof 8142

142. A ligature_node, which occurs only in horizontal lists, specifies a character that was fabricated from
the interaction of two or more actual characters. The second word of the node, which is called the lig_char
word, contains font and character fields just as in a char_node. The characters that generated the ligature
have not been forgotten, since they are needed for diagnostic messages and for hyphenation; the lig_ptr field
points to a linked list of character nodes for all original characters that have been deleted. (This list might
be empty if the characters that generated the ligature were retained in other nodes.)

The subtype field is 0, plus 2 and/or 1 if the original source of the ligature included implicit left and/or
right boundaries.

#define ligature_node 6 /xtype of a ligature node x/
#define lig_char(A) A+4+1 /xthe word where the ligature is to be found %/
#define lig_ptr(A) link(lig_char(A)) /xthe list of charactersx/

143. The new_ligature function creates a ligature node having given contents of the font, character, and
lig_ptr fields. We also have a new_[ig_item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

static pointer new_ligature(quarterword f,quarterword c, pointer q)
{ pointer p; /xthe new nodex/

p = get_node(small_node_size);

type (p) = ligature_node;

font(lig_char(p)) = f;

character (lig_char (p)) = ¢;

lig_ptr(p) = q;

subtype (p) = 0;

return p;

}

static pointer new_lig_item (quarterword c)
{ pointer p; /*the new node */

p = get_node(small_node_size);

character (p) = ¢;

lig_ptr(p) = null;

return p;

8144 TEXprof DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 61

144. A disc_node, which occurs only in horizontal lists, specifies a “discretionary” line break. If such a
break occurs at node p, the text that starts at pre_break(p) will precede the break, the text that starts at
post_break (p) will follow the break, and text that appears in the next replace_count (p) nodes will be ignored.
For example, an ordinary discretionary hyphen, indicated by ‘\-’, yields a disc_node with pre_break pointing
to a char_node containing a hyphen, post_break = null, and replace_count = 0. All three of the discretionary
texts must be lists that consist entirely of character, kern, box, rule, and ligature nodes.

If pre_break (p) = null, the ex_hyphen_penalty will be charged for this break. Otherwise the hyphen_penalty]}
will be charged. The texts will actually be substituted into the list by the line-breaking algorithm if it decides
to make the break, and the discretionary node will disappear at that time; thus, the output routine sees only
discretionaries that were not chosen.

#define disc_node 7 /= type of a discretionary node x/

#define replace_count(A) subtype(A) /+how many subsequent nodes to replace */
#define pre_break(A) llink(A) /xtext that precedes a discretionary break */
#define post_break(A) rlink(A) /*text that follows a discretionary break */

static pointer new_disc(void) /* creates an empty disc_node x/
{ pointer p; /* the new node */

p = get_node(small_node_size);
type (p) = disc_node;
replace_count (p) = 0;
pre_break (p) = null;
post_break (p) = null;

return p;

}

145. A whatsit_node is a wild card reserved for extensions to TEX. The subtype field in its first word says
what ‘whatsit’ it is, and implicitly determines the node size (which must be 2 or more) and the format of the
remaining words. When a whatsit_node is encountered in a list, special actions are invoked; knowledgeable
people who are careful not to mess up the rest of TEX are able to make TEX do new things by adding code
at the end of the program. For example, there might be a ‘TgpXnicolor’ extension to specify different colors
of ink, and the whatsit node might contain the desired parameters.

The present implementation of TEX treats the features associated with ‘\write’ and ‘\special’ as if they
were extensions, in order to illustrate how such routines might be coded. We shall defer further discussion
of extensions until the end of this program.

#define whatsit_node 8 [+ type of special extension nodes x/

146. A math_node, which occurs only in horizontal lists, appears before and after mathematical formulas.
The subtype field is before before the formula and after after it. There is a width field, which represents the
amount of surrounding space inserted by \mathsurround.

#define math_node 9 /* type of a math node */
#define before 0 /* subtype for math node that introduces a formula */
#define after 1 /* subtype for math node that winds up a formula x/
static pointer new_math(scaled w,small_number s)
{ pointer p; /xthe new nodex/
p = get_node(small_node_size);
type (p) = math_node;
subtype (p) = s;
width (p) = w;
return p;

62 DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXprof §147

147. TgX makes use of the fact that hlist_node, vlist_node, rule_node, ins_node, mark_node, adjust_node,
ligature_node, disc_node, whatsit_node, and math_node are at the low end of the type codes, by permitting
a break at glue in a list if and only if the type of the previous node is less than math_node. Furthermore, a
node is discarded after a break if its type is math_node or more.

#define precedes_break(A) (type(A) < math_node)
#define non_discardable(A) (type(A) < math_node)

148. A glue_node represents glue in a list. However, it is really only a pointer to a separate glue
specification, since TEX makes use of the fact that many essentially identical nodes of glue are usually
present. If p points to a glue_node, glue_ptr(p) points to another packet of words that specify the stretch
and shrink components, etc.

Glue nodes also serve to represent leaders; the subtype is used to distinguish between ordinary glue (which
is called normal) and the three kinds of leaders (which are called a_leaders, c_leaders, and z_leaders). The
leader_ptr field points to a rule node or to a box node containing the leaders; it is set to null in ordinary
glue nodes.

Many kinds of glue are computed from TEX’s “skip” parameters, and it is helpful to know which parameter
has led to a particular glue node. Therefore the subtype is set to indicate the source of glue, whenever it
originated as a parameter. We will be defining symbolic names for the parameter numbers later (e.g.,
line_skip_code = 0, baseline_skip_code = 1, etc.); it suffices for now to say that the subtype of parametric
glue will be the same as the parameter number, plus one.

In math formulas there are two more possibilities for the subtype in a glue node: mu_glue denotes an
\mskip (where the units are scaled mu instead of scaled pt); and cond_math_glue denotes the ‘\nonscript’
feature that cancels the glue node immediately following if it appears in a subscript.

#define glue_node 10 /= type of node that points to a glue specification */
#define cond_math_glue 98 /= special subtype to suppress glue in the next node %/
#define mu_glue 99 /* subtype for math glue x/

#define a_leaders 100 /* subtype for aligned leaders */

#define c_leaders 101 /x subtype for centered leaders x/

#define z_leaders 102 /* subtype for expanded leaders */

#define glue_ptr(A) llink(A) /xpointer to a glue specification %/

#define leader_ptr(A) rlink(A) /*pointer to box or rule node for leaders */

149. A glue specification has a halfword reference count in its first word, representing null plus the number
of glue nodes that point to it (less one). Note that the reference count appears in the same position as the
link field in list nodes; this is the field that is initialized to null when a node is allocated, and it is also the
field that is flagged by empty_flag in empty nodes.

Glue specifications also contain three scaled fields, for the width, stretch, and shrink dimensions. Finally,
there are two one-byte fields called stretch_order and shrink_order; these contain the orders of infinity
(normal, fil, fill, or filll) corresponding to the stretch and shrink values.

#define glue_spec_size 4 /xnumber of words to allocate for a glue specification %/
#define glue_ref_count(A) link(A) /xreference count of a glue specification */
#define stretch(A) mem[A+ 2].sc /*the stretchability of this glob of glue x/
#define shrink(A) mem[A+3].sc /«the shrinkability of this glob of glue x/
#define stretch_order(A) type(A) /xorder of infinity for stretching*/

#define shrink_order(A) subtype(A) /*order of infinity for shrinking */

#define fil 1 /«+first-order infinity %/

#define fill 2 /xsecond-order infinity */

#define filll 3 /+third-order infinity */

(Types in the outer block 18) +=
typedef int8_t glue_ord; /*infinity to the 0, 1, 2, or 3 power */

8150 TEXprof

150.

DATA STRUCTURES FOR BOXES AND THEIR FRIENDS

63

Here is a function that returns a pointer to a copy of a glue spec. The reference count in the copy is

null, because there is assumed to be exactly one reference to the new specification.

static pointer new_spec(pointer p)
{ pointer ¢; /*the new spec */
q = get_node(glue_spec_size);
mem|[q] = memp);
glue_ref_count (q) = null;
width (q) = width(p);
stretch(q) = stretch(p);
shrink (q) = shrink (p);
return g;

}

151.

/* duplicates a glue specification */

And here’s a function that creates a glue node for a given parameter identified by its code number;

for example, new_param_glue (line_skip_code) returns a pointer to a glue node for the current \lineskip.

static pointer new_param_glue (small_number n) { pointer p;
pointer ¢; /xthe glue specification x/

p = get_node(small_node_size);

type (p) = glue_node;

subtype (p) = n + 1;

leader_ptr(p) = null;

q = (Current mem equivalent of glue parameter number n 223);
glue_ptr(p) = g;

incr (glue_ref_count(q));

return p; }

152.
glue specification.

static pointer new_glue (pointer q)
{ pointer p; /*the new node */

p = get_node(small_node_size);
type (p) = glue_node;

subtype (p) = normal;
leader_ptr(p) = null;
glue_ptr(p) = ¢;

incr (glue_ref_count(q));
return p;

/*the new node */

Glue nodes that are more or less anonymous are created by new_glue, whose argument points to a

64 DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXprof 8153

153. Still another subroutine is needed: This one is sort of a combination of new_param_glue and new_glue.
It creates a glue node for one of the current glue parameters, but it makes a fresh copy of the glue specification,
since that specification will probably be subject to change, while the parameter will stay put. The global
variable temp_ptr is set to the address of the new spec.

static pointer new_skip_param (small_number n)
{ pointer p; /+the new nodex/

temp_ptr = new_spec({ Current mem equivalent of glue parameter number n 223));
p = new_glue (temp_ptr);

glue_ref_count (temp_ptr) = null;

subtype (p) = n + 1;

return p;

}

154. A kern_node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it looks
better to move them closer together or further apart. A kern node can also appear in a vertical list, when
its ‘width’ denotes additional spacing in the vertical direction. The subtype is either normal (for kerns
inserted from font information or math mode calculations) or explicit (for kerns inserted from \kern and
\/ commands) or acc_kern (for kerns inserted from non-math accents) or mu_glue (for kerns inserted from
\mkern specifications in math formulas).

#define kern_node 11 /= type of a kern node */
#define explicit 1 /x subtype of kern nodes from \kern and \/ */
#define acc_kern 2 /x subtype of kern nodes from accents */

155. The new_kern function creates a kern node having a given width.

static pointer new_kern(scaled w)
{ pointer p; /*the new node */

p = get_node(small_node_size);
type (p) = kern_node;

subtype (p) = normal;

width (p) = w;

return p;

}

156. A penalty_node specifies the penalty associated with line or page breaking, in its penalty field. This
field is a fullword integer, but the full range of integer values is not used: Any penalty > 10000 is treated
as infinity, and no break will be allowed for such high values. Similarly, any penalty < —10000 is treated as
negative infinity, and a break will be forced.

#define penalty_node 12 /* type of a penalty node x/

#define inf_penalty inf_bad /* “infinite” penalty value %/

#define eject_penalty (—inf_penalty) /* “negatively infinite” penalty value x/
#define penalty(A) mem[A+1].i /+the added cost of breaking a list here x/

8157 TEXprof DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 65

157. Anyone who has been reading the last few sections of the program will be able to guess what comes
next.

static pointer new_penalty (int m)
{ pointer p; /*the new node */

p = get_node(small_node_size);

type (p) = penalty_node;

subtype (p) = 0; /*the subtype is not used x/
penalty (p) = m;

return p;

}

158. You might think that we have introduced enough node types by now. Well, almost, but there is
one more: An unset_node has nearly the same format as an hlist_node or vlist_node; it is used for entries
in \halign or \valign that are not yet in their final form, since the box dimensions are their “natural”
sizes before any glue adjustment has been made. The glue_set word is not present; instead, we have a
glue_stretch field, which contains the total stretch of order glue_order that is present in the hlist or vlist
being boxed. Similarly, the shift_amount field is replaced by a glue_shrink field, containing the total shrink
of order glue_sign that is present. The subtype field is called span_count; an unset box typically contains
the data for qo(span_count) + 1 columns. Unset nodes will be changed to box nodes when alignment is
completed.

#define unset_node 13 /xtype for an unset node */

#define glue_stretch(A) mem[A + glue_offset].sc /[« total stretch in an unset node */
#define glue_shrink(A) shifi_amount(A) /xtotal shrink in an unset node */
#define span_count(A) subtype(A) /xindicates the number of spanned columns */

159. In fact, there are still more types coming. When we get to math formula processing we will see that
a style_node has type = 14; and a number of larger type codes will also be defined, for use in math mode
only.

160. Warning: If any changes are made to these data structure layouts, such as changing any of the node
sizes or even reordering the words of nodes, the copy_node_list procedure and the memory initialization
code below may have to be changed. Such potentially dangerous parts of the program are listed in the index
under ‘data structure assumptions’. However, other references to the nodes are made symbolically in terms
of the WEB macro definitions above, so that format changes will leave TEX’s other algorithms intact.

66 MEMORY LAYOUT TpXprof §161

161. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For example, locations mem_bot
to mem_bot + 3 are always used to store the specification for glue that is ‘Opt plus Opt minus Opt’. The
following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions.
Static variable-size nodes appear in locations mem_bot through lo_mem_stat_max, and static single-word
nodes appear in locations hi_mem_stat_min through mem_top, inclusive. It is harmless to let lig_trick and
garbage share the same location of mem.

#define zero_glue mem_bot /= specification for Opt plus Opt minus Opt x/
#define fil_glue zero_glue + glue_spec_size /*0pt plus 1fil minus Opt x/
#define fill_glue fil_glue + glue_spec_size /*0pt plus 1fill minus Opt %/
#define ss_glue fill_glue + glue_spec_size /+0pt plus 1fil minus 1fil x/
#define fil_neg_glue ss_glue + glue_spec_size /*0pt plus -1fil minus Opt x/
#define lo_mem_stat_mazx fil_neg_glue + glue_spec_size — 1

/*largest statically allocated word in the variable-size mem */

#define page_ins_head mem_top /xlist of insertion data for current page */
#define contrib_head mem_top — 1 /+vlist of items not yet on current page */
#define page_head mem_top — 2 /*xvlist for current page x/

#define temp_head mem_top — 3 /*head of a temporary list of some kind %/
#define hold_head mem_top —4 /xhead of a temporary list of another kind x/
#define adjust_head mem_top —5 /xhead of adjustment list returned by hpack */
#define active mem_top —7 /xhead of active list in line_break, needs two words */
#define align_head mem_top — 8 /*head of preamble list for alignments */
#define end_span mem_top — 9 /*tail of spanned-width lists /

#define omit_template mem_top — 10 /xa constant token list */

#define null_list mem_top — 11 /* permanently empty list x/

#define lig_trick mem_top — 12 /*a ligature masquerading as a char_node */
#define garbage mem_top — 12 /*used for scrap information x/

#define backup_head mem_top — 13 /*head of token list built by scan_keyword x/
#define hi_mem_stat_min mem_top —13 /+smallest statically allocated word in the one-word mem */
#define hi_mem_stat_usage 14 /+the number of one-word nodes always present */

162. The following code gets mem off to a good start, when TEX is initializing itself the slow way.

(Local variables for initialization 19) +=
int k; /+index into mem, eqth, etc. */

8163 TEXprof MEMORY LAYOUT 67

163. (Initialize table entries (done by INITEX only) 163) =
for (k = mem_bot + 1; k < lo_mem_stat_maz; k++) memlk].sc = 0;
/*all glue dimensions are zeroed */

k = mem_bot; while (k < lo_mem_stat_maz) /*set first words of glue specifications */
{ glue_ref_count (k) = null + 1;

stretch_order (k) = normal;

shrink_order (k) = normal;

k =k + glue_spec_size;

stretch (fil_glue) = unity;

stretch_order (fil_glue) = fil;

stretch (fill_glue) = unity;

stretch_order (fill_glue) = fill;

stretch (ss_glue) = unity;

stretch_order (ss_glue) = fil;

shrink (ss_glue) = unity;

shrink_order (ss_glue) = fil;

stretch (fil_neg_glue) = —unity;

stretch_order (fil_neg_glue) = fil;

rover = lo_mem_stat_maz + 1;

link (rover) = empty_flag; /+now initialize the dynamic memory */
node_size (rover) = 1000; /+which is a 1000-word available node */
llink (rover) = rover;

rlink (rover) = rover;

lo_mem_mazx = rover + 1000;

link (lo_mem_maz) = null;

info(lo_mem_mazx) = null;

for (k = hi_mem_stat_min; k < mem_top; k++) mem[k] = mem[lo_mem_maz]; /*clear list heads x/
(Initialize the special list heads and constant nodes 789);

avail = null;

mem_end = mem_top;

hi_mem_min = hi_mem_stat_min; /* initialize the one-word memory */
var_used = lo_mem_stat_max + 1 — mem_bot;
dyn_used = hi_mem_stat_usage; /*initialize statistics /

See also sections 221, 227, 231, 239, 249, 257, 551, 945, 950, 1215, 1300, 1368, 1383, 1500, 1524, 1542, 1581, and 1807.

This code is used in section 8.

164. If TEX is extended improperly, the mem array might get screwed up. For example, some pointers
might be wrong, or some “dead” nodes might not have been freed when the last reference to them disappeared.
Procedures check_mem and search_mem are available to help diagnose such problems. These procedures
make use of two arrays called is_free and was_free that are present only if TEX’s debugging routines have
been included. (You may want to decrease the size of mem while you are debugging.)

(Global variables 13) +=
#ifdef DEBUG
static bool is_free0 [mem_maz — mem_min + 1], xconst is_free = is_free0 — mem_min;

/xfree cellsx/
static bool was_free0 [mem_max — mem_min + 1], xconst was_free = was_free0 — mem_min;
/*previously free cells %/
static pointer was_mem_end, was_lo_maz, was_hi_min;
/* previous mem_end, lo_mem_maz, and hi_mem_min */
static bool panicking; /+do we want to check memory constantly? x/

#endif

68 MEMORY LAYOUT TpXprof §165

165. (Set initial values of key variables 21) +=
#ifdef DEBUG
was_mem_end = mem_min; /xindicate that everything was previously free */
was_lo_max = mem_min;
was_hi_min = mem_max;
panicking = false;
#endif

166. Procedure check_mem makes sure that the available space lists of mem are well formed, and it

optionally prints out all locations that are reserved now but were free the last time this procedure was
called.

#ifdef DEBUG
static void check_mem (bool print_locs)
{ /*loop exits */
int p,q; /* current locations of interest in mem */
bool clobbered; /+is something amiss? */
for (p = mem_min; p < lo_mem_maz; p++) is_free[p] = false;
/*you can probably do this faster x/
for (p = hi_mem_min; p < mem_end; p++) is_free[p| = false; /xditto x/
(Check single-word avail list 167);
(Check variable-size avail list 168);
(Check flags of unavailable nodes 169);
if (print_locs) (Print newly busy locations 170);
for (p = mem_min; p < lo_mem_maz; p++) was_free[p] = is_free[p);
for (p = hi_mem_min; p < mem_end; p++) was_free[p] = is_free[pl;
/* was_free = is_free might be faster x/
was_mem_end = mem_end;
was_lo_mazr = lo_mem_max;
was_hi_min = hi_mem_min;

#endif

167. (Check single-word avail list 167) =
p = avail;
q = null;

clobbered = false;
while (p # null) { if ((p > mem_end) V (p < hi_mem_min)) clobbered = true;
else if (is_free[p]) clobbered = true;
if (clobbered) { print_nl("AVAIL_ list clobbered at,");
print_int(q);
goto donel;

}

is_free[p] = true;

q=Dp;

p = link(q);
}
donel :

This code is used in section 166.

8168 TEXprof MEMORY LAYOUT

168. (Check variable-size avail list 168) =
p = rover;
q = null;
clobbered = false;
do {
if ((p > lo_mem_maz) V (p < mem_min)) clobbered = true;
else if ((rlink(p) > lo_mem_maz) V (rlink (p) < mem_min)) clobbered = true;
else if (—(is_empty(p)) V (node_size(p) < 2) V
(p + node_size(p) > lo_mem_maz) V
(llink (rlink (p)) # p)) clobbered = true;
if (clobbered) { print_nl("Double-AVAIL list clobbered at,");
print_int(q);
goto done2;
}
for (¢ =p; ¢ < p+ node_size(p) — 1; q++) /+mark all locations free */
{ if (is_free[q]) { print_nl("Doubly free location at,");
print_int(q);
goto done2;
}
is_free[q] = true;
}
q=D;
p = rlink (p);
} while (—=(p = rover)); done2:

This code is used in section 166.

169. (Check flags of unavailable nodes 169) =
p = mem_min;
while (p < lo_mem_maz) /+node p should not be empty */
{ if (is_empty(p)) { print_nl("Bad_flag at ");
print_int(p);
}

while ((p < lo_mem_maz) A —is_free[p]) incr(p);
while ((p < lo_mem_maz) A is_free[p]) incr(p);
}

This code is used in section 166.

170. (Print newly busy locations 170) =
{ print_nl("New_busy, locs:");
for (p = mem_min; p < lo_mem_maz; p++)
if (—is_free[p] A ((p > was_lo_max) V was_free[p])) { print_char(’,’);
print_int(p);
}

for (p = hi_mem_min; p < mem_end; p++)

if (—is_free[p] A ((p < was_hi_min) V (p > was_mem_end) V was_free[p])) { print_char(’.’);

print_int(p);
}
}

This code is used in section 166.

69

70 MEMORY LAYOUT TpXprof §171

171. The search_mem procedure attempts to answer the question “Who points to node p?” In doing so,
it fetches link and info fields of mem that might not be of type two_halves. Strictly speaking, this is
undefined in Pascal, and it can lead to “false drops” (words that seem to point to p purely by coincidence).
But for debugging purposes, we want to rule out the places that do not point to p, so a few false drops are
tolerable.

#ifdef DEBUG
static void search_mem (pointer p) /xlook for pointers to px*/
{ int ¢; /* current position being searched */

for (¢ = mem_min; q < lo_mem_maz; q++) { if (link(q) = p) { print_nl("LINK(");
print_int(q);
print_char(’)’);

it (info(q) = p) { print_ni("INFO(");
print_int(q);
print_char(?)?);
}
}
for (¢ = hi_mem_min; q < mem_end; g++) { if (link(q) =p) { print_nl("LINK(");
print_int(q);
print_char(?)?);

if (info(q) =p) { print_nl("INFO(");
print_int(q);
print_char(?)’);

}

Search save_stack for equivalents that point to p 284);

}
(Search eqth for equivalents equal to p 254);
(
(Search hyph_list for pointers to p 932);

#endif

8172 TpXprof DISPLAYING BOXES 71

172. Displaying boxes. We can reinforce our knowledge of the data structures just introduced by
considering two procedures that display a list in symbolic form. The first of these, called short_display, is used
in “overfull box” messages to give the top-level description of a list. The other one, called show_node_list,
prints a detailed description of exactly what is in the data structure.

The philosophy of short_display is to ignore the fine points about exactly what is inside boxes, except that
ligatures and discretionary breaks are expanded. As a result, short_display is a recursive procedure, but the
recursion is never more than one level deep.

A global variable font_in_short_display keeps track of the font code that is assumed to be present when
short_display begins; deviations from this font will be printed.

(Global variables 13) +=
static int font_in_short_display; /+an internal font number */

173. Boxes, rules, inserts, whatsits, marks, and things in general that are sort of “complicated” are
indicated only by printing ‘[]1°.

static void short_display (int p) /*prints highlights of list px/

{ int n; /* for replacement counts */

while (p > mem_min) { if (is_char_node(p)) { if (p < mem_end) {
if (font(p) # font_in_short_display) { if ((font(p) < font_base) V (font(p) > font_maz))
print_char(’*?);
else (Print the font identifier for font(p) 266);
print_char(’’);
font_in_short_display = font(p);

print_ASCII (go(character(p)));
}

else (Print a short indication of the contents of node p 174);
p = link(p);

}

174. (Print a short indication of the contents of node p 174) =
switch (type(p)) {
case hlist_node: case vlist_node: case ins_node: case whatsit_node: case mark_node:
case adjust_node: case unset_node: print("[1"); break;
case rule_node: print_char(’|’); break;
case glue_node:
if (glue_ptr(p) # zero_glue) print_char(’,’); break;
case math_node: print_char(>$’); break;
case ligature_node: short_display(lig_ptr(p)); break;
case disc_node:
{ short_display (pre_break (p));
short_display (post_break (p));
n = replace_count (p);
while (n > 0) { if (link(p) # null) p = link(p);
decr(n);
}
} break;
default: do_nothing;

}

This code is used in section 173.

72 DISPLAYING BOXES TpXprof — §175

175. The show_node_list routine requires some auxiliary subroutines: one to print a font-and-character
combination, one to print a token list without its reference count, and one to print a rule dimension.

static void print_font_and_char(int p) /= prints char_node datax/
{ if (p > mem_end) print_esc("CLOBBERED.");
else { if ((font(p) < font_base) V (font(p) > font_max)) print_char(’*’);
else (Print the font identifier for font(p) 266);
print_char(’.’);
print_ASCII (qo(character (p)));
}
}
static void print_mark(int p) /*prints token list data in braces*/
{ print_char(’{?);
if ((p < hi_mem_min) V (p > mem_end)) print_esc("CLOBBERED. ");
else show_token_list(link (p), null, max_print_line — 10);
print_char(’}’);
}
static void print_rule_dimen(scaled d) /+prints dimension in rule node */
{ if (is_running(d)) print_char(’>*’);
else print_scaled (d);
}

176. Then there is a subroutine that prints glue stretch and shrink, possibly followed by the name of finite
units:
static void print_glue(scaled d,int order,char xs) /*prints a glue component */
{ print_scaled (d);
if ((order < normal) V (order > filll)) print("foul");
else if (order > normal) { print("£i1");
while (order > fil) { print_char(’1’);
decr (order);

}

else if (s #0) print(s);
}

177. The next subroutine prints a whole glue specification.

static void print_spec(int p, char xs) /*prints a glue specification x/
{if ((p < mem_min) V (p > lo_mem_maz)) print_char(>*’);
else { print_scaled (width(p));
if (s #0) print(s);
if (stretch(p) # 0) { print("uplus,");
print_glue (stretch(p), stretch_order(p), s);

if (shrink(p) # 0) { print("uminus,");
print_glue (shrink (p), shrink_order (p), s);
}
}
}

178. We also need to declare some procedures that appear later in this documentation.

(Declare procedures needed for displaying the elements of mlists 690)
(Declare the procedure called print_skip_param 224)

8179 TEXprof DISPLAYING BOXES 73

179. Since boxes can be inside of boxes, show_node_list is inherently recursive, up to a given maximum
number of levels. The history of nesting is indicated by the current string, which will be printed at the
beginning of each line; the length of this string, namely cur_length, is the depth of nesting.

Recursive calls on show_node_list therefore use the following pattern:

#define node_list_display(A)
{ append_char(’.”);
show_node_list (A);
flush_char;
} /* str_room need not be checked; see show_boz below x/

180. A global variable called depth_threshold is used to record the maximum depth of nesting for which
show_node_list will show information. If we have depth_threshold = 0, for example, only the top level
information will be given and no sublists will be traversed. Another global variable, called breadth_mazx,
tells the maximum number of items to show at each level; breadth_maz had better be positive, or you won’t
see anything.
(Global variables 13) +=

static int depth_threshold; /* maximum nesting depth in box displays */

static int breadth_maz; /*maximum number of items shown at the same list level x/

181. Now we are ready for show_node_list itself. This procedure has been written to be “extra robust” in
the sense that it should not crash or get into a loop even if the data structures have been messed up by bugs
in the rest of the program. You can safely call its parent routine show_boz (p) for arbitrary values of p when
you are debugging TEX. However, in the presence of bad data, the procedure may fetch a memory_word
whose variant is different from the way it was stored; for example, it might try to read mem[p|.hh when
mem [p] contains a scaled integer, if p is a pointer that has been clobbered or chosen at random.

static void show_node_list(int p) /* prints a node list symbolically */
{int n; /«the number of items already printed at this level x/
double g; /*a glue ratio, as a floating point number */

if (cur_length > depth_threshold) { if (p > null) print("u1");
/*indicate that there’s been some truncation */
return;
}
n = 0;
while (p > mem_min) { print_in();
print_current_string(); /+display the nesting history */
if (p > mem_end) /xpointer out of range */
{ print("Bad_link, display aborted.");
return;

incr(n);
if (n > breadth_maxz) /*time to stop */
{ print("etc.");

return;

(Display node p 182);
p = link(p);

74

182.

DISPLAYING BOXES TEXprof

(Display node p 182) =

if (is_char_node(p)) print_font_and_char(p);
else

switch (type(p)) {

case hlist_node: case vlist_node: case unset_node: (Display box p 183) break;
case rule_node: (Display rule p 186) break;

case ins_node: {Display insertion p 187) break;

case whatsit_node: (Display the whatsit node p 1355) break;
case glue_node: (Display glue p 188) break;

case kern_node: (Display kern p 190) break;

case math_node: (Display math node p 191) break;

case ligature_node: (Display ligature p 192) break;

case penalty_node: {Display penalty p 193) break;

case disc_node: (Display discretionary p 194) break;

case mark_node: (Display mark p 195) break;

case adjust_node: (Display adjustment p 196) break;

(Cases of show_node_list that arise in mlists only 689)
default: print("Unknown, node type!");

}

This code is used in section 181.

183.

(Display box p 183) =

{ if (type(p) = hlist_node) print_esc("h");

}

else if (type(p) = vlist_node) print_esc("v");
else print_esc("unset");
print ("box (");
print_scaled (height (p));
print_char(’+’);
print_scaled (depth (p));
print(")x");
print_scaled (width (p));
if (type(p) = unset_node) (Display special fields of the unset node p 184)
else { (Display the value of glue_set(p) 185);
if (shift_amount(p) # 0) { print(", shifted ");
print_scaled (shift_amount (p));
}
}

node_list_display (list_ptr(p)); /xrecursive call x/

This code is used in section 182.

§182

8184 TpXprof DISPLAYING BOXES 75

184. (Display special fields of the unset node p 184) =
{ if (span_count(p) # min_quarterword) { print(",(");
print_int (qo(span_count (p)) + 1);
print(",columns)");
}
if (glue_stretch(p) # 0) { print(", stretch,");
print_glue (glue_stretch(p), glue_order(p),0);

if (glue_shrink(p) # 0) { print(",,shrink");
print_glue (glue_shrink (p), glue_sign(p), 0);

}
}

This code is used in section 183.

185. The code will have to change in this place if glue_ratio is a structured type instead of an ordinary
double. Note that this routine should avoid arithmetic errors even if the glue_set field holds an arbitrary
random value. The following code assumes that a properly formed nonzero double number has absolute
value 22° or more when it is regarded as an integer; this precaution was adequate to prevent floating point
underflow on the author’s computer.
(Display the value of glue_set(p) 185) =
g = unfiz (glue_set(p));
if ((g # float_constant(0)) A (glue_sign (p) # normal)) { print(",Lglue set,");
if (glue_sign(p) = shrinking) print("-,");
if (abs(mem[p + glue_offset].i) < °4000000) print("?.?");
else if (abs(g) > float_constant(20000)) { if (g > float_constant(0)) print_char(’>?);
else print("<u-");
print_glue (20000 * unity, glue_order(p),0);
}
else print_glue (round (unity * g), glue_order(p),0);

}

This code is used in section 183.

186. (Display rule p 186) =
{ print_esc("rule(");
print_rule_dimen (height (p));
print_char(’+’);
print_rule_dimen (depth(p));
print(")x");
print_rule_dimen (width (p));

}

This code is used in section 182.

76 DISPLAYING BOXES TEXprof — §187

187. (Display insertion p 187) =
{ print_esc("insert");

print_int (qo (subtype(p)));
print (", natural size");
print_scaled (height (p));
print (";usplit (");
print_spec (split_top_ptr(p), 0);
print_char(’,’);
print_scaled (depth (p));
print (") ; float costy");
print_int (float_cost (p));
node_list_display (ins_ptr(p)); /+recursive call %/

}

This code is used in section 182.

188. (Display glue p 188) =
if (subtype(p) > a_leaders) (Display leaders p 189)
else { print_esc("glue");
if (subtype(p) # normal) { print_char(’ (*);
if (subtype(p) < cond_math_glue) print_skip_param (subtype (p) — 1);
else if (subtype(p) = cond_math_glue) print_esc("nonscript");
else print_esc("mskip");
print_char(’)?);
}
if (subtype(p) # cond_math_glue) { print_char(’.’);
if (subtype(p) < cond_math_glue) print_spec(glue_ptr(p),0);
else print_spec(glue_ptr(p), "mu");
}
}

This code is used in section 182.

189. (Display leaders p 189) =
{ print_esc("");
if (subtype(p) = c_leaders) print_char(’c’);
else if (subtype(p) = z_leaders) print_char(’x’);
print("leaders,");
print_spec(glue_ptr(p),0);
node_list_display (leader_ptr(p)); /*recursive call x/

}

This code is used in section 188.

8190 TEXprof DISPLAYING BOXES 77

190. An “explicit” kern value is indicated implicitly by an explicit space.
(Display kern p 190) =
if (subtype(p) # mu_glue) { print_esc("kern");
if (subtype(p) # normal) print_char(’.’);
print_scaled (width (p));
if (subtype(p) = acc_kern) print(",(foryaccent)");

else { print_esc("mkern");
print_scaled (width (p));
print("mu");

}

This code is used in section 182.

191. (Display math node p 191) =

{ print_esc("math");
if (subtype(p) = before) print("on");
else print("off");
if (width(p) #0) { print(", surrounded,,");

print_scaled (width (p));

}

}

This code is used in section 182.

192. (Display ligature p 192) =
{ print_font_and_char (lig_char (p));

print (", (ligature,");
if (subtype(p) > 1) print_char(’|?);
font_in_short_display = font(lig_char(p));
short_display (lig_ptr(p));
if (odd (subtype(p))) print_char(’|’);
print_char(?)?);

}

This code is used in section 182.

193. (Display penalty p 193) =
{ print_esc("penalty,");
print_int (penalty (p));

}

This code is used in section 182.

78 DISPLAYING BOXES TEXprof §194

194. The post_break list of a discretionary node is indicated by a prefixed ‘|’ instead of the ‘.’ before the
pre_break list.
(Display discretionary p 194) =
{ print_esc("discretionary");
if (replace_count(p) > 0) { print("ureplacing");
print_int (replace_count (p));

node_list_display (pre_break (p)); ~ /+recursive call x/
append_char(’|?);

show_node_list (post_break (p));

flush_char; /*recursive call x/

}

This code is used in section 182.

195. (Display mark p 195) =
{ print_esc("mark");
if (mark_class(p) # 0) { print_char(’s’);
print_int (mark_class (p));

}

print_mark (mark_ptr(p));

}

This code is used in section 182.

196. (Display adjustment p 196) =
{ print_esc("vadjust");
node_list_display (adjust_ptr(p)); /*recursive call */

}

This code is used in section 182.

197. The recursive machinery is started by calling show_boz.

static void show_boz (pointer p)
{ (Assign the values depth_threshold: = show_box_depth and breadth_maz: = show_box_breadth 235);
if (breadth_maz < 0) breadth_maz = 5;
if (pool_ptr + depth_threshold > pool_size) depth_threshold = pool_size — pool_ptr — 1;
/xnow there’s enough room for prefix string %/
show_node_list(p); ~ /*the show starts at p*/
print_In();

6198 TEXprof DESTROYING BOXES 79

198. Destroying boxes. When we are done with a node list, we are obliged to return it to free storage,
including all of its sublists. The recursive procedure flush_node_list does this for us.

199. First, however, we shall consider two non-recursive procedures that do simpler tasks. The first of
these, delete_token_ref , is called when a pointer to a token list’s reference count is being removed. This
means that the token list should disappear if the reference count was null, otherwise the count should be
decreased by one.
#define token_ref_count(A) info(A) /* reference count preceding a token list x/

static void delete_token_ref (pointer p)

/*p points to the reference count of a token list that is losing one reference x/
{ if (token_ref_count(p) = null) flush_list(p);
else decr(token_ref_count(p));

}

200. Similarly, delete_glue_ref is called when a pointer to a glue specification is being withdrawn.
#define fast_delete_glue_ref (A)
{ if (glue_ref_count(A) = null) free_node (A, glue_spec_size);
else decr(glue_ref_count(A));
}

static void delete_glue_ref (pointer p) /*p points to a glue specification */
fast_delete_glue_ref (p)

80 DESTROYING BOXES TpXprof §201

201. Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usually
charnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.

static void flush_node_list(pointer p) /xerase list of nodes starting at px*/
{ /* go here when node p has been freed x/
pointer g; /*successor to node p*/

while (p # null) { ¢ = link(p);
if (is_char_node(p)) free_avail (p)
else { switch (type(p)) {
case hlist_node: case vlist_node: case unset_node:
{ flush_node_list(list_ptr(p));
free_node (p, box_node_size);
goto done;
}
case rule_node:
{ free_node(p, rule_node_size);
goto done;
}
case ins_node:
{ flush_node_list (ins_ptr(p));
delete_glue_ref (split_top_ptr(p));
free_node (p, ins_node_size);
goto done;
}
case whatsit_node: {Wipe out the whatsit node p and goto done 1357)
case glue_node:
{ fast_delete_glue_ref (glue_ptr(p));
if (leader_ptr(p) # null) flush_node_list (leader_ptr(p));
} break;
case kern_node: case math_node: case penalty_node: do_nothing; break;
case ligature_node: flush_node_list(lig_ptr(p)); break;
case mark_node: delete_token_ref (mark_ptr(p)); break;
case disc_node:
{ flush_node_list (pre_break(p));
flush_node_list (post_break (p));
} break;
case adjust_node: flush_node_list(adjust_ptr(p)); break;
(Cases of flush_node_list that arise in mlists only 697)
default: confusion("flushing");

}

free_node(p, small_node_size);

done: ;
}
P=q;

}
}

6202 TEXprof COPYING BOXES 81

202. Copying boxes. Another recursive operation that acts on boxes is sometimes needed: The proce-
dure copy_node_list returns a pointer to another node list that has the same structure and meaning as the
original. Note that since glue specifications and token lists have reference counts, we need not make copies
of them. Reference counts can never get too large to fit in a halfword, since each pointer to a node is in a
different memory address, and the total number of memory addresses fits in a halfword.

(Well, there actually are also references from outside mem; if the save_stack is made arbitrarily large, it

would theoretically be possible to break TEX by overflowing a reference count. But who would want to do
that?)

#define add_token_ref (A) incr(token_ref_count(A)) /*new reference to a token list x/
#define add_glue_ref (A) incr(glue_ref_count(A)) /+new reference to a glue spec*/

203. The copying procedure copies words en masse without bothering to look at their individual fields. If
the node format changes—for example, if the size is altered, or if some link field is moved to another relative
position—then this code may need to be changed too.

static pointer copy_node_list(pointer p)
/+makes a duplicate of the node list that starts at p and returns a pointer to the new list */
{ pointer h; /* temporary head of copied list */
pointer g; /* previous position in new list x/
pointer r; /x current node being fabricated for new list */
int words; /xnumber of words remaining to be copied x/

h = get_avail ();
q="n
while (p # null) { (Make a copy of node p in node r 204);
link(q) =r;
q=r;
p = link (p);
}
link (q) = null;
q = link(h);
free_avail (h);
return g;

}

204. (Make a copy of node p in node r 204) =
words = 1; /* this setting occurs in more branches than any other */
if (is_char_node(p)) r = get_avail ();
else (Case statement to copy different types and set words to the number of initial words not yet
copied 205);
while (words > 0) { decr(words);
mem|[r + words] = mem[p + words];

}

This code is used in section 203.

82 COPYING BOXES TpXprof §205

205. (Case statement to copy different types and set words to the number of initial words not yet
copied 205) =
switch (type(p)) {
case hlist_node: case vlist_node: case unset_node:

{ r = get_node(box_node_size);
mem/[r + 6] = mem|[p + 6];
mem[r + 5] = mem[p+5]; /xcopy the last two words */
list_ptr(r) = copy_node_list (list_ptr(p)); ~ /+this affects mem[r + 5] */
words = 5;

} break;

case rule_node:

{ r = get_node(rule_node_size);
words = rule_node_size;

} break;

case ins_node:

{ r = get_node(ins_node_size);
mem|[r + 4] = mem[p + 4];
add_glue_ref (split_top_ptr(p));
ins_ptr(r) = copy_node_list (ins_ptr(p)); /*this affects mem[r 4 4] x/
words = ins_node_size — 1;

} break;

case whatsit_node: { Make a partial copy of the whatsit node p and make r point to it; set words to the
number of initial words not yet copied 1356) break;
case glue_node:

{ r = get_node(small_node_size);
add_glue_ref (glue_ptr(p));
glue_ptr(r) = glue_ptr(p);
leader_ptr(r) = copy_node_list (leader_ptr(p));

} break;

case kern_node: case math_node: case penalty_node:

{ r = get_node(small_node_size);
words = small_node_size;

} break;

case ligature_node:

{ r = get_node(small_node_size);
mem/[lig_char(r)] = mem/|[lig_char(p)];
lig_ptr(r) = copy_node_list (lig_ptr(p));

} break;

case disc_node:

{ r = get_node(small_node_size);
pre_break (r) = copy_node_list (pre_break (p));
post_break (r) = copy_node_list (post_break (p));

} break;

case mark_node:

{ r = get_node(small_node_size);
add_token_ref (mark_ptr(p));
words = small_node_size;

} break;

case adjust_node:

{ r = get_node(small_node_size);
adjust_ptr (r) = copy_node_list (adjust_ptr(p));

} break; /xwords =1 = small_node_size — 1%/

/xcopy font and character x/

6205 TEXprof COPYING BOXES 83

default: confusion("copying");

}

This code is used in section 204.

84 THE COMMAND CODES TpXprof §206

206. The command codes. Before we can go any further, we need to define symbolic names for the
internal code numbers that represent the various commands obeyed by TEX. These codes are somewhat
arbitrary, but not completely so. For example, the command codes for character types are fixed by the
language, since a user says, e.g., ‘\catcode “\$ = 3’ to make $ a math delimiter, and the command code
math_shift is equal to 3. Some other codes have been made adjacent so that case statements in the program
need not consider cases that are widely spaced, or so that case statements can be replaced by if statements.

At any rate, here is the list, for future reference. First come the “catcode” commands, several of which
share their numeric codes with ordinary commands when the catcode cannot emerge from TEX’s scanning
routine.

#define escape 0 /xescape delimiter (called \ in The TEXbook) x/
#define relax 0 /xdo nothing (\relax)/

#define left_brace 1 /xbeginning of a group ({) */

#define right_brace 2 /xending of a group (})x*/

#define math_shift 3 /+*mathematics shift character ($)=/

#define tab_mark 4 /*alignment delimiter (&, \span)/

#define car_ret 5 /xend of line (carriage_return, \cr, \crcr)*/
#define out_param 5 /*output a macro parameter x/

#define mac_param 6 /+xmacro parameter symbol (#)/

#define sup_mark 7 /*superscript () */

#define sub_mark 8 /xsubscript (_)/

#define ignore 9 /xcharacters to ignore (~~@) x/

#define endv 9 /xend of (v;) list in alignment template */

#define spacer 10 /xcharacters equivalent to blank space () */
#define letter 11 /* characters regarded as letters (A..Z, a..z)x/
#define other_char 12 /xnone of the special character types*/
#define active_char 13 /xcharacters that invoke macros (=)*/
#define par_end 13 /xend of paragraph (\par)=/

#define match 13 /*match a macro parameter */

#define comment 14 /+characters that introduce comments (%) */
#define end_match 14 /xend of parameters to macro %/

#define stop 14 /xend of job (\end, \dump) */

#define invalid_char 15 /* characters that shouldn’t appear (~~7)/
#define delim_num 15 /xspecify delimiter numerically (\delimiter)/
#define max_char_code 15 /xlargest catcode for individual characters */

6207 TEXprof THE COMMAND CODES 85

207. Next are the ordinary run-of-the-mill command codes. Codes that are min_internal or more represent
internal quantities that might be expanded by ‘\the’.

#define char_num 16 /xcharacter specified numerically (\char)/
#define math_char_num 17 /xexplicit math code (\mathchar)x/
#define mark 18 /+mark definition (\mark)/
#define zray 19 /xpeek inside of TEX (\show, \showbox, etc.) */
#define make_boxr 20 /+make a box (\box, \copy, \hbox, etc.) */
#define hmove 21 /*horizontal motion (\moveleft, \moveright)sx/
#define vmove 22 /xvertical motion (\raise, \lower)x/
#define un_hbor 23 /+unglue a box (\unhbox, \unhcopy) */
#define un_vboxr 24 /xunglue a box (\unvbox, \unvcopy) */

/* (or \pagediscards, \splitdiscards)x/
#define remove_item 25 /xnullify last item (\unpenalty, \unkern, \unskip) */
#define hskip 26 /xhorizontal glue (\hskip, \hfil, etc.) */
#define vskip 27 /xvertical glue (\vskip, \vfil, etc.) x/
#define mskip 28 /xmath glue (\mskip)*/
#define kern 29 /xfixed space (\kern)/
#define mkern 30 /+math kern (\mkern) x/
#define leader_ship 31 /xuse a box (\shipout, \leaders, etc.) */
#define halign 32 /«horizontal table alignment (\halign)x/
#define valign 33 /* vertical table alignment (\valign)x/
#define no_align 34 /*temporary escape from alignment (\noalign)/
#define vrule 35 /«xvertical rule (\vrule)x/
#define hrule 36 /xhorizontal rule (\hrule)/
#define insert 37 /xvlist inserted in box (\insert)/
#define vadjust 38 /*vlist inserted in enclosing paragraph (\vadjust)/
#define ignore_spaces 39 /x gobble spacer tokens (\ignorespaces)x/
#define after_assignment 40 /xsave till assignment is done (\afterassignment)/
#define after_group 41 /+save till group is done (\aftergroup) */
#define break_penalty 42 /xadditional badness (\penalty)x/
#define start_par 43 /xbegin paragraph (\indent, \noindent)x/
#define ital_corr 44 /xitalic correction (\/)x/
#define accent 45 /xattach accent in text (\accent)x*/
#define math_accent 46 /+attach accent in math (\mathaccent)x*/
#define discretionary 47 /«discretionary texts (\-, \discretionary)x/
#define eq_no 48 /xequation number (\eqno, \leqno)/
#define left_right 49 /xvariable delimiter (\left, \right)%/ /% (or \middle)x*/
#define math_comp 50 /xcomponent of formula (\mathbin, etc.)*/
#define limit_switch 51 /xdiddle limit conventions (\displaylimits, etc.)*/
#define above 52 /xgeneralized fraction (\above, \atop, etc.) */
#define math_style 53 /xstyle specification (\displaystyle, etc.)*/
#define math_choice 54 /xchoice specification (\mathchoice)x/
#define non_script 55 /*conditional math glue (\nonscript)/
#define vcenter 56 /xvertically center a vbox (\vcenter)x/
#define case_shift 57 /«force specific case (\lowercase, \uppercase) */
#define message 58 /xsend to user (\message, \errmessage) */
#define extension 59 /xextensions to TEX (\write, \special, etc.)*/
#define in_stream 60 /+files for reading (\openin, \closein)/
#define begin_group 61 /xbegin local grouping (\begingroup)/
#define end_group 62 /xend local grouping (\endgroup) */
#define omit 63 /xomit alignment template (\omit)x/
#define ex_space 64 /xexplicit space (\y)*/

86 THE COMMAND CODES TEXprof §207

#define no_boundary 65 /*suppress boundary ligatures (\noboundary)/

#define radical 66 /*square root and similar signs (\radical)/

#define end_cs_name 67 /xend control sequence (\endcsname) */

#define min_internal 68 /xthe smallest code that can follow \the */

#define char_given 68 /* character code defined by \chardef */

#define math_given 69 /*math code defined by \mathchardef */

#define last_item 70 /*most recent item (\lastpenalty, \lastkern, \lastskip)x*/
#define maz_non_prefived_command 70 /xlargest command code that can’t be \global */

208. The next codes are special; they all relate to mode-independent assignment of values to TEX’s internal
registers or tables. Codes that are maz_internal or less represent internal quantities that might be expanded
by ‘\the’.
#define toks_register 71 /xtoken list register (\toks)/
#define assign_toks 72 /+special token list (\output, \everypar, etc.) */
#define assign_int 73 /*user-defined integer (\tolerance, \day, etc.) */
#define assign_dimen 74 /xuser-defined length (\hsize, etc.) x/
#define assign_glue 75 /*user-defined glue (\baselineskip, etc.)*/
#define assign_mu_glue 76 /*user-defined muglue (\thinmuskip, etc.) */
#define assign_font_dimen 77 /xuser-defined font dimension (\fontdimen)/
#define assign_font_int 78 /xuser-defined font integer (\hyphenchar, \skewchar)/
#define set_auzr 79 /*specify state info (\spacefactor, \prevdepth) */
#define set_prev_graf 80 /xspecify state info (\prevgraf)=/
#define set_page_dimen 81 /xspecify state info (\pagegoal, etc.) */
#define set_page_int 82 /xspecify state info (\deadcycles, \insertpenalties)x/
/% (or \interactionmode)x/
#define set_boz_dimen 83 /+change dimension of box (\wd, \ht, \dp) */
#define set_shape 84 /xspecify fancy paragraph shape (\parshape) */
/x (or \interlinepenalties, etc.) x/
#define def_code 85 /xdefine a character code (\catcode, etc.) */
#define def_family 86 /xdeclare math fonts (\textfont, etc.)*/
#define set_font 87 /xset current font (font identifiers) x/
#define def_font 88 /xdefine a font file (\font)*/
#define internal_register 89 /xinternal register (\count, \dimen, etc.) %/
#define maz_internal 89 /xthe largest code that can follow \the x/
#define advance 90 /xadvance a register or parameter (\advance)/
#define multiply 91 /xmultiply a register or parameter (\multiply)x*/
#define divide 92 /xdivide a register or parameter (\divide)/
#define prefix 93 /xqualify a definition (\global, \long, \outer)/ /x(or \protected)x*/
#define let 94 /xassign a command code (\let, \futurelet)x/
#define shorthand_def 95 /xcode definition (\chardef, \countdef, etc.) */
#define read_to_cs 96 /xread into a control sequence (\read)*/ /#(or \readline)x/
#define def 97 /xmacro definition (\def, \gdef, \xdef, \edef)/
#define set_box 98 /xset a box (\setbox)/
#define hyph_data 99 /*hyphenation data (\hyphenation, \patterns)x*/
#define set_interaction 100 /xdefine level of interaction (\batchmode, etc.) */
#define maz_command 100 /xthe largest command code seen at big_switch */

6209 TEXprof THE COMMAND CODES 87

209. The remaining command codes are extra special, since they cannot get through TEX’s scanner to the
main control routine. They have been given values higher than max_command so that their special nature
is easily discernible. The “expandable” commands come first.

#define undefined_cs (maz_command + 1) /*initial state of most eq_type fieldsx/

#define expand_after (maz_command + 2) /*special expansion (\expandafter)/

#define no_expand (max_command + 3) /x special nonexpansion (\noexpand) */

#define input (maz_command + 4) /*input a source file (\input, \endinput)x*/
/* (or \scantokens) */

#define if _test (maz_command +5) /+conditional text (\if, \ifcase, etc.) */

#define fi_or_else (max_command +6) /xdelimiters for conditionals (\else, etc.) x/
#define cs_name (maz_command +7) /+xmake a control sequence from tokens (\csname) x/
#define convert (maz_command +8) /+convert to text (\number, \string, etc.)/

#define the (maz_command +9) /xexpand an internal quantity (\the)x*/

/* (or \unexpanded, \detokenize)/
#define top_bot_mark (maz_command +10) /xinserted mark (\topmark, etc.) */
#define call (maz_command + 11) /*non-long, non-outer control sequence */
#define long_call (maz_command +12) /xlong, non-outer control sequence */
#define outer_call (maz_command + 13) /*non-long, outer control sequence */
#define long_outer_call (maz_command + 14) /xlong, outer control sequence */
#define end_template (maz_command + 15) /xend of an alignment template */
#define dont_expand (max_command +16) /xthe following token was marked by \noexpand x*/
#define glue_ref (max_command +17) /xthe equivalent points to a glue specification */
#define shape_ref (maz_command + 18) /the equivalent points to a parshape specification */
#define boz_ref (maz_command + 19) /*the equivalent points to a box node, or is null */
#define data (maz_command + 20) /*the equivalent is simply a halfword number x/

88 THE SEMANTIC NEST TEXprof §210

210. The semantic nest. TEX is typically in the midst of building many lists at once. For example,
when a math formula is being processed, TEX is in math mode and working on an mlist; this formula has
temporarily interrupted TEX from being in horizontal mode and building the hlist of a paragraph; and this
paragraph has temporarily interrupted TEX from being in vertical mode and building the vlist for the next
page of a document. Similarly, when a \vbox occurs inside of an \hbox, TEX is temporarily interrupted
from working in restricted horizontal mode, and it enters internal vertical mode. The “semantic nest” is a
stack that keeps track of what lists and modes are currently suspended.
At each level of processing we are in one of six modes:

vmode stands for vertical mode (the page builder);

hmode stands for horizontal mode (the paragraph builder);
mmode stands for displayed formula mode;

—wvmode stands for internal vertical mode (e.g., in a \vbox);
—hmode stands for restricted horizontal mode (e.g., in an \hbox);
—mmode stands for math formula mode (not displayed).

The mode is temporarily set to zero while processing \write texts.

Numeric values are assigned to vmode, hmode, and mmode so that TEX’s “big semantic switch” can select
the appropriate thing to do by computing the value abs(mode) + cur_cmd, where mode is the current mode
and cur_cmd is the current command code.

#define vmode 1 /xvertical mode x/

#define hmode (vmode + maz_command + 1) /*horizontal mode */
#define mmode (hmode + maz_command + 1) /+math mode */
static void print_mode(int m) /+prints the mode represented by m */
{if (m >0)

switch (m/(maz_command + 1)) {
case 0: print("vertical"); break;
case 1: print("horizontal"); break;
case 2: print("display math");
}
else if (m =0) print("no");
else
switch ((—m)/(maz_command + 1)) {
case 0: print("internal vertical"); break;
case 1: print("restricted horizontal"); break;
case 2: print("math");
}
print (" mode");

}

6211 TEXprof THE SEMANTIC NEST 89

211. The state of affairs at any semantic level can be represented by five values:
mode is the number representing the semantic mode, as just explained.

head is a pointer to a list head for the list being built; link (head) therefore points to the first element of
the list, or to null if the list is empty.

tail is a pointer to the final node of the list being built; thus, tail = head if and only if the list is empty.

prev_graf is the number of lines of the current paragraph that have already been put into the present vertical
list.

aux is an auxiliary memory_word that gives further information that is needed to characterize the situation.

In vertical mode, auz is also known as prev_depth; it is the scaled value representing the depth of the previous
box, for use in baseline calculations, or it is < —1000pt if the next box on the vertical list is to be exempt from
baseline calculations. In horizontal mode, aux is also known as space_factor and clang; it holds the current
space factor used in spacing calculations, and the current language used for hyphenation. (The value of clang
is undefined in restricted horizontal mode.) In math mode, auz is also known as incompleat_noad; if not
null, it points to a record that represents the numerator of a generalized fraction for which the denominator
is currently being formed in the current list.

There is also a sixth quantity, mode_line, which correlates the semantic nest with the user’s input;
mode_line contains the source line number at which the current level of nesting was entered. The negative
of this line number is the mode_line at the level of the user’s output routine.

A seventh quantity, eTeX_aux, is used by the extended features e-TEX. In vertical modes it is known as
LR_save and holds the LR stack when a paragraph is interrupted by a displayed formula. In display math
mode it is known as LR_box and holds a pointer to a prototype box for the display. In math mode it is
known as delim_ptr and points to the most recent left_noad or middle_noad of a math_left_group.

In horizontal mode, the prev_graf field is used for initial language data.

The semantic nest is an array called nest that holds the mode, head, tail, prev_graf, aux, and mode_line
values for all semantic levels below the currently active one. Information about the currently active level is
kept in the global quantities mode, head, tail, prev_graf, aux, and mode_line, which live in a Pascal record
that is ready to be pushed onto nest if necessary.

#define ignore_depth —65536000 /* prev_depth value that is ignored */

(Types in the outer block 18) +=
typedef struct {
int16_t mode_field; pointer head_field, tail_field;
pointer eTeX_aux_field;
int pg_field, ml_field; memory_word auzx_field;
} list_state_record;

90 THE SEMANTIC NEST TEXprof

212. #define mode cur_list.mode_field /*current mode x/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

head cur_list.head_field /*header node of current list /

tail cur_list.tasl_field /* final node on current list x/

eTeX_auzr cur_list.eTeX_aux_field /xauxiliary data for e-TEX */

LR_save eTeX_auz /* LR stack when a paragraph is interrupted */
LR_boxr eTeX_auzx /* prototype box for display */

delim_ptr eTeX_aux /*most recent left or right noad of a math left group */
prev_graf cur_list.pg_field /*number of paragraph lines accumulated */
auz cur_list.aux_field /+auxiliary data about the current list */
prev_depth aux.sc /*the name of auz in vertical mode */

space_factor auz.hh.lh /*part of auz in horizontal mode x/

clang auz.hh.rh /*the other part of auz in horizontal mode */
incompleat_noad auz.i /+the name of auz in math mode*/

mode_line cur_list.ml_field /xsource file line number at beginning of list */

(Global variables 13) +=

static
static
static
static
static

list_state_record nest[nest_size + 1];

int nest_ptr; /= first unused location of nest */

int maz_nest_stack; /+*maximum of nest_ptr when pushing */
list_state_record cur_list; /xthe “top” semantic state */

int shown_mode; /*most recent mode shown by \tracingcommands %/

213. Here is a common way to make the current list grow:

#define

tail_append (A)

{ link (tail) = A,
tail = link (tail);

}

§212

214. We will see later that the vertical list at the bottom semantic level is split into two parts; the
“current page” runs from page_head to page_tail, and the “contribution list” runs from contrib_head to tail
of semantic level zero. The idea is that contributions are first formed in vertical mode, then “contributed”
to the current page (during which time the page-breaking decisions are made). For now, we don’t need to
know any more details about the page-building process.

(Set initial values of key variables 21) +=
nest_ptr = 0;
max_nest_stack = 0;
mode = vmode;
head = contrib_head,;
tail = contrib_head;
eTeX_aur = null;
prev_depth = ignore_depth;
mode_line = 0;
prev_graf = 0;
shown_mode = 0;

(Start

a new current page 990);

6215 TEXprof THE SEMANTIC NEST 91

215. When TEX’s work on one level is interrupted, the state is saved by calling push_nest. This routine
changes head and tail so that a new (empty) list is begun; it does not change mode or aux.

static void push_nest(void) /xenter a new semantic level, save the old x/
{ if (nest_ptr > maz_nest_stack) { max_nest_stack = nest_ptr;
if (nest_ptr = nest_size) overflow("semantic nest_size", nest_size);

}

nest[nest_ptr] = cur_list; /xstack the record */

incr(nest_ptr);

head = get_avail ();

tail = head;

prev_graf = 0;

mode_line = line;

eTeX_auxr = null;

}

216. Conversely, when TEX is finished on the current level, the former state is restored by calling pop_nest.
This routine will never be called at the lowest semantic level, nor will it be called unless head is a node that
should be returned to free memory.

static void pop_nest(void) /xleave a semantic level, re-enter the old /
{ free_avail (head);

decr (nest_ptr);

cur_list = nest[nest_ptr];

}

92 THE SEMANTIC NEST TEXprof §217

217. Here is a procedure that displays what TEX is working on, at all levels.
static void print_totals(void);

static void show_activities(void)

{int p; /+index into nest x/
int m; /+«+modex*/
memory_word a; /* auxiliary %/
pointer ¢,r; /xfor showing the current page x/
int t; /xdittox/
nest[nest_ptr] = cur_list; ~ /*put the top level into the array x/
print_nl("");
print_In();

for (p = nest_ptr; p>0; p—) { m = nest[p].mode_field;

a = nest[p|.auz_field;

print_nl ("###");

print_mode(m);

print (" entered at line ");

print_int (abs(nest[p].ml_field));

if (m = hmode)

if (nest[p|.pg_field # °40600000) { print(",(language");

print_int (nest[p].pg_field % °200000);
print (" :hyphenmin");
print_int (nest [p].pg_field /° 20000000);
print_char(’,”);
print_int ((nest [p].pg_field /°200000) % °100);
print_char(’)’);

}

(nest[p].mi_field < 0) print(",(\\output_ routine)");

(p =0) { (Show the status of the current page 985);

if (link (contrib_head) # null) print_nl("###_ recent contributions:");

if
if

show_box (link (nest [p].head_field));
(Show the auxiliary field, a 218);

6218 TEXprof

218. (Show the auxiliary field, a 218) =

switch (abs(m)/(max_command + 1)) {
case 0:

{ print_nl("prevdepth,");
if (a.sc < ignore_depth) print("ignored");
else print_scaled (a.sc);
if (nest[p|.pg_field # 0) { print(", prevgraf,");
print_int (nest[p].pg_field);
print(",line");
if (nest[p].pg_field # 1) print_char(’s’);
}
} break;
case 1:
{ print_nl("spacefactor,");
print_int(a.hh.lh);

if (m > 0) if (a.hh.rh > 0) { print(",ucurrent language ");

print_int(a.hh.rh); }
} break;
case 2:

if (a.i # null) { print("this will begin denominator of:");

show_boz (a.i); }
} /xthere are no other cases*/

This code is used in section 217.

THE SEMANTIC NEST

93

94 THE TABLE OF EQUIVALENTS TEXprof §219

219. The table of equivalents. Now that we have studied the data structures for TEX’s semantic
routines, we ought to consider the data structures used by its syntactic routines. In other words, our next
concern will be the tables that TEX looks at when it is scanning what the user has written.

The biggest and most important such table is called eqtb. It holds the current “equivalents” of things;
i.e., it explains what things mean or what their current values are, for all quantities that are subject to the
nesting structure provided by TEX’s grouping mechanism. There are six parts to eqtb:

1) egtb[active_base .. (hash_base — 1)] holds the current equivalents of single-character control sequences.

2) eqtb[hash_base .. (glue_base — 1)] holds the current equivalents of multiletter control sequences.

3) eqtb[glue_base .. (local_base — 1)] holds the current equivalents of glue parameters like the current
baselineskip.

4) eqtb[local_base .. (int_base —1)] holds the current equivalents of local halfword quantities like the current
box registers, the current “catcodes,” the current font, and a pointer to the current paragraph shape.

5) eqtb[int_base .. (dimen_base — 1)] holds the current equivalents of fullword integer parameters like the
current hyphenation penalty.

6) eqtb[dimen_base .. eqth_size] holds the current equivalents of fullword dimension parameters like the
current hsize or amount of hanging indentation.

Note that, for example, the current amount of baselineskip glue is determined by the setting of a particular
location in region 3 of eqtb, while the current meaning of the control sequence ‘\baselineskip’ (which might
have been changed by \def or \let) appears in region 2.

220. Each entry in eqtb is a memory_word. Most of these words are of type two_halves, and subdivided
into three fields:

1) The eq_level (a quarterword) is the level of grouping at which this equivalent was defined. If the level
is level_zero, the equivalent has never been defined; level_one refers to the outer level (outside of all
groups), and this level is also used for global definitions that never go away. Higher levels are for
equivalents that will disappear at the end of their group.

2) The eq_type (another quarterword) specifies what kind of entry this is. There are many types, since each
TEX primitive like \hbox, \def, etc., has its own special code. The list of command codes above
includes all possible settings of the eq_type field.

3) The equiv (a halfword) is the current equivalent value. This may be a font number, a pointer into mem,
or a variety of other things.

#define eq_level_field(A) A.hh.b1

#define eq_type_field(A) A.hh.b0

#define equiv_field(A) A.hh.rh

#define eq_level (A) eq_level_field(eqtb[A]) /xlevel of definition */

#define eq_type(A) eq_type_field (eqtb[A]) /+ command code for equivalent */
#define equiv(A) equiv_field(eqtb[A]) /*equivalent value */

#define level_zero min_quarterword /*level for undefined quantities */
#define level_one (level_zero + 1) /*outermost level for defined quantities %/

6221 TEXprof THE TABLE OF EQUIVALENTS 95

221. Many locations in eqtb have symbolic names. The purpose of the next paragraphs is to define these
names, and to set up the initial values of the equivalents.

In the first region we have 256 equivalents for “active characters” that act as control sequences, followed
by 256 equivalents for single-character control sequences.

Then comes region 2, which corresponds to the hash table that we will define later. The maximum address
in this region is used for a dummy control sequence that is perpetually undefined. There also are several
locations for control sequences that are perpetually defined (since they are used in error recovery).

#define active_base 1 /*beginning of region 1, for active character equivalents */
#define single_base (active_base + 256) /* equivalents of one-character control sequences /
#define null_cs (single_base + 256) /xequivalent of \csname\endcsname */
#define hash_base (null_cs + 1) /*beginning of region 2, for the hash table */
#define frozen_control_sequence (hash_base + hash_size) /* for error recovery x/
#define frozen_protection frozen_control_sequence /*inaccessible but definable x/
#define frozen_cr (frozen_control_sequence + 1) /* permanent ‘\cr’*/
#define frozen_end_group (frozen_control_sequence + 2) /* permanent ‘\endgroup’ */
#define frozen_right (frozen_control_sequence + 3) /+permanent ‘\right’*/
#define frozen_fi (frozen_control_sequence +4) /xpermanent ‘\fi’x/
#define frozen_end_template (frozen_control_sequence + 5) /+permanent ‘\endtemplate’x/
#define frozen_endv (frozen_control_sequence + 6) /xsecond permanent ‘\endtemplate’x/
#define frozen_relaz (frozen_control_sequence +7) /xpermanent ‘\relax’ s/
#define end_write (frozen_control_sequence +8) /+permanent ‘\endwrite’x/
#define frozen_dont_expand (frozen_control_sequence + 9) /+permanent ‘\notexpanded:’x/
#define frozen_primitive (frozen_control_sequence + 10) /*permanent ‘\primitive:’x/
#define frozen_null_font (frozen_control_sequence + 11) /* permanent ‘\nullfont’*/
#define font_id_base (frozen_null_font — font_base)

/*begins table of 257 permanent font identifiers %/
#define undefined_control_sequence (frozen_null_font 4+ 257) /+ dummy location */
#define glue_base (undefined_control_sequence + 1) /xbeginning of region 3 x/

(Initialize table entries (done by INITEX only) 163) +=
eq_type (undefined_control_sequence) = undefined_cs;
equiv (undefined_control_sequence) = null;
eq_level (undefined_control_sequence) = level_zero;
for (k = active_base; k < undefined_control_sequence — 1; k++)
eqtb[k] = eqtb[undefined_control_sequence];

222. Here is a routine that displays the current meaning of an eqth entry in region 1 or 2. (Similar routines
for the other regions will appear below.)

(Show equivalent n, in region 1 or 2 222) =

{ sprint_cs(n);
print_char(’=");
print_cmd_chr(eq_type(n), equiv(n));
if (eq_type(n) > call) { print_char(’:?);

show_token_list (link (equiv(n)), null, 32);

}

}

This code is used in section 251.

96 THE TABLE OF EQUIVALENTS TEXprof §223

223. Region 3 of eqth contains the 256 \skip registers, as well as the glue parameters defined here. It is
important that the “muskip” parameters have larger numbers than the others.

#define line_skip_code 0 /*interline glue if baseline_skip is infeasible x/
#define baseline_skip_code 1 /* desired glue between baselines */

#define par_skip_code 2 /xextra glue just above a paragraph */

#define above_display_skip_code 3 /xextra glue just above displayed math */
#define below_display_skip_code 4 /xextra glue just below displayed math */
#define above_display_short_skip_code 5 /* glue above displayed math following short lines */
#define below_display_short_skip_code 6 /* glue below displayed math following short lines */
#define left_skip_code 7 /*glue at left of justified lines*/

#define right_skip_code 8 /= glue at right of justified lines x/

#define top_skip_code 9 /x glue at top of main pages */

#define split_top_skip_code 10 /* glue at top of split pages x/

#define tab_skip_code 11 /* glue between aligned entries %/

#define space_skip_code 12 [+ glue between words (if not zero_glue) */
#define xspace_skip_code 13 /= glue after sentences (if not zero_glue) */
#define par_fill_skip_code 14 /xglue on last line of paragraph =/

#define thin_mu_skip_code 15 /*thin space in math formula x/

#define med_mu_skip_code 16 /*medium space in math formula x/

#define thick_mu_skip_code 17 /+thick space in math formula x/

#define glue_pars 18 /*total number of glue parameters x/

#define skip_base (glue_base + glue_pars) /xtable of 256 “skip” registers */
#define mu_skip_base (skip_base + 256) /xtable of 256 “muskip” registers x/
#define local_base (mu_skip_base + 256) /*beginning of region 4 %/

#define skip(A) equiv(skip_base + A) /x mem location of glue specification */
#define mu_skip(A) equiv(mu_skip_base + A) /x mem location of math glue spec */
#define glue_par(A) equiv(glue_base + A) /* mem location of glue specification */
#define line_skip glue_par (line_skip_code)

#define baseline_skip glue_par (baseline_skip_code)

#define par_skip glue_par (par_skip_code)

#define above_display_skip glue_par (above_display_skip_code)

#define below_display_skip glue_par (below_display_skip_code)

#define above_display_short_skip glue_par (above_display_short_skip_code)
#define below_display_short_skip glue_par (below_display_short_skip_code)
#define left_skip glue_par (left_skip_code)

#define right_skip glue_par (right_skip_code)

#define top_skip glue_par (top_skip_code)

#define split_top_skip glue_par (split_top_skip_code)

#define tab_skip glue_par(tab_skip_code)

#define space_skip glue_par (space_skip_code)

#define zspace_skip glue_par (zspace_skip_code)

#define par_fill_skip glue_par (par_fill_skip_code)

#define thin_mu_skip glue_par (thin_mu_skip_code)

#define med_mu_skip glue_par(med_mu_skip_code)

#define thick_mu_skip glue_par (thick_mu_skip_code)

(Current mem equivalent of glue parameter number n 223) =
glue_par(n)

This code is used in sections 151 and 153.

6224 TEXprof THE TABLE OF EQUIVALENTS 97

224. Sometimes we need to convert TEX’s internal code numbers into symbolic form. The print_skip_param
routine gives the symbolic name of a glue parameter.

(Declare the procedure called print_skip_param 224) =
static void print_skip_param (int n)
{ switch (n) {

case line_skip_code: print_esc("lineskip"); break;
case baseline_skip_code: print_esc("baselineskip"); break;
case par_skip_code: print_esc("parskip"); break;
case above_display_skip_code: print_esc("abovedisplayskip"); break;
case below_display_skip_code: print_esc("belowdisplayskip"); break;
case above_display_short_skip_code: print_esc("abovedisplayshortskip"); break;
case below_display_short_skip_code: print_esc("belowdisplayshortskip"); break;
case left_skip_code: print_esc("leftskip"); break;
case right_skip_code: print_esc("rightskip"); break;
case top_skip_code: print_esc("topskip"); break;
case split_top_skip_code: print_esc("splittopskip"); break;
case tab_skip_code: print_esc("tabskip"); break;
case space_skip_code: print_esc("spaceskip"); break;
case zspace_skip_code: print_esc("xspaceskip"); break;
case par_fill_skip_code: print_esc("parfillskip"); break;
case thin_mu_skip_code: print_esc("thinmuskip"); break;
case med_mu_skip_code: print_esc("medmuskip"); break;
case thick_mu_skip_code: print_esc("thickmuskip"); break;
default: print(" [unknown_glue parameter!]");

}
}

This code is used in section 178.

98 THE TABLE OF EQUIVALENTS TEXprof §225

225. The symbolic names for glue parameters are put into TEX’s hash table by using the routine called
primitive, defined below. Let us enter them now, so that we don’t have to list all those parameter names
anywhere else.
(Put each of TEX’s primitives into the hash table 225) =

primitive ("lineskip", assign_glue, glue_base + line_skip_code);

primitive ("baselineskip", assign_glue, glue_base + baseline_skip_code);

primitive ("parskip", assign_glue, glue_base + par_skip_code);

primitive ("abovedisplayskip", assign_glue, glue_base + above_display_skip_code);

primitive ("belowdisplayskip", assign_glue, glue_base + below_display_skip_code);

primitive ("abovedisplayshortskip", assign_glue, glue_base + above_display_short_skip_code);
primitive ("belowdisplayshortskip", assign_glue, glue_base + below_display_short_skip_code);
primitive ("leftskip", assign_glue, glue_base + left_skip_code);

primitive ("rightskip", assign_glue, glue_base + right_skip_code);

primitive ("topskip", assign_glue, glue_base + top_skip_code);

primitive ("splittopskip", assign_glue, glue_base + split_top_skip_code);

primitive ("tabskip", assign_glue, glue_base + tab_skip_code);

primitive ("spaceskip", assign_glue, glue_base + space_skip_code);

primitive ("xspaceskip", assign_glue, glue_base + xspace_skip_code);

primitive ("parfillskip", assign_glue, glue_base + par_fill_skip_code);

primitive ("thinmuskip", assign_mu_glue, glue_base + thin_mu_skip_code);

primitive ("medmuskip", assign_mu_glue, glue_base + med_mu_skip_code);

primitive ("thickmuskip", assign_mu_glue, glue_base + thick_mu_skip_code);

See also sections 229, 237, 247, 264, 333, 375, 383, 410, 415, 467, 486, 490, 552, 779, 982, 1051, 1057, 1070, 1087, 1106, 1113,
1140, 1155, 1168, 1177, 1187, 1207, 1218, 1221, 1229, 1249, 1253, 1261, 1271, 1276, 1285, 1290, 1343, 1742, 1799, 1803,
1808, and 1814.

This code is used in section 1335.

226. (Cases of print_cmd_chr for symbolic printing of primitives 226) =
case assign_glue: case assign_mu_glue:
if (chr_code < skip_base) print_skip_param (chr_code — glue_base);
else if (chr_code < mu_skip_base) { print_esc("skip");
print_int (chr_code — skip_base);

else { print_esc("muskip");
print_int (chr_code — mu_skip_base);
} break;

See also sections 230, 238, 248, 265, 334, 376, 384, 411, 416, 468, 487, 491, 780, 983, 1052, 1058, 1071, 1088, 1107, 1114, 1142,
1156, 1169, 1178, 1188, 1208, 1219, 1222, 1230, 1250, 1254, 1260, 1262, 1272, 1277, 1286, 1291, 1294, and 1345.

This code is used in section 297.

227. All glue parameters and registers are initially ‘Opt plusOpt minusOpt’.

(Initialize table entries (done by INITEX only) 163) +=
equiv (glue_base) = zero_glue;
eq_level (glue_base) = level_one;
eq_type (glue_base) = glue_ref;
for (k = glue_base + 1; k < local_base — 1; k++) eqtb[k] = eqtb[glue_base];
glue_ref_count (zero_glue) = glue_ref_count (zero_glue) + local_base — glue_base;

6228 TEXprof THE TABLE OF EQUIVALENTS 99

228. (Show equivalent n, in region 3 228) =

if (n < skip_base) { print_skip_param(n — glue_base);
print_char(’=");
if (n < glue_base + thin_mu_skip_code) print_spec(equiv(n), "pt");
else print_spec(equiv(n), "mu");

}

else if (n < mu_skip_base) { print_esc("skip");
print_int(n — skip_base);
print_char(’=");
print_spec(equiv(n), "pt");

}

else { print_esc("muskip");
print_int(n — mu_skip_base);
print_char(’=");
print_spec(equiv(n), "mu");

}

This code is used in section 251.

100 THE TABLE OF EQUIVALENTS TEXprof §229

229. Region 4 of eqtb contains the local quantities defined here. The bulk of this region is taken up by
five tables that are indexed by eight-bit characters; these tables are important to both the syntactic and
semantic portions of TEX. There are also a bunch of special things like font and token parameters, as well
as the tables of \toks and \box registers.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

par_shape_loc local_base /* specifies paragraph shape x/
output_routine_loc (local_base + 1) /+points to token list for \output */
every_par_loc (local_base + 2) /xpoints to token list for \everypar x/
every_math_loc (local_base + 3) /*points to token list for \everymath */
every_display_loc (local_base + 4) /* points to token list for \everydisplay %/
every_hboz_loc (local_base +5) /*points to token list for \everyhbox */
every_vbox_loc (local_base +6) /+points to token list for \everyvbox x/
every_job_loc (local_base +7) /xpoints to token list for \everyjob x/
every_cr_loc (local_base + 8) /* points to token list for \everycr */
err_help_loc (local_base +9) /+points to token list for \errhelp x/
tex_toks (local_base +10) /xend of TEX’s token list parameters x/

etex_toks_base pdf_toks /*base for e-TEX’s token list parameters */
every_eof_loc etex_toks_base /* points to token list for \everyeof */
etex_toks (etex_toks_base +1) /xend of e-TEX’s token list parameters */

toks_base etex_toks /*table of 256 token list registers /

etex_pen_base (toks_base +256) /xstart of table of e-TEX’s penalties x/
inter_line_penalties_loc etex_pen_base /xadditional penalties between lines x/
club_penalties_loc (etez_pen_base + 1) /* penalties for creating club lines */
widow_penalties_loc (etez_pen_base + 2) /* penalties for creating widow lines */
display_widow_penalties_loc (etex_pen_base + 3) /xditto, just before a display */
etex_pens (etex_pen_base +4) /xend of table of e-TEX’s penalties %/

box_base etex_pens /x table of 256 box registers */

cur_font_loc (box_base 4+ 256) /xinternal font number outside math mode */
math_font_base (cur_font_loc +1) /«table of 48 math font numbers x/

cat_code_base (math_font_base +48) /xtable of 256 command codes (the “catcodes”) */
le_code_base (cat_code_base + 256) /*table of 256 lowercase mappings x/

uc_code_base (lc_code_base + 256) /= table of 256 uppercase mappings */

sf_code_base (uc_code_base + 256) /xtable of 256 spacefactor mappings */
math_code_base (sf_code_base +256) /+table of 256 math mode mappings %/

int_base (math_code_base +256) /*beginning of region 5%/

par_shape_ptr equiv (par_shape_loc)
output_routine equiv (output_routine_loc)
every_par equiv(every_par_loc)
every_math equiv (every_math_loc)
every_display equiv (every_display_loc)
every_hbox equiv (every_hbox_loc)
every_vbox equiv (every_vboz_loc)
every_job equiv (every_job_loc)
every_cr equiv(every_cr_loc)

err_help equiv(err_help_loc)

toks(X) equiv(toks_base + X)

box(A) equiv(box_base + A)

cur_font equiv (cur_font_loc)
fam_fnt(A) equiv(math_font_base + A)
cat_code(A) equiv(cat_code_base + A)
le_code(A) equiv(lc_code_base + A)
uc_code(A) equiv(uc_code_base + A)

6229 TEXprof THE TABLE OF EQUIVALENTS

#define sf_code(A) equiv(sf_code_base + A)
#define math_code(A) equiv(math_code_base + A)
/xNote: math_code(c) is the true math code plus min_halfword */
(Put each of TEX’s primitives into the hash table 225) +=
primitive ("output", assign_toks, output_routine_loc);

primitive ("everypar", assign_toks, every_par_loc);
primitive ("everymath", assign_toks, every_math_loc);
primitive ("everydisplay", assign_toks, every_display_loc);
primitive ("everyhbox", assign_toks, every_hbox_loc);
primitive ("everyvbox", assign_toks, every_vboz_loc);
primitive ("everyjob", assign_toks, every_job_loc);
primitive ("everycr", assign_toks, every_cr_loc);

(

primitive ("errhelp", assign_toks, err_help_loc);
230. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case assign_toks:
if (chr_code > toks_base) { print_esc("toks");
print_int (chr_code — toks_base);
¥
else switch (chr_code) {
case output_routine_loc: print_esc("output"); break;
case every_par_loc: print_esc("everypar"); break;
case every_math_loc: print_esc("everymath"); break;
case every_display_loc: print_esc("everydisplay"); break;
case every_hbox_loc: print_esc("everyhbox"); break;
case every_vboxz_loc: print_esc("everyvbox"); break;
case every_job_loc: print_esc("everyjob"); break;
case every_cr_loc: print_esc("everycr"); break;
(Cases of assign_toks for print_cmd_chr 1388)
default: print_esc("errhelp"); } break;

101

102 THE TABLE OF EQUIVALENTS TEXprof §231

231. We initialize most things to null or undefined values. An undefined font is represented by the internal
code font_base.

However, the character code tables are given initial values based on the conventional interpretation of
ASCII code. These initial values should not be changed when TEX is adapted for use with non-English
languages; all changes to the initialization conventions should be made in format packages, not in TEX itself,
so that global interchange of formats is possible.

#define null_font font_base
#define var_code °70000 /+*math code meaning “use the current family” */

(Initialize table entries (done by INITEX only) 163) +=
par_shape_ptr = null;
eq_type (par_shape_loc) = shape_ref;
eq_level (par_shape_loc) = level_one;
for (k = etex_pen_base; k < etex_pens — 1; k++) eqtb[k] = eqtb[par_shape_loc];
for (k = output_routine_loc; k < toks_base + 255; k++) eqtb[k] = eqth[undefined_control_sequence];
boz (0) = null;
eq_type (box_base) = box_ref;
eq_level (boz_base) = level_one;
for (k = box_base + 1; k < boz_base + 255; k++) eqtb[k] = eqtb[boz_base];
cur_font = null_font;
eq_type (cur_font_loc) = data;
eq_level (cur_font_loc) = level_one;
for (k = math_font_base; k < math_font_base + 47; k++) eqtb[k] = eqtb[cur_font_loc];
equiv (cat_code_base) = 0;
eq_type (cat_code_base) = data;
eq_level (cat_code_base) = level_one;
for (k = cat_code_base + 1; k < int_base — 1; k++) eqtb[k] = eqtb[cat_code_base];
for (k=0; k <255; k++) { cat_code(k) = other_char;
math_code (k) = hi(k);
sf_code (k) = 1000;
cat_code (carriage_return) = car_ret;
(’u) = spacer;
cat_ code(’\\?) = escape;
cat_code (%) = comment;
cat_code (invalid_code) = invalid_char;
cat_code (null_code) = ignore;
for (k=0"; k<’9’; k++) math_code(k) = hi(k + var_code);
for (k="4"; k<°2’; k++) { cat_code(k) = letter;
cat_code(k+ a’ — ’A’) letter;
math_code (k) = hi(k + var_code + #100);
math_code(k + ’a’> —’A’) = hi(k + ’a’ — A’ + var_code + #100);
le_code(k) =k +’a’ —'A’;
le_code(k+’a’ —A)=k+’a’ —A’;
uc_code (k) = k;
uc_code(k +’a’> —’A’) = k;
sf_code (k) = 999;

6232 TEXprof THE TABLE OF EQUIVALENTS 103

232. (Show equivalent n, in region 4 232) =
if ((n = par_shape_loc) vV ((n > etez_pen_base) A (n < etex_pens))) { print_cmd_chr(set_shape,n);

print_char(’=");

if (equiv(n) = null) print_char(’0?);

else if (n > par_shape_loc) { print_int (penalty (equiv(n)));
print_char(’y’);
print_int (penalty (equiv(n) + 1));
if (penalty (equiv(n)) > 1) print_esc("ETC.");

else print_int (info(par_shape_ptr));
}
else if (n < toks_base) { print_cmd_chr(assign_toks,n);

print_char(’=");

if (equiv(n) # null) show_token_list (link (equiv(n)), null, 32);
}
else if (n < box_base) { print_esc("toks");

print_int (n — toks_base);

print_char(’=");

if (equiv(n) # null) show_token_list (link (equiv(n)), null, 32);
}
else if (n < cur_font_loc) { print_esc("box");

print_int (n — bozx_base);

print_char(’=");

if (equiv(n) = null) print("void");

else { depth_threshold = 0;

breadth_maz = 1;
show_node_list (equiv(n));

}

}

else if (n < cat_code_base) {Show the font identifier in eqtb[n] 233)
else (Show the halfword code in eqtb[n] 234)

This code is used in section 251.

233. (Show the font identifier in eqth[n] 233) =
{ if (n = cur_font_loc) print("current_ font");
else if (n < math_font_base + 16) { print_esc("textfont");
print_int(n — math_font_base);
}
else if (n < math_font_base + 32) { print_esc("scriptfont");
print_int(n — math_font_base — 16);

else { print_esc("scriptscriptfont");
print_int (n — math_font_base — 32);

print_char(’=");
printn_esc(hash[font_id_base + equiv(n)].rh); /+that’s font_id_text(equiv(n))*/

}

This code is used in section 232.

104 THE TABLE OF EQUIVALENTS TEXprof §234

234. (Show the halfword code in eqtb[n] 234) =
if (n < math_code_base) { if (n < lc_code_base) { print_esc("catcode");
print_int(n — cat_code_base);
}
else if (n < uc_code_base) { print_esc("lccode");
print_int(n — lc_code_base);

else if (n < sf_code_base) { print_esc("uccode");
print_int(n — uc_code_base);

}

else { print_esc("sfcode");
print_int(n — sf_code_base);

print_char(’=");
print_int (equiv(n));

}

else { print_esc("mathcode");
print_int(n — math_code_base);
print_char(’=");
print_int (ho (equiv(n)));

This code is used in section 232.

6235 TEXprof THE TABLE OF EQUIVALENTS 105

235. Region 5 of eqth contains the integer parameters and registers defined here, as well as the del_code
table. The latter table differs from the cat_code .. math_code tables that precede it, since delimiter codes
are fullword integers while the other kinds of codes occupy at most a halfword. This is what makes region 5
different from region 4. We will store the eq_level information in an auxiliary array of quarterwords that
will be defined later.

#define pretolerance_code 0 /+Dbadness tolerance before hyphenation */

#define tolerance_code 1 /*badness tolerance after hyphenation */

#define line_penalty_code 2 /+added to the badness of every line */

#define hyphen_penalty_code 3 /* penalty for break after discretionary hyphen %/
#define ex_hyphen_penalty_code 4 /*x penalty for break after explicit hyphen */
#define club_penalty_code 5 /+penalty for creating a club line x/

#define widow_penalty_code 6 /+penalty for creating a widow line %/

#define display_widow_penalty_code 7 /x+ditto, just before a display */

#define broken_penalty_code 8 /* penalty for breaking a page at a broken line x/
#define bin_op_penalty_code 9 /* penalty for breaking after a binary operation %/
#define rel_penalty_code 10 /* penalty for breaking after a relation x/

#define pre_display_penalty_code 11 /+penalty for breaking just before a displayed formula */
#define post_display_penalty_code 12 /*penalty for breaking just after a displayed formula */
#define inter_line_penalty_code 13 /*additional penalty between lines */

#define double_hyphen_demerits_code 14 /* demerits for double hyphen break x/
#define final_hyphen_demerits_code 15 /*demerits for final hyphen break x/
#define adj_demerits_code 16 /x demerits for adjacent incompatible lines %/

#define mag_code 17 /*magnification ratio */

#define delimiter_factor_code 18 /xratio for variable-size delimiters %/

#define looseness_code 19 /* change in number of lines for a paragraph x/

#define time_code 20 /+current time of day */

#define day_code 21 /xcurrent day of the month %/

#define month_code 22 /+current month of the yearx/

#define year_code 23 /* current year of our Lord */

#define show_box_breadth_code 24 /*nodes per level in show_boz */

#define show_box_depth_code 25 /+maximum level in show_box */

#define hbadness_code 26 /*hboxes exceeding this badness will be shown by hpack */
#define vbadness_code 27 [+ vboxes exceeding this badness will be shown by vpack */
#define pausing_code 28 /+pause after each line is read from a file x/

#define tracing_online_code 29 /+show diagnostic output on terminal */

#define tracing_macros_code 30 /*show macros as they are being expanded */
#define tracing_stats_code 31 /* show memory usage if TEX knows it x/

#define tracing_paragraphs_code 32 /+show line-break calculations x/

#define tracing_pages_code 33 /xshow page-break calculations %/

#define tracing_output_code 34 /*show boxes when they are shipped out %/

#define tracing_lost_chars_code 35 /xshow characters that aren’t in the font */
#define tracing_commands_code 36 /*show command codes at big_switch */
#define tracing_restores_code 37 /xshow equivalents when they are restored x/
#define uc_hyph_code 38 /*hyphenate words beginning with a capital letter x/
#define output_penalty_code 39 /*penalty found at current page break x/

#define maz_dead_cycles_code 40 /*bound on consecutive dead cycles of output */
#define hang_after_code 41 /*hanging indentation changes after this many lines */
#define floating_penalty_code 42 /+penalty for insertions held over after a split x/
#define global_defs_code 43 /*override \global specifications */

#define cur_fam_code 44 /* current family */

#define escape_char_code 45 /*escape character for token output */

#define default_hyphen_char_code 46 /*value of \hyphenchar when a font is loaded */

106 THE TABLE OF EQUIVALENTS TEXprof §235

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

default_skew_char_code 47 /xvalue of \skewchar when a font is loaded */
end_line_char_code 48 [/« character placed at the right end of the buffer x/
new_line_char_code 49 /= character that prints as print_in */
language_code 50 /xcurrent hyphenation table %/

left_hyphen_min_code 51 /*minimum left hyphenation fragment size x/
right_hyphen_min_code 52 /*minimum right hyphenation fragment size */
holding_inserts_code 53 /*do not remove insertion nodes from \box255 x*/

error_context_lines_code 54 /+maximum intermediate line pairs shown */

tex_int_pars 55 /= total number of TEX’s integer parameters */

etex_int_base pdf_int_pars /*base for e-TEX’s integer parameters %/
tracing_assigns_code eter_int_base /+show assignments * /

tracing_groups_code (etex_int_base + 1) /xshow save/restore groups x/
tracing_ifs_code (etex_int_base + 2) /*show conditionals */

tracing_scan_tokens_code (etex_int_base + 3) /*show pseudo file open and close */
tracing_nesting_code (etex_int_base + 4) /*show incomplete groups and ifs within files %/
saving_vdiscards_code (etex_int_base + 5) /xsave items discarded from vlists */
saving_hyph_codes_code (etex_int_base +6) /+save hyphenation codes for languages */
expand_depth_code (etex_int_base +7) /+*maximum depth for expansion—e-TEX */

eTeX_state_code (etex_int_base +8) /xe-TEX state variables*/
etex_int_pars (eTeX_state_code + eTeX_states)
/*total number of e-TEX’s integer parameters %/

int_pars etex_int_pars /* total number of integer parameters %/
count_base (int_base + int_pars) /%256 user \count registers x/
del_code_base (count_base + 256) /256 delimiter code mappings */
dimen_base (del_code_base +256) /+beginning of region 6 */

del_code(A) eqtb|del_code_base + A.i

count(A) eqth[count_base + A].i

int_par(A) eqtb[int_base + A].i /+an integer parameter x/
pretolerance int_par (pretolerance_code)

tolerance int_par (tolerance_code)

line_penalty int_par (line_penalty_code)

hyphen_penalty int_par (hyphen_penalty_code)
ex_hyphen_penalty int_par (ex_hyphen_penalty_code)
club_penalty int_par (club_penalty_code)

widow_penalty int_par (widow_penalty_code)
display_widow_penalty int_par (display_widow_penalty_code)
broken_penalty int_par (broken_penalty_code)

bin_op_penalty int_par (bin_op_penalty_code)

rel_penalty int_par(rel_penalty_code)

pre_display_penalty int_par (pre_display_penalty_code)
post_display_penalty int_par (post_display_penalty_code)
inter_line_penalty int_par (inter_line_penalty_code)
double_hyphen_demerits int_par (double_hyphen_demerits_code)
final_hyphen_demerits int_par (final_hyphen_demerits_code)
adj_demerits int_par(adj_demerits_code)

mag int_par(mag_code)

delimiter_factor int_par(delimiter_factor_code)

looseness int_par (looseness_code)

time int_par (time_code)

day int_par(day_code)

month int_par(month_code)

6235 TEXprof THE TABLE OF EQUIVALENTS

#define year int_par(year_code)

#define show_boxz_breadth int_par(show_box_breadth_code)
#define show_box_depth int_par(show_box_depth_code)
#define hbadness int_par(hbadness_code)

#define vbadness int_par(vbadness_code)

#define pausing int_par(pausing_code)

#define tracing_online int_par(tracing_online_code)
#define tracing_macros int_par(tracing_macros_code)
#define tracing_stats int_par(tracing_stats_code)

#define tracing_paragraphs int_par (tracing_paragraphs_code)
#define tracing_pages int_par(tracing_pages_code)

#define tracing_output int_par (tracing_output_code)
#define tracing_lost_chars int_par(tracing_lost_chars_code)
#define tracing_commands int_par (tracing_commands_code)
#define tracing_restores int_par (tracing_restores_code)
#define uc_hyph int_par(uc_hyph_code)

#define output_penalty int_par (output_penalty_code)
#define maz_dead_cycles ini_par(max_dead_cycles_code)
#define hang_after int_par(hang_after_code)

#define floating_penalty int_par (floating_penalty_code)
#define global_defs int_par(global_defs_code)

#define cur_fam int_par(cur_fam_code)

#define escape_char int_par(escape_char_code)

#define default_hyphen_char int_par(default_hyphen_char_code)
#define default_skew_char int_par(default_skew_char_code)
#define end_line_char int_par(end_line_char_code)

#define new_line_char int_par(new_line_char_code)
#define language int_par(language_code)

#define left_hyphen_min int_par (left_hyphen_min_code)
#define right_hyphen_min int_par (right_hyphen_min_code)
#define holding_inserts int_par (holding_inserts_code)
#define error_context_lines int_par(error_context_lines_code)

#define tracing_assigns int_par (tracing_assigns_code)

#define tracing_groups int_par(tracing_groups_code)

#define tracing_ifs int_par(tracing_ifs_code)

#define tracing_scan_tokens int_par(tracing_scan_tokens_code)
#define tracing_nesting int_par (tracing_nesting_code)

#define saving_vdiscards int_par(saving_vdiscards_code)
#define saving_hyph_codes int_par(saving_hyph_codes_code)
#define expand_depth int_par(expand_depth_code)

(Assign the values depth_threshold: = show_box_depth and breadth_maz: = show_box_breadth 235) =

depth_threshold = show_box_depth; breadth_max = show_box_breadth

This code is used in section 197.

107

108 THE TABLE OF EQUIVALENTS TEXprof

236. We can print the symbolic name of an integer parameter as follows.

static void print_param (int n) { switch (n) {

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

pretolerance_code: print_esc("pretolerance"); break;

tolerance_code: print_esc("tolerance"); break;

line_penalty_code: print_esc("linepenalty"); break;
hyphen_penalty_code: print_esc("hyphenpenalty"); break;
ex_hyphen_penalty_code: print_esc("exhyphenpenalty"); break;
club_penalty_code: print_esc("clubpenalty"); break;
widow_penalty_code: print_esc("widowpenalty"); break;
display_widow_penalty_code: print_esc("displaywidowpenalty"); break;
broken_penalty_code: print_esc("brokenpenalty"); break;
bin_op_penalty_code: print_esc("binoppenalty"); break;
rel_penalty_code: print_esc("relpenalty"); break;
pre_display_penalty_code: print_esc("predisplaypenalty"); break;
post_display_penalty_code: print_esc("postdisplaypenalty"); break;
inter_line_penalty_code: print_esc("interlinepenalty"); break;
double_hyphen_demerits_code: print_esc("doublehyphendemerits"); break;

case final_hyphen_demerits_code: print_esc("finalhyphendemerits"); break;

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

adj_demerits_code: print_esc("adjdemerits"); break;
mag_code: print_esc("mag"); break;

delimiter_factor_code: print_esc("delimiterfactor"); break;
looseness_code: print_esc("looseness"); break;

time_code: print_esc("time"); break;

day_code: print_esc("day"); break;

month_code: print_esc("month"); break;

year_code: print_esc("year"); break;

show_box_breadth_code: print_esc("showboxbreadth"); break;
show_boz_depth_code: print_esc("showboxdepth"); break;
hbadness_code: print_esc("hbadness"); break;

vbadness_code: print_esc("vbadness"); break;

pausing_code: print_esc("pausing"); break;

tracing_online_code: print_esc("tracingonline"); break;
tracing_macros_code: print_esc("tracingmacros"); break;
tracing_stats_code: print_esc("tracingstats"); break;
tracing_paragraphs_code: print_esc("tracingparagraphs"); break;
tracing_pages_code: print_esc("tracingpages"); break;
tracing_output_code: print_esc("tracingoutput"); break;
tracing_lost_chars_code: print_esc("tracinglostchars"); break;
tracing_commands_code: print_esc("tracingcommands"); break;
tracing_restores_code: print_esc("tracingrestores"); break;
uc_hyph_code: print_esc("uchyph"); break;

output_penalty_code: print_esc("outputpenalty"); break;
max_dead_cycles_code: print_esc("maxdeadcycles"); break;
hang_after_code: print_esc("hangafter"); break;

case floating_penalty_code: print_esc("floatingpenalty"); break;

case
case
case
case
case
case
case

global_defs_code: print_esc("globaldefs"); break;

cur_fam_code: print_esc("fam"); break;

escape_char_code: print_esc("escapechar"); break;
default_hyphen_char_code: print_esc("defaulthyphenchar"); break;
default_skew_char_code: print_esc("defaultskewchar"); break;
end_line_char_code: print_esc("endlinechar"); break;
new_line_char_code: print_esc("newlinechar"); break;

§236

6236 TEXprof THE TABLE OF EQUIVALENTS 109

case language_code: print_esc("language"); break;

case left_hyphen_min_code: print_esc("lefthyphenmin"); break;

case right_hyphen_min_code: print_esc("righthyphenmin"); break;

case holding_inserts_code: print_esc("holdinginserts"); break;

case error_context_lines_code: print_esc("errorcontextlines"); break;
(Cases for print_param 1389)

default: print(" [unknown integer parameter!l"); } }

110 THE TABLE OF EQUIVALENTS TEXprof §237

237. The integer parameter names must be entered into the hash table.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("pretolerance", assign_int, int_base + pretolerance_code);
primitive ("tolerance", assign_int, int_base + tolerance_code);
primitive ("linepenalty", assign_int, int_base + line_penalty_code);
primitive ("hyphenpenalty", assign_int, int_base + hyphen_penalty_code);
primitive ("exhyphenpenalty", assign_int, int_base + ex_hyphen_penalty_code);
primitive ("clubpenalty", assign_int, int_base + club_penalty_code);
primitive ("widowpenalty", assign_int, int_base + widow_penalty_code);
primitive ("displaywidowpenalty", assign_int, int_base + display_widow_penalty_code);
primitive ("brokenpenalty", assign_int, int_base + broken_penalty_code);
primitive ("binoppenalty", assign_int, int_base + bin_op_penalty_code);
primitive ("relpenalty", assign_int, int_base + rel_penalty_code);
primitive ("predisplaypenalty", assign_int, int_base + pre_display_penalty_code);
primitive ("postdisplaypenalty", assign_int, int_base + post_display_penalty_code);
primitive ("interlinepenalty", assign_int, int_base + inter_line_penalty_code);
primitive ("doublehyphendemerits", assign_int, int_base + double_hyphen_demerits_code);
primitive ("finalhyphendemerits", assign_int, int_base + final_hyphen_demerits_code);
primitive ("adjdemerits", assign_int, int_base + adj_demerits_code);
primitive ("mag", assign_int, int_base + mag_code);
primitive ("delimiterfactor", assign_int, int_base + delimiter_factor_code);
primitive ("looseness", assign_int, int_base + looseness_code);
primitive ("time", assign_int, int_base + time_code);
primitive ("day", assign_int, int_base + day_code);
primitive ("month", assign_int, int_base + month_code);
primitive ("year", assign_int, int_base + year_code);
primitive ("showboxbreadth", assign_int, int_base + show_box_breadth_code);
primitive ("showboxdepth", assign_int, int_base + show_box_depth_code);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

primitive ("hbadness", assign_int, int_base + hbadness_code);
primitive ("vbadness", assign_int, int_base + vbadness_code);
primitive ("pausing", assign_int, int_base + pausing_code);

'tracingonline", assign_int, int_base + tracing_online_code);

primitive
primitive ("tracingmacros", assign_int, int_base + tracing_macros_code);
primitive ("tracingstats", assign_int, int_base + tracing_stats_code);

primitive ("tracingparagraphs", assign_int, int_base + tracing_paragraphs_code);
primitive ("tracingpages", assign_int, int_base + tracing_pages_code);

primitive ("tracingoutput", assign_int, int_base + tracing_output_code);
primitive ("tracinglostchars", assign_int, int_base + tracing_lost_chars_code);
primitive ("tracingcommands", assign_int, int_base + tracing_commands_code);
primitive ("tracingrestores", assign_int, int_base + tracing_restores_code);
primitive ("uchyph", assign_int, int_base + uc_hyph_code);

primitive ("outputpenalty", assign_int, int_base + output_penalty_code);
primitive ("maxdeadcycles", assign_int, int_base + max_dead_cycles_code);

primitive ("hangafter", assign_int, int_base + hang_after_code);

primitive ("floatingpenalty", assign_int, int_base + floating_penalty_code);
primitive ("globaldefs", assign_int, int_base + global_defs_code);

primitive ("fam", assign_int, int_base + cur_fam_code);

primitive ("escapechar", assign_int, int_base + escape_char_code);
primitive ("defaulthyphenchar", assign_int, int_base + default_hyphen_char_code);
primitive ("defaultskewchar", assign_int, int_base + default_skew_char_code);
primitive ("endlinechar", assign_int, int_base + end_line_char_code);

primitive ("newlinechar", assign_int, int_base + new_line_char_code);

6237 TEXprof THE TABLE OF EQUIVALENTS 111

primitive ("language", assign_int, int_base + language_code);

primitive ("lefthyphenmin", assign_int, int_base + left_hyphen_min_code);
primitive ("righthyphenmin", assign_int, int_base + right_hyphen_min_code);
primitive ("holdinginserts", assign_int, int_base + holding_inserts_code);
primitive ("errorcontextlines", assign_int, int_base + error_context_lines_code);

238. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case assign_int:
if (chr_code < count_base) print_param (chr_code — int_base);
else { print_esc("count");
print_int (chr_code — count_base);
} break;

239. The integer parameters should really be initialized by a macro package; the following initialization
does the minimum to keep TEX from complete failure.

(Initialize table entries (done by INITEX only) 163) +=
for (k = int_base; k < del_code_base — 1; k++) eqtb[k].i = 0;
mag = 1000;
tolerance = 10000;
hang_after = 1;
maz_dead_cycles = 25;
escape_char = >\\"’;
end_line_char = carriage_return;
for (k=0; k <255; k++) del_code(k) = —1;
del_code(?.?)=0; /+this null delimiter is used in error recovery */

240. The following procedure, which is called just before TEX initializes its input and output, establishes
the initial values of the date and time. This does include too, for system integrators, the creation date and
the reference moment for the timer—PRII'E extensions. If the system supports environment variables, if
FORCE_SOURCE_DATE is set to 1 and SOURCE_DATE_EPOCH is set, the date related values: year, month, day
and time, including creation date, will be taken relative from the value defined by SOURCE_DATE_EPOCH. TgX
Live calls tl_now to obtain the current time as a tm structure.

static void fiz_date_and_time(void)
{ struct tm xt = ti_now();

time = sys_time = t—tm_hour * 60 + t — tm_min; /* minutes since midnight */
day = sys_day = t—tm_mday; /*day of the month %/
month = sys_month = t— tm_mon + 1; /*month of the year */

year = sys_year = t— tm_year + 1900; /* Anno Domini */

112 THE TABLE OF EQUIVALENTS TEXprof §241

241. (Show equivalent n, in region 5 241) =
{ if (n < count_base) print_param(n — int_base);
else if (n < del_code_base) { print_esc("count");
print_int(n — count_base);
}
else { print_esc("delcode");
print_int(n — del_code_base);
}
print_char(’=");
print_int (eqtb[n].i);
}

This code is used in section 251.

242. (Set variable ¢ to the current escape character 242) =
c = escape_char

This code is used in section 62.

243. (Character s is the current new-line character 243) =
s = new_line_char

This code is used in sections 57 and 58.

244. TgX is occasionally supposed to print diagnostic information that goes only into the transcript file,
unless tracing_online is positive. Here are two routines that adjust the destination of print commands:

static void begin_diagnostic(void) /* prepare to do some tracing */
{ old_setting = selector;

if ((tracing_online < 0) A (selector = term_and_log)) { decr (selector);

if (history = spotless) history = warning_issued;

}
}
static void end_diagnostic(bool blank_line) /xrestore proper conditions after tracing */
{ print_nl("");

if (blank_line) print_In();

selector = old_setting;

}

245. Of course we had better declare a few more global variables, if the previous routines are going to
work.
(Global variables 13) +=

static int old_setting;

static int sys_time, sys_day, sys_month, sys_year; /xdate and time supplied by external system */

6246 TEXprof THE TABLE OF EQUIVALENTS 113

246. The final region of eqthb contains the dimension parameters defined here, and the 256 \dimen registers.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

par_indent_code 0 /*indentation of paragraphs x/

math_surround_code 1 /*space around math in text */
line_skip_limit_code 2 /* threshold for line_skip instead of baseline_skip =/
hsize_code 3 /xline width in horizontal mode */

vsize_code 4 /xpage height in vertical mode */

max_depth_code 5 /*maximum depth of boxes on main pages */
split_mazx_depth_code 6 /*maximum depth of boxes on split pages */
bor_maz_depth_code 7 /*maximum depth of explicit vboxes %/

hfuzz_code 8 /xtolerance for overfull hbox messages %/

vfuzz_code 9 /= tolerance for overfull vbox messages */
delimiter_shortfall_code 10 /*maximum amount uncovered by variable delimiters */
null_delimiter_space_code 11 /+blank space in null delimiters %/
script_space_code 12 /* extra space after subscript or superscript */
pre_display_size_code 13 /*length of text preceding a display */
display_width_code 14 /xlength of line for displayed equation */
display_indent_code 15 /xindentation of line for displayed equation */
overfull_rule_code 16 /+width of rule that identifies overfull hboxes */
hang_indent_code 17 /*amount of hanging indentation /

h_offset_code 18 /*amount of horizontal offset when shipping pages out */
v_offset_code 19 /*amount of vertical offset when shipping pages out x/
emergency_stretch_code 20 /xreduces badnesses on final pass of line-breaking /
page_width_code 21 /* current paper page width */

page_height_code 22 /* current paper page height x/

dimen_pars (pdftex_last_dimen_code + 1) /*total number of dimension parameters %/
scaled_base (dimen_base + dimen_pars) /xtable of 256 user-defined \dimen registers */
eqth_size (scaled_base + 255) /xlargest subscript of eqtb */

dimen(A) eqth[scaled_base + A].sc

dimen_par(A) eqtb[dimen_base + A].sc /xa scaled quantity */
par_indent dimen_par (par_indent_code)
math_surround dimen_par (math_surround_code)
line_skip_limit ~ dimen_par (line_skip_limit_code)

hsize dimen_par (hsize_code)

vsize dimen_par (vsize_code)

max_depth dimen_par(max_depth_code)
split_max_depth dimen_par (split_maz_depth_code)
box_mazx_depth dimen_par(box_maz_depth_code)

hfuzz dimen_par (hfuzz_code)

vfuzz dimen_par (vfuzz_code)

delimiter_shortfall dimen_par (delimiter_shortfall_code)
null_delimiter_space dimen_par (null_delimiter_space_code)
seript_space dimen_par (script_space_code)
pre_display_size dimen_par (pre_display_size_code)
display_width dimen_par(display_width_code)
display_indent dimen_par (display_indent_code)
overfull_rule dimen_par (overfull_rule_code)
hang_indent dimen_par (hang_indent_code)

h_offset dimen_par (h_offset_code)

v_offset dimen_par(v_offset_code)

emergency_stretch — dimen_par (emergency_stretch_code)
page_height dimen_par (page_height_code)

114 THE TABLE OF EQUIVALENTS TEXprof

static void print_length_param (int n)
{ switch (n) {
case par_indent_code: print_esc("parindent"); break;

case
case
case
case
case
case
case
case
case
case
case
case

math_surround_code: print_esc("mathsurround"); break;
line_skip_limit_code: print_esc("lineskiplimit"); break;
hsize_code: print_esc("hsize"); break;

vsize_code: print_esc("vsize"); break;

max_depth_code: print_esc("maxdepth"); break;
split_max_depth_code: print_esc("splitmaxdepth"); break;
box_mazx_depth_code: print_esc("boxmaxdepth"); break;

hfuzz_code: print_esc("hfuzz"); break;

vfuzz_code: print_esc("viuzz"); break;

delimiter_shortfall_code: print_esc("delimitershortfall"); break;
null_delimiter_space_code: print_esc("nulldelimiterspace"); break;
script_space_code: print_esc("scriptspace"); break;

case pre_display_size_code: print_esc("predisplaysize"); break;

case
case
case
case
case
case
case

display_width_code: print_esc("displaywidth"); break;
display_indent_code: print_esc("displayindent"); break;
overfull_rule_code: print_esc("overfullrule"); break;
hang_indent_code: print_esc("hangindent"); break;
h_offset_code: print_esc("hoffset"); break;

v_offset_code: print_esc("voffset"); break;
emergency_stretch_code: print_esc("emergencystretch"); break;

case page_width_code:
if (pdf_on) print_esc("pdfpagewidth");
else print_esc("pagewidth"); break;
case page_height_code:
if (pdf_on) print_esc("pdfpageheight");
else print_esc("pageheight"); break;
(Cases for print_lenght_param 1806)
default: print(" [unknown dimen parameter!]");

}

§246

6247 TEXprof THE TABLE OF EQUIVALENTS

247. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("parindent", assign_dimen, dimen_base + par_indent_code);
primitive ("mathsurround", assign_dimen, dimen_base + math_surround_code);
primitive ("lineskiplimit", assign_dimen, dimen_base + line_skip_limit_code);
primitive ("hsize", assign_dimen, dimen_base + hsize_code);
primitive ("vsize", assign_dimen, dimen_base + vsize_code);
primitive ("maxdepth", assign_dimen, dimen_base + maz_depth_code);
primitive ("splitmaxdepth", assign_dimen, dimen_base + split_maz_depth_code);
primitive ("boxmaxdepth", assign_dimen, dimen_base + bor_max_depth_code);
primitive ("hfuzz", assign_dimen, dimen_base + hfuzz_code);
primitive ("viuzz", assign_dimen, dimen_base + vfuzz_code);
primitive ("delimitershortfall", assign_dimen, dimen_base + delimiter_shortfall_code);
(
(
(
(
(
(
(
(
(
(

primitive ("nulldelimiterspace", assign_dimen, dimen_base + null_delimiter_space_code);
primitive ("scriptspace", assign_dimen, dimen_base + script_space_code);
primitive ("predisplaysize", assign_dimen, dimen_base + pre_display_size_code);
primitive ("displaywidth", assign_dimen, dimen_base + display_width_code);
primitive ("displayindent", assign_dimen, dimen_base + display_indent_code);
primitive ("overfullrule", assign_dimen, dimen_base + overfull_rule_code);
primitive ("hangindent", assign_dimen, dimen_base + hang_indent_code);

primitive ("hoffset", assign_dimen, dimen_base + h_offset_code);
primitive ("voffset", assign_dimen, dimen_base + v_offset_code);
primitive ("emergencystretch", assign_dimen, dimen_base + emergency_stretch_code);

248. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case assign_dimen:
if (chr_code < scaled_base) print_length_param (chr_code — dimen_base);
else { print_esc("dimen");
print_int (chr_code — scaled_base);
} break;

249. (Initialize table entries (done by INITEX only) 163) +=
for (k = dimen_base; k < eqtb_size; k++) eqtb[k].sc = 0;

250. (Show equivalent n, in region 6 250) =
{ if (n < scaled_base) print_length_param (n — dimen_base);
else { print_esc("dimen");
print_int(n — scaled_base);

print_char(’=");
print_scaled (eqtb[n].sc);
print("pt");

}

This code is used in section 251.

115

116 THE TABLE OF EQUIVALENTS TEXprof §251

251. Here is a procedure that displays the contents of eqtb[n] symbolically.

(Declare the procedure called print_cmd_chr 297)
#ifdef STAT

static void show_eqtb(pointer n)

{ if (n < active_base) print_char(*??); /+this can’t happen */
else if (n < glue_base) (Show equivalent n, in region 1 or 2 222)

else if (n < local_base) {Show equivalent n, in region 3 228)

else if (n < int_base) (Show equivalent n, in region 4 232)

else if (n < dimen_base) (Show equivalent n, in region 5 241)

else if (n < eqtb_size) (Show equivalent n, in region 6 250)

else print_char(’?’); /xthis can’t happen either %/

#endif

252. The last two regions of eqtb have fullword values instead of the three fields eq_level, eq_type, and
equiv. An eq_type is unnecessary, but TEX needs to store the eg_level information in another array called
zeq_level.

(Global variables 13) +=
static memory_word eqtb0 [eqth_size — active_base + 1], xconst eqth = eqtb0 — active_base;
static quarterword wzeq_level0 [eqtb_size — int_base + 1], xconst zeq_level = xeq_levell) — int_base;

253. (Set initial values of key variables 21) +=
for (k = int_base; k < eqtb_size; k++) xeq_level[k] = level_one;

254. When the debugging routine search_mem is looking for pointers having a given value, it is interested
only in regions 1 to 3 of egth, and in the first part of region 4.

(Search eqth for equivalents equal to p 254) =
for (q = active_base; q < box_base + 255; q++) { if (equiv(q) = p) { print_nl("EQUIV(");
print_int(q);
print_char(’)?);
}
}

This code is used in section 171.

6255 TEXprof THE HASH TABLE 117

255. The hash table. Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Pro-
gramming). Once a control sequence enters the table, it is never removed, because there are complicated
situations involving \gdef where the removal of a control sequence at the end of a group would be a mistake
preventable only by the introduction of a complicated reference-count mechanism.

The actual sequence of letters forming a control sequence identifier is stored in the str_pool array together
with all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The
first of these, called next(p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text(p), points to the str_start entry for p’s identifier. If position p
of the hash table is empty, we have text(p) = 0; if position p is either empty or the end of a coalesced hash
list, we have nexzt(p) = 0. An auxiliary pointer variable called hash_used is maintained in such a way that
all locations p > hash_used are nonempty. The global variable cs_count tells how many multiletter control
sequences have been defined, if statistics are being kept.

A global boolean variable called no_new_control_sequence is set to true during the time that new hash
table entries are forbidden.

#define next(A) hash[A].lh /*link for coalesced lists */

#define text(A) hash[A]l.rh /xstring number for control sequence name x/

#define hash_is_full (hash_used = hash_base) /*test if all positions are occupied */
#define font_id_text(A) text(font_id_base + A) /xa frozen font identifier’s name */

{ Global variables 13) +=
static two_halves hash0[undefined_control_sequence — hash_base], xconst hash = hash(0 — hash_base;
/*the hash table x/
static pointer hash_used; /*allocation pointer for hash x/
static bool no_new_control_sequence; /= are new identifiers legal? x/
static int cs_count; /*total number of known identifiers */

256. (Set initial values of key variables 21) +=
no_new_control_sequence = true; /*new identifiers are usually forbidden x/
next (hash_base) = 0;
text (hash_base) = 0;
for (k = hash_base + 1; k < undefined_control_sequence — 1; k++) hash[k] = hash[hash_base];

257. (Initialize table entries (done by INITEX only) 163) +=
hash_used = frozen_control_sequence; /*nothing is used x/
cs_count = 0;
eq_type (frozen_dont_expand) = dont_expand;
text (frozen_dont_expand) = s_no("notexpanded:");

118 THE HASH TABLE TpXprof §258

258. Here is the subroutine that searches the hash table for an identifier that matches a given string
of length I > 1 appearing in buffer[j .. (j +1 — 1)]. If the identifier is found, the corresponding hash
table address is returned. Otherwise, if the global variable no_new_control_sequence is true, the dummy
address undefined_control_sequence is returned. Otherwise the identifier is inserted into the hash table and
its location is returned.

static pointer id_lookup (int j,int [) /xsearch the hash table */

{ /* go here if you found it x/
int h; /*hash code */

int d; /*number of characters in incomplete current string s/
pointer p; /*index in hash array */
int k; /xindex in buffer array x/

(Compute the hash code h 260);
p = h + hash_base; /+we start searching here; note that 0 < h < hash_prime x/
loop { if (text(p) > 0)
if (length(text(p)) =1)
if (str_eq_buf (text(p),j)) goto found;
if (next(p) =0) { if (no_new_control_sequence) p = undefined_control_sequence;
else (Insert a new control sequence after p, then make p point to it 259);
goto found;
¥
p = next(p);
}

found: return p;

}

259. (Insert a new control sequence after p, then make p point to it 259) =
{ if (text(p) > 0) { do {
if (hash_is_full) overflow("hash size", hash_size);
decr (hash_used);
} while (—(text(hash_used) =0)); /+search for an empty location in hash x/
next(p) = hash_used;
p = hash_used;

str_room (1);
d = cur_length;
while (pool_ptr > str_start[str_ptr]) { decr(pool_ptr);
str_pool [pool_ptr + 1| = str_pool [pool_ptr];
} /*move current string up to make room for another */
for (k=j; k<j+1—1; k++) append_char (buffer|k]);
text(p) = make_string ();
pool_ptr = pool_ptr + d,;
#ifdef STAT
incr(cs_count);
#endif
}

This code is used in section 258.

6260 TEXprof THE HASH TABLE 119

260. The value of hash_prime should be roughly 85% of hash_size, and it should be a prime number.
The theory of hashing tells us to expect fewer than two table probes, on the average, when the search is
successful. [See J. S. Vitter, Journal of the ACM 30 (1983), 231-258.]

(Compute the hash code h 260) =
h = bufferj);
for (k=j+1; k<j+1-1; k++) { h = h+ h+ buffer[k];
while (h > hash_prime) h = h — hash_prime;

}

This code is used in section 258.

261. Single-character control sequences do not need to be looked up in a hash table, since we can use the
character code itself as a direct address. The procedure prini_cs prints the name of a control sequence,
given a pointer to its address in eqtb. A space is printed after the name unless it is a single nonletter or an
active character. This procedure might be invoked with invalid data, so it is “extra robust.” The individual
characters must be printed one at a time using print, since they may be unprintable.

(Basic printing procedures 55) +=
static void print_cs(int p) /* prints a purported control sequence */
{if (p < hash_base) /xsingle character x/
if (p > single_base)
if (p = null_cs) { print_esc("csname");
print_esc("endcsname");
print_char(’,’);
}
else { printn_esc(p — single_base);
if (cat_code(p — single_base) = letter) print_char(’y’);

else if (p < active_base) print_esc("IMPOSSIBLE.");
else printn(p — active_base);
else if (p > undefined_control_sequence) print_esc("IMPOSSIBLE.");
else if ((text(p) < 0) V (text(p) > str_ptr)) print_esc("NONEXISTENT.");
else { if (p = frozen_primitive) print_esc("primitive");
printn_esc(text (p));
print_char(’y’);
}
}

262. Here is a similar procedure; it avoids the error checks, and it never prints a space after the control
sequence.

(Basic printing procedures 55) +=
static void sprint_cs(pointer p) /*prints a control sequence */
{ if (p < hash_base)
if (p < single_base) printn(p — active_base);
else if (p < null_cs) printn_esc(p — single_base);
else { print_esc("csname");
print_esc("endcsname");

}

else printn_esc(text(p));

}

120 THE HASH TABLE TpXprof §263

263. We need to put TEX’s “primitive” control sequences into the hash table, together with their command
code (which will be the eg_type) and an operand (which will be the equiv). The primitive procedure does
this, in a way that no TEX user can. The global value cur_val contains the new eqtb pointer after primitive
has acted.

#ifdef INIT
static void primitive (char xstr, quarterword c, halfword o)
{ str_number s = s_no(str);
int k; /*index into str_pool */
int j; /xindex into buffer x/
small_number [; /*length of the string x/
pointer p; /xpointer in ROM x/

if (s < 256) cur_val = s+ single_base;

else { k = str_start[s];
l = str_start[s+ 1] — k; /+we will move s into the (possibly non-empty) buffer =/
if (first +1 > buf_size + 1) overflow ("buffer size", buf_size);
for (j=0; j <1l—1; j++) buffer|first + j] = so(str_pool[k + j]);

cur_val = id_lookup (first,l); /* no_new_control_sequence is false */
flush_string;
text(cur_val) = s; /*we don’t want to have the string twice /

}

eq_level (cur_val) = level_one;

eq_type (cur_val) = ¢;

equiv (cur_val) = o;

(Add primitive definition to the ROM array 1583);

#endif

6264 TEXprof THE HASH TABLE 121

264. Many of TEX’s primitives need no equiv, since they are identifiable by their eq_type alone. These
primitives are loaded into the hash table as follows:

(Put each of TEX’s primitives into the hash table 225) +=
primitive (",", ex_space, 0);
primative(" /" ital_corr,0);
primitive ("accent", accent,0);
primitive ("advance", advance, 0);
primitive ("afterassignment", after_assignment,0);
primitive ("aftergroup", after_group,0);
primitive ("begingroup", begin_group, 0);
primitive ("char", char_num, 0);
("csname", cs_name, 0);
primitive("delimiter", delim_num,0);
primitive("divide", divide, 0);
primitive ("endcsname", end_cs_name, 0);
primitive ("endgroup", end_group, 0);
text(frozen_end_group) = text (cur_val);
eqth[frozen_end_group] = eqtb|[cur_vall;
primitive ("expandafter", expand_after,0);
primitive ("font", def_font,0);
primitive ("fontdimen" , assign_font_dimen,0);
primitive("halign", halign,0);
primitive ("hrule", hrule, 0);
primitive("1gnorespaces" ignore_spaces, 0);
primitive ("insert", insert,0);
primitive ("mark", mark ,0);
primitive mathaccent" math_accent,0);
primitive ("mathchar" math char_num,0);
primitive('mathchome" math_choice 0)
primitive ("multiply", multiply, 0);
(
(
(
(
(
(
(
(
(
(

primitive

Q. Q

primitive ("noalign", no_align,0);
primitive ("noboundary", no_boundary,0);
primitive ("noexpand", no_expand, 0);
primitive ("nonscript", non_script,0);
primitive ("omit", omit, 0);
primitive ("parshape", set_shape, par_shape_loc);
primitive ("penalty", break_penalty,0);
primitive ("prevgraf", set_prev_graf ,0);
primitive ("radical", radical, 0);
primitive ("read", read to_cs,0);
primitive("relax" ,relax,256); /xcf. scan_file_name x/
text (frozen_relax) = text (cur_val);
eqth[frozen_relax] = eqth[cur_val];
primitive ("setbox", set_box, 0);
primitive ("the", the,0);
primitive ("toks", toks_register, mem_bot);
primitive ("vadjust", vadjust,0);
primitive ("valign" valign,0);
(u
(

primitive ("vcenter", veenter, 0);
primitive ("vrule", vrule,0);

122 THE HASH TABLE TpXprof §265

265. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print_cmd_chr routine below.

(Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case accent: print_esc("accent"); break;
case advance: print_esc("advance"); break;
case after_assignment: prini_esc("afterassignment"); break;
case after_group: print_esc("aftergroup"); break;
case assign_font_dimen: print_esc("fontdimen"); break;
case begin_group: print_esc("begingroup"); break;
case break_penalty: print_esc("penalty"); break;
case char_num: print_esc("char"); break;
case cs_name: print_esc("csname"); break;
case def_font: print_esc("font"); break;
case delim_num: print_esc("delimiter"); break;
case divide: prini_esc("divide"); break;
case end_cs_name: print_esc("endcsname"); break;
case end_group: print_esc("endgroup"); break;
case ez_space: print_esc(","); break;
case expand_after:
switch (chr_code) {
case 0: print_esc("expandafter"); break;
(Cases of expandafter for print_cmd_chr 1445)
} break; /xthere are no other cases*/
case halign: print_esc("halign"); break;
case hrule: print_esc("hrule"); break;
case ignore_spaces: print_esc("ignorespaces"); break;
case insert: print_esc("insert"); break;
case ital_corr: print_esc("/"); break;
case mark:
{ print_esc("mark");
if (chr_code > 0) print_char(’s’);
} break;
case math_accent: print_esc("mathaccent"); break;
case math_char_num: print_esc("mathchar"); break;
case math_choice: print_esc("mathchoice"); break;
case multiply: print_esc("multiply"); break;
case no_align: print_esc("noalign"); break;
case no_boundary: print_esc("noboundary"); break;
case no_ezxpand: print_esc("noexpand"); break;
case non_script: print_esc("nonscript"); break;
case omit: print_esc("omit"); break;
case radical: print_esc("radical"); break; case read_to_cs: if (chr_code = 0) print_esc("read") (Cases
of read for print_cmd_chr 1442); break;
case relax: print_esc("relax"); break;
case set_box: print_esc("setbox"); break;
case set_prev_graf: pm’nt_esc("prevgraf"); break;
case set_shape:
switch (chr_code) {
case par_shape_loc: print_esc("parshape"); break;
(Cases of set_shape for print_cmd_chr 1535)
} break; /*there are no other cases x/

8265 TEXprof THE HASH TABLE 123

case the: if (chr_code =0) print_esc("the") (Cases of the for print_cmd_chr 1417); break;
case toks_register: (Cases of toks_register for print_cmd_chr 1515) break;
case vadjust: print_esc("vadjust"); break;
case valign: print_esc("valign"); break;
case vcenter: print_esc("vcenter"); break;
case vrule: print_esc("vrule"); break;

266. We will deal with the other primitives later, at some point in the program where their eq_type and
equiv values are more meaningful. For example, the primitives for math mode will be loaded when we
consider the routines that deal with formulas. It is easy to find where each particular primitive was treated
by looking in the index at the end; for example, the section where "radical" entered eqtb is listed under
“\radical primitive’. (Primitives consisting of a single nonalphabetic character, like ‘\/’, are listed under
‘Single-character primitives’.)

Meanwhile, this is a convenient place to catch up on something we were unable to do before the hash table
was defined:

(Print the font identifier for font(p) 266) =
printn_esc(font_id_text (font(p)))

This code is used in sections 173 and 175.

124 SAVING AND RESTORING EQUIVALENTS TEXprof 8267

267. Saving and restoring equivalents. The nested structure provided by ‘{...2}’ groups in TEX
means that eqth entries valid in outer groups should be saved and restored later if they are overridden inside
the braces. When a new egtb value is being assigned, the program therefore checks to see if the previous
entry belongs to an outer level. In such a case, the old value is placed on the save_stack just before the new
value enters eqtb. At the end of a grouping level, i.e., when the right brace is sensed, the save_stack is used
to restore the outer values, and the inner ones are destroyed.

Entries on the save_stack are of type memory_word. The top item on this stack is save_stack [p], where
p = save_ptr — 1; it contains three fields called save_type, save_level, and save_index, and it is interpreted
in one of five ways:

1) If save_type(p) = restore_old_value, then save_index (p) is a location in eqtb whose current value should
be destroyed at the end of the current group and replaced by save_stack[p — 1]. Furthermore if
save_index (p) > int_base, then save_level (p) should replace the corresponding entry in zeq_level.

2) If save_type(p) = restore_zero, then save_index (p) is a location in eqtb whose current value should be de-
stroyed at the end of the current group, when it should be replaced by the value of eqtb [undefined_control_sequence] |

3) If save_type (p) = insert_token, then save_index(p) is a token that should be inserted into TEX’s input
when the current group ends.

4) If save_type(p) = level_boundary, then save_level(p) is a code explaining what kind of group we were
previously in, and save_index (p) points to the level boundary word at the bottom of the entries for
that group. Furthermore, in extended e-TEX mode, save_stack[p — 1] contains the source line number
at which the current level of grouping was entered.

5) If save_type (p) = restore_sa, then sa_chain points to a chain of sparse array entries to be restored at the
end of the current group. Furthermore save_index (p) and save_level(p) should replace the values of
sa_chain and sa_level respectively.

#define save_type(A) save_stack[A].hh.b0 /x classifies a save_stack entry x/

#define save_level(A) save_stack[A].hh.b1 /xsaved level for regions 5 and 6, or group code */
#define save_index(A) save_stack[A].hh.rh /% eqth location or token or save_stack location */
#define restore_old_value 0 /* save_type when a value should be restored later */

#define restore_zero 1 /* save_type when an undefined entry should be restored x/

#define insert_token 2 /* save_type when a token is being saved for later use */

#define level_boundary 3 /* save_type corresponding to beginning of group */

#define restore_sa 4 /* save_type when sparse array entries should be restored x/

(Declare e-TEX procedures for tracing and input 283)

§268 TEXprof SAVING AND RESTORING EQUIVALENTS 125

268. Here are the group codes that are used to discriminate between different kinds of groups. They allow
TEX to decide what special actions, if any, should be performed when a group ends.

Some groups are not supposed to be ended by right braces. For example, the ‘$’ that begins a math formula
causes a math_shift_group to be started, and this should be terminated by a matching ‘$’. Similarly, a group
that starts with \left should end with \right, and one that starts with \begingroup should end with
\endgroup.

#define bottom_level 0 /x group code for the outside world */

#define simple_group 1 /* group code for local structure only */

#define hboz_group 2 /*code for ‘\hbox{...} x/

#define adjusted_hbox_group 3 /xcode for ‘\hbox{...} in vertical mode x/
#define vbox_group 4 /xcode for ‘\vbox{...} %/

#define vtop_group 5 /+code for ‘\vtop{...} */

#define align_group 6 /+code for ‘\halign{...}’, \valign{...} x/
#define no_align_group 7 /*code for ‘\noalign{...} x/

#define output_group 8 /* code for output routine */

#define math_group 9 /xcode for, e.g., "{...} */

#define disc_group 10 /xcode for ‘\discretionary{...}{...}{...} x/
#define insert_group 11 /+code for ‘\insert{...}’, \vadjust{...} */
#define vcenter_group 12 /*code for ‘\vcenter{...} x/

#define math_choice_group 13 /xcode for ‘\mathchoice{...}{... }{...}{.. .}/
#define semi_simple_group 14 /+code for ‘\begingroup. ..\endgroup’ */
#define math_shift_group 15 /+code for ‘$...$ x/

#define math_left_group 16 /xcode for ‘\left...\right’«/

#define maz_group_code 16

(Types in the outer block 18) +=
typedef int8_t group_code; /* save_level for a level boundary */

269. The global variable cur_group keeps track of what sort of group we are currently in. Another global
variable, cur_boundary, points to the topmost level_boundary word. And cur_level is the current depth of
nesting. The routines are designed to preserve the condition that no entry in the save_stack or in eqtb ever
has a level greater than cur_level.

270. (Global variables 13) +=
static memory_word save_stack[save_size + 1];
static int save_ptr; /x+first unused entry on save_stack */
static int maz_save_stack; /+* maximum usage of save stack x/
static quarterword cur_level; /* current nesting level for groups /
static group_code cur_group; /xcurrent group type */
static int cur_boundary; /* where the current level begins */

271. At this time it might be a good idea for the reader to review the introduction to eqtb that was given
above just before the long lists of parameter names. Recall that the “outer level” of the program is level_one,
since undefined control sequences are assumed to be “defined” at level_zero.

(Set initial values of key variables 21) +=
save_ptr = 0;
cur_level = level_one;
cur_group = bottom_level;
cur_boundary = 0;
maz_save_stack = 0;

126 SAVING AND RESTORING EQUIVALENTS TEXprof §272

272. The following macro is used to test if there is room for up to seven more entries on save_stack. By
making a conservative test like this, we can get by with testing for overflow in only a few places.

#define check_full_save_stack
if (save_ptr > maz_save_stack) { maz_save_stack = save_ptr;
if (maz_save_stack > save_size —7) overflow ("save size", save_size);

}

273. Procedure new_save_level is called when a group begins. The argument is a group identification code
like ‘hbox_group’. After calling this routine, it is safe to put five more entries on save_stack.

In some cases integer-valued items are placed onto the save_stack just below a level_boundary word,
because this is a convenient place to keep information that is supposed to “pop up” just when the group
has finished. For example, when ‘\hbox to 100pt{...}’ is being treated, the 100pt dimension is stored on
save_stack just before new_save_level is called.

We use the notation saved (k) to stand for an integer item that appears in location save_ptr + k of the
save stack.

#define saved(A) save_stack[save_ptr + A].i

static void new_save_level (group_code c) /*begin a new level of grouping */
{ check_full_save_stack;
if (eTeX_ex) { saved(0) = line;
incr (save_ptr);
}
save_type (save_ptr) = level_boundary;
save_level (save_ptr) = cur_group;
save_indez (save_ptr) = cur_boundary;
if (cur_level = maz_quarterword)
overflow ("grouping levels", max_quarterword — min_quarterword);
/xquit if (cur_level + 1) is too big to be stored in eqth x/
cur_boundary = save_ptr;
cur_group = c;
#ifdef STAT
if (tracing_groups > 0) group_trace(false);
#endif
incr (cur_level);
incr (save_ptr);

}

8274 TEXprof SAVING AND RESTORING EQUIVALENTS 127

274. Just before an entry of eqtb is changed, the following procedure should be called to update the other
data structures properly. It is important to keep in mind that reference counts in mem include references
from within save_stack, so these counts must be handled carefully.

static void eq_destroy (memory_word w) /* gets ready to forget w */
{ pointer ¢; /* equiv field of w x/
switch (eq_type_field (w)) {
case call: case long_call: case outer_call: case long_outer_call: delete_token_ref (equiv_field (w));
break;
case glue_ref: delete_glue_ref (equiv_field (w)); break;
case shape_ref:
{ ¢ = equiv_field(w); /*we need to free a \parshape block %/
if (q # null) free_node(q, info(q) + info(q) + 1);
} break; /xsuch a block is 2n + 1 words long, where n = info(q) */
case boz_ref: flush_node_list (equiv_field (w)); break;
(Cases for eq_destroy 1516)
default: do_nothing; } }

275. To save a value of eqth[p] that was established at level [, we can use the following subroutine.

static void eq_save(pointer p, quarterword 1) /xsaves eqth[p] x/
{ check_full_save_stack;
if (I = level_zero) save_type(save_ptr) = restore_zero;
else { save_stack[save_ptr] = eqtb[pl;
incr (save_ptr);
save_type (save_ptr) = restore_old_value;

save_level (save_ptr) = I;
save_indez (save_ptr) = p;
incr (save_ptr);

128 SAVING AND RESTORING EQUIVALENTS TEXprof §276

276. The procedure eq_define defines an eqtb entry having specified eq_type and equiv fields, and saves the
former value if appropriate. This procedure is used only for entries in the first four regions of eqtb, i.e., only
for entries that have eq_type and equiv fields. After calling this routine, it is safe to put four more entries
on save_stack, provided that there was room for four more entries before the call, since eq_save makes the
necessary test.

#ifdef STAT
#define assign_trace (A, B)
if (tracing_assigns > 0) restore_trace(A, B);
F#else
#define assign_trace (A, B)
#endif
static void eq_define (pointer p, quarterword ¢, halfword e) /+new data for eqth x/
{if (eTeX_ex A (eq_type(p) =t) A (equiv(p) = e)) { assign_trace(p, "reassigning")
eq_destroy (eqtb[p]);
return;
}
assign_trace(p, "changing")
if (eq_level(p) = cur_level) eq_destroy(eqtb[pl);
else if (cur_level > level_one) eq_save(p, eq_level(p));
eq_level (p) = cur_level;
eq_type(p) = t;
equiv(p) = e;
assign_trace(p, "into")

}

277. The counterpart of eq_define for the remaining (fullword) positions in eqth is called eq_word_define.
Since zeq_level[p] > level_one for all p, a ‘restore_zero’ will never be used in this case.

static void eq_word_define (pointer p,int w)
{if (eTeX_ex A (eqtb[p].i = w)) { assign_trace(p, "reassigning")
return;
}
assign_trace(p, "changing")
if (zeq_level|p] # cur_level) { eq_save(p, zeq_level[p));
zeq_level [p] = cur_level;

eqth[p].i = w;
assign_trace(p, "into")

6278 TEXprof SAVING AND RESTORING EQUIVALENTS 129

278. The eq_define and eq_word_define routines take care of local definitions. Global definitions are done
in almost the same way, but there is no need to save old values, and the new value is associated with
level_one.

static void geq_define (pointer p, quarterword t, halfword e) /xglobal eq_define x/
{ assign_trace(p, "globally changing")
{ eq_destroy(eqtb[p]);
eq_level (p) = level_one;
eq_type(p) = t;
equiv (p) = e;
}
assign_trace(p, "into");

}

static void geq_word_define (pointer p,int w) /* global eq_word_define x/
{ assign_trace(p, "globally changing")
{ eqtb[p].i = w;
zeq_level [p] = level_one;

assign_trace(p, "into");

}

279. Subroutine save_for_after puts a token on the stack for save-keeping.

static void save_for_after (halfword t)

{ if (cur_level > level_one) { check_full_save_stack;
save_type (save_ptr) = insert_token;
save_level (save_ptr) = level_zero;
save_index (save_ptr) = t;
incr (save_ptr);

}
}

280. The unsave routine goes the other way, taking items off of save_stack. This routine takes care of
restoration when a level ends; everything belonging to the topmost group is cleared off of the save stack.

static void back_input(void);

static void unsave(void) /*pops the top level off the save stack */
{ pointer p; /* position to be restored */

quarterword /[; /xsaved level, if in fullword regions of eqth */

halfword ¢; /xsaved value of cur_tok x/

bool a; /xhave we already processed an \aftergroup 7 */

a = false;

if (cur_level > level_one) { decr(cur_level);

(Clear off top level from save_stack 281);

}

else confusion("curlevel"); /* unsave is not used when cur_group = bottom_level x/

130 SAVING AND RESTORING EQUIVALENTS TEXprof

281. (Clear off top level from save_stack 281) =
loop { decr(save_ptr);
if (save_type (save_ptr) = level_boundary) goto done;
p = save_index (save_ptr);
if (save_type(save_ptr) = insert_token) (Insert token p into TEX’s input 325)
else if (save_type(save_ptr) = restore_sa) { sa_restore();
sa_chain = p;
sa_level = save_level (save_ptr);

else { if (save_type(save_ptr) = restore_old_value) { | = save_level (save_ptr);
decr (save_ptr);

else save_stack[save_ptr] = eqtb[undefined_control_sequence];
(Store save_stack[save_ptr] in eqtb[p], unless eqth[p] holds a global value 282);

}
}

done:
#ifdef STAT
if (tracing_groups > 0) group_trace(true);
#endif
if (grp_stack[in_open] = cur_boundary) group_warning();
/* groups possibly not properly nested with files*/
cur_group = save_level (save_ptr);
cur_boundary = save_indez (save_ptr); if (eTeX_ex) decr(save_ptr)

This code is used in section 280.

§281

6282 TEXprof SAVING AND RESTORING EQUIVALENTS 131

282. A global definition, which sets the level to level_one, will not be undone by unsave. If at least one
global definition of eqtb[p] has been carried out within the group that just ended, the last such definition
will therefore survive.

(Store save_stack[save_ptr] in eqth[p], unless eqth[p] holds a global value 282) =
if (p < int_base)
if (eq_level(p) = level_one) { eq_destroy(save_stack[save_ptr]); /xdestroy the saved value x/
4ifdef STAT
if (tracing_restores > 0) restore_trace(p, "retaining");
#endif

else { eq_destroy(eqtb[p]); /*destroy the current value x/
eqth[p] = save_stack[save_ptr]; /xrestore the saved value x/
#ifdef STAT
if (tracing_restores > 0) restore_trace(p, "restoring");
#endif
}
else if (zeq_level[p] # level_one) { eqtb[p] = save_stack [save_ptr];
zeq_level [p] = ;
#ifdef STAT
if (tracing_restores > 0) restore_trace(p, "restoring");
#endif
}
else {
#ifdef STAT
if (tracing_restores > 0) restore_trace(p, "retaining");
#endif

}

This code is used in section 281.

283. (Declare e-TEX procedures for tracing and input 283) =
#ifdef STAT
static void restore_trace(pointer p,char xs) /* eqtb[p] has just been restored or retained */
{ begin_diagnostic();
print_char(’{’);
print(s);
print_char(’,’);
show_eqth (p);
print_char(’}’);
end_diagnostic(false);
}
#endif
See also sections 1391, 1392, 1438, 1439, 1456, 1458, 1459, 1503, 1505, 1519, 1520, 1521, 1522, and 1523.

This code is used in section 267.

132 SAVING AND RESTORING EQUIVALENTS TEXprof §284

284. When looking for possible pointers to a memory location, it is helpful to look for references from eqtbh
that might be waiting on the save stack. Of course, we might find spurious pointers too; but this routine is
merely an aid when debugging, and at such times we are grateful for any scraps of information, even if they
prove to be irrelevant.

{Search save_stack for equivalents that point to p 284) =
if (save_ptr > 0)
for (¢ =0; g < save_ptr — 1; q++) { if (equiv_field (save_stack|q]) = p) { print_nl("SAVE(");
print_int(q);
print_char(?)’);
}
}

This code is used in section 171.

285. Most of the parameters kept in eqtb can be changed freely, but there’s an exception: The magnification
should not be used with two different values during any TEX job, since a single magnification is applied to an
entire run. The global variable mag_set is set to the current magnification whenever it becomes necessary
to “freeze” it at a particular value.

(Global variables 13) +=
static int mag_set; /x1f nonzero, this magnification should be used henceforth */

286. (Set initial values of key variables 21) +=
mag_set = 0;

287. The prepare_mag subroutine is called whenever TEX wants to use mag for magnification.

static void prepare_mag(void)

{ if ((mag_set > 0) A (mag # mag_set)) { print_err("Incompatible magnification,(");
print_int(mag);
print(");");
print_nl (" the_ previous value_ will be retained");
help2 (" I can handle jonly one magnification ratio per,job. So,I’ve",
"reverted to the magnificationyou used earlier on this run.");
int_error(mag_set);
geq_word_define (int_base + mag_code, mag_set); /xmag = mag_set */

if ((mag <0)V (mag > 32768)) {
print_err ("Illegal magnification has been ,changed to,1000");
help! ("The magnification ratio must be_ between 1, and 32768.");
int_error (mag);
geq_word_define (int_base + mag_code, 1000);

}

mag_set = mag;

}

6288 TEXprof TOKEN LISTS 133

288. Token lists. A TgX token is either a character or a control sequence, and it is represented internally
in one of two ways: (1) A character whose ASCII code number is ¢ and whose command code is m is
represented as the number 28m + ¢; the command code is in the range 1 < m < 14. (2) A control sequence
whose eqtb address is p is represented as the number cs_token_flag +p. Here cs_token_flag = 2'2 — 1 is larger
than 28m + ¢, yet it is small enough that cs_token_flag + p < maz_halfword; thus, a token fits comfortably
in a halfword.

A token t represents a left_brace command if and only if ¢t < left_brace_limit; it represents a right_brace
command if and only if we have left_brace_limit < t < right_brace_limit; and it represents a match or
end_match command if and only if match_token < t < end_match_token. The following definitions take
care of these token-oriented constants and a few others.

#define cs_token_flag °7777 /x amount added to the eqtb location in a token that stands for a control
sequence; is a multiple of 256, less 1%/

#define left_brace_token °0400 /%28 - left_brace */

#define left_brace_limit °1000 /%28 - (left_brace + 1) x/

#define right_brace_token °1000 /%28 - right_brace x/

#define right_brace_limit °1400 /%28 . (right_brace + 1) */

#define math_shift_token °1400 /*2% - math_shift x/

#define tab_token °2000 /%28 - tab_mark */

#define out_param_token °2400 /%28 - out_param /

#define space_token °5040 /%28 - spacer + 7’ */

#define letter_token ©°5400 /%28 - letter x/

#define other_token °6000 /%28 . other_char */

#define match_token °6400 /%28 - match /

#define end_match_token °7000 /%28 - end_match x/

#define protected_token °7001 /%28 - end_match + 1%/

289. (Check the “constant” values for consistency 14) +=
if (cs_token_flag + undefined_control_sequence > maz_halfword) bad = 21;

134 TOKEN LISTS TpXprof §290

290. A token list is a singly linked list of one-word nodes in mem, where each word contains a token
and a link. Macro definitions, output-routine definitions, marks, \write texts, and a few other things are
remembered by TEX in the form of token lists, usually preceded by a node with a reference count in its
token_ref_count field. The token stored in location p is called info(p).

Three special commands appear in the token lists of macro definitions. When m = match, it means
that TEX should scan a parameter for the current macro; when m = end_match, it means that parameter
matching should end and TEX should start reading the macro text; and when m = out_param, it means
that TEX should insert parameter number ¢ into the text at this point.

The enclosing { and } characters of a macro definition are omitted, but an output routine will be enclosed
in braces.

Here is an example macro definition that illustrates these conventions. After TEX processes the text

\def\mac a#1#2 \b {#1\-a ##1#2 #2}

the definition of \mac is represented as a token list containing

(reference count), letter a, match #, match #, spacer ., \b, end_match,
out_param 1, \-, letter a, spacer ., mac_param #, other_char 1,
out_param 2, spacer ., out_param 2.

The procedure scan_toks builds such token lists, and macro_call does the parameter matching.
Examples such as

\def\m{\def\m{a} b}

explain why reference counts would be needed even if TEX had no \let operation: When the token list for
\m is being read, the redefinition of \m changes the eqtb entry before the token list has been fully consumed,
so we dare not simply destroy a token list when its control sequence is being redefined.

If the parameter-matching part of a definition ends with ‘#{’, the corresponding token list will have ‘{’
just before the ‘end_match’ and also at the very end. The first ‘{’ is used to delimit the parameter; the
second one keeps the first from disappearing.

6291 TEXprof TOKEN LISTS 135

291. The procedure show_token_list, which prints a symbolic form of the token list that starts at a given
node p, illustrates these conventions. The token list being displayed should not begin with a reference count.
However, the procedure is intended to be robust, so that if the memory links are awry or if p is not really a
pointer to a token list, nothing catastrophic will happen.

An additional parameter ¢ is also given; this parameter is either null or it points to a node in the token
list where a certain magic computation takes place that will be explained later. (Basically, ¢ is non-null
when we are printing the two-line context information at the time of an error message; ¢ marks the place
corresponding to where the second line should begin.)

For example, if p points to the node containing the first a in the token list above, then show_token_list
will print the string

‘a#1#2 \b —>#1\-a ##1#2 #2’;

and if ¢ points to the node containing the second a, the magic computation will be performed just before
the second a is printed.

The generation will stop, and ‘\ETC.’ will be printed, if the length of printing exceeds a given limit [.
Anomalous entries are printed in the form of control sequences that are not followed by a blank space, e.g.,
‘\BAD.’; this cannot be confused with actual control sequences because a real control sequence named BAD
would come out ‘\BAD,,’.

(Declare the procedure called show_token_list 291) =
static void show_token_list(int p,int q,int 1)
{ int m,¢; /* pieces of a token */
ASCII_code match_chr; /*character used in a ‘match’ */
ASCII_code n; /xthe highest parameter number, as an ASCII digit x/

match_chr = #7;

n = JO) ;

tally = 0;

while ((p # null) A (tally < 1)) { if (p =¢) (Do magic computation 319);
(Display token p, and return if there are problems 292);
p = link (p);

if (p # null) print_esc("ETC.");

}

This code is used in section 118.

292. (Display token p, and return if there are problems 292) =
if ((p < hi_mem_min) V (p > mem_end)) { print_esc("CLOBBERED.");
return;

if (info(p) > cs_token_flag) print_cs(info(p) — cs_token_flag);
else { m = info(p)/°400;

¢ = info(p) % °400;

if (info(p) < 0) print_esc("BAD.");

else (Display the token (m,c) 293);

}

This code is used in section 291.

136 TOKEN LISTS TpXprof §293

293. The procedure usually “learns” the character code used for macro parameters by seeing one in a
match command before it runs into any out_param commands.
(Display the token (m,c) 293) =
switch (m) {
case left_brace: case right_brace: case math_shift: case tab_mark: case sup_mark: case sub_mark:
case spacer: case letter: case other_char: printn(c); break;
case mac_param:
{ printn(c);
printn(c);
} break;
case out_param:
{ printn(match_chr);
if (¢ <9) print_char(c+°07);
else { print_char(’!?);
return;
}
} break;
case match:
{ match_chr = ¢;
printn(c);
incr(n);
print_char(n);
if (n>’9’) return;
} break;
case end_match:
if (¢c=0) print("->"); break;
default: print_esc("BAD.");

}

This code is used in section 292.

294. Here’s the way we sometimes want to display a token list, given a pointer to its reference count; the
pointer may be null.

static void token_show (pointer p)
{ if (p # null) show_token_list(link (p), null,10000000);

295. The print_meaning subroutine displays cur_cmd and cur_chr in symbolic form, including the ex-
pansion of a macro or mark.

static void print_meaning(void)
{ print_cmd_chr(cur_cmd, cur_chr);
if (cur_emd > call) { print_char(’:?);
print_in();
token_show (cur_chr);

else if ((cur_emd = top_bot_mark) A (cur_chr < marks_code)) { print_char(’:’);
print_In();
token_show (cur_mark [cur_chr]);
}
}

§296 TEXprof INTRODUCTION TO THE SYNTACTIC ROUTINES 137

296. Introduction to the syntactic routines. Let’s pause a moment now and try to look at the Big
Picture. The TEX program consists of three main parts: syntactic routines, semantic routines, and output
routines. The chief purpose of the syntactic routines is to deliver the user’s input to the semantic routines,
one token at a time. The semantic routines act as an interpreter responding to these tokens, which may be
regarded as commands. And the output routines are periodically called on to convert box-and-glue lists into
a compact set of instructions that will be sent to a typesetter. We have discussed the basic data structures
and utility routines of TEX, so we are good and ready to plunge into the real activity by considering the
syntactic routines.

Our current goal is to come to grips with the get_next procedure, which is the keystone of TEX’s
input mechanism. Each call of get_next sets the value of three variables cur_cmd, cur_chr, and cur_cs,
representing the next input token.

cur_cmd denotes a command code from the long list of codes given above;
cur_chr denotes a character code or other modifier of the command code;
cur_cs is the eqtbh location of the current control sequence,

if the current token was a control sequence, otherwise it’s zero.

Underlying this external behavior of get_next is all the machinery necessary to convert from character files
to tokens. At a given time we may be only partially finished with the reading of several files (for which
\input was specified), and partially finished with the expansion of some user-defined macros and/or some
macro parameters, and partially finished with the generation of some text in a template for \halign, and so
on. When reading a character file, special characters must be classified as math delimiters, etc.; comments
and extra blank spaces must be removed, paragraphs must be recognized, and control sequences must be
found in the hash table. Furthermore there are occasions in which the scanning routines have looked ahead
for a word like ‘plus’ but only part of that word was found, hence a few characters must be put back into
the input and scanned again.

To handle these situations, which might all be present simultaneously, TEX uses various stacks that hold
information about the incomplete activities, and there is a finite state control for each level of the input
mechanism. These stacks record the current state of an implicitly recursive process, but the get_next
procedure is not recursive. Therefore it will not be difficult to translate these algorithms into low-level
languages that do not support recursion.

(Global variables 13) +=

static eight_bits cur_cmd; /* current command set by get_next x/
static halfword cur_chr; /+operand of current command */
static pointer cur_cs; /* control sequence found here, zero if none found */

static halfword cur_tok; /*packed representative of cur_cmd and cur_chr %/

138 INTRODUCTION TO THE SYNTACTIC ROUTINES

297. The print_cmd_chr routine prints a symbolic interpretation of a command code and its modifier.
This is used in certain ‘You can’t’ error messages, and in the implementation of diagnostic routines like

\show.

The body of print_cmd_chr is a rather tedious listing of print commands, and most of it is essentially
an inverse to the primitive routine that enters a TEX primitive into eqth. Therefore much of this procedure
appears elsewhere in the program, together with the corresponding primitive calls.

#define chr_cmd(A)
{ print (A);

}

print_ ASCII (chr_code);

(Declare the procedure called print_cmd_chr 297) =

static void print_cmd_chr(quarterword cmd, halfword chr_code) { int n;

switch (emd) {

case
case
case
case
case
case
case
case
case
case

left_brace: chr_cmd("begin-group character,") break;
right_brace: chr_cmd("end-group character ") break;
math_shift: chr_cmd("math_shift character,") break;
mac_param: chr_cmd ("macro_parameter character") break;
sup_mark: chr_cmd("superscript character,,") break;
sub_mark: chr_cmd("subscript character,,") break;

endv: print("end of alignment template"); break;

spacer: chr_cmd("blank space ") break;

letter: chr_cmd("the,letter ") break;

other_char: chr_cmd("the character ")

break{;Cases of print_cmd_chr for symbolic printing of primitives 226)
default: print(" [unknown command,code!]"); } }

This code is used in section 251.

/* temp variable */

6298 TEXprof INTRODUCTION TO THE SYNTACTIC ROUTINES 139

298. Here is a procedure that displays the current command.

static void show_cur_cmd_chr(void)
{int n; /xlevel of \if...\fi nestingx/
int I; /*line where \if started =/
pointer p;
begin_diagnostic();
print_nl("{");
if (mode # shown_mode) { print_mode(mode);
print(":y");
shown_mode = mode;
}
print_cmd_chr(cur_cmd, cur_chr);
if (tracing_ifs > 0)
if (cur_emd > if_test)
if (cur_emd < fi_or_else) { print(":,");
if (cur_emd = fi_or_else) { print_cmd_chr (if_test, cur_if);
print_char(’.’);
n = 0;
l = if_line;
}
else { n=1;
l = line;
}
p = cond_ptr;
while (p # null) { incr(n);
p = link(p);

print (" (level,");
print_int(n);
print_char(’)?);
print_if_line(l);
}
print_char(’}’);
end_diagnostic(false);

}

140 INPUT STACKS AND STATES TEXprof §299

299. Input stacks and states. This implementation of TEX uses two different conventions for repre-
senting sequential stacks.

1) If there is frequent access to the top entry, and if the stack is essentially never empty, then the top entry
is kept in a global variable (even better would be a machine register), and the other entries appear in
the array stack[0 — (ptr — 1)]. For example, the semantic stack described above is handled this way,
and so is the input stack that we are about to study.

2) If there is infrequent top access, the entire stack contents are in the array stack[0 — (ptr — 1)]. For
example, the save_stack is treated this way, as we have seen.

The state of TEX’s input mechanism appears in the input stack, whose entries are records with six fields,
called state, index, start, loc, limit, and name. This stack is maintained with convention (1), so it is declared
in the following way:

(Types in the outer block 18) +=
typedef struct {
quarterword state_field, index_field;
halfword start_field, loc_field, limit_field , name_field;
halfword depth_field;
} in_state_record,;

300. (Global variables 13) +=
static in_state_record input_stack [stack_size + 1];
static int input_ptr; /* first unused location of input_stack */
static int maz_in_stack; /xlargest value of input_ptr when pushing */
static in_state_record cur_input; /*the “top” input state, according to convention (1) %/

301. We've already defined the special variable loc = cur_input.loc_field in our discussion of basic input-
output routines. The other components of cur_input are defined in the same way:

#define state cur_input.state_field /* current scanner state x/

#define index cur_input.index_field /+reference for buffer information */
#define start cur_input.start_field /* starting position in buffer */
#define limit cur_input.limit_field /xend of current line in buffer x/
#define name cur_input.name_field /+name of the current file x/

#define cur_depth cur_input.depth_field /x nesting depth of current macro */

6302 TEXprof INPUT STACKS AND STATES 141

302. Let’s look more closely now at the control variables (state, index, start, loc, limit, name), assuming
that TEX is reading a line of characters that have been input from some file or from the user’s terminal.
There is an array called buffer that acts as a stack of all lines of characters that are currently being read
from files, including all lines on subsidiary levels of the input stack that are not yet completed. TEX will
return to the other lines when it is finished with the present input file.

(Incidentally, on a machine with byte-oriented addressing, it might be appropriate to combine buffer with
the str_pool array, letting the buffer entries grow downward from the top of the string pool and checking
that these two tables don’t bump into each other.)

The line we are currently working on begins in position start of the buffer; the next character we are about
to read is buffer[loc]; and limit is the location of the last character present. If loc > limit, the line has been
completely read. Usually buffer[limit] is the end_line_char, denoting the end of a line, but this is not true
if the current line is an insertion that was entered on the user’s terminal in response to an error message.

The name variable is a string number that designates the name of the current file, if we are reading a
text file. It is zero if we are reading from the terminal; it is n + 1 if we are reading from input stream n,
where 0 < n < 16. (Input stream 16 stands for an invalid stream number; in such cases the input is actually
from the terminal, under control of the procedure read_toks.) Finally 18 < name < 19 indicates that we are
reading a pseudo file created by the \scantokens command.

The state variable has one of three values, when we are scanning such files:

1) state = mid_line is the normal state.
2) state = skip_blanks is like mid_line, but blanks are ignored.

3) state = new_line is the state at the beginning of a line.

These state values are assigned numeric codes so that if we add the state code to the next character’s
command code, we get distinct values. For example, ‘mid_line + spacer’ stands for the case that a blank
space character occurs in the middle of a line when it is not being ignored; after this case is processed, the
next value of state will be skip_blanks.

#define mid_line 1 /*state code when scanning a line of characters */

#define skip_blanks (2 + maz_char_code) /[« state code when ignoring blanks %/
#define new_line (3 + maz_char_code + maz_char_code) [+ state code at start of line*/

142 INPUT STACKS AND STATES TEXprof 6303

303. Additional information about the current line is available via the index variable, which counts how
many lines of characters are present in the buffer below the current level. We have inder = 0 when reading
from the terminal and prompting the user for each line; then if the user types, e.g., ‘\input paper’, we will
have index = 1 while reading the file paper.tex. However, it does not follow that index is the same as the
input stack pointer, since many of the levels on the input stack may come from token lists. For example,
the instruction ‘\input paper’ might occur in a token list.

The global variable in_open is equal to the index value of the highest non-token-list level. Thus, the
number of partially read lines in the buffer is in_open + 1, and we have in_open = index when we are not
reading a token list.

If we are not currently reading from the terminal, or from an input stream, we are reading from the file
variable input_file[index]. We use the notation terminal_input as a convenient abbreviation for name = 0,
and cur_file as an abbreviation for input_file[indez].

The global variable line contains the line number in the topmost open file, for use in error messages. If
we are not reading from the terminal, line_stack [indez] holds the line number for the enclosing level, so that
line can be restored when the current file has been read. Line numbers should never be negative, since the
negative of the current line number is used to identify the user’s output routine in the mode_line field of the
semantic nest entries.

If more information about the input state is needed, it can be included in small arrays like those shown
here. For example, the current page or segment number in the input file might be put into a variable page,
maintained for enclosing levels in ‘page_stack: array|l .. maz_in_open] int’ by analogy with line_stack.

#define terminal_input (name = 0) /xare we reading from the terminal? %/
#define cur_file input_file[index] /+the current alpha_file variable */

(Global variables 13) +=
static int in_open; /xthe number of lines in the buffer, less one x/
static int open_parens; /+the number of open text files */
static alpha_file input_file0 [maz_in_open], xconst input_file = input_file0 — 1;
static int line; /*current line number in the current source file x/
static int line_stack0[maz_in_open], xconst line_stack = line_stack0 — 1;

8304 TEXprof INPUT STACKS AND STATES 143

304. Users of TEX sometimes forget to balance left and right braces properly, and one of the ways TEX
tries to spot such errors is by considering an input file as broken into subfiles by control sequences that are
declared to be \outer.

A variable called scanner_status tells TEX whether or not to complain when a subfile ends. This variable
has six possible values:

normal, means that a subfile can safely end here without incident.

skipping, means that a subfile can safely end here, but not a file, because we’re reading past some conditional
text that was not selected.

defining, means that a subfile shouldn’t end now because a macro is being defined.

matching, means that a subfile shouldn’t end now because a macro is being used and we are searching for
the end of its arguments.

aligning, means that a subfile shouldn’t end now because we are not finished with the preamble of an \halign
or \valign.

absorbing, means that a subfile shouldn’t end now because we are reading a balanced token list for \message,
\write, etc.

If the scanner_status is not normal, the variable warning_index points to the eqth location for the relevant
control sequence name to print in an error message.

#define skipping 1 /* scanner_status when passing conditional text */
#define defining 2 /* scanner_status when reading a macro definition */
#define matching 3 /* scanner_status when reading macro arguments x/
#define aligning 4 /* scanner_status when reading an alignment preamble */
#define absorbing 5 /* scanner_status when reading a balanced text x/
{ Global variables 13) +=
static int scanner_status; /*can a subfile end now? x/
static pointer warning_index; /x1identifier relevant to non-normal scanner status */
static pointer def_ref; /+reference count of token list being defined */

144 INPUT STACKS AND STATES TpXprof §305

305. Here is a procedure that uses scanner_status to print a warning message when a subfile has ended,
and at certain other crucial times:

(Declare the procedure called runaway 305) =
static void runaway(void)
{ pointer p; /*head of runaway list */

if (scanner_status > skipping) { print_nl("Runaway,");
switch (scanner_status) {
case defining:
{ print("definition");
p = def_ref;
} break;
case matching:
{ print("argument");
p = temp_head,;
} break;
case aligning:
{ print("preamble");
p = hold_head;
} break;
case absorbing:
{ print("text");
p = def_ref;

} /«xthere are no other cases*/
print_char(’??);
print_In();
show_token_list (link (p), null, error_line — 10);
}
}

This code is used in section 118.

6306 TEXprof INPUT STACKS AND STATES 145

306. However, all this discussion about input state really applies only to the case that we are inputting
from a file. There is another important case, namely when we are currently getting input from a token list.
In this case state = token_list, and the conventions about the other state variables are different:

loc is a pointer to the current node in the token list, i.e., the node that will be read next. If loc = null, the
token list has been fully read.

start points to the first node of the token list; this node may or may not contain a reference count, depending
on the type of token list involved.

token_type, which takes the place of index in the discussion above, is a code number that explains what
kind of token list is being scanned.

name points to the eqthb address of the control sequence being expanded, if the current token list is a macro.

param_start, which takes the place of limit, tells where the parameters of the current macro begin in the
param_stack, if the current token list is a macro.

The token_type can take several values, depending on where the current token list came from:

parameter, if a parameter is being scanned;

u_template, if the (u;) part of an alignment template is being scanned,;

v_template, if the (v;) part of an alignment template is being scanned;

backed_up, if the token list being scanned has been inserted as ‘to be read again’;

inserted, if the token list being scanned has been inserted as the text expansion of a \count or similar
variable;

macro, if a user-defined control sequence is being scanned;

output_text, if an \output routine is being scanned;

every_par_text, if the text of \everypar is being scanned;

every_math_text, if the text of \everymath is being scanned;

every_display_text, if the text of \everydisplay is being scanned;

every_hboz_text, if the text of \everyhbox is being scanned;

every_vbox_text, if the text of \everyvbox is being scanned;

every_job_text, if the text of \everyjob is being scanned;

every_cr_text, if the text of \everycr is being scanned;

mark_text, if the text of a \mark is being scanned;

write_text, if the text of a \write is being scanned.

The codes for output_text, every_par_text, etc., are equal to a constant plus the corresponding codes for
token list parameters output_routine_loc, every_par_loc, etc. The token list begins with a reference count if
and only if token_type > macro.

Since e-TEX’s additional token list parameters precede toks_base, the corresponding token types must
precede write_text.

#define token_list 0 /x state code when scanning a token list */
#define token_type index /xtype of current token list */

#define param_start limit /* base of macro parameters in param_stack /
#define parameter 0 /x token_type code for parameter x/

#define u_template 1 [+ token_type code for (u;) template %/
#define v_template 2 /xtoken_type code for (v;) template x/

#define backed_up 3 /x token_type code for text to be reread x/
#define inserted 4 /* token_type code for inserted texts */

#define macro 5 /* token_type code for defined control sequences */
#define output_text 6 /* token_type code for output routines */
#define every_par_text 7 /* token_type code for \everypar x/
#define every_math_text 8 /x token_type code for \everymath */
#define every_display_text 9 /x token_type code for \everydisplay */
#define every_hbox_text 10 /* token_type code for \everyhbox */
#define every_vbozr_text 11 /* token_type code for \everyvbox */

146 INPUT STACKS AND STATES TeXprof §306

#define every_job_text 12 /* token_type code for \everyjob x/
#define every_cr_text 13 /* token_type code for \everycr x/
#define mark_text 14 /* token_type code for \topmark, etc. */

#define eTeX_text_offset (output_routine_loc — output_text)
#define every_eof_text (every_eof_loc — eTeX_text_offset) /* token_type code for \everyeof x/

#define write_text (toks_base — eTeX_text_offset) /*x token_type code for \write */

307. The param_stack is an auxiliary array used to hold pointers to the token lists for parameters at the
current level and subsidiary levels of input. This stack is maintained with convention (2), and it grows at a
different rate from the others.

(Global variables 13) +=
static pointer param_stack[param_size + 1]; /xtoken list pointers for parameters */
static int param_ptr; /xfirst unused entry in param_stack */
static int max_param_stack; /*largest value of param_ptr, will be < param_size + 9 x/

308. The input routines must also interact with the processing of \halign and \valign, since the
appearance of tab marks and \cr in certain places is supposed to trigger the beginning of special (v;)
template text in the scanner. This magic is accomplished by an align_state variable that is increased by 1
when a ‘{’ is scanned and decreased by 1 when a ‘}’ is scanned. The align_state is nonzero during the (u;)
template, after which it is set to zero; the (v;) template begins when a tab mark or \cr occurs at a time
that align_state = 0.

The same principle applies when entering the definition of a control sequence between \csname and
\endcsname.

(Global variables 13) +=
static int align_state; /x group level with respect to current alignment x/
static int incsname_state; /* group level with respect to in csname state x/

309. Thus, the “current input state” can be very complicated indeed; there can be many levels and each
level can arise in a variety of ways. The show_context procedure, which is used by TEX’s error-reporting
routine to print out the current input state on all levels down to the most recent line of characters from an
input file, illustrates most of these conventions. The global variable base_ptr contains the lowest level that
was displayed by this procedure.

(Global variables 13) +=
static int base_ptr; /xshallowest level shown by show_context */

8310 TEXprof INPUT STACKS AND STATES 147

310. The status at each level is indicated by printing two lines, where the first line indicates what was
read so far and the second line shows what remains to be read. The context is cropped, if necessary, so
that the first line contains at most half_error_line characters, and the second contains at most error_line.
Non-current input levels whose token_type is ‘backed_up’ are shown only if they have not been fully read.

static void show_context(void) /*prints where the scanner isx/

{ int old_setting; /xsaved selector setting x/
int nn; /*number of contexts shown so far, less one x/
bool bottom_line; /*have we reached the final context to be shown? x/

(Local variables for formatting calculations 314)
base_ptr = input_ptr;

input_stack [base_ptr] = cur_input; /*store current state x/

nn = —1;

bottom_line = false;

loop { cur_input = input_stack[base_ptr]; /xenter into the context x/

if ((state # token_list))
if ((name > 19) V (base_ptr = 0)) bottom_line = true;

if ((base_ptr = input_ptr) V bottom_line V (nn < error_context_lines))
(Display the current context 311)

else if (nn = error_context_lines) { print_nl("...");

)

incr(nn); /xomitted if error_context_lines < 0x/
}
if (bottom_line) goto done;
decr (base_ptr);
}

done: cur_input = input_stack[input_ptr]; /xrestore original state x/

}

311. (Display the current context 311) =
{ if ((base_ptr = input_ptr) V (state # token_list) V (token_type # backed_up) V (loc # null))
/*we omit backed-up token lists that have already been read x/
{ tally = 0; /* get ready to count characters x/
old_setting = selector;
if (state # token_list) { (Print location of current line 312);
(Pseudoprint the line 317);

else { (Print type of token list 313);
(Pseudoprint the token list 318);

selector = old_setting; /* stop pseudoprinting */
(Print two lines using the tricky pseudoprinted information 316);
incr(nn);
}
}

This code is used in section 310.

148 INPUT STACKS AND STATES TEXprof §312

312. This routine should be changed, if necessary, to give the best possible indication of where the current
line resides in the input file. For example, on some systems it is best to print both a page and line number.

(Print location of current line 312) =
if (name < 17)

if (terminal_input)
if (base_ptr = 0) print_nl("<*>");
else print_nl("<insert>_");

else { print_nl("<read ");
if (name = 17) print_char(’*’); else print_int(name — 1);
print_char(’>’);

else { print_nl("1.");
if (index = in_open) print_int(line);
else print_int(line_stack[index + 1]); /+input from a pseudo file x/

print_char(’,’)

This code is used in section 311.

313. (Print type of token list 313) =

switch (token_type) {
case parameter: print_nl("<argument>,"); break;
case u_template: case v_template: print_nl("<template> "); break;
case backed_up:

if (loc = null) print_nl("<recently_ read> ");

else print_nl("<to_be read again>,"); break;
case inserted: print_nl("<inserted text>_"); break;
case macro:

{ print_in();

print_cs(name);

} break;
case oulpul_text: print_nl("<output>,"); break;
case every_par_text: print_nl("<everypar>_"); break;
case every_math_text: print_nl("<everymath>"); break;
case every_display_text: print_nl("<everydisplay>,"); break;
case every_hbox_text: print_nl("<everyhbox>,"); break;
case every_vboz_text: print_nl("<everyvbox>_"); break;
case every_job_text: print_nl("<everyjob>_"); break;
case every_cr_text: print_nl("<everycr>,"); break;
case mark_text: print_nl("<mark>,"); break;
case every_eof_text: print_nl("<everyeof> "); break;
case write_text: print_nl("<write>,"); break;
default: print_nl("?"); /xthis should never happen */

}

This code is used in section 311.

6314 TEXprof INPUT STACKS AND STATES 149

314. Here it is necessary to explain a little trick. We don’t want to store a long string that corresponds
to a token list, because that string might take up lots of memory; and we are printing during a time
when an error message is being given, so we dare not do anything that might overflow one of TEX’s
tables. So ‘pseudoprinting’ is the answer: We enter a mode of printing that stores characters into a buffer
of length error_line, where character k + 1 is placed into trick_buf [k % error_line] if k < trick_count,
otherwise character k is dropped. Initially we set tally = 0 and trick_count = 1000000; then when
we reach the point where transition from line 1 to line 2 should occur, we set first_count = tally and
trick_count = max(error_line, tally + 1 + error_line — half_error_line). At the end of the pseudoprinting,
the values of first_count, tally, and trick_count give us all the information we need to print the two lines,
and all of the necessary text is in trick_buf .

Namely, let [be the length of the descriptive information that appears on the first line. The length of
the context information gathered for that line is k = first_count, and the length of the context information
gathered for line 2 is m = min(tally, trick_count) — k. If | + k < h, where h = half_error_line, we print
trick_buf [0 .. k — 1] after the descriptive information on line 1, and set n = [+ k; here n is the length of
line 1. If [+ k > h, some cropping is necessary, so we set n = h and print ‘...’ followed by

trick_buf [l +k—h+3)..k—1],

where subscripts of trick_buf are circular modulo error_line. The second line consists of n spaces followed
by trick_buf[k .. (k 4+ m — 1)], unless n +m > error_line; in the latter case, further cropping is done. This
is easier to program than to explain.

(Local variables for formatting calculations 314) =

int i; /xindex into buffer x/

int j; /xend of current line in buffer x/

int [; /xlength of descriptive information on line 1 x/
int m; /xcontext information gathered for line 2/

int n; /+length of line 1%/
int p; /xstarting or ending place in trick_buf =/
int ¢; /* temporary index */

This code is used in section 310.

315. The following code sets up the print routines so that they will gather the desired information.

#define begin_pseudoprint
{1 = tally;
tally = 0;
selector = pseudo;
trick_count = 1000000;
}
#define set_trick_count
{ first_count = tally;
trick_count = tally + 1 + error_line — half_error_line;
if (trick_count < error_line) trick_count = error_line;

}

150 INPUT STACKS AND STATES TEXprof 6316

316. And the following code uses the information after it has been gathered.

(Print two lines using the tricky pseudoprinted information 316) =
if (trick_count = 1000000) set_trick_count; [+ set_trick_count must be performed %/
if (tally < trick_count) m = tally — first_count;
else m = trick_count — first_count; /+context on line 2%/
if (I + first_count < half_error_line) { p =0;
n =l + first_count;
¥
else { print("...");
p =1+ first_count — half_error_line + 3;
n = half_error_line;
¥
for (¢ =p; q < first_count — 1; g++) print_char (trick_buf [q¢ % error_line));
print_In();
for (¢ =1; ¢ <n; q++) print_char(’L’); /* print n spaces to begin line 2%/
if (m+n < error_line) p = first_count + m;
else p = first_count + (error_line —n — 3);
for (q = first_count; q < p —1; g++) print_char (trick_buf [q¢ % error_line));
if (m+n > error_line) print("...")

This code is used in section 311.

317. But the trick is distracting us from our current goal, which is to understand the input state. So let’s
concentrate on the data structures that are being pseudoprinted as we finish up the show_context procedure.
(Pseudoprint the line 317) =

begin_pseudoprint;

if (buffer[limit] = end_line_char) j = limit;

else j = limit +1; /+determine the effective end of the line %/

if (j>0)

for (i = start; i <j—1; i++) { if (i = loc) set_trick_count;
printn (buffer[i]);

This code is used in section 311.

318. (Pseudoprint the token list 318) =
begin_pseudoprint;
if (token_type < macro) show_token_list(start, loc,100000);
else show_token_list (link (start), loc,100000) /xavoid reference count */

This code is used in section 311.

319. Here is the missing piece of show_token_list that is activated when the token beginning line 2 is about
to be shown:

(Do magic computation 319) =
set_trick_count

This code is used in section 291.

8320 TEXprof MAINTAINING THE INPUT STACKS 151

320. Maintaining the input stacks. The following subroutines change the input status in commonly
needed ways.

First comes push_input, which stores the current state and creates a new level (having, initially, the same
properties as the old).

#define push_input /*enter a new input level, save the old /
{ if (input_ptr > maz_in_stack) { max_in_stack = input_ptr;
if (input_ptr = stack_size) overflow("input stack size", stack_size);

input_stack [input_ptr] = cur_input; /*stack the record x/
incr (input_ptr);

}

321. And of course what goes up must come down.

#define pop_input /+leave an input level, re-enter the old */
{ decr (input_ptr);
cur_input = input_stack [input_ptr];

}

322. Here is a procedure that starts a new level of token-list input, given a token list p and its type ¢t. If
t = macro, the calling routine should set name and loc.

#define back_list(A) begin_token_list (A, backed_up) /+backs up a simple token list */
#define ins_list(A) begin_token_list(A,inserted) /xinserts a simple token list */
static void begin_token_list(pointer p, quarterword t)
{ push_input;
state = token_list;

start = p;
token_type = t;
if (¢t > macro) /+the token list starts with a reference count %/

{ add_token_ref (p);
if (t = macro) param_start = param_ptr;
else { (additional local variables for begin_token_list 1777 Yloc = link (p);
if (tracing_macros > 1) { begin_diagnostic();
print_nl("");
switch (¢) {
case mark_text: print_esc("mark"); break;
case write_text: print_esc("write"); break;
default: print_cmd_chr(assign_toks,t — output_text + output_routine_loc);
}
print("=>");
token_show (p);
end_diagnostic(false);
}
(update the macro stack 1775)
¥
}

else loc = p;

}

152 MAINTAINING THE INPUT STACKS TEXprof 8323

323. When a token list has been fully scanned, the following computations should be done as we leave
that level of input. The token_type tends to be equal to either backed_up or inserted about 2/3 of the time.

static void end_token_list(void) /xleave a token-list input level x/
{ if (token_type > backed_up) /+token list to be deleted %/
{ if (token_type < inserted) flush_list(start);
else { delete_token_ref (start); /+update reference count x/
if (token_type = macro) /+parameters must be flushed /
while (param_ptr > param_start) { decr(param_ptr);
flush_list (param_stack [param_ptr]);
}

}

else if (token_type = u_template)

if (align_state > 500000) align_state = 0;

else fatal_error (" (interwoven alignment, preambles are not,allowed)");
pop_input;
check_interrupt;

}

324. Sometimes TEX has read too far and wants to “unscan” what it has seen. The back_input procedure
takes care of this by putting the token just scanned back into the input stream, ready to be read again. This
procedure can be used only if cur_tok represents the token to be replaced. Some applications of TEX use
this procedure a lot, so it has been slightly optimized for speed.

We charge the backup token to the current file and line.

static void back_input(void) /+xundoes one token of input %/
{ pointer p; /*a token list of length one */

while ((state = token_list) A (loc = null) A (token_type # v_template)) end_token_list();
/* conserve stack space x/
p = get_avail();
info(p) = cur_tok;
fiumem|[p] = prof_file_line;
if (cur_tok < right_brace_limit)
if (cur_tok < left_brace_limit) decr(align_state);
else incr(align_state);

push_input;
state = token_list;
start = p;

token_type = backed_up;
loc = p; /xthat was back_list(p), without procedure overhead */

8325 TEXprof MAINTAINING THE INPUT STACKS 153

325. (Insert token p into TEX’s input 325) =
{ t = cur_tok;
cur_tok = p;
if (a) { p = get_avail ();
info(p) = cur_tok;
link (p) = loc;
loc = p;
start = p;
if (cur_tok < right_brace_limit)
if (cur_tok < left_brace_limit) decr(align_state);
else incr(align_state);

else { back_input();
a=eTeX_ex;

}

cur_tok =t;

}

This code is used in section 281.

326. The back_error routine is used when we want to replace an offending token just before issuing an
error message. This routine, like back_input, requires that cur_tok has been set. We disable interrupts
during the call of back_input so that the help message won’t be lost.

static void back_error(void) /+back up one token and call error x/
{ OK_to_interrupt = false;

back_input ();

OK_to_interrupt = true;

error () ;

}

static void ins_error(void) /*back up one inserted token and call error %/
{ OK_to_interrupt = false;

back_input ();

token_type = inserted;

OK_to_interrupt = true;

error () ;

}

154 MAINTAINING THE INPUT STACKS TEXprof — §327

327. The begin_file_reading procedure starts a new level of input for lines of characters to be read from
a file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or
limit or line.

static void begin_file_reading (void)

{ if (in_open = maz_in_open) overflow ("text input levels", maz_in_open);
if (first = buf_size) overflow("buffer_ size", buf_size);
incr(in_open);
push_input;
index = in_open;
source_filename_stack[index]) = A; /x TEX Live */
full_source_filename_stack[index] = A; /* TEX Live */
eof_seen[index] = false;
grp_stack[index] = cur_boundary;
if_stack[index] = cond_ptr;
line_stack [index] = line;

start = first;
state = mid_line;
name = 0; [+ terminal_input is now true x/

cur_file_num = terminal_file;

}

328. Conversely, the variables must be downdated when such a level of input is finished:

static void end_file_reading(void)
{ first = start;
line = line_stack [index];
if ((name = 18) V (name = 19)) pseudo_close();
else if (name > 17) a_close(&cur_file); /[forget it =/
if (full_source_filename_stack[in_open] # A) {
free(full_source_filename_stack[in_open]);
full_source_filename_stack [in_open] = A;
}
pop_input;
decr (in_open);

}

329. In order to keep the stack from overflowing during a long sequence of inserted ‘\show’ commands,
the following routine removes completed error-inserted lines from memory.

static void clear_for_error_prompt(void)
{ while ((state # token_list) A terminal_input A
(input_ptr > 0) A (loc > limit)) end_file_reading();
print_In();
clear_terminal;

}

6330 TEXprof MAINTAINING THE INPUT STACKS 155

330. To get TEX’s whole input mechanism going, we perform the following actions.

(Initialize the input routines 330) =
{ input_ptr = 0;

max_in_stack = 0;
mn_open = 0;
open_parens = 0;
maz_buf_stack = 0;
grp_stack[0] = 0;
if_stack[0] = null;
param_ptr = 0;
maz_param_stack = 0;
first = buf_size;
do {

buffer|[first] = 0;

decr (first);
} while (—(first =0));
scanner_status = normal;
warning_indexr = null;

first =1,

state = new_line;
start = 1;

index = 0;

line = 0;

name = 0;
cur_depth = 0;

force_eof = false;

align_state = 1000000;

if (—init_terminal()) exit(0);

limit = last;

first = last + 1; /* init_terminal has set loc and last x/

}

This code is used in section 1336.

156 GETTING THE NEXT TOKEN TEXprof §331

331. Getting the next token. The heart of TEX’s input mechanism is the get_next procedure, which
we shall develop in the next few sections of the program. Perhaps we shouldn’t actually call it the “heart,”
however, because it really acts as TEX’s eyes and mouth, reading the source files and gobbling them up. And
it also helps TEX to regurgitate stored token lists that are to be processed again.

The main duty of get_next is to input one token and to set cur_cmd and cur_chr to that token’s command
code and modifier. Furthermore, if the input token is a control sequence, the eqtb location of that control
sequence is stored in cur_cs; otherwise cur_cs is set to zero.

Underlying this simple description is a certain amount of complexity because of all the cases that need to
be handled. However, the inner loop of get_next is reasonably short and fast.

When get_next is asked to get the next token of a \read line, it sets cur_cmd = cur_chr = cur_cs =0 in
the case that no more tokens appear on that line. (There might not be any tokens at all, if the end_line_char
has ignore as its catcode.)

332. The value of par_loc is the eqtb address of ‘\par’. This quantity is needed because a blank line of
input is supposed to be exactly equivalent to the appearance of \par; we must set cur_cs: = par_loc when
detecting a blank line.

The same is true for the input, for the warning message, since input is expected by default before every
scanning and hence setting of cur_cs.

(Global variables 13) +=
static pointer par_loc; /xlocation of ‘\par’ in eqth x/
static halfword par_token; /xtoken representing ‘\par’*/
static pointer input_loc; /xlocation of ‘\input’ in eqtb */
static halfword input_token; /xtoken representing ‘\input’*/

333. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("par", par_end, 256); /xcf. scan_file_name */
par_loc = cur_val;
par_token = cs_token_flag + par_loc;

334. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case par_end: print_esc("par"); break;

6335 TEXprof GETTING THE NEXT TOKEN 157

335. Before getting into get_next, let’s consider the subroutine that is called when an ‘\outer’ control
sequence has been scanned or when the end of a file has been reached. These two cases are distinguished by
cur_cs, which is zero at the end of a file.

static void check_outer_validity (void)
{ pointer p; /* points to inserted token list */
pointer g; /x auxiliary pointer */

if (scanner_status # normal) { deletions_allowed = false;
(Back up an outer control sequence so that it can be reread 336);
if (scanner_status > skipping) (Tell the user what has run away and try to recover 337)
else { print_err("Incomplete,");
print_cmd_chr (if_test, cur_if);
print (";ualltext wasignored after line,");
print_int (skip_line);
helpf;’("A_,forbiddenucontrol_,sequenceuoccurreduinuskipped_,text RN
"This kind, of error happens when you_ say,‘\\if...’ and forget",
"the matching ,‘\\fi’. I’ve_inserted a,‘\\fi’; this might work.");
if (cur_cs #0) cur_cs = 0;
else help_line[2] =
"The file ended while_ I was skipping ,conditional jtext.";
cur_tok = cs_token_flag + frozen_fi,;
ins_error();
}
deletions_allowed = true;
}
}

336. An outer control sequence that occurs in a \read will not be reread, since the error recovery for
\read is not very powerful.

(Back up an outer control sequence so that it can be reread 336) =
if (cur_cs #0) { if ((state = token_list) V (name < 1)V (name > 17)) { p = get_avail ();
info(p) = cs_token_flag + cur_cs;
back_list (p); /* prepare to read the control sequence again */

}

cur_cmd = spacer;
cur_chr = ’°; /*replace it by a space */
}

This code is used in section 335.

158 GETTING THE NEXT TOKEN TEXprof §337

337. (Tell the user what has run away and try to recover 337) =
{ runaway(); /*print a definition, argument, or preamble */
if (cur_cs =0) print_err("File ended");
else { cur_cs = 0;
print_err("Forbidden,control sequence found");

}

print("uwhile scanning ");

(Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 338);

print("Lofu");

sprint_cs(warning_indez);

help4 ("I_suspect_ you_have_ forgotten a,‘}’, causing me",

"toread, past where you wanted, me jto,stop.",

"I’11,trygtoyrecover; butyif the error is serious,",

"you’d better type, ‘E’Lor, ‘X’ now and fix your file.");

error () ;

}

This code is used in section 335.

338. The recovery procedure can’t be fully understood without knowing more about the TEX routines that
should be aborted, but we can sketch the ideas here: For a runaway definition or a runaway balanced text
we will insert a right brace; for a runaway preamble, we will insert a special \cr token and a right brace;
and for a runaway argument, we will set long_state to outer_call and insert \par.

(Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’; and insert tokens that should lead to
recovery 338) =
p = get_avail ();
switch (scanner_status) {
case defining:
{ print("definition");
info(p) = right_brace_token + °}7;
} break;
case matching:
{ print("use");
info(p) = par_token;
long_state = outer_call;
} break;
case aligning:
{ print("preamble");
info(p) = right_brace_token + *}7;

q=D;
p = get_avail ();
link (p) = ¢;

info(p) = cs_token_flag + frozen_cr;
align_state = —1000000;
} break;
case absorbing:
{ print("text");
info(p) = right_brace_token + *}7;

} /+ there are no other cases */
ins_list (p)

This code is used in section 337.

6339 TEXprof GETTING THE NEXT TOKEN 159

339. We need to mention a procedure here that may be called by get_next.

static void firm_up_the_line(void);

340. Now we’re ready to take the plunge into get_next itself. Parts of this routine are executed more often
than any other instructions of TEX.

static void get_next(void) /*xsets cur_emd, cur_chr, cur_cs to next token %/
{ /* go here to get the next input token*/ /xgo here to eat the next character from a file x/
/* go here to digest it again x/ /x go here to start looking for a control sequence */ /*go here
when a control sequence has been found */ /xgo here when the next input token has been got */
int k; /xan index into buffer */
halfword t; /*a token x/
int cat; /% cat_code(cur_chr), usually %/
ASCII_code c, cc; /* constituents of a possible expanded code x/
int d; /*number of excess characters in an expanded code */

restart: cur_cs = 0;
if (state # token_list) {Input from external file, goto restart if no input found 342)
else (Input from token list, goto restart if end of list or if a parameter needs to be expanded 356);
(If an alignment entry has just ended, take appropriate action 341);

}

341. An alignment entry ends when a tab or \cr occurs, provided that the current level of braces is the
same as the level that was present at the beginning of that alignment entry; i.e., provided that align_state
has returned to the value it had after the (u;) template for that entry.

(If an alignment entry has just ended, take appropriate action 341) =
if (cur_emd < car_ret)
if (cur_cmd > tab_mark)
if (align_state = 0) (Insert the (v;) template and goto restart 78s)

This code is used in section 340.

342. (Input from external file, goto restart if no input found 342) =
{ get_cur_chr:
if (loc < limit) /xcurrent line not yet finished x/
{ cur_chr = buffer[loc];
incr (loc);
(Set cur_file_line based on the information in cur_input 1752)
reswitch: cur_cmd = cat_code(cur_chr);
(Change state if necessary, and goto get_cur_chr if the current character should be ignored, or
goto reswitch if the current character changes to another 343);
}
else { state = new_line;
{Move to next line of file, or goto restart if there is no next line, or return if a \read line has
finished 359);
check_interrupt;
goto get_cur_chr;

}
}

This code is used in section 340.

160 GETTING THE NEXT TOKEN TEXprof 6343

343. The following 48-way switch accomplishes the scanning quickly, assuming that a decent Pascal
compiler has translated the code. Note that the numeric values for mid_line, skip_blanks, and new_line
are spaced apart from each other by maz_char_code 4+ 1, so we can add a character’s command code to the
state to get a single number that characterizes both.

#define any_state_plus(A) case mid_line + A: case skip_blanks + A: case new_line + A

(Change state if necessary, and goto get_cur_chr if the current character should be ignored, or goto
reswitch if the current character changes to another 343) =
switch (state + cur_cmd) {
(Cases where character is ignored 344): goto get_cur_chr;

any_state_plus(escape): {Scan a control sequence and set state: = skip_blanks or mid_line 353) break;
any_state_plus (active_char):
(Process an active-character control sequence and set state: = mid_line 352) break;
any_state_plus (sup_mark): (If this sup_mark starts an expanded character like ~~A or ~~df, then goto
reswitch, otherwise set state: = mid_line 351) break;

any_state_plus (invalid_char): (Decry the invalid character and goto restart 345)
(Handle situations involving spaces, braces, changes of state 346)
default: do_nothing;

}

This code is used in section 342.

344. (Cases where character is ignored 344) =
any_state_plus (ignore): case skip_blanks + spacer: case new_line + spacer

This code is used in section 343.

345. We go to restart instead of to get_cur_chr, because state might equal token_list after the error has
been dealt with (cf. clear_for_error_prompt).

{Decry the invalid character and goto restart 345) =

{ print_err("Text line contains an invalid, character");
help2 ("A_funny symbol that I can’t_ read has,just been input.",
"Continue, and ;I’11 forget, that it ever happened.");
deletions_allowed = false;
error () ;
deletions_allowed = true;
goto restart;

}

This code is used in section 343.

6346 TEXprof GETTING THE NEXT TOKEN 161

346. #define add_delims_to(A) A + math_shift: A+ tab_mark: A+ mac_param: A + sub_mark:
A + letter: A+ other_char

(Handle situations involving spaces, braces, changes of state 346) =
case mid_line + spacer: (Enter skip_blanks state, emit a space 348) break;
case mid_line + car_ret: (Finish line, emit a space 347) break;
case skip_blanks + car_ret: any_state_plus(comment): (Finish line, goto switch 349)
case new_line + car_ret: (Finish line, emit a \par 350) break;
case mid_line + left_brace: incr(align_state); break;
case skip_blanks + left_brace: case new_line + left_brace:
{ state = mid_line;
incr (align_state);
} break;
case mid_line + right_brace: decr(align_state); break;
case skip_blanks + right_brace: case new_line + right_brace:
{ state = mid_line;
decr (align_state);
} break;
add_delims_to(case skip_blanks): add_delims_to(case new_line): state = mid_line; break;

This code is used in section 343.

347. When a character of type spacer gets through, its character code is changed to "," = 040. This
means that the ASCII codes for tab and space, and for the space inserted at the end of a line, will be treated
alike when macro parameters are being matched. We do this since such characters are indistinguishable on
most computer terminal displays.
(Finish line, emit a space 347) =
{ loc = limit + 1;
cur_cmd = spacer;
cur_chr =7.7;

}

This code is used in section 346.

348. The following code is performed only when cur_cmd = spacer.

nter skip_blanks state, emit a space 348) =
Enter skip_blanks stat it
{ state = skip_blanks;
cur_chr =.;

}

This code is used in section 346.

349. (Finish line, goto switch 349) =
{ loc = limit + 1;
goto get_cur_chr;

}

This code is used in section 346.

162 GETTING THE NEXT TOKEN

350. (Finish line, emit a \par 350) =
{ loc = limit + 1;
cur_cs = par_loc;
cur_emd = eq_type (cur_cs);
cur_chr = equiv(cur_cs);
if (cur_cmd > outer_call) check_outer_validity ();

}

This code is used in section 346.

351. Notice that a code like "8 becomes x if not followed by a hex digit.
#define is_hex(A) ((A>"0°)A(A<’9))V((A>’a’)AN(ALE%)))
#define hex_to_cur_chr

if (¢<’9’) cur_chr =c—07; else cur_chr =c—’a’ + 10;

if (cc <°9?) cur_chr =16 % cur_chr + cc — ’07;

else cur_chr =16 x cur_chr + cc — ’a’ 4+ 10

TEXprof

§350

(If this sup_mark starts an expanded character like ~~A or ~~df, then goto reswitch, otherwise set state:

= mid_line 351) =
{ if (cur_chr = buffer[loc])

if (loc < limit) { ¢ = buffer[loc + 1]; if (¢ <°200) /xyes we have an expanded char */

{ loc = loc +2;
if (is_hez(c))
if (loc < limit) { cc = buffer|loc]; if (is_hex(cc)) { incr(loc);
hex_to_cur_chr;
goto reswitch;

}
}
if (¢ <°100) cur_chr =c+°100; else cur_chr = c—°100;
goto reswitch;
}
}

state = mid_line;

}

This code is used in section 343.

352. (Process an active-character control sequence and set state: = mid_line 352) =

{ cur_es = cur_chr + active_base;
cur_emd = eq_type (cur_cs);
cur_chr = equiv(cur_cs);
state = mid_line;
if (cur_emd > outer_call) check_outer_validity();

}

This code is used in section 343.

6353 TEXprof GETTING THE NEXT TOKEN 163

353. Control sequence names are scanned only when they appear in some line of a file; once they have
been scanned the first time, their eqtb location serves as a unique identification, so TEX doesn’t need to refer
to the original name any more except when it prints the equivalent in symbolic form.

The program that scans a control sequence has been written carefully in order to avoid the blowups that
might otherwise occur if a malicious user tried something like ‘\catcode "156=0’. The algorithm might look
at buffer[limit + 1], but it never looks at buffer[limit 4 2].

If expanded characters like ‘~~A’ or ‘~~df’ appear in or just following a control sequence name, they are
converted to single characters in the buffer and the process is repeated, slowly but surely.

(Scan a control sequence and set state: = skip_blanks or mid_line 353) =
{ if (loc > limit) cur_cs = null_cs; /[* state is irrelevant in this case x/
else { start_cs: k = loc;
cur_chr = buffer[k];
cat = cat_code(cur_chr);
incr(k);
if (cat = letter) state = skip_blanks;
else if (cat = spacer) state = skip_blanks;
else state = mid_line;
if ((cat = letter) A (k < limit)) (Scan ahead in the buffer until finding a nonletter; if an expanded
code is encountered, reduce it and goto start_cs; otherwise if a multiletter control sequence
is found, adjust cur_cs and loc, and goto found 355)
else (If an expanded code is present, reduce it and goto start_cs 354);
cur_cs = single_base + buffer[loc];
incr (loc);
}
found: cur_cmd = eq_type(cur_cs);
cur_chr = equiv (cur_cs);
if (cur_emd > outer_call) check_outer_validity ();

}

This code is used in section 343.

164 GETTING THE NEXT TOKEN TEXprof §354

354. Whenever we reach the following piece of code, we will have cur_chr = buffer[k—1] and k < limit +1
and cat = cat_code(cur_chr). If an expanded code like A or ~~df appears in buffer[(k — 1) .. (k+1)] or
buffer[(k—1) .. (k+2)], we will store the corresponding code in buffer [k — 1] and shift the rest of the buffer
left two or three places.

(If an expanded code is present, reduce it and goto start_cs 354) =
{ if (buffer[k] = cur_chr) if (cat = sup_mark) if (k < limit) { ¢ = buffer[k + 1]; if (c < °200)
/*yes, one is indeed present */
{d=2;
if (is_hex(c)) if (k+2 < limit) { cc = buffer[k + 2]; if (is_hez(cc)) incr(d);

if (d > 2) { hez_to_cur_chr;
buffer [k — 1] = cur_chr;
}
else if (¢ < °100) buffer(k — 1] = ¢+ °100;
else buffer[k — 1] = ¢ —°100;
limit = limit — d;

first = first — d;
while (k < limit) { buffer[k] = buffer[k + d];
incr(k);

}
goto start_cs;
}
}
}

This code is used in sections 353 and 355.

355. (Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it
and goto start_cs; otherwise if a multiletter control sequence is found, adjust cur_cs and loc, and
goto found 355) =

{do {
cur_chr = buffer[k];
cat = cat_code(cur_chr);
incr(k);
} while (—=((cat # letter) V (k > limit)));
(If an expanded code is present, reduce it and goto start_cs 354);
if (cat # letter) decr(k); /+now k points to first nonletter */

if (k> loc +1) /* multiletter control sequence has been scanned */
{ cur_cs = id_lookup (loc, k — loc);

loc = k;

goto found;

}
}

This code is used in section 353.

6356 TEXprof GETTING THE NEXT TOKEN 165

356. Let’s consider now what happens when get_next is looking at a token list. We restore the file and
line information.

(Input from token list, goto restart if end of list or if a parameter needs to be expanded 356) =
if (loc # null) /«list not exhausted %/
{ t = info(loc);
cur_file_line = fl_mem/|loc];
loc = link(loc); /+move to next */
if (t > cs_token_flag) /*a control sequence token */
{ cur_ecs =t — cs_token_flag;
cur_cmd = eq_type (cur_cs);
cur_chr = equiv(cur_cs);
if (cur_emd > outer_call)
if (cur_cmd = dont_expand) (Get the next token, suppressing expansion 357)
else check_outer_validity();

else { cur_emd =1t/°400;
cur_chr =1t % °400;
switch (cur_emd) {
case left_brace: incr(align_state); break;
case right_brace: decr(align_state); break;
case out_param: (Insert macro parameter and goto restart 358)
default: do_nothing;
}
}

else { /*we are done with this token list */
end_token_list();
goto restart; /xresume previous level x/

}

This code is used in section 340.

357. The present point in the program is reached only when the erpand routine has inserted a special
marker into the input. In this special case, info(loc) is known to be a control sequence token, and
link (loc) = null.

#define no_ezxpand_flag 257 /*this characterizes a special variant of relaz */

(Get the next token, suppressing expansion 357) =
{ cur_cs = info(loc) — cs_token_flag;
loc = null;
cur_emd = eq_type (cur_cs);
cur_chr = equiv(cur_cs);
if (cur_emd > max_command) { cur_emd = relax;
cur_chr = no_expand_flag;
}

}

This code is used in section 356.

358. (Insert macro parameter and goto restart 358) =
{ begin_token_list (param_stack|param_start + cur_chr — 1], parameter);
goto restart;

}

This code is used in section 356.

166 GETTING THE NEXT TOKEN TEXprof 6359

359. All of the easy branches of get_next have now been taken care of. There is one more branch.
#define end_line_char_inactive (end_line_char < 0)V (end_line_char > 255)

{(Move to next line of file, or goto restart if there is no next line, or return if a \read line has
finished 359) =
if (name > 17) (Read next line of file into buffer, or goto restart if the file has ended 361)
else { if (—terminal_input) /*\read line has ended */
{ cur_emd = 0;
cur_chr = 0;
(Set cur_file_line when a \read line ends 1753)

return;
}
if (input_ptr > 0) /*text was inserted during error recovery */
{ end_file_reading();
goto restart; /+resume previous level x/
}
if (selector < log_only) open_log_file();
if (interaction > nonstop_mode) { if (end_line_char_inactive) incr(limit);
if (limit = start) /% previous line was empty */
print_nl (" (Please type a command or,say ‘\\end’)");
print_In();
first = start;

prompt_input ("*"); /*input on-line into bujffer x/
limit = last;

if (end_line_char_inactive) decr (limit);

else buffer|[limit] = end_line_char;

first = limit + 1;

loc = start;

else fatal_error("**x*,(job aborted, no legal \\end found)");
/+nonstop mode, which is intended for overnight batch processing, never waits for on-line input */
}

This code is used in section 342.

360. The global variable force_eof is normally false; it is set true by an \endinput command.

(Global variables 13) +=
static bool force_eof; /xshould the next \input be aborted early? x/

6361 TEXprof GETTING THE NEXT TOKEN

361. (Read next line of file into buffer, or goto restart if the file has ended 361) =
{ incr(line);

first = start;

(check line for overflow 1747)

if (—force_eof)

if (name <19) { if (pseudo_input()) /*not end of filex/
firm_up_the_line(); /*this sets limit */
else if ((every_eof # null) A —eof_seenlindex]) { limit = first — 1;

eof_seen[index| = true; /[fake one empty line x/
begin_token_list (every_eof , every_eof_text);
goto restart;

else force_eof = true;

else { if (input_in(&cur_file,true)) /+not end of filex/
firm_up_the_line(); /«this sets limit */
else if ((every_eof # null) A —eof_seenlindex]) { limit = first — 1;
eof_seen[index] = true; /xfake one empty line x/
begin_token_list (every_eof , every_eof_text);
goto restart;

}

else force_eof = true;

if (force_eof) { if (tracing_nesting > 0)
if ((grp_stack[in_open] # cur_boundary) V
(if_stack[in_open] # cond_ptr)) file_warning();
/* give warning for some unfinished groups and/or conditionals */
if (name >19) { print_char(?)’);
decr (open_parens);
update_terminal; /xshow user that file has been read =/
¥
force_eof = false;
end_file_reading(); /*resume previous level x/
check_outer_validity();
goto restart;
}
if (end_line_char_inactive) decr(limit);
else buffer|limit] = end_line_char;
first = limit 4 1;
loc = start; /*ready to read */

}

This code is used in section 359.

167

168 GETTING THE NEXT TOKEN TEXprof §362

362. If the user has set the pausing parameter to some positive value, and if nonstop mode has not been
selected, each line of input is displayed on the terminal and the transcript file, followed by ‘=>’. TEX waits
for a response. If the response is simply carriage_return, the line is accepted as it stands, otherwise the line
typed is used instead of the line in the file.

static void firm_up_the_line(void)
{int k; /*xan index into buffer x/
limit = last;
if (pausing > 0)
if (interaction > nonstop_mode) { wake_up_terminal;
print_In();
if (start < limit)
for (k = start; k < limit — 1; k++) printn(buffer[k]);
first = limit;
prompt_input("=>"); /+wait for user response */
if (last > first) { for (k = first; k <last —1; k++) /*xmove line down in buffer x/
buffer [k + start — first] = buffer[k];
limit = start + last — first;
}
}
}

363. Since get_next is used so frequently in TEX, it is convenient to define three related procedures that
do a little more:

get_token not only sets cur_cmd and cur_chr, it also sets cur_tok, a packed halfword version of the current
token.

get_x_token, meaning “get an expanded token,” is like get_token, but if the current token turns out to be
a user-defined control sequence (i.e., a macro call), or a conditional, or something like \topmark or
\expandafter or \csname, it is eliminated from the input by beginning the expansion of the macro
or the evaluation of the conditional.

x_token is like get_x_token except that it assumes that get_next has already been called.

In fact, these three procedures account for almost every use of get_next.

364. No new control sequences will be defined except during a call of get_token, or when \csname
compresses a token list, because no_new_control_sequence is always true at other times.

static void get_token(void) /xsets cur_emd, cur_chr, cur_tok x/
{ no_new_control_sequence = false;
get_next();

no_new_control_sequence = true;
if (cur_cs =0) cur_tok = (cur_emd % °400) + cur_chr;
else cur_tok = cs_token_flag + cur_cs;

8365 TEXprof EXPANDING THE NEXT TOKEN 169

365. Expanding the next token. Only a dozen or so command codes > maz_command can possibly
be returned by get_next; in increasing order, they are undefined_cs, expand_after, no_expand, input,
if_test, fi_or_else, cs_name, convert, the, top_bot_mark, call, long_call, outer_call, long_outer_call, and
end_template.

The expand subroutine is used when cur_cmd > maz_command. It removes a “call” or a conditional or
one of the other special operations just listed. It follows that ezxpand might invoke itself recursively. In all
cases, erpand destroys the current token, but it sets things up so that the next get_next will deliver the
appropriate next token. The value of cur_tok need not be known when expand is called.

Since several of the basic scanning routines communicate via global variables, their values are saved as
local variables of expand so that recursive calls don’t invalidate them.

(Declare the procedure called macro_call 388)
(Declare the procedure called insert_relax 378)
(Declare e-TEX procedures for expanding 1434)

static void pass_text(void);

static void start_input(void);

static void conditional (void);

static void get_xz_token (void);

static void conv_toks(void);

static void ins_the_toks(void);

static void ezpand(void)
{ halfword ¢; /«token that is being “expanded after” x/
pointer p, q,7; /x for list manipulation x/
int j; /+index into buffer */
int cu_backup; /*to save the global quantity cur_val x/
small_number cvi_backup, radiz_backup, co_backup; /*xto save cur_val_level, etc. x/
pointer backup_backup; /*xto save link (backup_head) */
small_number save_scanner_status; /* temporary storage of scanner_status */
cv_backup = cur_val;
cvl_backup = cur_val_level;
radiz_backup = radiz;
co_backup = cur_order;
backup_backup = link (backup_head);
reswitch:
if (cur_cmd < call) (Expand a nonmacro 366)
else if (cur_emd < end_template) macro_call();
else (Insert a token containing frozen_endv 374);
cur_val = cv_backup;
cur_val_level = cvl_backup;
radiz = radiz_backup;
cur_order = co_backup;
link (backup_head) = backup_backup;

170 EXPANDING THE NEXT TOKEN TEXprof

366. (Expand a nonmacro 366) =
{ if (tracing_commands > 1) show_cur_cmd_chr();
switch (cur_cmd) {
case top_bot_mark: (Insert the appropriate mark text into the scanner 385) break;
case erpand_after:
switch (cur_chr) {
case 0: (Expand the token after the next token 367) break;
case 1: (Negate a boolean conditional and goto reswitch 1447) break;
(Cases for expandafter 1586)
} break; /«there are no other cases*/
case no_expand: (Suppress expansion of the next token 368) break;
case cs_name: (Manufacture a control sequence name 371) break;

case convert: conv_toks(); break; /*this procedure is discussed in Part 27 below */
case the: ins_the_toks(); break; /this procedure is discussed in Part 27 below x/
case if_test: conditional(); break; /xthis procedure is discussed in Part 28 below */

case fi_or_else: (Terminate the current conditional and skip to \fi 509) break;
case input: (Initiate or terminate input from a file 377); break;
default: (Complain about an undefined macro 369)

}
}

This code is used in section 365.

367. It takes only a little shuffling to do what TEX calls \expandafter.

(Expand the token after the next token 367) =
{ get_token();
t = cur_tok;
get_token();
if (cur_cmd > maz_command) expand(); else back_input();
cur_tok =t;
back_input ();

}

This code is used in section 366.

§366

6368 TEXprof EXPANDING THE NEXT TOKEN 171

368. The implementation of \noexpand is a bit trickier, because it is necessary to insert a special ‘dont_ezpand’ i
marker into TEX’s reading mechanism. This special marker is processed by get_next, but it does not slow
down the inner loop.
Since \outer macros might arise here, we must also clear the scanner_status temporarily.
(Suppress expansion of the next token 368) =
{ save_scanner_status = scanner_status;
scanner_status = normal;
get_token();
scanner_status = save_scanner_status;
t = cur_tok;
back_input(); /xnow start and loc point to the backed-up token ¢ x*/
if (t > cs_token_flag) { p = get_avail();
info(p) = cs_token_flag + frozen_dont_expand;
link (p) = loc;
start = p;
loc = p;
}
}

This code is used in section 366.

369. (Complain about an undefined macro 369) =
{ print_err("Undefined control sequence");

helps ("Theucontrolusequence_,atutheuendl_,of_,theutopuline "
"of jyour error message was never \\def’ed. If you_have",
"misspelled ity (e.g.,u \\hobx’), type,‘I’ and, the correct",
"spelling ,(e.g.,,‘I\\hbox’) . Otherwise just,continue,",
"and,I’11 forget about whatever was undefined.");
error () ;

}

This code is used in section 366.

370. The expand procedure and some other routines that construct token lists find it convenient to use
the following macros, which are valid only if the variables p and ¢ are reserved for token-list building. Here
we add code to store file and line information for each token.
#define store_new_token(A)
{ ¢ = get_avail ();
link (p) = g¢;
info(q) = A;
fiumem|q] = cur_file_line;
p=gq; /xlink(p)is null =/
}
#define fast_store_new_token (A)
{ fast_get_avail (q);
link (p) = ¢;
info(q) = A;
fimem|q] = cur_file_line;
p=gq; /xlnk(p)is null x/

}

172 EXPANDING THE NEXT TOKEN TEXprof

371. (Manufacture a control sequence name 371) =
{ r = get_avail ();
p=r; /*head of the list of characters */
incr (incsname_state);
do {
get_z_token();
if (cur_cs =0) store_new_token (cur_tok);
} while (—(cur_cs #0));
if (cur_cmd # end_cs_name) (Complain about missing \endcsname 372);
decr (incsname_state);
(Look up the characters of list r in the hash table, and set cur_cs 373);
flush_list (r);
if (eq_type(cur_cs) = undefined_cs) { eq_define(cur_cs, relaz,256);
/+*N.B.: The save_stack might change %/
} /xthe control sequence will now match ‘\relax’*/
cur_tok = cur_cs + cs_token_flag;
back_input();

This code is used in section 366.

372. (Complain about missing \endcsname 372) =
{ print_err("Missing ");
print_esc("endcsname");
print("Luinserted");
help2 ("Theucontrolusequence._,markedu<to|_,be._,read._,again>|_,shou1d" ,
"not appear between \\csname and \\endcsname.");
back_error();

}

This code is used in sections 371 and 1449.

373. (Look up the characters of list r in the hash table, and set cur_cs 373) =
J = first;
p = link(r);
while (p # null) { if (j > maz_buf_stack) { maz_buf_stack = j + 1;
if (maz_buf_stack = buf_size) overflow("buffer,size", buf_size);
}
buffer[j] = info(p) % °400;
iner(4);
p = link(p);
¥
if (j = first) cur_es = null_cs; [+ the list is empty */
else if (j > first + 1) { no_new_control_sequence = false;
cur_cs = id_lookup (first,j — first);
no_new_control_sequence = true;
¥
else cur_cs = single_base + buffer|first] /*the list has length one %/

This code is used in section 371.

§371

8374 TEXprof EXPANDING THE NEXT TOKEN 173

374. An end_template command is effectively changed to an endv command by the following code. (The
reason for this is discussed below; the frozen_end_template at the end of the template has passed the
check_outer_validity test, so its mission of error detection has been accomplished.)

(Insert a token containing frozen_endv 374) =
{ cur_tok = cs_token_flag + frozen_endv;
back_input ();

}

This code is used in section 365.

375. The processing of \input involves the start_input subroutine, which will be declared later; the
processing of \endinput is trivial.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("input", input, 0);
mput_loc = cur_val;
input_token = cs_token_flag + input_loc;
primitive ("endinput", input, 1);

376. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case input: if (chr_code = 0) print_esc("input")
(Cases of input for print_cmd_chr 1430);
else print_esc("endinput"); break;

377. (Initiate or terminate input from a file 377) =
if (cur_chr = 1) force_eof = true
(Cases for input 1431);
else
if (name_in_progress) insert_relax();
else start_input ()

This code is used in section 366.

378. Sometimes the expansion looks too far ahead, so we want to insert a harmless \relax into the user’s
input.
(Declare the procedure called insert_relax 378) =
static void insert_relax (void)
{ cur_tok = cs_token_flag + cur_cs;
back_input ();
cur_tok = cs_token_flag + frozen_relax;
back_input();
token_type = inserted;

}

This code is used in section 365.

174 EXPANDING THE NEXT TOKEN TpXprof §379

379. Here is a recursive procedure that is TEX’s usual way to get the next token of input. It has been
slightly optimized to take account of common cases.

static void get_z_token(void) /xsets cur_cmd, cur_chr, cur_tok, and expands macros */
{ restart: get_next();
if (cur_cmd < maz_command) goto done;
if (cur_emd > call)
if (cur_emd < end_template) macro_call();
else { cur_cs = frozen_endv;
cur_cmd = endv;
goto done; /x cur_chr = null_list x/
}
else expand();
goto restart;
done:
if (cur_cs =0) cur_tok = (cur_cmd * °400) + cur_chr;
else cur_tok = cs_token_flag + cur_cs;

}

380. The get_x_token procedure is essentially equivalent to two consecutive procedure calls: get_next;
x_token.

static void z_token(void) /* get_z_token without the initial get_next x/
{ while (cur_cmd > maz_command) { expand();
get_next();

}

if (cur_cs =0) cur_tok = (cur_emd * °400) + cur_chr;
else cur_tok = cs_token_flag + cur_cs;

}

381. A control sequence that has been \def’ed by the user is expanded by TEX’s macro_call procedure.

Before we get into the details of macro_call, however, let’s consider the treatment of primitives like
\topmark, since they are essentially macros without parameters. The token lists for such marks are kept in
a global array of five pointers; we refer to the individual entries of this array by symbolic names top_mark,
etc. The value of top_mark is either null or a pointer to the reference count of a token list.

#define marks_code 5 /+add this for \topmarks etc. */

#define top_mark_code 0 /xthe mark in effect at the previous page break */
#define firsi_mark_code 1 /xthe first mark between top_mark and bot_mark =/
#define bot_mark_code 2 /xthe mark in effect at the current page break =/
#define split_first_mark_code 3 /*the first mark found by \vsplit %/
#define split_bot_mark_code 4 /+the last mark found by \vsplit %/
#define top_mark cur_mark[top_mark_code]
#define first_mark cur_mark|first_mark_code]
#define bot_mark cur_mark[bot_mark_code)
#define split_first_mark cur_mark[split_first_mark_code]
#define split_bot_mark cur_mark[split_bot_mark_code]
{ Global variables 13) +=

static pointer cur_mark0][split_bot_mark_code — top_mark_code + 1],

xconst cur_mark = cur_mark0 — top_mark_code; /* token lists for marks */

6382 TEXprof EXPANDING THE NEXT TOKEN 175

382. (Set initial values of key variables 21) +=
top_mark = null;
first_mark = null;
bot_mark = null;
split_first_mark = null;
split_bot_mark = null;

383. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("topmark", top_bot_mark, top_mark_code);

primitive ("firstmark", top_bot_mark, first_mark_code);

primitive ("botmark", top_bot_mark, bot_mark_code);

primitive ("splitfirstmark", top_bot_mark, split_first_mark_code);

primitive ("splitbotmark", top_bot_mark, split_bot_mark_code);

384. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case top_bot_mark:
{ switch ((chr_code % marks_code)) {
case first_mark_code: print_esc("firstmark"); break;
case bot_mark_code: print_esc("botmark"); break;
case split_first_mark_code: print_esc("splitfirstmark"); break;
case split_bot_mark_code: print_esc("splitbotmark"); break;
default: print_esc("topmark");
}
if (chr_code > marks_code) print_char(’s’);
} break;

385. The following code is activated when cur_cmd = top_bot_mark and when cur_chr is a code like
top_mark_code.

(Insert the appropriate mark text into the scanner 385) =
{ t = cur_chr % marks_code;
if (cur_chr > marks_code) scan_register_num(); else cur_val = 0;
if (cur_val =0) cur_ptr = cur_mark[t];
else (Compute the mark pointer for mark type ¢ and class cur_val 1506);
if (cur_ptr # null) begin_token_list (cur_ptr, mark_text);

}

This code is used in section 366.

386. Now let’s consider macro_call itself, which is invoked when TEX is scanning a control sequence whose
cur_cmd is either call, long_call, outer_call, or long_outer_call. The control sequence definition appears in
the token list whose reference count is in location cur_chr of mem.

The global variable long_state will be set to call or to long_call, depending on whether or not the control
sequence disallows \par in its parameters. The get_next routine will set long_state to outer_call and emit
\par, if a file ends or if an \outer control sequence occurs in the midst of an argument.

{ Global variables 13) +=
static int long_state; /+ governs the acceptance of \par */

176 EXPANDING THE NEXT TOKEN TEXprof §387

387. The parameters, if any, must be scanned before the macro is expanded. Parameters are token lists
without reference counts. They are placed on an auxiliary stack called pstack while they are being scanned,
since the param_stack may be losing entries during the matching process. (Note that param_stack can’t
be gaining entries, since macro_call is the only routine that puts anything onto param_stack, and it is not
recursive.)

(Global variables 13) +=
static pointer pstack[9]; /+arguments supplied to a macro */

388. After parameter scanning is complete, the parameters are moved to the param_stack. Then the
macro body is fed to the scanner; in other words, macro_call places the defined text of the control sequence
at the top of TEX’s input stack, so that get_next will proceed to read it next.

The global variable cur_cs contains the eqtb address of the control sequence being expanded, when
macro_call begins. If this control sequence has not been declared \long, i.e., if its command code in
the eq_type field is not long_call or long_outer_call, its parameters are not allowed to contain the control
sequence \par. If an illegal \par appears, the macro call is aborted, and the \par will be rescanned.

(Declare the procedure called macro_call 388) =

static void macro_call(void) /*invokes a user-defined control sequence x/

{ pointer r; /* current node in the macro’s token list */
pointer p; /x current node in parameter token list being built */
pointer g; /+*new node being put into the token list %/
pointer s; /*backup pointer for parameter matching */
pointer t; /* cycle pointer for backup recovery */
pointer u, v; /*auxiliary pointers for backup recovery */
pointer rbrace_ptr; /xone step before the last right_brace token */
small_number n; /xthe number of parameters scanned */
halfword unbalance; /+unmatched left braces in current parameter */
int m; /xthe number of tokens or groups (usually) */
pointer ref_count; /*start of the token list x/
small_number save_scanner_status; /* scanner_status upon entry */
pointer save_warning_index; /* warning_index upon entry */
ASCII_code match_chr; /+ character used in parameter %/

(additional local variables for macro_call 1774)
save_scanner_status = scanner_status;
save_warning_index = warning_inder;
warning_indexr = cur_cs;
ref_count = cur_chr;
r = link (ref_count);
n = 0;
if (tracing_macros > 0) (Show the text of the macro being expanded 400);
if (info(r) = protected_token) r = link(r);
if (info(r) # end_match_token) (Scan the parameters and make link(r) point to the macro body; but
goto end if an illegal \par is detected 390);
(Feed the macro body and its parameters to the scanner 389);
end: scanner_status = save_scanner_status;
warning_indexr = save_warning_inder;
(update the macro stack 1775)

This code is used in section 365.

§389 TEXprof EXPANDING THE NEXT TOKEN 177

389. Before we put a new token list on the input stack, it is wise to clean off all token lists that have
recently been depleted. Then a user macro that ends with a call to itself will not require unbounded stack
space.

(Feed the macro body and its parameters to the scanner 389) =
while ((state = token_list) A (loc = null) A (token_type # v_template)) end_token_list();
/ conserve stack space x/
begin_token_list (ref_count, macro);
name = warning_index;
loc = link (r);
if (n>0) { if (param_ptr + n > maz_param_stack) { maz_param_stack = param_ptr + n;
if (maz_param_stack > param_size) overflow ("parameter stack size", param_size);
}
for (m=0; m <n—1; m++) param_stack [param_ptr + m| = pstack[m];
param_ptr = param_ptr + n;

}

This code is used in section 388.

390. At this point, the reader will find it advisable to review the explanation of token list format that was
presented earlier, since many aspects of that format are of importance chiefly in the macro_call routine.

The token list might begin with a string of compulsory tokens before the first match or end_match. In
that case the macro name is supposed to be followed by those tokens; the following program will set s = null
to represent this restriction. Otherwise s will be set to the first token of a string that will delimit the next
parameter.

(Scan the parameters and make link(r) point to the macro body; but goto end if an illegal \par is
detected 390) =
{ scanner_status = matching;

unbalance = 0;

long_state = eq_type (cur_cs);

if (long_state > outer_call) long_state = long_state — 2;

do {
link (temp_head) = null;
if ((info(r) > match_token + 255) V (info(r) < match_token)) s = null;
else { match_chr = info(r) — match_token;

s = link(r);
r=s;

p = temp_head;
m = 0;

}

(Scan a parameter until its delimiter string has been found; or, if s = null, simply scan the delimiter
string 391); /«now info(r) is a token whose command code is either match or end_match %/
} while (=(info(r) = end_match_token));
}

This code is used in section 388.

178 EXPANDING THE NEXT TOKEN TEXprof 8391

391. If info(r) is a match or end_match command, it cannot be equal to any token found by get_token.
Therefore an undelimited parameter—i.e., a match that is immediately followed by match or end_match—
will always fail the test ‘cur_tok = info(r)’ in the following algorithm.

(Scan a parameter until its delimiter string has been found; or, if s = null, simply scan the delimiter
string 391) =
resume: get_token(); /xset cur_tok to the next token of input */
if (cur_tok = info(r)) (Advance r; goto found if the parameter delimiter has been fully matched,
otherwise goto resume 393);
(Contribute the recently matched tokens to the current parameter, and goto resume if a partial match
is still in effect; but abort if s = null 396);
if (cur_tok = par_token)
if (long_state # long_call) (Report a runaway argument and abort 395);
if (cur_tok < right_brace_limit)
if (cur_tok < left_brace_limit) (Contribute an entire group to the current parameter 398)
else (Report an extra right brace and goto resume 394)
else (Store the current token, but goto resume if it is a blank space that would become an undelimited
parameter 392);
incr(m);
if (info(r) > end_match_token) goto resume;
if (info(r) < match_token) goto resume;
found:
if (s # null) (Tidy up the parameter just scanned, and tuck it away 399)

This code is used in section 390.

392. (Store the current token, but goto resume if it is a blank space that would become an undelimited
parameter 392) =
{ if (cur_tok = space_token)
if (info(r) < end_match_token)
if (info(r) > match_token) goto resume;
store_new_token (cur_tok);

}

This code is used in section 391.

393. A slightly subtle point arises here: When the parameter delimiter ends with ‘#{’, the token list will
have a left brace both before and after the end_match. Only one of these should affect the align_state, but
both will be scanned, so we must make a correction.

(Advance r; goto found if the parameter delimiter has been fully matched, otherwise goto resume 393) =
{ r=link(r);
if ((info(r) > match_token) A (info(r) < end_match_token)) { if (cur_tok < left_brace_limit)
decr (align_state);
goto found;
}

else goto resume;

}

This code is used in section 391.

6394 TEXprof EXPANDING THE NEXT TOKEN 179

394. (Report an extra right brace and goto resume 394) =
{ back_input();
print_err ("Argument of ");
sprint_cs(warning_indez);
print (" has,an_ extra }");
help6 ("I’ve run acrossya,‘}’ that doesn’t seem to match anything.",
"For_example, ‘\\def\\a#1{. ..}’ and,“\\a}’_would produce",
"this_ error._ If you,simply proceed now, the,‘\\par’ that",
"I’ve,justyinserted will cause me to report a runaway",
"argument that might be the root of the problem. But if",
"youry,‘}’ was,spurious,_just,type ‘2’ and it will,go away.");
incr (align_state);
long_state = call;
cur_tok = par_token;
ins_error();
goto resume;
} /*a white lie; the \par won’t always trigger a runaway */

This code is used in section 391.

395. If long_state = outer_call, a runaway argument has already been reported.

(Report a runaway argument and abort 395) =
{ if (long_state = call) { runaway();

print_err ("Paragraph, ,ended before ");
sprint_cs(warning_indez);
print (" was_ complete");
help3 ("I suspect you’ve forgotten a,‘}’, causing me to,apply, this",
"control ;sequence to too much, text. How can we recover?",
"Myuplan isto forget the whole thing ,and hope for the best.");
back_error();

pstack [n] = link (temp_head);

align_state = align_state — unbalance;

for (m =0; m < n; m++) flush_list(pstack[m]);
goto end;

}

This code is used in sections 391 and 398.

180 EXPANDING THE NEXT TOKEN TEXprof $396

396. When the following code becomes active, we have matched tokens from s to the predecessor of r, and
we have found that cur_tok # info(r). An interesting situation now presents itself: If the parameter is to be
delimited by a string such as ‘ab’, and if we have scanned ‘aa’, we want to contribute one ‘a’ to the current
parameter and resume looking for a ‘b’. The program must account for such partial matches and for others
that can be quite complex. But most of the time we have s = r and nothing needs to be done.

Incidentally, it is possible for \par tokens to sneak in to certain parameters of non-\long macros. For
example, consider a case like ‘\def\a#1\par!{...} where the first \par is not followed by an exclamation
point. In such situations it does not seem appropriate to prohibit the \par, so TEX keeps quiet about this
bending of the rules.

{ Contribute the recently matched tokens to the current parameter, and goto resume if a partial match is
still in effect; but abort if s = null 396) =
if (s#7r)
if (s = null) (Report an improper use of the macro and abort 397)
else { t =s;
do {
store_new_token (info(t));
incr(m);
u = link(t);
v =s;
loop { if (u=r)
if (cur_tok # info(v)) goto done;
else { r = link (v);
goto resume;

if (info(u) # info(v)) goto done;
u = link (u);
v = link (v);
}
done: t = link(t);
} while (=(t=r));
r=s; /*at this point, no tokens are recently matched */

}

This code is used in section 391.

397. (Report an improper use of the macro and abort 397) =

{ print_err("Use_of ");
sprint_cs(warning_index);
print (", doesn’t match its definition");
help4 ("1f you,say, e.g.,u\\def\\al1{...}’, then you must always",
"puty, ‘1’ after,‘\\a’, since control sequence names are",
"made up 0f letters only. The macro here has not been",
"followed by, the required,stuff, so,I’m ignoring, ,it.");
error () ;
goto end;

}

This code is used in section 396.

6398 TEXprof EXPANDING THE NEXT TOKEN 181

398. (Contribute an entire group to the current parameter 398) =
{ unbalance = 1;
loop { fast_store_new_token (cur_tok);
get_token();
if (cur_tok = par_token)
if (long_state # long_call) (Report a runaway argument and abort 395);
if (cur_tok < right_brace_limit)
if (cur_tok < left_brace_limit) incr(unbalance);
else { decr(unbalance);
if (unbalance = 0) goto donel;
}
}
donel : rbrace_ptr = p;
store_new_token (cur_tok);

}

This code is used in section 391.

399. If the parameter consists of a single group enclosed in braces, we must strip off the enclosing braces.
That’s why rbrace_ptr was introduced.

(Tidy up the parameter just scanned, and tuck it away 399) =
{if ((m =1) A (info(p) < right_brace_limit)) { link (rbrace_ptr) = null;
free_avail (p);
p = link (temp_head);
pstack [n] = link (p);
free_avail (p);
}

else pstack[n] = link (temp_head);

incr(n);
if (tracing_macros > 0) { begin_diagnostic();
print_nl("");

printn(match_chr);
print_int(n);
print ("<=");
show_token_list (pstack[n — 1], null, 1000);
end_diagnostic(false);
}
}

This code is used in section 391.

400. (Show the text of the macro being expanded 400) =
{ begin_diagnostic();
print_In();
print_cs (warning_index);
token_show (ref_count);
end_diagnostic(false);

}

This code is used in section 388.

182 BASIC SCANNING SUBROUTINES TEXprof §401

401. Basic scanning subroutines. Let’s turn now to some procedures that TEX calls upon frequently
to digest certain kinds of patterns in the input. Most of these are quite simple; some are quite elaborate.
Almost all of the routines call get_z_token, which can cause them to be invoked recursively.

402. The scan_left_brace routine is called when a left brace is supposed to be the next non-blank token.
(The term “left brace” means, more precisely, a character whose catcode is left_brace.) TEX allows \relax
to appear before the left_brace.

static void scan_left_brace(void) /xreads a mandatory left_brace x/
{ (Get the next non-blank non-relax non-call token 403);
if (cur_cmd # left_brace) { print_err("Missing, { inserted");
help/ ("A|_,1eftubrace_,wasumandatoryuhere ,usoyl’ve put one in.",
"You might want to delete and/or insert some corrections",
"soythat I, will find a matching, right brace soon.",
"(If, you’re confused by,all this, try,typing, I}’ now.)");
back_error();
cur_tok = left_brace_token + > {’;
cur_cmd = left_brace;
cur_chr = ’{’;
incr (align_state);
}
}

403. (Get the next non-blank non-relax non-call token 403) =
do {
get_xz_token();
} while (=((cur_emd # spacer) A (cur_cmd # relaz)))
This code is used in sections 402, 525, 1077, 1083, 1150, 1159, 1210, 1225, and 1269.

404. The scan_optional_equals routine looks for an optional ‘=’ sign preceded by optional spaces; ‘\relax’
is not ignored here.
static void scan_optional_equals(void)
{ (Get the next non-blank non-call token 405);
if (cur_tok # other_token + =) back_input();

}

405. (Get the next non-blank non-call token 405) =
do {
get_x_token();
} while (—(cur_cmd # spacer))
This code is used in sections 404, 440, 454, 502, 576, 1044, 1466, and 1467.

6406 TEXprof BASIC SCANNING SUBROUTINES 183

406. In case you are getting bored, here is a slightly less trivial routine: Given a string of lowercase letters,
like ‘pt’ or ‘plus’ or ‘width’, the scan_keyword routine checks to see whether the next tokens of input match
this string. The match must be exact, except that uppercase letters will match their lowercase counterparts;
uppercase equivalents are determined by subtracting ’a’ — ’A’, rather than using the uc_code table, since
TEX uses this routine only for its own limited set of keywords.

If a match is found, the characters are effectively removed from the input and true is returned. Otherwise
false is returned, and the input is left essentially unchanged (except for the fact that some macros may have
been expanded, etc.).

static bool scan_keyword (char xs) /x1ook for a given string */
{ pointer p; /*tail of the backup list */
pointer g; /+new node being added to the token list via store_new_token */

p = backup_head;
link (p) = null;
while (xs # 0) { get_z_token(); /*recursion is possible here x/
if ((cur_cs =0) A
((cur_chr = so(*s)) V (cur_chr = so(xs) — ’a’ + *A’))) { store_new_token (cur_tok);
incr(s);

else if ((cur_cmd # spacer) V (p # backup_head)) { back_input();
if (p # backup_head) back_list (link (backup_head));
return false;

}

}
flush_list (link (backup_head));

return true;

}

407. Here is a procedure that sounds an alarm when mu and non-mu units are being switched.

static void mu_error(void)

{ print_err("Incompatible glue units");
help! ("I’m,going to assume that lmu=1pt, when they’re mixed.");
error () ;

}

408. The next routine ‘scan_something_internal’ is used to fetch internal numeric quantities like ‘\hsize’,
and also to handle the ‘\the’ when expanding constructions like ‘\the\toks0’ and ‘\the\baselineskip’.
Soon we will be considering the scan_int procedure, which calls scan_something_internal; on the other hand,
scan_something_internal also calls scan_int, for constructions like ‘\catcode \$’ or ‘\fontdimen 3 \ff’.
So we have to declare scan_int as a forward procedure. A few other procedures are also declared at this
point.

static void scan_int(void); /xscans an integer value /

(Declare procedures that scan restricted classes of integers 432)
(Declare e-TEX procedures for scanning 1412)
(Declare procedures that scan font-related stuff 576)

184 BASIC SCANNING SUBROUTINES TpXprof §409

409. TgX doesn’t know exactly what to expect when scan_something_internal begins. For example, an
integer or dimension or glue value could occur immediately after ‘\hskip’; and one can even say \the with
respect to token lists in constructions like ‘\xdef\o{\the\output}’. On the other hand, only integers are
allowed after a construction like ‘\count’. To handle the various possibilities, scan_something_internal has
a level parameter, which tells the “highest” kind of quantity that scan_something_internal is allowed to
produce. Six levels are distinguished, namely int_val, dimen_val, glue_val, mu_val, ident_val, and tok_val.

The output of scan_something_internal (and of the other routines scan_int, scan_dimen, and scan_glue
below) is put into the global variable cur_val, and its level is put into cur_val_level. The highest values of
cur_val_level are special: mu_val is used only when cur_val points to something in a “muskip” register, or to
one of the three parameters \thinmuskip, \medmuskip, \thickmuskip; ident_val is used only when cur_val
points to a font identifier; tok_val is used only when cur_val points to null or to the reference count of a
token list. The last two cases are allowed only when scan_something_internal is called with level = tok_val.

If the output is glue, cur_val will point to a glue specification, and the reference count of that glue will
have been updated to reflect this reference; if the output is a nonempty token list, cur_val will point to its
reference count, but in this case the count will not have been updated. Otherwise cur_val will contain the
integer or scaled value in question.

#define int_val 0 /xinteger valuesx*/

#define dimen_val 1 /* dimension values */
#define glue_val 2 /* glue specifications */
#define mu_val 3 /xmath glue specifications */
#define ident_val 4 /xfont identifier x/
#define tok_val 5 /xtoken listsx*/

(Global variables 13) +=
static int cur_val; /xvalue returned by numeric scanners */
static int cur_val_level; /+the “level” of this valuex/

410. The hash table is initialized with ‘\count’, ‘\dimen’, ‘\skip’, and ‘\muskip’ all having internal_register|]
as their command code; they are distinguished by the chr_code, which is either int_val, dimen_val, glue_val,
or mu_val more than mem_bot (dynamic variable-size nodes cannot have these values)

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("count", internal_register, mem_bot + int_val);
primitive ("dimen", internal_register, mem_bot + dimen_val);
primitive ("skip", internal_register, mem_bot + glue_val);
primitive ("muskip", internal_register, mem_bot + mu_val);

411. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case internal_register: (Cases of register for print_cmd_chr 1514) break;

8412 TEXprof

412. OK, we're ready for scan_something_internal itself. A second parameter, negative, is set true if
that is found should be negated. It is assumed that cur_cmd and cur_chr represent the first
he internal quantity to be scanned; an error will be signalled if cur_cmd < min_internal or

the value
token of t

cur_cmd > maz_internal.

#define scanned_result(A, B) { cur_val = A;

cur_val_level = B; }

static void scan_something_internal (small_number [evel, bool negative)

/

xfetch an internal parameter */

{ halfword m; /x chr_code part of the operand token x/
pointer g, r; /* general purpose indices x/
pointer tz; /xeffective tail node */
four_quarters i; /«character infox/

int p;

/*index into nest */

m = cur_chr;
switch (cur_cmd) {

case
case

def_code: (Fetch a character code from some table 413) break;

toks_register: case assign_toks: case def_family: case set_font: case def_font:

(Fetch a token list or font identifier, provided that level = tok_val 414) break;

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

assign_int: scanned_result(eqtb[m)].i, int_val) break;

assign_dimen: scanned_result (eqtb[m].sc, dimen_val) break;
assign_glue: scanned_result (equiv(m), glue_val) break;

assign_mu_glue: scanned_result (equiv(m), mu_val) break;

set_auz: {Fetch the space_factor or the prev_depth 417) break;
set_prev_graf: (Fetch the prev_graf 421) break;

set_page_int: {Fetch the dead_cycles or the insert_penalties 418) break;
set_page_dimen: (Fetch something on the page_so_far 420) break;
set_shape: (Fetch the par_shape size 422) break;

set_box_dimen: (Fetch a box dimension 419) break;

char_given: case math_given: scanned_result (cur_chr, int_val) break;
assign_font_dimen: (Fetch a font dimension 424) break;
assign_font_int: (Fetch a font integer 425) break;

internal_register: (Fetch a register 426) break;

last_item: (Fetch an item in the current node, if appropriate 423) break;

default: (Complain that \the can’t do this; give zero result 427)

}

while (cur_val_level > level) (Convert cur_val to a lower level 428);
(Fix the reference count, if any, and negate cur_val if negative 429);

}

413. (Fetch a character code from some table 413) =
{ scan_char_num/();

if (m

= math_code_base) scanned_result (ho(math_code(cur_val)), int_val)

else if (m < math_code_base) scanned_result(equiv(m + cur_val), int_val)
else scanned_result (eqtb[m + cur_val].i, int_val);

}

This code is

used in section 412.

BASIC SCANNING SUBROUTINES

186 BASIC SCANNING SUBROUTINES TEXprof §414

414. (Fetch a token list or font identifier, provided that level = tok_val 414) =
if (level # tok_val) { print_err("Missing number, treated as zero");
help3 ("A_number should have been here; I inserted,‘0’.",
"(If you,can’t f igure jout why_ I needed jto see a number,",
"look up,, ‘weird error’ in the index to_ The TeXbook.)");
back_error();
scanned_result (0, dimen_val);
}
else if (cur_cmd < assign_toks) { if (cur_cmd < assign_toks) [+ cur_cmd = toks_register x/
if (m = mem_bot) { scan_register_num/();
if (cur_val < 256) cur_val = equiv (toks_base + cur_val);
else { find_sa_element (tok_val, cur_val, false);
if (cur_ptr = null) cur_val = null;
else cur_val = sa_ptr (cur_ptr);
}
}
else cur_val = sa_ptr(m);
else cur_val = equiv(m);
cur_val_level = tok_val;
}
else { back_input();
scan_font_ident ();
scanned_result (font_id_base + cur_val, ident_val);

}

This code is used in section 412.

8415 TEXprof BASIC SCANNING SUBROUTINES 187

415. Users refer to ‘\the\spacefactor’ only in horizontal mode, and to ‘\the\prevdepth’ only in vertical
mode; so we put the associated mode in the modifier part of the set_aux command. The set_page_int
command has modifier 0 or 1, for ‘\deadcycles’ and ‘\insertpenalties’, respectively. The set_boz_dimen
command is modified by either width_offset, height_offset, or depth_offset. And the last_item command
is modified by either int_val, dimen_val, glue_val, input_line_no_code, or badness_code. &e-TEX inserts
last_node_type_code after glue_val and adds the codes for its extensions: eTeX_version_code,

#define last_node_type_code (glue_val + 1) /xcode for \lastnodetype */
#define input_line_no_code (glue_val + 2) /*code for \inputlineno */
#define badness_code (input_line_no_code +1) /+code for \badness %/

#define eTeX_int (pdftex_last_item_codes +1) /xfirst of e-TEX codes for integers */
#define eTeX_dim (eTeX_int +8) /xfirst of e-TEX codes for dimensions */

#define eTeX_glue (eTeX_dim +9) /*first of e-TEX codes for glue */

#define eTeX_mu (eTeX_glue +1) /xfirst of e-TEX codes for muglue x/

#define eTeX_expr (eTeX_mu +1) /xfirst of e-TEX codes for expressions */

#define eTeX_last_last_item_cmd_mod (eTeX_expr — int_val + mu_val) /* \muexpr */

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("spacefactor", set_aux, hmode);
primitive ("prevdepth", set_auz, vmode);
primitive ("deadcycles", set_page_int,0);
primitive ("insertpenalties", set_page_int, 1);
primitive ("wd", set_box_dimen , width_offset);
primitive ("ht", set_box_dimen, height_offset);
primitive ("dp", set_box_dimen, depth_offset);
primitive ("lastpenalty", last_item, int_val);
primitive ("lastkern", last_item, dimen_val);
primitive ("lastskip", last_item, glue_val);
primitive ("inputlineno", last_item, input_line_no_code);
primitive ("badness", last_item, badness_code);

416. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case set_aux:
if (chr_code = vmode) prini_esc("prevdepth"); else print_esc("spacefactor");
break; case set_page_int: if (chr_code = 0) print_esc("deadcycles")
(Cases of set_page_int for print_cmd_chr 1423); else print_esc("insertpenalties"); break;
case set_box_dimen:
if (chr_code = width_offset) print_esc("wd");
else if (chr_code = height_offset) print_esc("ht");
else print_esc("dp"); break; case last_item: switch (chr_code) {
case inl_val: prini_esc("lastpenalty"); break;
case dimen_val: print_esc("lastkern"); break;
case glue_val: print_esc("lastskip"); break;
case input_line_no_code: print_esc("inputlineno"); break;
(Cases of last_item for print_cmd_chr 1380)
default: prini_esc("badness"); } break;

188 BASIC SCANNING SUBROUTINES TEXprof

417. (Fetch the space_factor or the prev_depth 417) =

if (abs(mode) # m) { print_err("Improper,");
print_cmd_chr (set_auz, m);
helpy ("Youucanureferutou\\spacefactoruonlyuinuhorizontalumode; ",
"youy,can refer to \\prevdepth only in vertical_ mode; and",
"neither of these_ is meaningful inside \\write. So",
"I’m forgetting what you said and using zero instead.");
error () ;
if (level # tok_val) scanned_result(0, dimen_val)
else scanned_result (0, int_val);

}

else if (m = vmode) scanned_result (prev_depth, dimen_val)

else scanned_result(space_factor, int_val)

This code is used in section 412.

418. (Fetch the dead_cycles or the insert_penalties 418) =
{ if (m =0) cur_val = dead_cycles
(Cases for ‘Fetch the dead_cycles or the insert_penalties’ 1424);
else cur_val = insert_penalties;
cur_val_level = int_val; }

This code is used in section 412.

419. (Fetch a box dimension 419) =
{ scan_register_num();
fetch_boz (q);
if (¢ = null) cur_val = 0; else cur_val = mem|[q + m].sc;
cur_val_level = dimen_val;

}

This code is used in section 412.

§417

420. Inside an \output routine, a user may wish to look at the page totals that were present at the

moment when output was triggered.
#define max_dimen °7777777777 /%230 — 1%/

(Fetch something on the page_so_far 420) =
{ if ((page_contents = empty) A (moutput_active))
if (m =0) cur_val = max_dimen; else cur_val = 0;
else cur_val = page_so_far|m];
cur_val_level = dimen_val;

}

This code is used in section 412.

421. (Fetch the prev_graf 421) =
if (mode = 0) scanned_result(0,int_val) /* prev_graf =0 within \write x/
else { nest[nest_ptr] = cur_list;
p = nest_ptr;
while (abs(nest[p].mode_field) # vmode) decr(p);
scanned_result (nest [p].pg_field, int_val);

}

This code is used in section 412.

8422 TEXprof

BASIC SCANNING SUBROUTINES 189

422. (Fetch the par_shape size 422) =

{ if (m > par_shape_loc) (Fetch a penalties array element 1536)
else if (par_shape_ptr = null) cur_val = 0;

else cur_val = info(par_shape_ptr);
cur_val_level = int_val;

}

This code is used in section 412.

190 BASIC SCANNING SUBROUTINES TEXprof 6423

423. Here is where \lastpenalty, \lastkern, \lastskip, and \lastnodetype are implemented. The
reference count for \lastskip will be updated later.
We also handle \inputlineno and \badness here, because they are legal in similar contexts.

(Fetch an item in the current node, if appropriate 423) =
if (m > eTeX_last_last_item_cmd_mod) { switch (m) {
(Cases for fetching a PROLE int value 1555)
} /x there are no other cases %/
cur_val_level = int_val;
}
else if (m > input_line_no_code) {
if (m > eTeX_glue) (Process an expression and return 1462)
else if (m > eTeX_dim) { switch (m) {
(Cases for fetching a dimension value 1401)
} /xthere are no other cases*/
cur_val_level = dimen_val;
}
else { switch (m) {
case input_line_no_code: cur_val = line; break;
case badness_code: cur_val = last_badness; break;
(Cases for fetching an integer value 1381)
} /xthere are no other cases */
cur_val_level = int_val;

}
}

else { if (cur_chr = glue_val) cur_val = zero_glue; else cur_val = 0;
tr = tail;
if (cur_chr = last_node_type_code) { cur_val_level = int_val;
if ((tz = head) V (mode = 0)) cur_val = —1;

else cur_val_level = cur_chr;
if (—is_char_node(tz) A (mode # 0))
switch (cur_chr) {
case int_val:
if (type(tz) = penalty_node) cur_val = penalty(tz); break;
case dimen_val:
if (type(tz) = kern_node) cur_val = width(tz); break;
case glue_val:
if (type(tz) = glue_node) { cur_val = glue_ptr(tz);
if (subtype(tz) = mu_glue) cur_val_level = mu_val;
} break;
case last_node_type_code:
if (type(tz) < unset_node) cur_val = type(tx) + 1;
else cur_val = unset_node + 2;
} /xthere are no other cases*/
else if ((mode = vmode) A (tx = head))
switch (cur_chr) {
case int_val: cur_val = last_penalty; break;
case dimen_val: cur_val = last_kern; break;
case glue_val:
if (last_glue # maz_halfword) cur_val = last_glue; break;
case last_node_type_code: cur_val = last_node_type;
} /xthere are no other cases %/

6423 TEXprof BASIC SCANNING SUBROUTINES

}

This code is used in section 412.

424. (Fetch a font dimension 424) =
{ find_font_dimen (false);
font_info[fmem_ptr].sc = 0
scanned_result (font_info[cur_val].sc, dimen_val);

}

This code is used in section 412.

425. (Fetch a font integer 425) =
{ scan_font_ident();
if (m =0) scanned_result (hyphen_char|[cur_val], int_val)
else scanned_result(skew_char|cur_val], int_val);

}

This code is used in section 412.

426. (Fetch a register 426) =
{ if ((m < mem_bot) vV (m > lo_mem_stat_max)) { cur_val_level = sa_type(m);
if (cur_val_level < glue_val) cur_val = sa_int(m);
else cur_val = sa_ptr(m);
}
else { scan_register_num();

cur_val_level = m — mem_bot;

if (cur_val > 255) { find_sa_element (cur_val_level, cur_val, false);
if (cur_ptr = null)

if (cur_val_level < glue_val) cur_val = 0;
else cur_val = zero_glue;

else if (cur_val_level < glue_val) cur_val = sa_int (cur_ptr);
else cur_val = sa_ptr(cur_ptr);

}

else
switch (cur_val_level) {
case int_val: cur_val = count(cur_val); break;
case dimen_val: cur_val = dimen(cur_val); break;
case glue_val: cur_val = skip(cur_val); break;
case mu_val: cur_val = mu_skip(cur_val);
} /=there are no other cases */

}
}

This code is used in section 412.

191

192 BASIC SCANNING SUBROUTINES TEXprof — §427

427. (Complain that \the can’t do this; give zero result 427) =

{ print_err("You can’t use,‘");
print_cmd_chr (cur_cmd, cur_chr);
print ("’ after,");
print_esc("the");
help1 ("I’m forgetting, what,you said and using zero instead.");
error () ;
if (level # tok_val) scanned_result(0, dimen_val)
else scanned_result (0, int_val);

}

This code is used in section 412.

428. When a glue_val changes to a dimen_val, we use the width component of the glue; there is no need to
decrease the reference count, since it has not yet been increased. When a dimen_val changes to an int_val,
we use scaled points so that the value doesn’t actually change. And when a mu_val changes to a glue_val,
the value doesn’t change either.

(Convert cur_val to a lower level 428) =
{ if (cur_val_level = glue_val) cur_val = width(cur_val);
else if (cur_val_level = mu_val) mu_error();
decr (cur_val_level);

}

This code is used in section 412.

429. If cur_val points to a glue specification at this point, the reference count for the glue does not yet
include the reference by cur_val. If negative is true, cur_val_level is known to be < mu_val.

(Fix the reference count, if any, and negate cur_val if negative 429) =
if (negative)
if (cur_val_level > glue_val) { cur_val = new_spec(cur_val);
(Negate all three glue components of cur_val 430);

else negate(cur_val);
else if ((cur_val_level > glue_val) A (cur_val_level < mu_val)) add_glue_ref (cur_val)

This code is used in section 412.

430. (Negate all three glue components of cur_val 430) =
{ negate(width (cur_val));
negate (stretch (cur_val));
negate (shrink (cur_val));

}

This code is used in sections 429 and 1462.

431. Our next goal is to write the scan_int procedure, which scans anything that TEX treats as an integer.
But first we might as well look at some simple applications of scan_int that have already been made inside
of scan_something_internal.

6432 TEXprof BASIC SCANNING SUBROUTINES

432. (Declare procedures that scan restricted classes of integers 432) =
static void scan_eight_bit_int(void)
{ scan_int();
if ((cur_val < 0)V (cur_val > 255)) { print_err("Bad register code");
help2 ("A_register number must be_ between 0,and 255.",
"I, ,changed, this one to,zero.");
int_error (cur_val);
cur_val = 0;
}
}

See also sections 433, 434, 435, 436, and 1493.

This code is used in section 408.

433. (Declare procedures that scan restricted classes of integers 432) +=
static void scan_char_num (void)
{ scan_int();
if ((cur_val < 0)V (cur_val > 255)) { print_err("Bad character code");
help2 ("A character number must be between 0 ,and 255.",
"I ,changed,this one to,zero.");
int_error (cur_val);
cur_val = 0;
}
}

434. While we're at it, we might as well deal with similar routines that will be needed later.

(Declare procedures that scan restricted classes of integers 432) +=
static void scan_four_bit_int(void)
{ scan_int();
if ((cur_val < 0)V (cur_val > 15)) { print_err("Bad_number");
help2 ("Since I expected to read a number between 0 and 15,",
"I, ,changed, this one to,zero.");
int_error (cur_val);
cur_val = 0;
}
}

435. (Declare procedures that scan restricted classes of integers 432) +=
static void scan_fifteen_bit_int(void)
{ scan_int();
if ((cur_val <0)V (cur_val >°77777)) { print_err("Bad mathchar");
help2 ("A_mathchar number must be between 0 and 32767.",
"I, ,changed, this one to,zero.");
int_error (cur_val);
cur_val = 0;

193

194 BASIC SCANNING SUBROUTINES TpXprof §436

436. (Declare procedures that scan restricted classes of integers 432) +=
static void scan_twenty_seven_bit_int(void)
{ scan_int();
if ((cur_val < 0)V (cur_val > °777777777)) { print_err("Bad delimiter code");
help2 ("A_numeric delimiter ,code_ must be between O and 2°{27}-1.",
"I, ,changed, this one to,zero.");
int_error (cur_val);
cur_val = 0;
}
}

437. An integer number can be preceded by any number of spaces and ‘+’ or ‘-’ signs. Then comes either
a decimal constant (i.e., radix 10), an octal constant (i.e., radix 8, preceded by °), a hexadecimal constant
(radix 16, preceded by "), an alphabetic constant (preceded by), or an internal variable. After scanning is
complete, cur_val will contain the answer, which must be at most 23! — 1 = 2147483647 in absolute value.
The value of radiz is set to 10, 8, or 16 in the cases of decimal, octal, or hexadecimal constants, otherwise
radiz is set to zero. An optional space follows a constant.

#define octal_token (other_token + °\’”) /* apostrophe, indicates an octal constant x/
#define hex_token (other_token + ") /* double quote, indicates a hex constant */
#define alpha_token (other_token +) /*reverse apostrophe, precedes alpha constants */
#define point_token (other_token +°.7) /xdecimal point %/

#define continental_point_token (other_token + ,’) /xdecimal point, Eurostyle /

(Global variables 13) +=
static small_number radiz; /x scan_int sets this to 8, 10, 16, or zero */

438. We initialize the following global variables just in case expand comes into action before any of the
basic scanning routines has assigned them a value.

(Set initial values of key variables 21) +=
cur_val = 0
cur_val_level = int_val;
radiz = 0;
cur_order = normal;

6439 TEXprof BASIC SCANNING SUBROUTINES 195

439. The scan_int routine is used also to scan the integer part of a fraction; for example, the ‘3’ in
‘3.14159’ will be found by scan_int. The scan_dimen routine assumes that cur_tok = point_token after the
integer part of such a fraction has been scanned by scan_int, and that the decimal point has been backed
up to be scanned again.

static void scan_int(void) /«xsets cur_val to an integer x/
{ bool negative; /xshould the answer be negated? =/
int m; /*23!/ radiz, the threshold of danger */
small_number d; /xthe digit just scanned %/
bool vacuous; /*have no digits appeared? */
bool OK_so_far; /*has an error message been issued? x/
radiz = 0;

OK_so_far = true;

(Get the next non-blank non-sign token; set negative appropriately 440);

if (cur_tok = alpha_token) (Scan an alphabetic character code into cur_val 441)

else if ((cur_ecmd > min_internal) A (cur_ecmd < maz_internal))
scan_something_internal (int_val, false);

else (Scan a numeric constant 443);

if (negative) negate(cur_val);

}

440. (Get the next non-blank non-sign token; set negative appropriately 440) =
negative = false;
do {
(Get the next non-blank non-call token 405);
if (cur_tok = other_token 4+ =) { negative = —negative;
cur_tok = other_token + ’+7;

} while (—(cur_tok # other_token + ’+7))
This code is used in sections 439, 447, and 460.

441. A space is ignored after an alphabetic character constant, so that such constants behave like numeric
ones.

(Scan an alphabetic character code into cur_val 441) =
{ get_token(); /*xsuppress macro expansion */
if (cur_tok < cs_token_flag) { cur_val = cur_chr;
if (cur_emd < right_brace)
if (cur_cmd = right_brace) incr(align_state);
else decr (align_state);

else if (cur_tok < cs_token_flag + single_base) cur_val = cur_tok — cs_token_flag — active_base;
else cur_val = cur_tok — cs_token_flag — single_base;
if (cur_val > 255) { print_err("Improper alphabetic constant");

help2 ("Auone—characterucontrolusequence._,belongsuafteruau ‘ mark.",

"So,I’m essentially,inserting \\O_here.");

cur_val =07,

back_error();

}

else (Scan an optional space 442);

}

This code is used in section 439.

196 BASIC SCANNING SUBROUTINES TpXprof — §442

442. (Scan an optional space 442) =
{ get_x_token();
if (cur_cemd # spacer) back_input();

}

This code is used in sections 441, 447, 454, 1199, 1817, 1819, 1820, 1823, and 1827.

443. (Scan a numeric constant 443) =
{ radiz = 10;
m = 214748364;
if (cur_tok = octal_token) { radiz = 8;
m = °2000000000;
get_z_token();

else if (cur_tok = hex_token) { radiz = 16;
m = °1000000000;
get_x_token();

VAcuUous = true;

cur_val = 0;

{ Accumulate the constant until cur_tok is not a suitable digit 444);
if (vacuous) (Express astonishment that no number was here 445)
else if (cur_cmd # spacer) back_input();

}

This code is used in section 439.

8444 TEXprof BASIC SCANNING SUBROUTINES 197

444. #define infinity 17777777777 /* the largest positive value that TEX knows x/
#define zero_token (other_token +°0°) /xzero, the smallest digit x/
#define A_token (letter_token + ’A’) /+the smallest special hex digit */
#define other_A_token (other_token + °A’) /xspecial hex digit of type other_char */
(Accumulate the constant until cur_tok is not a suitable digit 444) =
loop { if ((cur_tok < zero_token + radiz) A (cur_tok > zero_token) A (cur_tok < zero_token + 9))
d = cur_tok — zero_token;
else if (radiz = 16)
if ((cur_tok < A_token + 5) A (cur_tok > A_token)) d = cur_tok — A_token + 10;
else if ((cur_tok < other_A_token + 5) A (cur_tok > other_A_token))
d = cur_tok — other_A_token + 10;
else goto done;
else goto done;
vacuous = false;
if ((cur_val > m) A ((cur_val > m)V (d > T)V (radiz # 10))) { if (OK_so_far) {
print_err ("Number too big");
help2 ("I can only go up to,2147483647=>17777777777=\"TFFFFFFF,"
"soyI’m using that number instead of yours.");
error () ;
cur_val = infinity;
OK_so_far = false;
}
}

else cur_val = cur_val * radiz + d;
get_xz_token();

}

done:

This code is used in section 443.

445. (Express astonishment that no number was here 445) =
{ print_err("Missing number, treated as zero");
help3 ("A_number should, have been here; I, inserted,0’.",
" (If, you,can’t figure out, why I needed, to see a number,",
"look jup,,‘weird ,error’ in the index to_ The TeXbook.)");
back_error();

}

This code is used in section 443.

446. The scan_dimen routine is similar to scan_int, but it sets cur_val to a scaled value, i.e., an integral
number of sp. One of its main tasks is therefore to interpret the abbreviations for various kinds of units and
to convert measurements to scaled points.

There are three parameters: mu is true if the finite units must be ‘mu’, while mu is false if ‘mu’ units
are disallowed; inf is true if the infinite units ‘£il’, ‘fill’, ‘£i111’ are permitted; and shortcut is true if
cur_val already contains an integer and only the units need to be considered.

The order of infinity that was found in the case of infinite glue is returned in the global variable cur_order.
(Global variables 13) +=

static glue_ord cur_order; /xorder of infinity found by scan_dimen */

198 BASIC SCANNING SUBROUTINES TEXprof — §447

447. Constructions like ‘="77 pt’ are legal dimensions, so scan_dimen may begin with scan_int. This
explains why it is convenient to use scan_int also for the integer part of a decimal fraction.

Several branches of scan_dimen work with cur_val as an integer and with an auxiliary fraction f, so that
the actual quantity of interest is cur_val + f/2'6. At the end of the routine, this “unpacked” representation
is put into the single word cur_val, which suddenly switches significance from int to scaled.

#define scan_normal_dimen scan_dimen false, false, false)

static void scan_dimen(bool mu,bool inf,bool shortcut) /xsets cur_val to a dimension x/
{ bool negative; /+should the answer be negated? x/
int f; /xnumerator of a fraction whose denominator is 216 %/

(Local variables for dimension calculations 449)
=0
arith_error = false;
cur_order = normal;
negative = false;
if (—shortcut) { (Get the next non-blank non-sign token; set negative appropriately 440);
if ((cur_emd > mian_internal) A (cur_emd < maz_internal))
(Fetch an internal dimension and goto attach_sign, or fetch an internal integer 448)
else { back_input();
if (cur_tok = continental_point_token) cur_tok = point_token;
if (cur_tok # point_token) scan_int();
else { radiz = 10;
cur_val = 0;
}
if (cur_tok = continental_point_token) cur_tok = point_token;
if ((radiz = 10) A (cur_tok = point_token)) (Scan decimal fraction 451);
}
}
if (cur_val < 0) /*1in this case f = 0x/
{ negative = —negative;
negate (cur_val);
}

(Scan units and set cur_val to x - (cur_val + f/216), where there are x sp per unit; goto attach_sign
if the units are internal 452);
(Scan an optional space 442);
attach_sign:
if (arith_error V (abs(cur_val) > °10000000000)) {Report that this dimension is out of range 459);
if (negative) negate(cur_val);

}

448. (Fetch an internal dimension and goto attach_sign, or fetch an internal integer 448) =
if (mu) { scan_something_internal (mu_val, false);
(Coerce glue to a dimension 450);
if (cur_val_level = mu_val) goto attach_sign;
if (cur_val_level # int_val) mu_error();
}
else { scan_something_internal (dimen_val, false);
if (cur_val_level = dimen_val) goto attach_sign;

}

This code is used in section 447.

6449 TEXprof BASIC SCANNING SUBROUTINES 199

449. (Local variables for dimension calculations 449) =
int num, denom; /* conversion ratio for the scanned units x/
int k, kk; /+number of digits in a decimal fraction %/
pointer p, q; /= top of decimal digit stack x/
scaled v; /*an internal dimension */
int save_cur_val; /+temporary storage of cur_val */

This code is used in section 447.

450. The following code is executed when scan_something_internal was called asking for mu_val, when
we really wanted a “mudimen” instead of “muglue.”
(Coerce glue to a dimension 450) =
if (cur_val_level > glue_val) { v = width(cur_val);
delete_glue_ref (cur_val);
cur_val = v;
¥

This code is used in sections 448 and 454.

451. When the following code is executed, we have cur_tok = point_token, but this token has been backed
up using back_input; we must first discard it.
It turns out that a decimal point all by itself is equivalent to ‘0.0’. Let’s hope people don’t use that fact.

(Scan decimal fraction 451) =

{ k=0
p = null;
get_token(); /x point_token is being re-scanned x/

loop { get_z_token();
if ((cur_tok > zero_token +9) V (cur_tok < zero_token)) goto donel;
if (k<17) /xdigits for k > 17 cannot affect the result x/
{ ¢ = get_avail ();

link(q) = p;
info(q) = cur_tok — zero_token;
pP=q
incr(k);
}
}
donel :
for (kk = k; kk > 1; kk—) { dig[kk — 1] = info(p);
q=0Dp;
p = link(p);

free_avail (q);

}

f = round_decimals (k);
if (cur_cmd # spacer) back_input();
}

This code is used in section 447.

200 BASIC SCANNING SUBROUTINES TEXprof §452

452. Now comes the harder part: At this point in the program, cur_val is a nonnegative integer and f/2'¢
is a nonnegative fraction less than 1; we want to multiply the sum of these two quantities by the appropriate
factor, based on the specified units, in order to produce a scaled result, and we want to do the calculation
with fixed point arithmetic that does not overflow.

(Scan units and set cur_val to z - (cur_val + f/2%), where there are x sp per unit; goto attach_sign if the
units are internal 452) =
if (inf) (Scan for £il units; goto attach_fraction if found 453);
(Scan for units that are internal dimensions; goto attach_sign with cur_val set if found 454);
if (mu) (Scan for mu units and goto attach_fraction 455);
if (scan_keyword ("true")) (Adjust for the magnification ratio 456);
if (scan_keyword("pt")) goto attach_fraction; /+the easy case*/
(Scan for all other units and adjust cur_val and f accordingly; goto done in the case of scaled
points 457);
attach_fraction:
if (cur_val > °40000) arith_error = true;
else cur_val = cur_val * unity + f;
done:

This code is used in section 447.

453. A specification like ‘111111’ or ‘fi11 L L L’ will lead to two error messages (one for each additional

keyword "1").

(Scan for £il units; goto attach_fraction if found 453) =

if (scan_keyword ("£il")) { cur_order = fil;
while (scan_keyword("1")) { if (cur_order = filll) { print_err("Illegal unit of measure (");

print("replaced by £illl)");
help1 ("I dddon’t go any higher than filll.");
error () ;

}

else incr(cur_order);

}

goto attach_fraction;

}

This code is used in section 452.

8454 TEXprof BASIC SCANNING SUBROUTINES 201

454. (Scan for units that are internal dimensions; goto attach_sign with cur_val set if found 454) =
save_cur_val = cur_val;
(Get the next non-blank non-call token 405);
if ((cur_emd < min_internal) V (cur_emd > max_internal)) back_input();
else { if (mu) { scan_something_internal (mu_val, false);
(Coerce glue to a dimension 450);
if (cur_val_level # mu_val) mu_error();
}
else scan_something_internal (dimen_val, false);
v = cur_val;
goto found;

if (mu) goto not_found;
if (scan_keyword("em")) v = ({ The em width for cur_font 557));
else if (scan_keyword ("ex")) v = ({ The x-height for cur_font 558));
else goto not_found;
(Scan an optional space 442);

found: cur_val = nx_plus_y(save_cur_val,v, xn_over_d (v, f,°200000));
goto attach_sign; not_found:

This code is used in section 452.

455. (Scan for mu units and goto attach_fraction 455) =

if (scan_keyword("mu")) goto attach_fraction;

else { print_err("Illegal unit of measure (");
print("mu inserted)");
help/ ("Theuunituof umeasurement, in mathglue must be mu.",
"Toyrecover,gracefully, from this error, it’s best to",
"delete the erroneous units; e.g., type. ‘2’ to delete",
"two_letters. (See Chapter 27 0f The TeXbook.)");
error () ;
goto attach_fraction;

}

This code is used in section 452.

456. (Adjust for the magnification ratio 456) =
{ prepare_mag ();
if (mag # 1000) { cur_val = zn_over_d(cur_val,1000, mag);
f = (1000 x f + °200000 * rem)/mag;
cur_val = cur_val + (f/°200000);
f=1f%°200000;
}
}

This code is used in section 452.

202 BASIC SCANNING SUBROUTINES TEXprof — §457

457. The necessary conversion factors can all be specified exactly as fractions whose numerator and
denominator sum to 32768 or less. According to the definitions here, 2660 dd ~ 1000.33297 mm; this agrees
well with the value 1000.333 mm cited by Bosshard in Technische Grundlagen zur Satzherstellung (Bern,
1980).

#define set_conversion(A, B) { num = A;
denom = B;
}
(Scan for all other units and adjust cur_val and f accordingly; goto done in the case of scaled
points 457) =
if (scan_keyword("in")) set_conversion(7227,100)

i_
else if (scan_keyword("pc")) set_conversion(12,1)
else if (scan_keyword("cm")) set_conversion(7227,254)
else if (scan_keyword ("mm")) set_conversion(7227,2540)
else if (scan_keyword ("bp")) set_conversion(7227,7200)
else if (scan_keyword("dd")) set_conversion(1238,1157)
else if (scan_keyword("cc")) set_conversion (14856, 1157)
else if (scan_keyword("sp")) goto done;

else (Complain about unknown unit and goto done2 458);
cur_val = zn_over_d (cur_val, num, denom);

f = (num * f +°200000 * rem)/denom;

cur_val = cur_val + (f/°200000);

f=71%°200000; done2:

This code is used in section 452.

458. (Complain about unknown unit and goto done2 458) =
{ print_err("Illegal unit of_ measure,(");

print("ptinserted)");
help6 ("Dimensions can bein units of em, ex, in, pt,.pc,"
"cm, mm,dd, cc, bp, or,sp;but yours,is a new one!",
"I’11 ,assume that ;you meant toysay pt, for printer’s points.",
"Toyrecover gracefully, from this error, it’s best to",
"delete the erroneous junits;_ e.g., typeu‘2’ to delete",
"two,letters. (See Chapter 27 0f The TeXbook.)");
error () ;
goto done2;

}

This code is used in section 457.

459. (Report that this dimension is out of range 459) =
{ print_err("Dimension too large");
help2 ("I can’t work with sizes bigger jthan about 19 feet.",
"Continueand ;1’11 use the largest value I can.");
error () ;
cur_val = maz_dimen;
arith_error = false;

}

This code is used in section 447.

6460 TEXprof BASIC SCANNING SUBROUTINES 203

460. The final member of TEX’s value-scanning trio is scan_glue, which makes cur_val point to a glue
specification. The reference count of that glue spec will take account of the fact that cur_val is pointing
to it.

The level parameter should be either glue_val or mu_val.

Since scan_dimen was so much more complex than scan_int, we might expect scan_glue to be even worse.
But fortunately, it is very simple, since most of the work has already been done.

static void scan_glue (small_number level) /xsets cur_val to a glue spec pointer */
{ bool negative; /xshould the answer be negated? x/

pointer g; /*new glue specification */

bool mu; /+does level = mu_val?x/

mu = (level = mu_val);
(Get the next non-blank non-sign token; set negative appropriately 440);
if ((cur_emd > min_internal) A (cur_emd < maz_internal)) {
scan_something_internal (level , negative);
if (cur_val_level > glue_val) { if (cur_val_level # level) mu_error();
return;

if (cur_val_level = int_val) scan_dimen(mu, false, true);
else if (level = mu_val) mu_error();

else { back_input();
scan_dimen (mu, false, false);
if (negative) negate(cur_val);

(Create a new glue specification whose width is cur_val; scan for its stretch and shrink
components 461);
}

(Declare procedures needed for expressions 1464)

461. (Create a new glue specification whose width is cur_val; scan for its stretch and shrink
components 461) =
q = new_spec(zero_glue);
width (q) = cur_val;
if (scan_keyword ("plus")) { scan_dimen(mu, true, false);
stretch(q) = cur_val;
stretch_order(q) = cur_order;

if (scan_keyword("minus")) { scan_dimen(mu, true, false);
shrink(q) = cur_val;
shrink_order(q) = cur_order;

}

cur_val = q

This code is used in section 460.

204 BASIC SCANNING SUBROUTINES TpXprof §462

462. Here’s a similar procedure that returns a pointer to a rule node. This routine is called just after TEX
has seen \hrule or \vrule; therefore cur_cmd will be either hrule or vrule. The idea is to store the default
rule dimensions in the node, then to override them if ‘height’ or ‘width’ or ‘depth’ specifications are found
(in any order).

#define default_rule 26214 /x0.4ptx*/

static pointer scan_rule_spec(void)
{ pointer ¢; /xthe rule node being created */

q = new_rule(); /* width, depth, and height all equal null_flag now %/
if (cur_emd = vrule) width(q) = default_rule;
else { height(q) = default_rule;

depth(q) = 0;

reswitch:

if (scan_keyword ("width")) { scan_normal_dimen;
width(q) = cur_val;
goto reswitch;

}

if (scan_keyword("height")) { scan_normal_dimen;
height (q) = cur_val;
goto reswitch;

if (scan_keyword ("depth")) { scan_normal_dimen;
depth(q) = cur_val;
goto reswitch;

}

return g;

6463 TEXprof BUILDING TOKEN LISTS 205

463. Building token lists. The token lists for macros and for other things like \mark and \output and
\write are produced by a procedure called scan_toks.

Before we get into the details of scan_toks, let’s consider a much simpler task, that of converting the
current string into a token list. The str_toks function does this; it classifies spaces as type spacer and
everything else as type other_char.

The token list created by str_toks begins at link (temp_head) and ends at the value p that is returned. (If
p = temp_head, the list is empty.)

(Declare e-TEX procedures for token lists 1413)

static pointer str_toks(pool_pointer b) /xconverts str_pool[b .. pool_ptr — 1] to a token list x/
{ pointer p; /= tail of the token list x/

pointer g; /*new node being added to the token list via store_new_token */

halfword t; /* token being appended */

pool_pointer k; /*index into str_pool */

str_room (1);

p = temp_head,;

link (p) = null;

k = b;

while (k < pool_ptr) { t = so(str_pool[k]);
if (t=".") t = space_token;
else t = other_token + t;
fast_store_new_token (t);
incr(k);

}

pool_ptr = b;

return p;

}

206 BUILDING TOKEN LISTS TEXprof §464

464. The main reason for wanting str_toks is the next function, the_toks, which has similar input/output
characteristics.

This procedure is supposed to scan something like ‘\skip\count12’, i.e., whatever can follow ‘\the’, and
it constructs a token list containing something like ‘-3.0pt minus 0.5fill’.

static pointer the_toks(void)

{ int old_setting; /xholds selector setting x/
pointer p,q,r; /xused for copying a token list x/
pool_pointer b; /*base of temporary string x/
small_number ¢; /+value of cur_chr */

(Handle \unexpanded or \detokenize and return 1418);
get_x_token();
scan_something_internal (tok_val, false);
if (cur_val_level > ident_val) (Copy the token list 465)
else { old_setting = selector;
selector = new_string;
b = pool_ptr;
switch (cur_val_level) {
case int_val: print_int(cur_val); break;
case dimen_val:
{ print_scaled (cur_val);
print ("pe):
} break;
case glue_val:
{ print_spec(cur_val, "pt");
delete_glue_ref (cur_val);
} break;
case mu_val:
{ print_spec(cur_val, "mu");
delete_glue_ref (cur_val);

} /+ there are no other cases */
selector = old_setting;
return str_toks(b);

}
}

465. (Copy the token list 465) =
{ p = temp_head;
link (p) = null;
if (cur_val_level = ident_val) store_new_token(cs_token_flag + cur_val)

else if (cur_val # null) { r = link(cur_val); /*do not copy the reference count /
while (r # null) { fast_store_new_token (info(r));
r = link(r);

}
}

return p;

}

This code is used in section 464.

8466 TEXprof BUILDING TOKEN LISTS 207

466. Here’s part of the expand subroutine that we are now ready to complete:

static void ins_the_toks(void)
{ link (garbage) = the_toks();
ins_list (link (temp_head));

}

467. The primitives \number, \romannumeral, \string, \meaning, \fontname, and \ jobname are defined
as follows.

#define number_code 0 /+ command code for \number */

#define roman_numeral_code 1 /* command code for \romannumeral */

#define string_code 2 /+command code for \string x/

#define meaning_code 3 /+command code for \meaning %/

#define font_name_code 4 /xcommand code for \fontname */

#define etex_convert_base 5 /xbase for e-TEX’s command codes */

#define eTeX_revision_code etex_convert_base /+ command code for \eTeXrevision */
#define etex_convert_codes (etex_convert_base + 1) /*end of e-TEX’s command codes */
#define eTeX_last_convert_cmd_mod etex_convert_codes /* prote codes follow */

#define job_name_code pdftex_convert_codes /* command code for \ jobname x/

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("number" , convert, number_code);
primitive ("romannumeral", convert, roman_numeral_code);
primitive ("string", convert, string_code);

primitive ("meaning", convert, meaning_code);

primitive ("fontname", convert, font_name_code);

primitive (" jobname", convert, job_name_code);

468. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case convert:

switch (chr_code) {

case number_code: print_esc("number"); break;

case roman_numeral_code: print_esc("romannumeral"); break;

case string_code: print_esc("string"); break;

case meaning_code: print_esc("meaning"); break;

case font_name_code: print_esc("fontname"); break;

case job_name_code: print_esc("jobname"); break;

case eTeX_revision_code: print_esc("eTeXrevision"); break;

(Cases of convert for print_cmd_chr 1556)
} break;

208 BUILDING TOKEN LISTS TEXprof §469

469. The procedure conuv_toks uses str_toks to insert the token list for convert functions into the scanner;
“\outer’ control sequences are allowed to follow ‘\string’ and ‘\meaning’.

static void scan_pdf_ext_toks(void);

static void conv_toks(void)
{ int old_setting; /*holds selector setting*/
int ¢; /* desired type of conversion */
small_number save_scanner_status; /* scanner_status upon entry %/
pool_pointer b; /xbase of temporary string x/
int 7, k,1; /* general purpose index */
pool_pointer m,n; /* general purpose pool pointer /
bool 7; /* general purpose refraction i.e. changing the way */
str_number s, t; /* general purpose; de dicto */
c = cur_chr;
(Scan the argument for command ¢ 470);
old_setting = selector;
selector = new_string;
b = pool_ptr;
(Print the result of command ¢ 471);
selector = old_setting;
link (garbage) = str_toks(b);
ins_list (link (temp_head));

}

470. (Scan the argument for command ¢ 470) =
switch (¢) {
case number_code: case roman_numeral_code: scan_int(); break;
case string_code: case meaning_code:
{ save_scanner_status = scanner_status;
scanner_status = normal;
get_token();
scanner_status = save_scanner_status;
} break;
case font_name_code: scan_font_ident(); break;
case job_name_code:
if (job_name = 0) open_log_file(); break;
case eTeX_revision_code: do_nothing; break;
(Cases of ‘Scan the argument for command ¢’ 1557)
} /+ there are no other cases */

This code is used in section 469.

8471 TEXprof BUILDING TOKEN LISTS 209

471. (Print the result of command ¢ 471) =
switch (¢) {
case number_code: print_int(cur_val); break;
case roman_numeral_code: print_roman_int(cur_val); break;
case string_code:
if (cur_cs #0) sprint_cs(cur_cs);
else print_char(cur_chr); break;
case meaning_code: print_meaning(); break;
case font_name_code:
{ printn(font_name|cur_val));
if (font_size[cur_val] # font_dsize|cur_val]) { print("Lat,");
print_scaled (font_size [cur_val));
print("pt");
}
} break;
case eTeX_revision_code: print(eTeX_revision); break;
case job_name_code: printn(job_name); break;
(Cases of ‘Print the result of command ¢’ 1558)
} /xthere are no other cases*/

This code is used in section 469.

210 BUILDING TOKEN LISTS TpXprof — §472

472. Now we can’t postpone the difficulties any longer; we must bravely tackle scan_toks. This function
returns a pointer to the tail of a new token list, and it also makes def_ref point to the reference count at
the head of that list.

There are two boolean parameters, macro_def and xzpand. If macro_def is true, the goal is to create the
token list for a macro definition; otherwise the goal is to create the token list for some other TEX primitive:
\mark, \output, \everypar, \lowercase, \uppercase, \message, \errmessage, \write, or \special. In
the latter cases a left brace must be scanned next; this left brace will not be part of the token list, nor will
the matching right brace that comes at the end. If zpand is false, the token list will simply be copied from
the input using get_token. Otherwise all expandable tokens will be expanded until unexpandable tokens are
left, except that the results of expanding ‘\the’ are not expanded further. If both macro_def and xpand
are true, the expansion applies only to the macro body (i.e., to the material following the first left_brace
character).

The value of cur_cs when scan_toks begins should be the eqtb address of the control sequence to display
in “runaway” error messages.

static pointer scan_toks(bool macro_def ,bool zpand)

{ halfword ¢; /*token representing the highest parameter number %/
halfword s; /+saved token */
pointer p; /= tail of the token list being built */
pointer g; /*new node being added to the token list via store_new_token */
halfword unbalance; /*number of unmatched left braces /
halfword hash_brace; /* possible ‘#{’ token x/

if (macro_def) scanner_status = defining; else scanner_status = absorbing;

warning_inder = cur_cs;

def_ref = get_avail();

token_ref_count (def_ref) = null;

p = def_ref;

hash_brace = 0;

t = zero_token;

if (macro_def) (Scan and build the parameter part of the macro definition 473)

else scan_left_brace(); /+remove the compulsory left brace */

(Scan and build the body of the token list; goto found when finished 476);
found: scanner_status = normal;

if (hash_brace # 0) store_new_token (hash_brace);

return p;

}

{ Declare PRITE procedures for token lists 1561)

473. (Scan and build the parameter part of the macro definition 473) =
{ loop { resume: get_token(); /xset cur_cmd, cur_chr, cur_tok %/
if (cur_tok < right_brace_limit) goto donel;
if (cur_emd = mac_param)
(If the next character is a parameter number, make cur_tok a match token; but if it is a left
brace, store ‘left_brace, end_match’, set hash_brace, and goto done 475);
store_new_token (cur_tok);
}
donel: store_new_token (end_match_token);
if (cur_cmd = right_brace) {Express shock at the missing left brace; goto found 474);
done: ;

}

This code is used in section 472.

8474 TEXprof BUILDING TOKEN LISTS 211

474. (Express shock at the missing left brace; goto found 474) =
{ print_err("Missing, { inserted");
incr (align_state);
help2 ("Where was the left brace? You said something like ‘\\def\\a}’,",
"which,I’m going to, interpretyas,‘\\def\\a{}’.");
error () ;
goto found;

}

This code is used in section 473.

475. (If the next character is a parameter number, make cur_tok a match token; but if it is a left brace,
store ‘left_brace, end_match’, set hash_brace, and goto done 475) =
{ s = match_token + cur_chr;
get_token();
if (cur_tok < left_brace_limit) { hash_brace = cur_tok;
store_new_token (cur_tok);
store_new_token (end_match_token);
goto done;
}
if (t = zero_token +9) { print_err("You_already_have nine parameters");
help2 ("I’m_ going to ignore the #, sign you, just used,",
"as well as_ the_ token that followed_ it.");
error () ;
goto resume;
}
else { incr(t);
if (cur_tok #1t) { print_err("Parameters must_be_numbered consecutively");
help2("I’ve_ inserted the digit, you,should have used after the #.",
"Typey ‘1’ to delete what you did use.");
back_error();
}
cur_tok = s;
}
¥

This code is used in section 473.

476. (Scan and build the body of the token list; goto found when finished 476) =
unbalance = 1;
loop { if (zpand) (Expand the next part of the input 477)
else get_token();
if (cur_tok < right_brace_limit)
if (cur_emd < right_brace) incr(unbalance);
else { decr(unbalance);
if (unbalance = 0) goto found;
}
else if (cur_cmd = mac_param)
if (macro_def) (Look for parameter number or ## 478);
store_new_token (cur_tok);

}

This code is used in section 472.

212 BUILDING TOKEN LISTS TEXprof

477. Here we insert an entire token list created by the_toks without expanding it further.
(Expand the next part of the input 477) =
{ loop { get_next();
if (cur_emd > call)
if (info(link (cur_chr)) = protected_token) { cur_cmd = relax;
cur_chr = no_expand_flag;

}
if (cur_emd < maz_command) goto done2;
if (cur_emd # the) expand();
else { ¢ = the_toks();
if (link (temp_head) # null) { link(p) = link (temp_head);
pP=4q
}
}

done2: x_token();

}

This code is used in section 476.

478. (Look for parameter number or ## 478) =
{ s = cur_tok;

if (zpand) get_x_token();

else get_token();

if (cur_cmd # mac_param)

if ((cur_tok < zero_token)V (cur_tok >1t)) {

print_err ("Illegal, parameter number ,in definition of ");
sprint_cs(warning_indez);
help3 ("You_ meant to_ type ## instead of #, right?",
"Or_maybe a } was_ forgotten somewhere earlier, and things",
"areall screwed up?,I’m going to ,assume that you meant ##.");
back_error();
cur_tok = s;

}

else cur_tok = out_param_token — >0’ + cur_chr;

}

This code is used in section 476.

§477

479. Another way to create a token list is via the \read command. The sixteen files potentially usable for
reading appear in the following global variables. The value of read_open[n] will be closed if stream number
n has not been opened or if it has been fully read; just_open if an \openin but not a \read has been done;

and normal if it is open and ready to read the next line.
#define closed 2 /*1not open, or at end of file x/
#define just_open 1 /+newly opened, first line not yet read */
(Global variables 13) +=
static alpha_file read_file[16]; /*used for \read */
static int8_t read_open[17]; /xstate of read_file[n] */

480. (Set initial values of key variables 21) +=
for (k=0; k <16; k++) read_open[k] = closed;

8481 TEXprof

BUILDING TOKEN LISTS

213

481. The read_toks procedure constructs a token list like that for any macro definition, and makes cur_val
point to it. Parameter r points to the control sequence that will receive this token list.

static void read_toks(int n, pointer r, halfword j)

{ pointer p; /xtail of the token list x/
pointer g; /*new node being added to the token list via store_new_token */
int s; /xsaved value of align_state */
small_number m; /xstream number x/

scanner_status = defining;
warning_indexr = r;
def_ref = get_avail();

token_ref_count (def_ref) = null;

p = def_ref; /*the reference count x/
store_new_token (end_match_token);

if ((n<0)V (n>15)) m = 16; else m =n;

s = align_state;

align_state = 1000000 /* disable tab marks, etc. x/

do {

(Input and store tokens from the next line of the file 482);
} while (—(align_state = 1000000));

cur_val = def_ref;
scanner_status = normal;
align_state = s;

}

482. (Input and store tokens from the next line of the file 482) =

begin_file_reading();
name = m + 1;

if (read_open|m] = closed) (Input for \read from the terminal 483);
else if (read_open|m] = just_open) (Input the first line of read_file[m] 484)
else (Input the next line of read_file[m] 485);

limit = last;

if (end_line_char_inactive) decr(limit);
else buffer[limit] = end_line_char;

first = limit + 1;
loc = start;
state = new_line;

(Handle \readline and goto done 1443);

loop { get_token();
if (cur_tok =0) goto done;
if (align_state < 1000000)
{do {
get_token();
} while (—=(cur_tok = 0));
align_state = 1000000;
goto done;

}

store_new_token (cur_tok);

}

done: end_file_reading ()

This code is used in section 481.

/* cur_cmd = cur_chr = 0 will occur at the end of the line */
/+unmatched ‘}’ aborts the line */

214 BUILDING TOKEN LISTS TpXprof — §483

483. Here we input on-line into the buffer array, prompting the user explicitly if n > 0. The value of n is
set negative so that additional prompts will not be given in the case of multi-line input.
(Input for \read from the terminal 483) =
if (interaction > nonstop_mode)
if (n < 0) prompt_input("")
else { wake_up_terminal;
print_In();
sprint_cs (r);
prompt_input ("=");
n=—1;
}

else fatal_error("*x*,(cannot \\read from terminal jin nonstop_modes)")

This code is used in section 482.

484. The first line of a file must be treated specially, since input_In must be told not to start with get.

(Input the first line of read_file[m] 484) =
if (input_In(&read_file[m], false)) read_open[m| = normal;
else { a_close(&read_file[m]);
read_open|[m] = closed;

This code is used in section 482.

485. An empty line is appended at the end of a read_file.

(Input the next line of read_file[m] 485) =
{ if (—input_In(&read_file[m], true)) { a_close(&read_file[m));
read_open|m| = closed;
if (align_state # 1000000) { runaway();
print_err ("File ended within ");
print_esc("read");
help1 ("This_ \\read has unbalanced braces.");
align_state = 1000000;
limit = 0;
error () ;
}
}
}

This code is used in section 482.

6486 TEXprof CONDITIONAL PROCESSING 215

486. Conditional processing. We consider now the way TEX handles various kinds of \if commands.
#define unless_code 32 /+*amount added for ‘\unless’ prefix */

#define if_char_code 0 /x ‘\if’ %/
#define if_cat_code 1 /% ‘\ifcat’ =/
#define if_int_code 2 /+ ‘\ifnum’ */
#define if_dim_code 3 /% ‘\ifdim’ */
#define if_odd_code 4 /x ‘\ifodd’ x/
#define if_vmode_code 5 /*x ‘\ifvmode’ x/
#define if_hmode_code 6 /+ ‘\ifhmode’ */
#define if_ mmode_code 7 /% ‘\ifmmode’ x/
#define if_inner_code 8 /x ‘\ifinner’ */
#define if_void_code 9 /x ‘\ifvoid’ x/
#define if_hbor_code 10 /% ‘\ifhbox’ =/
#define if_vbor_code 11 /% ‘\ifvbox’ x*/
#define ifr_code 12 [+ ‘\ifx’ x/

#define if_eof_code 13 /* ‘\ifeof’ */
#define if_true_code 14 /% ‘\iftrue’ x*/
#define if_false_code 15 /% ‘\iffalse’ x/
#define if_case_code 16 /x ‘\ifcase’ x/

(Put each of TEX’s primitives into the hash table 225) +=
primative ("if", if_test, if_char_code);
primitive ("ifcat", if_test, if_cat_code);
primitive ("ifnum", if_test, if_int_code);
primitive ("ifdim", if_test, if_dim_code);
primitive ("ifodd", if_test, if_odd_code);
primitive ("ifvmode", if_test, if_vmode_code);
primitive ("ifhmode", if_test, if_hmode_code);
primitive ("ifmmode", if_test, if_mmode_code);
primitive ("ifinner", if_test, if_inner_code);
primitive ("ifvoid", if_test, if_void_code);
primitive ("ifhbox", if_test, if_hbox_code);
primiative ("ifvbox", if_test, if_vbox_code);
primiative ("ifx", if_test, ifr_code);
primitive("lfeof" if_test, if_eof_code);
primitive ("iftrue", if_test, if_true_code);
primitive ("iffalse", if_test, if_false_code);
("

primitive ("ifcase", if_test, if_case_code);

216 CONDITIONAL PROCESSING TEXprof — §487

487. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case if_test: { if (chr_code > unless_code) print_esc("unless");
switch (chr_code % unless_code) {

case if_cat_code: print_esc("ifcat"); break;

case if_int_code: print_esc("ifnum"); break;

case if_dim_code: print_esc("ifdim"); break;

case if_odd_code: print_esc("ifodd"); break;

case if_vmode_code: print_esc("ifvmode"); break;

case if_hmode_code: print_esc("ifhmode"); break;

case if_mmode_code: print_esc("ifmmode"); break;
case if_inner_code: print_esc("ifinner"); break;
case if_void_code: print_esc("ifvoid"); break;
case if_hbox_code: print_esc("ifhbox"); break;
case if_vboz_code: print_esc("ifvbox"); break;
case ifr_code: print_esc("ifx"); break;

case if_eof_code: print_esc("ifeof"); break;

case if_true_code: print_esc("iftrue"); break;

case if_false_code: print_esc("iffalse"); break;

case if_case_code: print_esc("ifcase"); break;
(Cases of if_test for print_cmd_chr 1446)
default: print_esc("if"); } } break;

488. Conditions can be inside conditions, and this nesting has a stack that is independent of the save_stack.

Four global variables represent the top of the condition stack: cond_ptr points to pushed-down entries,
if any; if_limit specifies the largest code of a fi_or_else command that is syntactically legal; cur_if is the
name of the current type of conditional; and if_line is the line number at which it began.

If no conditions are currently in progress, the condition stack has the special state cond_ptr = null,
if_limit = normal, cur_if = 0, if_line = 0. Otherwise cond_ptr points to a two-word node; the type,
subtype, and link fields of the first word contain if_limit, cur_if, and cond_ptr at the next level, and the
second word contains the corresponding if_line.

#define if_node_size 2 /xnumber of words in stack entry for conditionals /
#define if_line_field(A) mem[A + 1].i

#define if_code 1 /xcode for \if... being evaluated x/

#define fi_code 2 /xcode for \fi x/

#define else_code 3 /+code for \else %/

#define or_code 4 /xcode for \or */

(Global variables 13) +=
static pointer cond_ptr; /*top of the condition stack %/
static int if_limit; /*upper bound on fi_or_else codes*/
static small_number cur_if; /= type of conditional being worked on */
static int if_line; /xline where that conditional began x/

489. (Set initial values of key variables 21) +=
cond_ptr = null;
if_limit = normal;
cur_if =0;
if_line = 0;

8490 TEXprof CONDITIONAL PROCESSING 217

490. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("£1", fi_or_else, fi_code);
text (frozen_fi) = text(cur_val);
eqth[frozen_fi] = eqtb[cur_vall;
primitive ("or", fi_or_else, or_code);
primitive ("else", fi_or_else, else_code);

491. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case fi_or_else:

if (chr_code = fi_code) print_esc("£i");

else if (chr_code = or_code) print_esc("or");

else print_esc("else"); break;

492. When we skip conditional text, we keep track of the line number where skipping began, for use in
€ITOr MeSsSages.

(Global variables 13) +=
static int skip_line; /= skipping began here x/

493. Here is a procedure that ignores text until coming to an \or, \else, or \fi at the current level of
\if ...\fi nesting. After it has acted, cur_chr will indicate the token that was found, but cur_tok will not
be set (because this makes the procedure run faster).

static void pass_text(void)
{ int I; /xlevel of \if ...\fi nesting*/
small_number save_scanner_status; /* scanner_status upon entry */

save_scanner_status = scanner_status;
scanner_status = skipping;
l=0;
skip_line = line;
loop { get_next();
if (cur_emd = fi_or_else) { if (I =0) goto done;
if (cur_chr = fi_code) decr(l);
}
else if (cur_emd = if_test) incr(l);
}
done: scanner_status = save_scanner_status;
if (tracing_ifs > 0) show_cur_cmd_chr();

}

218 CONDITIONAL PROCESSING TEXprof §494

494. When we begin to process a new \if, we set if_limit = if_code; then if \or or \else or \fi occurs
before the current \if condition has been evaluated, \relax will be inserted. For example, a sequence of
commands like ‘\ifvoidi\else...\fi’ would otherwise require something after the ‘1.
(Push the condition stack 494) =
{ p = get_node (if_node_size);

link (p) = cond_ptr;

type (p) = if_limit;

subtype (p) = cur_if ;

if_line_field (p) = if_line;

cond_ptr = p;

cur_if = cur_chr;

if_limit = if_code;

if_line = line;

}

This code is used in section 497.

495. (Pop the condition stack 495) =
{ if (if_stack[in_open] = cond_ptr) if_warning();
/* conditionals possibly not properly nested with files */
p = cond_ptr;
if_line = if_line_field (p);
cur_if = subtype(p);
if_limit = type(p);
cond_ptr = link (p);
free_node(p, if_node_size);

}

This code is used in sections 497, 499, 508, and 509.

496. Here’s a procedure that changes the if_limit code corresponding to a given value of cond_ptr.

static void change_if_limit(small_number [, pointer p)
{ pointer ¢;
if (p = cond_ptr) if_limit =1; /xthat’s the easy casex/
else { g = cond_ptr;
loop { if (¢ = null) confusion("if");
if (link(q) = p) { type(q) =1;
return;
}
q = link(q);
}
}
}

§497

497.

TEXprof CONDITIONAL PROCESSING

219

A condition is started when the expand procedure encounters an if_test command; in that case
expand reduces to conditional, which is a recursive procedure.

static void conditional(void)
{ bool b; /«is the condition true? /

Cco

}

498.

that the \if is false is not the \else we're looking for. Hence the following curious logic is needed.

499.

int r; /xrelation to be evaluated x/
int m,n; /*to be tested against the second operand */
pointer p, g; /x for traversing token lists in \ifx testsx*/
small_number save_scanner_status; /* scanner_status upon entry */
pointer save_cond_ptr; /* cond_ptr corresponding to this conditional x/
small_number this_if; /*type of this conditional /
bool is_unless; /+was this if preceded by ‘\unless’ 7/
if (tracing_ifs > 0)
if (tracing_commands < 1) show_cur_cmd_chr();
(Push the condition stack 494); save_cond_ptr = cond_ptr;
is_unless = (cur_chr > unless_code);
this_if = cur_chr % unless_code;
(Either process \ifcase or set b to the value of a boolean condition 500);
if (is_unless) b= —b;
if (tracing_commands > 1) (Display the value of b 501);
if (b) { change_if_limit (else_code, save_cond_ptr);
return; /xwait for \else or \fi */
}
(Skip to \else or \fi, then goto common_ending 499);
mmon_ending:
if (cur_chr = fi_code) (Pop the condition stack 495)
else if_limit = fi_code; /xwait for \fi x/

In a construction like ‘\if\iftrue abc\else d\fi’, the first \else that we come to after learning

(Skip to \else or \fi, then goto common_ending 499) =

loop { pass_text();

}

if (cond_ptr = save_cond_ptr) { if (cur_chr # or_code) goto common_ending;

print_err ("Extra,");

print_esc("or");

help! ("I’m_ ignoring this; it doesn’t match_ any \\if.");
error () ;

else if (cur_chr = fi_code) (Pop the condition stack 495);

This code is used in section 497.

220 CONDITIONAL PROCESSING TEXprof §500

500. (Either process \ifcase or set b to the value of a boolean condition 500) =

switch (this_if) {
case if_char_code: case if_cat_code: (Test if two characters match 505) break;
case if_int_code: case if_dim_code: {Test relation between integers or dimensions 502) break;
case if_odd_code: (Test if an integer is odd 503) break;
case if_vmode_code: b = (abs(mode) = vmode); break;
case if_hmode_code: b = (abs(mode) = hmode); break;
case if_mmode_code: b = (abs(mode) = mmode); break;
case if_inner_code: b = (mode < 0); break;
case if_void_code: case if_hbox_code: case if_vbox_code: {Test box register status 504) break;
case ifr_code: (Test if two tokens match 506) break;
case if_eof_code:

{ scan_four_bit_int();

b = (read_open[cur_val] = closed);

} break;
case if_true_code: b = true; break;
case if_false_code: b = false; break;
(Cases for conditional 1448)

case if_case_code: (Select the appropriate case and return or goto common_ending 508);
} /+ there are no other cases */

This code is used in section 497.

501. (Display the value of b 501) =
{ begin_diagnostic();
if (b) print("{true}"); else print("{false}");
end_diagnostic(false);

}

This code is used in section 497.

502. Here we use the fact that ><’, =7, and ’>’ are consecutive ASCII codes.

(Test relation between integers or dimensions 502) =
{ if (this_if = if_int_code) scan_int(); else scan_normal_dimen;
n = cur_val;
(Get the next non-blank non-call token 405);
if ((cur_tok > other_token + ><?) A (cur_tok < other_token + *>°)) r = cur_tok — other_token;
else { print_err("Missing = inserted_ for");
print_cmd_chr (if_test, this_if);
help! ("I was_expecting tosee ‘<’ , ‘=’, 0r, >’ . ,Didn’t.");
back_error();
r=r=
if (this_if = if_int_code) scan_int(); else scan_normal_dimen;
switch (r) {
case ’<’: b= (n < cur_val); break;
case ’=’: b= (n = cur_val); break;
case *>’: b= (n> cur_val);
}
}

This code is used in section 500.

6503 TEXprof CONDITIONAL PROCESSING 221

503. (Test if an integer is odd 503)
{ scan_int();
b = odd (cur_val);
}

This code is used in section 500.

504. (Test box register status 504) =
{ scan_register_num();
fetch_boz (p);
if (this_if = if_void_code) b= (p = null);
else if (p = null) b = false;
else if (this_if = if_hbox_code) b= (type(p) = hlist_node);
else b = (type(p) = vlist_node);

}

This code is used in section 500.

505. An active character will be treated as category 13 following \if\noexpand or following \if cat\noexpand.|j
We use the fact that active characters have the smallest tokens, among all control sequences.

#define get_x_token_or_active_char
{ get_x_token();
if (cur_emd = relaz)
if (cur_chr = no_expand_flag) { cur_emd = active_char;
cur_chr = cur_tok — cs_token_flag — active_base;
}

}

(Test if two characters match 505) =
{ get_z_token_or_active_char;

if ((cur_emd > active_char) V (cur_chr > 255)) /«not a character %/

{ m = relaz;
n = 256;

}

else { m = cur_emd;
n = cur_chr;

}

get_x_token_or_active_char;

if ((cur_cmd > active_char) V (cur_chr > 255)) { cur_emd = relaz;
cur_chr = 256;

}

if (this_if = if_char_code) b= (n = cur_chr); else b = (m = cur_cmd);

}

This code is used in section 500.

222 CONDITIONAL PROCESSING TEXprof §506

506. Note that ‘\ifx’ will declare two macros different if one is long or outer and the other isn’t, even
though the texts of the macros are the same.

We need to reset scanner_status, since \outer control sequences are allowed, but we might be scanning a
macro definition or preamble.

(Test if two tokens match 506) =

{ save_scanner_status = scanner_status;
scanner_status = normal;
get_next();
n = cur_cs;
p = cur_cmd;
q = cur_chr;
get_next();
if (cur_cmd # p) b = false;
else if (cur_emd < call) b= (cur_chr = q);
else (Test if two macro texts match 507);
scanner_status = save_scanner_status;

}

This code is used in section 500.
507. Note also that ‘\ifx’ decides that macros \a and \b are different in examples like this:

\def\a{\c} \def\c{}
\def\b{\d} \def\d{}

(Test if two macro texts match 507) =
{ p = link(cur_chr);
q = link(equiv(n)); /+omit reference counts */
if (p=gq) b= true;
else { while ((p # null) A (q # null))
if (info(p) # info(q)) p = null;
else { p = link(p);
q = link(q);
}
b= ((p=null) A (¢ =null));
}
}

This code is used in section 506.

6508 TEXprof CONDITIONAL PROCESSING 223

508. (Select the appropriate case and return or goto common_ending 508) =
{ scan_int();

n = cur_val; /*n is the number of cases to pass */

if (tracing_commands > 1) { begin_diagnostic();
print("{case ");
print_int(n);
print_char(’}’);
end_diagnostic(false);

while (n # 0) { pass_text();
if (cond_ptr = save_cond_ptr)
if (cur_chr = or_code) decr(n);
else goto common_ending;
else if (cur_chr = fi_code) (Pop the condition stack 495);
}
change_if_limit (or_code, save_cond_ptr);
return; /*wait for \or, \else, or \fi */

}

This code is used in section 500.

509. The processing of conditionals is complete except for the following code, which is actually part of
expand. It comes into play when \or, \else, or \fi is scanned.

(Terminate the current conditional and skip to \fi 509) =
{ if (tracing_ifs > 0)
if (tracing_commands < 1) show_cur_cmd_chr();
if (cur_chr > if_limit)

if (if_limit = if_code) insert_relaz(); /xcondition not yet evaluated */

else { print_err("Extra,");
print_cmd_chr (fi_or_else, cur_chr);
help1 ("I’m_ ignoring this; it doesn’t_ match any \\if.");
error () ;

else { while (cur_chr # fi_code) pass_text(); /*skip to \fi x/
(Pop the condition stack 495);
}
}

This code is used in section 366.

224 FILE NAMES TpXprof §510

510. File names. It’s time now to fret about file names. Besides the fact that different operating systems
treat files in different ways, we must cope with the fact that completely different naming conventions are used
by different groups of people. The following programs show what is required for one particular operating
system; similar routines for other systems are not difficult to devise.

TEX assumes that a file name has three parts: the name proper; its “extension”; and a “file area” where
it is found in an external file system. The extension of an input file or a write file is assumed to be ‘.tex’
unless otherwise specified; it is ‘.1og’ on the transcript file that records each run of TEX; it is ‘. tfm’ on the
font metric files that describe characters in the fonts TEX uses; it is ‘.dvi’ on the output files that specify
typesetting information; and it is ‘. fmt’ on the format files written by INITEX to initialize TEX. The file area
can be arbitrary on input files, but files are usually output to the user’s current area. If an input file cannot
be found on the specified area, TEX will look for it on a special system area; this special area is intended for
commonly used input files like webmac.tex.

Simple uses of TEX refer only to file names that have no explicit extension or area. For example, a person
usually says ‘\input paper’ or ‘\font\tenrm = helvetica’ instead of ‘\input paper.new’ or ‘\font\tenrm
= <csd.knuth>test’. Simple file names are best, because they make the TEX source files portable; whenever
a file name consists entirely of letters and digits, it should be treated in the same way by all implementations
of TEX. However, users need the ability to refer to other files in their environment, especially when responding
to error messages concerning unopenable files; therefore we want to let them use the syntax that appears in
their favorite operating system.

The following procedures don’t allow spaces to be part of file names; but some users seem to like names that
are spaced-out. System-dependent changes to allow such things should probably be made with reluctance,
and only when an entire file name that includes spaces is “quoted” somehow.

511. In order to isolate the system-dependent aspects of file names, the system-independent parts of
TEX are expressed in terms of three system-dependent procedures called begin_name, more_name, and
end_name. In essence, if the user-specified characters of the file name are ¢; ... c,, the system-independent
driver program does the operations

begin_name; more_name(c1); ... ; more_name(cy); end_name.

These three procedures communicate with each other via global variables. Afterwards the file name will
appear in the string pool as three strings called cur_name, cur_area, and cur_ext; the latter two are null
(i.e., ""), unless they were explicitly specified by the user.

Actually the situation is slightly more complicated, because TEX needs to know when the file name ends.
The more_name routine is a function (with side effects) that returns true on the calls more_name(cy), ...,
more_name(c,—1). The final call more_name(c,) returns false; or, it returns true and the token following
¢n, 1s something like ‘\hbox’ (i.e., not a character). In other words, more_name is supposed to return true
unless it is sure that the file name has been completely scanned; and end_name is supposed to be able to
finish the assembly of cur_name, cur_area, and cur_ext regardless of whether more_name(cy,) returned true
or false.

{ Global variables 13) +=

static str_number cur_name; /+*name of file just scanned */

static str_number cur_area; /xfile area just scanned, or "" x/

static str_number cur_ext; /«file extension just scanned, or "" x/

8512 TEXprof FILE NAMES 225

512. The file names we shall deal with for illustrative purposes have the following structure: If the name
contains ‘>’ or ‘:’, the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘.’ the file extension consists of all such characters
from the first remaining ‘.’ to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

{ Global variables 13) +=
static pool_pointer area_delimiter; /*the most recent ‘>’ or ‘:’, if any */
static pool_pointer ext_delimiter; /*the relevant ¢.’, if any */

513. Input files that can’t be found in the user’s area may appear in a standard system area called
TEX_area. Font metric files whose areas are not given explicitly are assumed to appear in a standard
system area called TEX_font_area. These system area names will, of course, vary from place to place.

#define TEX_area "TeXinputs/"
#define TEX_font_area "TeXfonts/"

514. Here now is the first of the system-dependent routines for file name scanning.
static bool quoted_filename;

static void begin_name(void)

{ area_delimiter = 0;
ext_delimiter = 0;
quoted_filename = false;

}

515. And here’s the second. The string pool might change as the file name is being scanned, since a new
\csname might be entered; therefore we keep area_delimiter and ext_delimiter relative to the beginning of
the current string, instead of assigning an absolute address like pool_ptr to them.

static bool more_name(ASCII_code c)
{if (¢ ="’ A —quoted_filename) return false;
else if (c=""?) { quoted_filename = —quoted_filename;
return true;
}
else { str_room(1);
append_char(c); /= contribute ¢ to the current string */
if (IS_DIR_SEP(c)) { area_delimiter = cur_length;
ext_delimiter = 0,
}
else if (c="’.?) ext_delimiter = cur_length;
return true;

226 FILE NAMES TpXprof §516

516. The third.

static void end_name(void)
{ if (str_ptr + 3 > maz_strings) overflow ("number of strings", maz_strings — init_str_ptr);
if (area_delimiter = 0) cur_area = empty_string;
else { cur_area = str_ptr;
str_start[str_ptr + 1] = str_start[str_ptr] + area_delimiter;
incr (str_ptr);
}
if (ext_delimiter = 0) { cur_ext = empty_string;
cur_name = make_string();
}
else { cur_name = str_ptr;
str_start[str_ptr + 1] = str_start[str_ptr] + ext_delimiter — area_delimiter — 1;
incr (str_ptr);
cur_ext = make_string();
}
}

517. Conversely, here is a routine that takes three strings and prints a file name that might have produced
them. (The routine is system dependent, because some operating systems put the file area last instead of
first.)

(Basic printing procedures 55) +=
static void print_file_name(int n,int a,int e)
{ slow_print(a);
slow_print(n);
slow_print(e);

}

518. Another system-dependent routine is needed to convert three internal TEX strings into the name_of_file}
value that is used to open files. The present code allows both lowercase and uppercase letters in the file
name.

#define append_to_name(A)
{e=4
incr(k);
if (k < file_name_size) name_of_file[k] = zchr|c];

}

static void pack_file_name(str_number n,str_number a,str_number e, char xf)
{ int k; /*number of positions filled in name_of_file */
ASCII_code ¢; /+character being packed %/
int j; /xindex into str_pool */
k=0;
for (j = str_start|a); j < str_start[a + 1] — 1; j++) append_to_name (so(str_pool[j]))
for (j = str_start[n]; j < str_startin+ 1] — 1; j++) append_to_name(so(str_pool[j]))

if (f=A)
for (j = str_start|e]; j < str_start[e + 1] — 1; j++) append_to_name (so(str_pool[j]))
else

while (xf # 0) append_to_name(so(xf++))
if (k < file_name_size) name_length = k; else name_length = file_name_size;
name_of_file[name_length + 1] = 0;

8519 TEXprof FILE NAMES 227

519. TEX Live does not use the global variable TEX_format_default. It is no longer needed to supply the
text for default system areas and extensions related to format files.

520. Consequently TEX Live does not need the initialization of TEX_format_default either.
521. And TgEX Live does not check the length of TEX_format_default.

522. The format_extension, however, is needed by TEX Live to create the format name from the job name.

#define format_extension ".fmt"

523. This part of the program becomes active when a “virgin” TEX is trying to get going, just after the
preliminary initialization, or when the user is substituting another format file by typing ‘&’ after the initial
“*x’ prompt. The buffer contains the first line of input in buffer[loc .. (last — 1)], where loc < last and
buffer[loc] # 7.

TEX Live uses the kpathsearch library to implement access to files. open_fmt_file is declared here and
the actual implementation is in the section on TEX Live Integration.

(Declare the function called open_fmi_file 523) =
static bool open_fmt_file(void);

This code is used in section 1302.

524. Operating systems often make it possible to determine the exact name (and possible version number)
of a file that has been opened. The following routine, which simply makes a TEX string from the value of
name_of_file, should ideally be changed to deduce the full name of file f, which is the file most recently
opened, if it is possible to do this in a Pascal program.

This routine might be called after string memory has overflowed, hence we dare not use ‘str_room’.

static str_number make_name_string (void)
{int k; /+index into name_of_file x/

if ((pool_ptr + name_length > pool_size) V (str_ptr = max_strings) V (cur_length > 0)) return ’?’;
else { for (k =1; k < name_length; k++) append_char(zord|[name_of_file[k]]);
return make_string();
}
}

static str_number a_make_name_string (alpha_file xf)
{ return make_name_string();

}

static str_number b_make_name_string (byte_file xf)
{ return make_name_string();

}
#ifdef INIT

static str_number w_make_name_string(word_file xf)
{ return make_name_string();

}
#endif

228 FILE NAMES TpXprof §525

525. Now let’s consider the “driver” routines by which TEX deals with file names in a system-independent
manner. First comes a procedure that looks for a file name. There are two ways to specify the file name: as
a general text argument or as a token (after expansion). The traditional token delimiter is the space. For a
file name, however, a double quote is used as the token delimiter if the token starts with a double quote.
Once the area_delimiter and the ext_delimiter are defined, the final processing is shared for all variants.
When starting, \relax is skipped as well as blanks and non-calls. Then a test for the left_brace will
branch to the code for scanning a general text.

static void scan_file_name(void)
{ pool_pointer j, k; /*index into str_pool x/
int old_setting; /xholds selector setting */

name_in_progress = true;
begin_name();
(Get the next non-blank non-relax non-call token 403);
if (cur_cmd = left_brace) (Define a general text file name and goto done 1707)
loop { if ((cur_cmd > other_char) V (cur_chr > 255)) /*not a character %/
{ back_input();
goto done;

#if 0 /+ This is from pdftex-final.ch. T don’t know these ‘some cases’, and I am not sure whether the
name should end even if quoting is on. x/
/*If cur_chr is a space and we’re not scanning a token list, check whether we’re at the end of the
buffer. Otherwise we end up adding spurious spaces to file names in some cases. */
if (cur_chr =’ A state # token_list A loc > limit) goto done;
#endif
if (—more_name(cur_chr)) goto done;
get_z_token();

done: end_name();
name_in_progress = false;

}

526. The global variable name_in_progress is used to prevent recursive use of scan_file_name, since the
begin_name and other procedures communicate via global variables. Recursion would arise only by devious
tricks like ‘\input\input £f’; such attempts at sabotage must be thwarted. Furthermore, name_in_progress
prevents \input from being initiated when a font size specification is being scanned.

Another global variable, job_name, contains the file name that was first \input by the user. This name
is extended by ‘.log’ and ‘.dvi’ and ‘.fmt’ in the names of TEX’s output files.

(Global variables 13) +=
static bool name_in_progress; /x1s a file name being scanned? x/
static str_number job_name; /* principal file name */
static bool log_opened; /*has the transcript file been opened? x/

527. Initially job_name = 0; it becomes nonzero as soon as the true name is known. We have job_name =0
if and only if the ‘log’ file has not been opened, except of course for a short time just after job_name has
become nonzero.

(Initialize the output routines 54) +=
job_name = 0;
name_in_progress = false;
log_opened = false;

8528 TEXprof FILE NAMES 229

528. Here is a routine that manufactures the output file names, assuming that job_name # 0. It ignores
and changes the current settings of cur_area and cur_ext.
#define pack_cur_name(A)

if (cur_ext = empty_string) pack_file_name(cur_name, cur_area, cur_ext, A);
else pack_file_name(cur_name, cur_area, cur_ext, \)

static void pack_job_name(char xs) /xs=".log", ".dvi", or format_extension x/
{ cur_area = empty_string;

cur_ext = empty_string;

cur_name = job_name;

pack_cur_name(s);

}

529. If some trouble arises when TEX tries to open a file, the following routine calls upon the user to
supply another file name. Parameter s is used in the error message to identify the type of file; parameter e
is the default extension if none is given. We handle the specification of a file name with possibly spaces in
double quotes (the last one is optional if this is the end of line i.e. the end of the buffer). Upon exit from
the routine, variables cur_name, cur_area, cur_ext, and name_of_file are ready for another attempt at file
opening.
static void prompt_file_name(char xs,char xe)
{ int k; /*index into buffer */

if (interaction = scroll_mode) wake_up_terminal;

if (stremp (s, "inputyfile name") =0) print_err("I can’t,find file ");

else print_err ("I can’t write on file,");

print_file_name (cur_name, cur_area, cur_ext);

print("?.");

if (stremp(e,".tex") =0) show_context();

print_nl("Please type another ");

print(s);

if (interaction < scroll_mode) fatal_error("***,(job_aborted, file error,in nonstop mode)");

clear_terminal;

prompt_input(":,");

(Scan file name in the buffer 530);

pack_cur_name(e);

}

530. (Scan file name in the buffer 530) =
{ begin_name();

k = first;

while ((buffer[k] = ’u?) A (k < last)) incr(k);

loop { if (k = last) goto done;
if (—more_name(buffer[k])) goto done;
incr(k);

}

done: end_name();

}

This code is used in section 529.

230 FILE NAMES TpXprof §531

531. Here’s an example of how these conventions are used. Whenever it is time to ship out a box of stuff,
we shall use the macro ensure_dvi_open.

#define ensure_dvi_open
if (output_file_name =0) { if (job_name = 0) open_log_file();
pack_job_name (" .dvi");
while (—b_open_out(&dvi_file)) prompt_file_name("file name for output",".dvi");
output_file_name = b_make_name_string (& dvi_file);

}
{ Global variables 13) +=
static byte_file dvi_file; /*the device-independent output goes here */
static str_number output_file_name; /*full name of the output file x/
static str_number log_name; /* full name of the log file */

532. (Initialize the output routines 54) +=
output_file_name = 0

533. The open_log_file routine is used to open the transcript file and to help it catch up to what has
previously been printed on the terminal.

static void open_log_file(void)
{ int old_setting; /*previous selector setting s/
int k; /xindex into months and buffer x/
int [; /xend of first input line */
char months[] = " JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
/* abbreviations of month names */

old_setting = selector;

if (job_name =0) job_name = s_no(c_job_name ? c_job_name : "texput"); /* TEX Live %/
pack_job_name(".f1ls");

recorder_change_filename ((char *) name_of_file + 1);

pack_job_name(".log");

while (—a_open_out (&log_file)) (Try to get a different log file name 534);
log_name = a_make_name_string (&log_file);

selector = log_only;

log_opened = true;

(Print the banner line, including the date and time 535);

input_stack [input_ptr] = cur_input; /+make sure bottom level is in memory */
print_nl("*x");

I = input_stack|[0].limit_field; /xlast position of first line*/

if (buffer[l] = end_line_char) decr(l);

for (k=1; k <l; k++) printn(buffer[k]);

print_In(); /*now the transcript file contains the first line of input %/

selector = old_setting + 2; /x log_only or term_and_log x/

8534 TpXprof FILE NAMES 231

534. Sometimes open_log_file is called at awkward moments when TEX is unable to print error messages
or even to show_context. The prompt_file_name routine can result in a fatal_error, but the error routine
will not be invoked because log_opened will be false.

The normal idea of batch_mode is that nothing at all should be written on the terminal. However, in the
unusual case that no log file could be opened, we make an exception and allow an explanatory message to
be seen.

Incidentally, the program always refers to the log file as a ‘transcript file’, because some systems
cannot use the extension ‘.log’ for this file.

(Try to get a different log file name 534) =
{ selector = term_only;
prompt_file_name("transcript file name",".log");

}

This code is used in section 533.

535. (Print the banner line, including the date and time 535) =
{ wlog("%s", banner);
slow_print (format_ident);
print ("o)
print_int (sys_day);
print_char(’,’);
for (k = 3% sys_month — 2; k < 3 sys_month; k++) wlog("%c", months[k]);
print_char(’’);
print_int (sys_year);
print_char(’,’);
print_two (sys_time /60);
print_char(?:°);
print_two (sys_time % 60);
if (eTeX_ex) { ;
wlog_cr;
wlog ("entering extended mode");

if (Prote_ex) { ;
wlog_cr;
wlog("entering, Prote mode");

}
}

This code is used in section 533.

232 FILE NAMES TpXprof §536

536. Let’s turn now to the procedure that is used to initiate file reading when an ‘\input’ command is
being processed. Beware: For historic reasons, this code foolishly conserves a tiny bit of string pool space;
but that can confuse the interactive ‘E’ option.

static void start_input(void) /* TgX will \input something x/
{ scan_file_name(); /*set cur_name to desired file name */
pack_cur_name("");
loop { begin_file_reading(); /xset up cur_file and new level of input */
if (kpse_in_name_ok((char x) name_of_file + 1) A a_open_in(&cur_file)) goto done;
end_file_reading(); /+*remove the level that didn’t work */
prompt_file_name ("input, file name",".tex");

done: name = a_make_name_string (& cur_file);
if (source_filename_stack[in_open]| # A) free(source_filename_stack[in_open]);
source_filename_stack [in_open] = strdup ((char) name_of_file +1); /+ TEX Livex/
if (full_source_filename_stack[in_open]| # A) free(full_source_filename_stack [in_open));
full_source_filename_stack [in_open] = strdup (full_name_of_file);
(Set new cur_file_num 1749) /* new entry on the macro stack */
{ (additional local variables for start_input 1776)(update the macro stack 1775)
}
if (job_name =0) { if (c_job_name = A) job_name = cur_name;
else job_name = s_no(c_job_name);
open_log_file(); /+ TEX Livex/
} /* open_log_file doesn’t show_context, so limit and loc needn’t be set to meaningful values
yet */
if (term_offset + strien(full_source_filename_stack[in_open]) > maz_print_line — 2) print_In();
else if ((term_offset > 0) V (file_offset > 0)) print_char(’.’);
print_char(’ ();
incr (open_parens);
print (full_source_filename_stack[in_open]);
update_terminal;
state = new_line;
if (name = str_ptr — 1) /= conserve string pool space (but see note above) x/
{ flush_string;
name = cur_name;

(Read the first line of the new file 537);

}

537. Here we have to remember to tell the inpui_In routine not to start with a get. If the file is empty, it
is considered to contain a single blank line.

(Read the first line of the new file 537) =
{ line =1,
if (input_in(&cur_file, false)) do_nothing;
firm_up_the_line();
if (end_line_char_inactive) decr(limit);
else buffer|[limit] = end_line_char;
first = limit 4+ 1;
loc = start;

}

This code is used in section 536.

6538 TEXprof FONT METRIC DATA 233

538. Font metric data. TgX gets its knowledge about fonts from font metric files, also called TFM files;
the ‘T’ in ‘TFM’ stands for TEX, but other programs know about them too.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words, but TEX uses the byte interpretation.
The format of TFM files was designed by Lyle Ramshaw in 1980. The intent is to convey a lot of different
kinds of information in a compact but useful form.

(Global variables 13) +=
static byte_file tfm_file;

539. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

If = length of the entire file, in words;
[h = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;
nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215 We must have bc — 1 < ec < 255, and
If =6+ 1h+ (ec — bc + 1)+ nw + nh + nd + ni + nl + nk + ne + np.

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec +1).

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called BigEndian order.

540. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal
specification
header : array

char_info : array

[0..1h —1] of stuff

[be .. ec] of char_info_word
width :array [0 .. nw — 1] of fix_word

height : array [0 .. nh — 1] of fiz_word
depth :array [0 .. nd — 1] of fix_word
italic :array [0 .. ni — 1] of fiz_word

lig_kern :array [0 .. nl — 1] of lig_kern_command
kern :array [0 .. nk — 1] of fir_word

exten :array [0 .. ne — 1] of extensible_recipe
param :array [1 .. np] of fir_word

The most important data type used here is a fiz_word, which is a 32-bit representation of a binary fraction.
A fix_word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fiz_word, exactly 12 are to the left of the binary point; thus, the largest fix_word value is
2048 — 2729 and the smallest is —2048. We will see below, however, that all but two of the fiz_word values
must lie between —16 and +16.

234 FONT METRIC DATA TpXprof §541

541. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, header[0] and header[1], whose meaning is explained below.
Additional header information of use to other software routines might also be included, but TEX82 does not
need to know about such details. For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding scheme used (e.g., ‘XEROX text’ or
‘TeX math symbols’), the next five give the font identifier (e.g., ‘HELVETICA’ or ‘CMSY’), and the last gives
the “face byte.” The program that converts DVI files to Xerox printing format gets this information by
looking at the TFM file, which it needs to read anyway because of other information that is not explicitly
repeated in DVI format.

header|[0] is a 32-bit check sum that TEX will copy into the DVI output file. Later on when the DVI file is
printed, possibly on another computer, the actual font that gets used is supposed to have a check sum
that agrees with the one in the TFM file used by TEX. In this way, users will be warned about potential
incompatibilities. (However, if the check sum is zero in either the font file or the TFM file, no check
is made.) The actual relation between this check sum and the rest of the TFM file is not important;
the check sum is simply an identification number with the property that incompatible fonts almost
always have distinct check sums.

header(1] is a fiz_word containing the design size of the font, in units of TEX points. This number must be
at least 1.0; it is fairly arbitrary, but usually the design size is 10.0 for a “10 point” font, i.e., a font
that was designed to look best at a 10-point size, whatever that really means. When a TEX user asks
for a font ‘at § pt’, the effect is to override the design size and replace it by ¢, and to multiply the x
and y coordinates of the points in the font image by a factor of § divided by the design size. All other
dimensions in the TFM file are fix_word numbers in design-size units, with the exception of param]l]
(which denotes the slant ratio). Thus, for example, the value of param[6], which defines the em unit,
is often the fiz_word value 22° = 1.0, since many fonts have a design size equal to one em. The other
dimensions must be less than 16 design-size units in absolute value; thus, header|[1] and param[1] are
the only fix_word entries in the whole TFM file whose first byte might be something besides 0 or 255.

542. Next comes the char_info array, which contains one char_info_word per character. Each word in
this part of the file contains six fields packed into four bytes as follows.

first byte: width_indez (8 bits)

second byte: height_index (4 bits) times 16, plus depth_index (4 bits)
third byte: italic_index (6 bits) times 4, plus tag (2 bits)

fourth byte: rem (8 bits)

The actual width of a character is width[width_indez], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic corrections.

The italic correction of a character has two different uses. (a) In ordinary text, the italic correction is
added to the width only if the TEX user specifies ‘\/’ after the character. (b) In math formulas, the italic
correction is always added to the width, except with respect to the positioning of subscripts.

Incidentally, the relation width[0] = height[0] = depth|0] = italic[0] = 0 should always hold, so that
an index of zero implies a value of zero. The width_indexr should never be zero unless the character does
not exist in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero
width_index.

8543 TEXprof FONT METRIC DATA 235

543. The tag field in a char_info_word has four values that explain how to interpret the rem field.

tag = 0 (no_tag) means that rem is unused.

tag =1 (lig_tag) means that this character has a ligature/kerning program starting at position rem in the
leg_kern array.

tag = 2 (list_tag) means that this character is part of a chain of characters of ascending sizes, and not the
largest in the chain. The rem field gives the character code of the next larger character.

tag = 3 (exl_tag) means that this character code represents an extensible character, i.e., a character that
is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [rem)].

Characters with tag = 2 and tag = 3 are treated as characters with tag = 0 unless they are used in
special circumstances in math formulas. For example, the \sum operation looks for a list_tag, and the \left
operation looks for both list_tag and ext_tag.

#define no_tag 0 /«vanilla character x/

#define lig_tag 1 /* character has a ligature/kerning program */
#define list_tag 2 /+character has a successor in a charlist */
#define ext_tag 3 /+ character is extensible x/

236 FONT METRIC DATA TpXprof — §544

544. The lig_kern array contains instructions in a simple programming language that explains what to do
for special letter pairs. Each word in this array is a lig_kern_command of four bytes.

first byte: skip_byte, indicates that this is the final program step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of intervening steps.

second byte: next_char, “if next_char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op_byte, indicates a ligature step if less than 128, a kern step otherwise.

fourth byte: rem.

In a kern step, an additional space equal to kern[256 % (op_byte — 128) + rem] is inserted between the current
character and next_char. This amount is often negative, so that the characters are brought closer together
by kerning; but it might be positive.

There are eight kinds of ligature steps, having op_byte codes 4a+2b+c where 0 < a < b4+cand 0 < b,c < 1.
The character whose code is rem is inserted between the current character and nezt_char; then the current
character is deleted if b = 0, and next_char is deleted if ¢ = 0; then we pass over a characters to reach the
next current character (which may have a ligature/kerning program of its own).

If the very first instruction of the lig_kern array has skip_byte = 255, the next_char byte is the so-called
boundary character of this font; the value of next_char need not lie between bc and ec. If the very last
instruction of the lig_kern array has skip_byte = 255, there is a special ligature/kerning program for a
boundary character at the left, beginning at location 256 % op_byte + rem. The interpretation is that TEX
puts implicit boundary characters before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect ligatures and kerning.

If the very first instruction of a character’s lig_kern program has skip_byte > 128, the program actually
begins in location 256 * op_byte + rem. This feature allows access to large lig_kern arrays, because the first
instruction must otherwise appear in a location < 255.

Any instruction with skip_byte > 128 in the lig_kern array must satisfy the condition

256 * op_byte + rem < nl.

If such an instruction is encountered during normal program execution, it denotes an unconditional halt; no
ligature or kerning command is performed.

#define stop_flag qi(128) /*value indicating ‘STOP’ in a lig/kern program */
#define kern_flag ¢i(128) /xop code for a kern step */

#define skip_byte(A) A.b0

#define next_char(A) A.bl

#define op_byte(A) A.b2

#define rem_byte(A) A.bS

545. Extensible characters are specified by an extensible_recipe, which consists of four bytes called top,
mid, bot, and rep (in this order). These bytes are the character codes of individual pieces used to build up
a large symbol. If top, mid, or bot are zero, they are not present in the built-up result. For example, an
extensible vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

Let T, M, B, and R denote the respective pieces, or an empty box if the piece isn’t present. Then the
extensible characters have the form TR* M R*B from top to bottom, for some k& > 0, unless M is absent; in
the latter case we can have TR" B for both even and odd values of k. The width of the extensible character is
the width of R; and the height-plus-depth is the sum of the individual height-plus-depths of the components
used, since the pieces are butted together in a vertical list.

#define ext_top(A) A.b0 /* top piece in a recipe */
#define ext_mid(A) A.b1 /* mid piece in a recipe x/
#define ext_bot(A) A.b2 /xbot piece in a recipe x/
#define ext_rep(A) A.b3 /* rep piece in a recipe */

8546 TEXprof FONT METRIC DATA 237

546. The final portion of a TFM file is the param array, which is another sequence of fix_word values.

param[1l] = slant is the amount of italic slant, which is used to help position accents. For example, slant = .25
means that when you go up one unit, you also go .25 units to the right. The slant is a pure number;
it’s the only fix_word other than the design size itself that is not scaled by the design size.

param[2] = space is the normal spacing between words in text. Note that character >’ in the font need not
have anything to do with blank spaces.

param[3] = space_stretch is the amount of glue stretching between words.

param[4] = space_shrink is the amount of glue shrinking between words.

param[5] = z_height is the size of one ex in the font; it is also the height of letters for which accents don’t
have to be raised or lowered.

param[6] = quad is the size of one em in the font.

param[7] = extra_space is the amount added to param[2] at the ends of sentences.

If fewer than seven parameters are present, TEX sets the missing parameters to zero. Fonts used for math
symbols are required to have additional parameter information, which is explained later.

#define slant_code 1
#define space_code 2
#define space_stretch_code 3
#define space_shrink_code 4
#define z_height_code 5
#define quad_code 6
#define extra_space_code 7

547. So that is what TFM files hold. Since TEX has to absorb such information about lots of fonts, it stores
most of the data in a large array called font_info. Each item of font_info is a memory_word; the fix_word
data gets converted into scaled entries, while everything else goes into words of type four_quarters.

When the user defines \font\f, say, TEX assigns an internal number to the user’s font \f. Adding this
number to font_id_base gives the eqth location of a “frozen” control sequence that will always select the font.
(Types in the outer block 18) +=

typedef uint8_t internal_font_number; /x font in a char_node */

typedef int32_t font_index; /+index into font_info x/

238 FONT METRIC DATA TpXprof — §548

548. Here now is the (rather formidable) array of font arrays.

#define non_char ¢i(256) /+a halfword code that can’t match a real character /
#define non_address 0 /xa spurious bchar_label */

{ Global variables 13) +=

static memory_word font_info|[font_mem_size + 1]; /*the big collection of font data */

static font_index fmem_pir; /* first unused word of font_info */

static internal_font_number font_ptr; /xlargest internal font number in use x/

static four_quarters font_check0 [font_maz — font_base +1], *const font_check = font_check0 — font_base;
/* check sum x/

static scaled font_size0 [font_maz — font_base + 1], xconst font_size = font_size0 — fonit_base;
/x “at” sizex/

static scaled font_dsize0[font_maz — font_base + 1], xconst font_dsize = font_dsize0 — font_base;
/* “design” size x/

static font_index font_params0[font_mazx — foni_base + 1],

xconst font_params = font_params0 — font_base; /+how many font parameters are present x/

static str_number font_name0 [font_max — font_base + 1], xconst font_name = font_namel — font_base;
/*name of the font */

static str_number font_area0 [font_mazx — font_base + 1], xconst font_area = font_areal — font_base;
/xarea of the font x/

static eight_bits foni_bcO[font_max — font_base + 1], xconst font_bc = font_bcO — font_base;
/*beginning (smallest) character code */

static eight_bits font_ecO[font_maz — font_base + 1], xconst font_ec = font_ecO — font_base;
/xending (largest) character code */

static pointer font_glue0[font_maz — font_base + 1], xconst font_glue = font_glue0 — font_base;
/* glue specification for interword space, null if not allocated */

static bool font_used0[font_maz — font_base + 1], xconst font_used = font_used0 — font_base;
/xhas a character from this font actually appeared in the output? */

static int hyphen_char0[font_maz — font_base + 1], *const hyphen_char = hyphen_char0 — font_base;
/*current \hyphenchar values */

static int skew_char0[font_max — font_base + 1], xconst skew_char = skew_char0 — font_base;
/* current \skewchar values */

static font_index bchar_label0 [font_maz — font_base + 1], xconst bchar_label = bchar_label0 — font_base;
/*xstart of lig_kern program for left boundary character, non_address if there is none x/

static int16_t font_bchar0[font_maz — font_base + 1], xconst font_bchar = font_bchar0 — font_base;
/+boundary character, non_char if there is none */

static int16_t font_false_bchar0[font_maz — font_base + 1],

xconst font_false_bchar = font_false_bchar0 — font_base;

/* font_bchar if it doesn’t exist in the font, otherwise non_char x/

8549 TEXprof FONT METRIC DATA 239

549. Besides the arrays just enumerated, we have directory arrays that make it easy to get at the
individual entries in font_info. For example, the char_info data for character ¢ in font f will be in
font_info[char_base[f] + ¢].qqqq; and if w is the width_index part of this word (the b0 field), the width
of the character is font_info[width_base[f] + w].sc. (These formulas assume that min_quarterword has
already been added to ¢ and to w, since TEX stores its quarterwords that way.)

(Global variables 13) +=

static int char_base0[font_maz — font_base + 1], xconst char_base = char_base0 — font_base;
/+base addresses for char_info x/

static int width_base0[font_maz — font_base + 1], xconst width_base = width_base0 — font_base;
/*Dbase addresses for widths */

static int height_base0 [font_mazx — font_base + 1], xconst height_base = height_base0 — font_base;
/+base addresses for heights x/

static int depth_base0 [font_max — font_base + 1], xconst depth_base = depth_base0 — fonl_base;
/*base addresses for depths %/

static int italic_base0[font_mazx — font_base + 1], xconst italic_base = italic_base0 — font_base;
/* base addresses for italic corrections */

static int lig_kern_base0 [font_max — foni_base + 1], xconst lig_kern_base = lig_kern_base0 — font_base;
/xbase addresses for ligature/kerning programs */

static int kern_base0[font_max — font_base + 1], *const kern_base = kern_base() — font_base;
/*base addresses for kerns x/

static int exten_base0 [font_mazx — font_base + 1], xconst exten_base = exten_basel — font_base;
/+base addresses for extensible recipes x/

static int param_base0[foni_maz — font_base + 1], xconst param_base = param_base0 — font_base;
/*base addresses for font parameters */

550. (Set initial values of key variables 21) +=
for (k = font_base; k < font_max; k++) font_used[k] = false;

240 FONT METRIC DATA

551. TEX always knows at least one font, namely the null font.

parameters are all equal to zero.

(Initialize table entries (done by INITEX only) 163) +=
font_ptr = null_font;
fmem_ptr =T,
font_name[null_font] = s_no("nullfont");
font_area[null_font] = empty_string;
hyphen_char[null_font] = *=7;
skew_char [null_font] = —1;
behar_label [null_font] = non_address;
font_bchar[null_font] = non_char;
font_false_bchar[null_font] = non_char;
font_bc[null_font] = 1,
font_ec[null_font] = 0;
font_size[null_font] = 0;
font_dsize[null_font] = 0;
char_base [null_font] = 0;
width_base[null_font] = 0;
height_base [null_font] = 0;
depth_base [null_font] = 0;
italic_base [null_font] = 0;
lig_kern_base [null_font] = 0;
kern_base[null_font] = 0;
exten_base [null_font] = 0;
font_glue[null_font] = null;
font_params|[null_font] = T,
param_base [null_font] = —1,
for (k=0; k <6; k++) font_info[k].sc = 0;

552. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("nullfont", set_font, null_font);
text (frozen_null_font) = text(cur_val);
eqth [frozen_null_font] = eqtb[cur_val];

TEXprof 8551

It has no characters, and its seven

8553 TEXprof FONT METRIC DATA 241

553. Of course we want to define macros that suppress the detail of how font information is actually
packed, so that we don’t have to write things like

font_info[width_base[f] + font_info[char_base[f] + ¢].qqqq.b0].sc

too often. The WEB definitions here make char_info(f)(c) the four_quarters word of font information
corresponding to character ¢ of font f. If ¢ is such a word, char_width(f)(q) will be the character’s width;
hence the long formula above is at least abbreviated to

char_width (f)(char_info(f)(c)).

Usually, of course, we will fetch ¢ first and look at several of its fields at the same time.

The italic correction of a character will be denoted by char_italic(f)(q), so it is analogous to char_width.
But we will get at the height and depth in a slightly different way, since we usually want to compute both
height and depth if we want either one. The value of height_depth(q) will be the 8-bit quantity

b = height_index x 16 + depth_indezx,

and if b is such a byte we will write char_height(f)(b) and char_depth(f)(b) for the height and depth of the
character ¢ for which ¢ = char_info(f)(c). Got that?

The tag field will be called char_tag(q); the remainder byte will be called rem_byte(q), using a macro that
we have already defined above.

Access to a character’s width, height, depth, and tag fields is part of TEX’s inner loop, so we want these
macros to produce code that is as fast as possible under the circumstances.

#define char_info(A, B) font_info[char_base[A] + B].qqqq

#define char_width(A, B) font_info[width_base[A] + B.b0].sc
#define char_ezists(A) (A.b0 > min_quarterword)

#define char_italic(A, B) font_info[italic_base[A] 4+ (qo(B.b2))/4].sc
#define height_depth(A) qo(A.b1)

#define char_height(A, B) font_infolheight_base[A] + (B)/16].sc
#define char_depth(A, B) font_info[depth_base[A] + (B) % 16].sc
#define char_tag(A) ((qo(A.02)) % 4)

554. The global variable null_character is set up to be a word of char_info for a character that doesn’t
exist. Such a word provides a convenient way to deal with erroneous situations.

(Global variables 13) +=
static four_quarters null_character; /*nonexistent character information x/

555. (Set initial values of key variables 21) +=
null_character.b0 = min_quarterword,
null_character.bl = min_quarterword,;
null_character.b2 = min_quarterword;
null_character.b3 = min_quarterword;

242 FONT METRIC DATA TpXprof §556

556. Here are some macros that help process ligatures and kerns. We write char_kern(f)(j) to find the
amount of kerning specified by kerning command j in font f. If j is the char_info for a character with a
ligature/kern program, the first instruction of that program is either i = font_info[lig_kern_start(f)(j)] or
font_info[lig_kern_restart (f)(i)], depending on whether or not skip_byte (i) < stop_flag.

The constant kern_base_offset should be simplified, for Pascal compilers that do not do local optimization.
#define char_kern(A, B) font_info[kern_base[A] + 256 x op_byte(B) + rem_byte(B)].sc
#define kern_base_offset 256 * (128 + min_quarterword)
#define lig_kern_start(A, B) lig_kern_base[A] + B.b3 /*beginning of lig/kern program */
#define lig_kern_restart(A, B)

lig_kern_base[A] 4+ 256 * op_byte (B) + rem_byte(B) + 32768 — kern_base_offset

557. Font parameters are referred to as slant(f), space(f), etc.

#define param_end(A) param_base[A]] . sc

#define param(A) font_info [A+ param_end

#define slant param (slant_code) /+slant to the right, per unit distance upward */
#define space param(space_code) /*normal space between words */

#define space_stretch param (space_stretch_code) /* stretch between words */
#define space_shrink param (space_shrink_code) /*shrink between words x/

#define z_height param(xz_height_code) /xone ex x/

#define quad param(quad_code) /*one em x/

#define extra_space param/(extra_space_code) /*additional space at end of sentence */

(The em width for cur_font 557) =
quad (cur_font)

This code is used in section 454.

558. (The x-height for cur_font 558) =
x_height (cur_font)

This code is used in section 454.

8559 TEXprof FONT METRIC DATA 243

559. TEX checks the information of a TFM file for validity as the file is being read in, so that no further
checks will be needed when typesetting is going on. The somewhat tedious subroutine that does this is called
read_font_info. It has four parameters: the user font identifier u, the file name and area strings nom and
aire, and the “at” size s. If s is negative, it’s the negative of a scale factor to be applied to the design size;
s = —1000 is the normal case. Otherwise s will be substituted for the design size; in this case, s must be
positive and less than 2048 pt (i.e., it must be less than 227 when considered as an integer).

The subroutine opens and closes a global file variable called tfm_file. It returns the value of the internal
font number that was just loaded. If an error is detected, an error message is issued and no font information
is stored; null_font is returned in this case.

#define abort goto bad_tfm /*do this when the TFM data is wrong */
static internal_font_number read_font_info(pointer u,str_number nom,str_number aire,scaled
s) /+input a TFM filex/
{int k; /+index into font_info =/
bool file_opened; /xwas tfm_file successfully opened? */

halfword If, Ik, bc, ec, nw, nh, nd, ni, nl, nk, ne, np; /+sizes of subfiles x/
internal_font_number f; /*the new font’s number %/
internal_font_number g; /*the number to return x/

eight_bits a,b, ¢, d; /*byte variables */

four_quarters quw;

scaled sw; /* accumulators x/

int bch_label; /xleft boundary start location, or infinity */
int bchar; /xboundary character, or 256 */

scaled z; /xthe design size or the “at” size x/

int alpha;

int beta; /+auxiliary quantities used in fixed-point multiplication /
g = null_font;

(Read and check the font data; abort if the TFM file is malformed; if there’s no room for this font, say
so and goto done; otherwise incr(font_ptr) and goto done 561);
bad_tfm: (Report that the font won’t be loaded 560);
done:
if (file_opened) b_close(&tfm_file);
return g;

}

244 FONT METRIC DATA TpXprof §560

560. There are programs called TFtoPL and PLtoTF that convert between the TFM format and a symbolic
property-list format that can be easily edited. These programs contain extensive diagnostic information, so
TEX does not have to bother giving precise details about why it rejects a particular TFM file.

#define start_font_error_message print_err("Font,");
sprint_cs(u);
print_char(’=");
print_file_name (nom, aire, empty_string);
if (s >0) { print("Laty");
print_scaled (s);
print("pt");

else if (s # —1000) { print("uscaled,");
print_int(—s);
}
(Report that the font won’t be loaded 560) =

start_font_error_message;
if (file_opened) print("_not loadable: Bad metric,(TFM)_ file");
else print(" not_ loadable: Metric,(TFM) file not, found");
help5 ("I wasn’t able to_read the size data for, this font,",
"so I will,ignore the font ;specification.",
"[Wizards,can, fix TFM files using TFtoPL/PLtoTF.]",
"You might try inserting ,a different, font spec;",
"e.g.,utypeu‘I\\font<same font,id>=<substitute font name>’."); error ()

This code is used in section 559.

561. (Read and check the font data; abort if the TFM file is malformed; if there’s no room for this font,
say so and goto done; otherwise incr(font_ptr) and goto done 561) =
(Open tfm_file for input 562);
(Read the TFM size fields 564);
(Use size fields to allocate font information 565);
(Read the TFM header 567);
(Read character data 568);
(Read box dimensions 570);
(Read ligature/kern program 572);
(Read extensible character recipes 573);
(Read font parameters 574);
(Make final adjustments and goto done 575)

This code is used in section 559.

562. (Open tfm_file for input 562) =
file_opened = false;
pack_file_name (nom, empty_string, empty_string," . tfm"); /x TEX Live */
if (—b_open_in(&tfm_file)) abort;
file_opened = true

This code is used in section 561.

8563 TEXprof FONT METRIC DATA 245

563. Note: A malformed TFM file might be shorter than it claims to be; thus eof (tfm_file) might be true
when read_font_info refers to tfm_file.d or when it says get(tfm_file). If such circumstances cause system
error messages, you will have to defeat them somehow, for example by defining fget to be ‘{ get(tfm_file);
if (eof (tfm_file)) abort; }.
#define fget get(tfm_file)
#define fbyte tfm_file.d
#define read_sixteen(A)
{ A= foyte;

if (A > 127) abort;

fget;

A= Ax°400 + foyte;

#define store_four_quarters(A)

{ fget;
a = foyte;
quw.b0 = qi(a);
fget;
b = foyte;
qw.bl = qi(b);
fget;
¢ = foyte;
quw.b2 = qi(c);
fget;
d = fbyte;
qu.b3 = qi(d);
A = qu;

246 ~ FONT METRIC DATA TEXprof §564

564. (Read the TFM size fields 564) =

{ read_sizteen (If);
fget;
read_sizteen (lh);
fget;
read_sizteen (bc);
fget;
read_sizteen (ec);
if ((be > ec + 1)V (ec > 255)) abort;
if (bc >255) /+bc =256 and ec = 255 %/

{bc=1;

ec = 0;
}
fget;
read_sizteen (nw);
fget;
read_sizteen (nh);
fget;
read_sizteen (nd);
fget;
read_sizteen (ni);
fget;
read_sizteen (nl);
fget;
read_sizteen (nk);
fget;
read_sizteen (ne);
Jget;

read_sizteen(np);
if (If 26+ 1h + (ec — be +1) + nw + nh + nd + ni + nl + nk + ne + np) abort;
if (nw=0)V(nh=0)V(nd=0)V (ni =0)) abort;

}

This code is used in section 561.

565. The preliminary settings of the index-offset variables char_base, width_base, lig_kern_base, kern_base i
and exten_base will be corrected later by subtracting min_quarterword from them; and we will subtract 1
from param_base too. It’s best to forget about such anomalies until later.

(Use size fields to allocate font information 565) =
If =1If —6—1Ih; /* If words should be loaded into font_info */
if (np<7)Ilf =1f +7— np; /+at least seven parameters will appear x/
if ((font_ptr = font_maz) V (fmem_ptr + If > font_mem_size))
{ Apologize for not loading the font, goto done 566);
f = font_ptr + 1;
char_base[f] = fmem_ptr — bc;
width_base[f] = char_base[f] + ec + 1;
height_base[f] = width_base[f] + nw;
depth_base[f] = height_base[f] + nh;
italic_base[f] = depth_base[f] + nd;
lig_kern_base[f] = italic_base|f] + ni;
kern_base[f] = lig_kern_base[f] + nl — kern_base_offset;
exten_base|[f] = kern_base[f] + kern_base_offset + nk; param_base[f] = exten_base[f] + ne

This code is used in section 561.

8566 TEXprof FONT METRIC DATA

566. (Apologize for not loading the font, goto done 566) =
{ start_font_error_message;
print (" not_ loaded: Not_enough room left");
help ("I’m afraid, I won’t_ be able to make use of this font,",
"because my memory for ,character-size data is toosmall.",
"If you’re really stuck, ask a wizard toyenlarge me.",
"Or_maybe_try,‘I\\font<same font id>=<name of loaded font>’.");
error () ;
goto done;

}

This code is used in section 565.

567. Only the first two words of the header are needed by TEX82.
(Read the TFM header 567) =
{if (Ih < 2) abort;
store_four_quarters (font_check[f]);

fget;

read_sizteen(z); /*this rejects a negative design size */
fget;

z =2z %°400 + fbyte;

fget;

z=(2%°20)+ (foyte/°20);
if (z < unity) abort;
while (Ih > 2) { fget;
Jget;
fget;
fget;
decr(lh); /xignore the rest of the header */
}

font_dsize[f] = z;
if (s £ —1000)

if (s>0) z=s;

else z = axn_over_d(z,—s, 1000);
font_size[f] = z;

}

This code is used in section 561.

568. (Read character data 568) =
for (k = fmem_ptr; k < width_base[f] — 1; k++) { store_four_quarters(font_infolk].qqqq);
if ((a > nw)V (b/°20 > nh)V (b%°20 > nd)V (¢/4 > ni)) abort;
switch (¢ %4) {
case lig_tag:
if (d > nl) abort; break;
case ext_tag:
if (d > ne) abort; break;
case list_tag: { Check for charlist cycle 569) break;
default: do_nothing; /* no_tag */

}
}

This code is used in section 561.

247

248 FONT METRIC DATA TpXprof §569

569. We want to make sure that there is no cycle of characters linked together by list_tag entries, since
such a cycle would get TEX into an endless loop. If such a cycle exists, the routine here detects it when
processing the largest character code in the cycle.

#define check_byte_range(A)
{if (A< bc)V (A>ec)) abort; }
#define current_character_being_worked_on k + bc — fmem_ptr
(Check for charlist cycle 569) =
{ check_byte_range(d);
while (d < current_character_being_worked_on) { quw = char_info(f,d);
/+*N.B.: not ¢i(d), since char_base[f] hasn’t been adjusted yet */
if (char_tag(qw) # list_tag) goto not_found;
d = go(rem_byte(quw)); /*next character on the list x/

if (d = current_character_being_worked_on) abort; /xyes, there’s a cycle x/
not_found: ;

}

This code is used in section 568.

8570 TEXprof FONT METRIC DATA 249

570. A fix_word whose four bytes are (a, b, ¢,d) from left to right represents the number

z_{b-24+c-212+d~2207 if a = 0;

Tl -16+b-274 42712 4 4.2720, if a = 255.

(No other choices of a are allowed, since the magnitude of a number in design-size units must be less than
16.) We want to multiply this quantity by the integer z, which is known to be less than 227. If z < 223, the
individual multiplications b - z, ¢ - z, d - z cannot overflow; otherwise we will divide z by 2, 4, 8, or 16, to
obtain a multiplier less than 223, and we can compensate for this later. If z has thereby been replaced by
2 = 2/2° let B = 2*7¢; we shall compute

[(b+c-278+d-2719) /5]

if a = 0, or the same quantity minus a = 24+¢2’ if ¢ = 255. This calculation must be done exactly, in order
to guarantee portability of TEX between computers.
#define store_scaled (A)
{ foet;
a = foyte;
fget;
b = foyte;
fget;
¢ = foyte;
fget;
d = fbyte;
sw=(((((dx2)/°400) + (c* 2))/°400) + (b* z))/beta;
if (a =0) A = sw; else if (a =255) A = sw — alpha; else abort;
}
(Read box dimensions 570) =
{ (Replace z by 2’ and compute «, 3 571);
for (k = width_base[f]; k < lig_kern_base[f] — 1; k++) store_scaled (font_info[k].sc);
if (font_infolwidth_base[f]].sc # 0) abort; [* width[0] must be zero x/
if (font_infolheight_base|f]].sc # 0) abort; /x height[0] must be zero %/
if (font_info[depth_base[f]].sc # 0) abort; /* depth[0] must be zero x/
if (font_infolitalic_base|[f]].sc # 0) abort; /[« italic[0] must be zero x/
}

This code is used in section 561.

571. (Replace z by 2z’ and compute «, 3 571) =
{ alpha = 16;
while (z > °£0000000) { z = z/2;
alpha = alpha + alpha;
}
beta = 256/ alpha;
alpha = alpha * z;

}

This code is used in section 570.

250 FONT METRIC DATA TpXprof — §572

572. Fdefine check_existence(A)
{ check_byte_range(A);
quw = char_info(f,A); /xN.B.: not qi(A)x*/
if (—char_exists(quw)) abort;
}
(Read ligature/kern program 572) =
beh_label = °77777;
bchar = 256;
if (nl > 0) { for (k = lig_kern_base[f]; k < kern_base[f] + kern_base_offset — 1; k++) {
store_four_quarters(font_info[k].qqqq);
if (a > 128) { if (256 xc+ d > nl) abort;
if (a = 255)
if (k = lig_kern_base[f]) bchar = b;

else { if (b # bchar) check_existence(b);
if (¢ < 128) check_existence(d) /xcheck ligature */
else if (256 x (¢ — 128) + d > nk) abort; /*check kern*/
if (a < 128)
if (k— lig_kern_base[f] +a+ 1> nl) abort;
}

if (a = 255) beh_label = 256 % ¢ + d;
}
for (k = kern_base[f] + kern_base_offset; k < exten_base[f] — 1; k++) store_scaled (font_info[k].sc);

This code is used in section 561.

573. (Read extensible character recipes 573) =
for (k = exten_base[f]; k < param_base[f] — 1; k++) { store_four_quarters(font_info[k].qqqq);
if (a #0) check_ezistence(a);
if (b#0) check_ezistence(b);
if (¢ #0) check_existence(c);
check_existence (d);

}

This code is used in section 561.

8574 TpXprof FONT METRIC DATA 251

574. We check to see that the TFM file doesn’t end prematurely; but no error message is given for files
having more than [f words.

(Read font parameters 574) =
{for (k=1; k < np; k++)

if (k=1) /xthe slant parameter is a pure number */
{ fget;

sw = foyte;

if (sw > 127) sw = sw — 256;

Jget;

sw = sw * °400 + foyte;

fget;

sw = sw * °400 + foyte;

fget;

font_info[param_base[f]].sc = (sw x °20) + (foyte /°20);
}
else store_scaled (font_info[param_base[f] + k — 1].sc);
if (eof (tfm_file)) abort;
for (k=np +1; k<7, k++) foni_info[param_base[f] + k — 1].sc = 0;

}

This code is used in section 561.

575. Now to wrap it up, we have checked all the necessary things about the TFM file, and all we need to
do is put the finishing touches on the data for the new font.

#define adjust(A) A[f] = qo(A[f]) /*correct for the excess min_quarterword that was added x/

{Make final adjustments and goto done 575) =
if (np >7) font_params[f] = np; else font_params|[f] =T,
hyphen_char[f] = default_hyphen_char;
skew_char[f] = default_skew_char;
if (beh_label < nl) behar_label[f] = beh_label + lig_kern_base|f];
else bchar_label[f] = non_address;
font_bchar[f] = qi(bchar);
font_false_bchar|f] = qi(bchar);
if (bchar < ec)
if (bchar > be) { qw = char_info(f, bchar); /*N.B.: not ¢i(bchar)*/
if (char_ezists(qw)) font_false_bchar(f] = non_char;
}
font_name|[f] = nom;
font_area[f] = aire;
font_bc[f] = be;
font_ec[f] = ec;
font_glue[f] = null;
adjust (char_base);
adjust (width_base);
adjust (lig_kern_base);
adjust (kern_base);
adjust (exten_base);
decr (param_base|f]);
fmem_ptr = fmem_ptr + If;
font_ptr = f;
g = f; goto done

This code is used in section 561.

252 FONT METRIC DATA TpXprof §576

576. Before we forget about the format of these tables, let’s deal with two of TEX’s basic scanning routines
related to font information.

(Declare procedures that scan font-related stuff 576) =
static void scan_font_ident(void)
{ internal_font_number f;
halfword m;

(Get the next non-blank non-call token 405);
if (cur_emd = def_font) f = cur_font;
else if (cur_cmd = set_font) f = cur_chr;
else if (cur_cmd = def_family) { m = cur_chr;
scan_four_bit_int();
f = equiv(m + cur_val);

else { print_err("Missing font_identifier");
help2 ("I was looking for a control sequence whose",
"current meaning, has been defined, by \\font.");
back_error();
f = null_font;

}

cur_val = f;

}
See also section 577.

This code is used in section 408.

577. The following routine is used to implement ‘\fontdimen n f’. The boolean parameter writing is set
true if the calling program intends to change the parameter value.

(Declare procedures that scan font-related stuff 576) +=
static void find_font_dimen(bool writing) /xsets cur_val to font_info location */
{ internal_font_number f;
int n; /+the parameter number %/

scan_int();
n = cur_val;
scan_font_ident ();
f = cur_val;
if (n <0) cur_val = fmem_ptr;
else { if (writing A (n < space_shrink_code) A
(n > space_code) A (font_glue[f] # null)) { delete_glue_ref (font_glue|[f]);
font_glue[f] = null;

if (n > font_params[f])

if (f < font_ptr) cur_val = fmem_ptr;

else (Increase the number of parameters in the last font 579)
else cur_val = n + param_base|[f];

}

(Issue an error message if cur_val = fmem_ptr 578);

}

8578 TEXprof FONT METRIC DATA

578. (Issue an error message if cur_val = fmem_ptr 578) =
if (cur_val = fmem_ptr) { print_err("Font,");
printn_esc(font_id_text (f));
print (" has only,");
print_int (font_params|f]);
print (", fontdimen parameters");
help2 ("Toincrease the number of font parameters, you must",

"use \\fontdimen immediately after the \\font, is loaded.");
error () ;

}

This code is used in section 577.

579. (Increase the number of parameters in the last font 579) =
{ do {
if (fmem_ptr = font_mem_size) overflow ("font memory", font_mem_size);
font_info[fmem_ptr].sc = 0;
incr (fmem_ptr);
incr (font_params|[f]);
} while (=(n = font_params|f]));
cur_val = fmem_ptr — 1; /*this equals param_base[f] + font_params[f]*/

}

This code is used in section 577.

253

580. When TEX wants to typeset a character that doesn’t exist, the character node is not created; thus
the output routine can assume that characters exist when it sees them. The following procedure prints a

warning message unless the user has suppressed it.

static void char_warning (internal_font_number f,eight_bits c)
{ int old_setting; /*xsaved value of tracing_online x/

if (tracing_lost_chars > 0) { old_setting = tracing_online;
if (eTeX_ex A (tracing_lost_chars > 1)) tracing_online = 1;
{ begin_diagnostic();
print_nl("Missing ,character: There is no,");
print_ASCII (¢);
print("Lin,font ");
slow_print (font_name|[f]);
print_char(?1?);
end_diagnostic(false);
}
tracing_online = old_setting;
}
}

254 FONT METRIC DATA TpXprof §581

581. Here is a function that returns a pointer to a character node for a given character in a given font. If
that character doesn’t exist, null is returned instead.

static pointer new_character (internal_font_number f,eight_bits c)
{ pointer p; /*newly allocated node */

if (font_bc[f] <c¢)
if (font_ec[f] > ¢)
if (char_exists(char_info(f, qi(c)))) { p = get_avail();
font(p) = f;
character (p) = qi(c);
return p;
}
char_warning (f,c);
return null;

}

8582 TEXprof DEVICE-INDEPENDENT FILE FORMAT 255

582. Device-independent file format. The most important output produced by a run of TEX is the
“device independent” (DVI) file that specifies where characters and rules are to appear on printed pages.
The form of these files was designed by David R. Fuchs in 1979. Almost any reasonable typesetting device
can be driven by a program that takes DVI files as input, and dozens of such DVI-to-whatever programs have
been written. Thus, it is possible to print the output of TEX on many different kinds of equipment, using
TEX as a device-independent “front end.”

A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-
like language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set_rule’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between —2!° and
215 — 1. As in TFM files, numbers that occupy more than one byte position appear in BigEndian order.

A DVI file consists of a “preamble,” followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that TEX generated them. If we ignore nop commands and fni_def commands
(which are allowed between any two commands in the file), each eop command is immediately followed by
a bop command, or by a post command; in the latter case, there are no more pages in the file, and the
remaining bytes form the postamble. Further details about the postamble will be explained later.

Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points
to 100 and the bop that starts in byte 2000 points to 1000. (The very first bop, i.e., the one starting in byte
100, has a pointer of —1.)

583. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer;
this value is changed only by fnt and fnt_num commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, h and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h,v) would be (h, —v). (¢) The current
spacing amounts are given by four numbers w, x, y, and z, where w and z are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (h,v,w,x,y, z) values; the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h, v, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of measurement such that increasing h by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below; TEX
sets things up so that its DVI output is in sp units, i.e., scaled points, in agreement with all the scaled
dimensions in TEX’s data structures.

256 DEVICE-INDEPENDENT FILE FORMAT TEXprof 8584

584. Here is a list of all the commands that may appear in a DVI file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4]’ means that
parameter p is four bytes long.

set_char_0 0. Typeset character number 0 from font f such that the reference point of the character is
at (h,v). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that h will advance after this command; but A usually does
increase.

set_char_1 through set_char_127 (opcodes 1 to 127). Do the operations of set_char_0; but use the character
whose number matches the opcode, instead of character 0.

setl 128 ¢[1]. Same as set_char_0, except that character number ¢ is typeset. TEX82 uses this command
for characters in the range 128 < ¢ < 256.

set2 129 c[2]. Same as setl, except that ¢ is two bytes long, so it is in the range 0 < ¢ < 65536. TEX82
never uses this command, but it should come in handy for extensions of TEX that deal with oriental
languages.

set3 130 c[3]. Same as setl, except that c is three bytes long, so it can be as large as 224 — 1. Not even

the Chinese language has this many characters, but this command might prove useful in some yet

unforeseen extension.
set4 131 c[4]. Same as set!, except that ¢ is four bytes long. Imagine that.

set_rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner
at (h,v). Then set h = h 4+ b. If either a < 0 or b < 0, nothing should be typeset. Note that if b < 0,
the value of h will decrease even though nothing else happens. See below for details about how to
typeset rules so that consistency with METAFONT is guaranteed.

putl 133 ¢[l]. Typeset character number ¢ from font f such that the reference point of the character is at
(h,v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2]. Same as set2, except that h is not changed.
putd 135 ¢[3]. Same as set3, except that h is not changed.
put4 136 c[4]. Same as set/, except that h is not changed.
put_rule 137 a[4] b[4]. Same as set_rule, except that h is not changed.

nop 138. No operation, do nothing. Any number of nop’s may occur between DVI commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

bop 139 co[4] c1[4] ... co[4] p[4]. Beginning of a page: Set (h,v,w,z,y,z) = (0,0,0,0,0,0) and set the stack
empty. Set the current font f to an undefined value. The ten ¢; parameters hold the values of \count0
... \count9 in TEX at the time \shipout was invoked for this page; they can be used to identify
pages, if a user wants to print only part of a DVI file. The parameter p points to the previous bop in
the file; the first bop has p = —1.

eop 140. End of page: Print what you have read since the previous bop. At this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely, in
order by v coordinate and (for fixed v) by h coordinate; so it usually needs to be sorted into some
order that is appropriate for the device in question.)

push 141. Push the current values of (h,v,w,xz,y, z) onto the top of the stack; do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them respectively to (h,v,w,x,y, z). The number
of pops should never exceed the number of pushes, since it would be highly embarrassing if the stack
were empty at the time of a pop command.

6584 TEXprof DEVICE-INDEPENDENT FILE FORMAT 257

right! 143 b[1]. Set h = h+b, i.e., move right b units. The parameter is a signed number in two’s complement
notation, —128 < b < 128; if b < 0, the reference point moves left.

right2 144 b[2]. Same as rightl, except that b is a two-byte quantity in the range —32768 < b < 32768.
right3 145 b[3]. Same as rightl, except that b is a three-byte quantity in the range —223 < b <.
right/ 146 b[4]. Same as right1, except that b is a four-byte quantity in the range —23! < b <.

w0 147. Set h = h+ w; i.e., move right w units. With luck, this parameterless command will usually suffice,
because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

wl 148 b[1]. Set w = b and h = h 4+ b. The value of b is a signed quantity in two’s complement notation,
—128 < b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as wl, but b is two bytes long, —32768 < b < 32768.
w3 150 b[3]. Same as wi, but b is three bytes long, —2% < b <.
w4 151 b[4]. Same as w1, but b is four bytes long, —23! < b <.

z0 152. Set h = h + x; i.e., move right = units. The ‘z’ commands are like the ‘w’ commands except that
they involve x instead of w.

xz1 153 b[1]. Set x = b and h = h +b. The value of b is a signed quantity in two’s complement notation,
—128 < b < 128. This command changes the current = spacing and moves right by b.

x2 154 b[2]. Same as z1, but b is two bytes long, —32768 < b < 32768.
18 155 b[3]. Same as z1, but b is three bytes long, —223 < b <.
74 156 b[4]. Same as z1, but b is four bytes long, —23! < b <.

downl 157 a[l]. Set v = v + a, i.e., move down a units. The parameter is a signed number in two’s
complement notation, —128 < a < 128; if a < 0, the reference point moves up.

down?2 158 a[2]. Same as downl, except that a is a two-byte quantity in the range —32768 < a < 32768.
down3 159 a[3]. Same as downl, except that a is a three-byte quantity in the range —222 < a <.
down 160 a[4]. Same as downl, except that a is a four-byte quantity in the range —23' < a <.

y0 161. Set v = v + y; i.e., move down y units. With luck, this parameterless command will usually suffice,
because the same kind of motion will occur several times in succession; the following commands
explain how y gets particular values.

yl 162 a[l]. Set y = a and v = v 4 a. The value of a is a signed quantity in two’s complement notation,
—128 < a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as yI, but a is two bytes long, —32768 < a < 32768.
y3 164 a[3]. Same as y1, but a is three bytes long, —223 < a <.
y4 165 a[4]. Same as y1, but a is four bytes long, —23! < a <.

20 166. Set v = v + z; i.e., move down z units. The ‘2z’ commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 a[l]. Set z = a and v = v + a. The value of a is a signed quantity in two’s complement notation,
—128 < a < 128. This command changes the current z spacing and moves down by a.

22 168 a[2]. Same as zI, but a is two bytes long, —32768 < a < 32768.
28 169 a[3]. Same as z1, but a is three bytes long, —223 < a <.
z{ 170 a[4]. Same as z1, but a is four bytes long, —23! < a <.

frnt_num_0 171. Set f = 0. Font 0 must previously have been defined by a fnt_def instruction, as explained
below.

fnt_num_1 through fnt_num_63 (opcodes 172 to 234). Set f =1, ..., f = 63, respectively.
fnt1 235 k[1]. Set f = k. TEX82 uses this command for font numbers in the range 64 < k < 256.

258 DEVICE-INDEPENDENT FILE FORMAT TEXprof 8584

fnt2 236 k[2]. Same as fntl, except that k is two bytes long, so it is in the range 0 < k < 65536. TEX82
never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed numbers in some external coding
scheme.

fnt3 237 k[3]. Same as fnt1, except that k is three bytes long, so it can be as large as 224 — 1.

fnt4 238 k[4]. Same as fntl, except that k is four bytes long; this is for the really big font numbers (and for
the negative ones).

zzxl 239 k[1] z[k]. This command is undefined in general; it functions as a (k + 2)-byte nop unless special
DVI-reading programs are being used. TEX82 generates zzz! when a short enough \special appears,
setting k£ to the number of bytes being sent. It is recommended that = be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

zzx2 240 k[2] z[k]. Like zaz!, but 0 < k < 65536.

zzxd 241 k[3] z[k]. Like zzz1, but 0 < k <.

xxz] 242 k[4] x[k]. Like zzz1, but k can be ridiculously large. TEX82 uses zzz/ when sending a string of
length 256 or more.

fnt_defl 243 k[1] c[4] s[4] d[4] a[1] I[1] n[a + {]. Define font k, where 0 < k < 256; font definitions will be
explained shortly.

fnt_def2 244 k[2] c[4] s[4

s[4] d[4] a[1] I[1] n[a + I]. Define font k, where 0 < k < 65536.
fnt_def3 245 k[3] c[4] s[4] d[4] a[1] [1] n[a + []. Define font k, where 0 < k <.
fnt_def) 246 k[4] c[4] s[4] d[4] a[1] I[1] n[a + []. Define font k, where —23! < k <.

pre 247 i[1] num[4] den[4] mag[4] k[1] x[k]. Beginning of the preamble; this must come at the very beginning
of the file. Parameters i, num, den, mag, k, and x are explained below.

post 248. Beginning of the postamble, see below.
post_post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.

8585 TEXprof DEVICE-INDEPENDENT FILE FORMAT 259

585. #define set_char_0 0 /*typeset character 0 and move right %/
#define set! 128 /«typeset a character and move right x/
#define set_rule 132 /= typeset a rule and move right x/
#define put_rule 137 /xtypeset a rule*/

#define nop 138 /* 10 operation */

#define bop 139 /*beginning of page x/

#define eop 140 /x ending of page */

#define push 141 /*save the current positions x/

#define pop 142 /xrestore previous positions x/

#define right! 143 /+move right x/

#define w0 147 /*move right by w %/

#define w! 148 /xmove right and set w*/

#define 20 152 /xmove right by x */

#define z1 153 /«move right and set x */

#define downl 157 /+xmove down */

#define y0 161 /+*move down by y */

#define y1 162 /*move down and set y */

#define 20 166 /*move down by z*/

#define zI 167 /*xmove down and set z*/

#define fnt_num_0 171 /xset current font to 0x/

#define fnt1 235 /xset current font x/

#define zzz! 239 /xextension to DVI primitives*/

#define zzzj 242 /* potentially long extension to DVI primitives */
#define fni_defl 243 /* define the meaning of a font number x/
#define pre 247 /xpreamble x/

#define post 248 /* postamble beginning */

#define post_post 249 /* postamble ending */

586. The preamble contains basic information about the file as a whole. As stated above, there are six

parameters:
i[1] numl4] denld] mag[4] k[1] x[k].

The i byte identifies DVI format; currently this byte is always set to 2. (The value ¢ = 3 is currently used
for an extended format that allows a mixture of right-to-left and left-to-right typesetting. Some day we will
set ¢ = 4, when DVI format makes another incompatible change—perhaps in the year 2048.)

The next two parameters, num and den, are positive integers that define the units of measurement; they
are the numerator and denominator of a fraction by which all dimensions in the DVI file could be multiplied
in order to get lengths in units of 107 meters. Since 7227pt = 254cm, and since TEX works with scaled
points where there are 2'¢ sp in a point, TEX sets num /den = (254-10°)/(7227-21¢) = 25400000,/473628672.

The mag parameter is what TEX calls \mag, i.e., 1000 times the desired magnification. The actual fraction
by which dimensions are multiplied is therefore mag - num /1000den. Note that if a TEX source document
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag setting, the
DVI file that TEX creates will be completely unchanged except for the value of mag in the preamble and
postamble. (Fancy DVI-reading programs allow users to override the mag setting when a DVI file is being
printed.)

Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length
of comment z is k, where 0 < k < 256.

#define id_byte 2 /«identifies the kind of DVI files described here */

260 DEVICE-INDEPENDENT FILE FORMAT TEXprof §587
587. Font definitions for a given font number k& contain further parameters
c[4] s[4] d[4] a[1] I[1] n[a +1].

The four-byte value ¢ is the check sum that TEX found in the TFM file for this font; ¢ should match the check
sum of the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font k; font
dimensions in TFM files and other font files are relative to this quantity, which is called the “at size” elsewhere
in this documentation. The value of s is always positive and less than 227. It is given in the same units as
the other DVI dimensions, i.e., in sp when TEX82 has made the file. Parameter d is similar to s; it is the
“design size,” and (like s) it is given in DVI units. Thus, font k is to be used at mag - s/1000d times its
normal size.

The remaining part of a font definition gives the external name of the font, which is an ASCII string of
length a + [. The number a is the length of the “area” or directory, and [is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is defined, it
must not be defined again; however, we shall see below that font definitions appear in the postamble as well
as in the pages, so in this sense each font number is defined exactly twice, if at all. Like nop commands,
font definitions can appear before the first bop, or between an eop and a bop.

588. Sometimes it is desirable to make horizontal or vertical rules line up precisely with certain features in
characters of a font. It is possible to guarantee the correct matching between DVI output and the characters
generated by METAFONT by adhering to the following principles: (1) The METAFONT characters should be
positioned so that a bottom edge or left edge that is supposed to line up with the bottom or left edge of
a rule appears at the reference point, i.e., in row 0 and column 0 of the METAFONT raster. This ensures
that the position of the rule will not be rounded differently when the pixel size is not a perfect multiple of
the units of measurement in the DVI file. (2) A typeset rule of height a > 0 and width b > 0 should be
equivalent to a METAFONT-generated character having black pixels in precisely those raster positions whose
METAFONT coordinates satisfy 0 < z < ab and 0 < y < aa, where « is the number of pixels per DVI unit.

589. The last page in a DVI file is followed by ‘post’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[4] num[4] den[4] mag[4] U[4] u[4] s[2] t[2]
(font definitions)
post_post q[4] i[1] 223’s[>4]

Here p is a pointer to the final bop in the file. The next three parameters, num, den, and mag, are duplicates
of the quantities that appeared in the preamble.

Parameters [and u give respectively the height-plus-depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper; however, the standard convention
for output on normal size paper is to position each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output; a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore [and u are often ignored.

Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)
needed to process this file. Then comes ¢, the total number of pages (bop commands) present.

The postamble continues with font definitions, which are any number of fnt_def commands as described
above, possibly interspersed with nop commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.

8590 TEXprof DEVICE-INDEPENDENT FILE FORMAT 261

590. The last part of the postamble, following the post_post byte that signifies the end of the font
definitions, contains ¢, a pointer to the post command that started the postamble. An identification byte, 1,
comes next; this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 0337 in
octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble
first, on most computers, even though TEX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read ¢, and
move to byte ¢ of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader can discover all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so DVI format has been designed to work most efficiently with modern operating systems. But if DVI files
have to be processed under the restrictions of standard Pascal, one can simply read them from front to back,
since the necessary header information is present in the preamble and in the font definitions. (The [and u
and s and t parameters, which appear only in the postamble, are “frills” that are handy but not absolutely
necessary.)

262 SHIPPING PAGES OUT TpXprof §591

591. Shipping pages out. After considering TEX’s eyes and stomach, we come now to the bowels.

The ship_out procedure is given a pointer to a box; its mission is to describe that box in DVI form,
outputting a “page” to dvi_file. The DVI coordinates (h,v) = (0,0) should correspond to the upper left
corner of the box being shipped.

Since boxes can be inside of boxes inside of boxes, the main work of ship_out is done by two mutually
recursive routines, hlist_out and vlist_out, which traverse the hlists and vlists inside of horizontal and vertical
boxes.

As individual pages are being processed, we need to accumulate information about the entire set of pages,
since such statistics must be reported in the postamble. The global variables total_pages, maz_v, maz_h,
max_push, and last_bop are used to record this information.

The variable doing_leaders is true while leaders are being output. The variable dead_cycles contains the
number of times an output routine has been initiated since the last ship_out.

A few additional global variables are also defined here for use in wlist_out and hlist_out. They could have
been local variables, but that would waste stack space when boxes are deeply nested, since the values of
these variables are not needed during recursive calls.

(Global variables 13) +=
static int total_pages; /xthe number of pages that have been shipped out x/
static scaled maz_v; /*maximum height-plus-depth of pages shipped so far */
static scaled maz_h; /+*maximum width of pages shipped so far %/
static int maz_push; /* deepest nesting of push commands encountered so far x/
static int last_bop; /*location of previous bop in the DVI output */
static int dead_cycles; /xrecent outputs that didn’t ship anything out */
static bool doing_leaders; /xare we inside a leader box? */
static quarterword c, f; /x character and font in current char_node x/
static scaled rule_ht, rule_dp, rule_wd; /xsize of current rule being output */
static pointer g; /* current glue specification */
static int g, Ir; /* quantities used in calculations for leaders x/

592. (Set initial values of key variables 21) +=
total_pages = 0;

maz_v = 0;
maz_h = 0;
maz_push = 0;
last_bop = —1;

doing_leaders = false;
dead_cycles = 0;
cur_s = —1;

8593 TEXprof SHIPPING PAGES OUT 263

593. The DVI bytes are output to a buffer instead of being written directly to the output file. This makes it
possible to reduce the overhead of subroutine calls, thereby measurably speeding up the computation, since
output of DVI bytes is part of TEX’s inner loop. And it has another advantage as well, since we can change
instructions in the buffer in order to make the output more compact. For example, a ‘down2’ command can
be changed to a ‘y2’, thereby making a subsequent ‘y0’ command possible, saving two bytes.

The output buffer is divided into two parts of equal size; the bytes found in dvi_buf[0 .. half_buf — 1]
constitute the first half, and those in dvi_buf [half_buf .. dvi_buf_size — 1] constitute the second. The
global variable dvi_ptr points to the position that will receive the next output byte. When dvi_ptr reaches
dvi_limit, which is always equal to one of the two values half_buf or dvi_buf_size, the half buffer that is
about to be invaded next is sent to the output and dvi_limit is changed to its other value. Thus, there is
always at least a half buffer’s worth of information present, except at the very beginning of the job.

Bytes of the DVI file are numbered sequentially starting with 0; the next byte to be generated will be
number dvi_offset + dvi_ptr. A byte is present in the buffer only if its number is > dvi_gone.

(Types in the outer block 18) +=
typedef int16_t dvi_index; /*an index into the output buffer x/

594. Some systems may find it more eflicient to make dvi_buf a array, since output of four bytes at once
may be facilitated.

(Global variables 13) +=
static eight_bits dvi_buf [dvi_buf_size + 1]; /buffer for DVI output x/
static dvi_index half_buf; /= half of dvi_buf_size /
static dvi_index dvi_limit; /+*end of the current half buffer x/
static dvi_index dvi_ptr; /xthe next available buffer address */
static int dvi_offset;
/* dvi_buf_size times the number of times the output buffer has been fully emptied */
static int dvi_gone; /*the number of bytes already output to dvi_file /

595. Initially the buffer is all in one piece; we will output half of it only after it first fills up.

(Set initial values of key variables 21) +=
half_buf = dvi_buf_size /2;
dvi_limit = dvi_buf_size;

dvi_ptr = 0;
dvi_offset = 0;
dvi_gone = 0;

596. The actual output of dvi_bufa .. b] to dvi_file is performed by calling write_dvi(a,b). For best
results, this procedure should be optimized to run as fast as possible on each particular system, since it is
part of TEX’s inner loop. It is safe to assume that a and b+ 1 will both be multiples of 4 when write_dvi(a, b)
is called; therefore it is possible on many machines to use efficient methods to pack four bytes per word and
to output an array of words with one system call.

static void write_dvi(dvi_index a,dvi_index b)
{ int k;

for (k=a; k <b; k++) pascal_write(dvi_file, "%he", dvi_buf [k]);
}

264 SHIPPING PAGES OUT TEXprof §597

597. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the
macro dvi_out.

#define dvi_out(A) { dvi_buf [dvi_ptr] = A;
iner (dvi_ptr);
if (dvi_ptr = dvi_limit) dvi_swap();
}
static void dvi_swap(void) /+outputs half of the buffer x/
{ if (dvi_limit = dvi_buf_size) { write_dvi(0, half_buf — 1);
dvi_limit = half_buf;
dvi_offset = dvi_offset + dvi_buf_size;
dvi_ptr = 0;

else { write_dvi(half_buf , dvi_buf_size — 1);
dvi_limit = dvi_buf_size;

}

dvi_gone = dvi_gone + half_buf;

}

598. Here is how we clean out the buffer when TEX is all through; dvi_ptr will be a multiple of 4.

(Empty the last bytes out of dvi_buf 598) =
if (dvi_limit = half_buf) write_dvi(half_buf , dvi_buf_size — 1);
if (dvi_ptr > 0) write_dvi (0, dvi_ptr — 1)

This code is used in section 641.

599. The dvi_four procedure outputs four bytes in two’s complement notation, without risking arithmetic
overflow.

static void dvi_four(int x)
{if (x > 0) dvi_out(x/°100000000)
else { z =z + °10000000000;
x = x + °10000000000;
dvi_out ((/°100000000) + 128);
}
T =x % °100000000;
dvi_out (z/°200000);
=1z %°200000;
dvi_out (x/°400);
dvi_out (x % °400);
}

600. A mild optimization of the output is performed by the dvi_pop routine, which issues a pop unless it
is possible to cancel a ‘push pop’ pair. The parameter to dvi_pop is the byte address following the old push
that matches the new pop.
static void dvi_pop (int 1)
{ if ((I = dvi_offset + dvi_ptr) A (dvi_ptr > 0)) decr (dvi_ptr);
else dvi_out(pop);

}

8601 TEXprof SHIPPING PAGES OUT 265

601. Here'’s a procedure that outputs a font definition. Since TEX82 uses at most 256 different fonts per
job, fnt_defl is always used as the command code.

static void dvi_font_def (internal_font_number f)
{int k; /+index into str_pool */

dvi_out (fnt_defl1);

dvi_out (f — font_base — 1
dvi_out (qo(font_check[f
(
(

)

)’
dvi_out (qo(font_check[f);
dvi_out (qo (font_check[f)
dvi_out (qgo (font_check[f)
dvi_four (font_size[f]);
dvi_four (font_dsize[f]);
dvi_out (length (font_area[f]));
dvi_out (length (font_name[f]));

(Output the font name whose internal number is f 602);

}

602. (Output the font name whose internal number is f 602) =
for (k = str_start[font_area[f]]; k < str_start[font_area[f] + 1] — 1; k++) dvi_out(so(str_pool[k]));
for (k = str_start[font_name[f]]; k < str_start[font_name[f] + 1] — 1; k++) dvi_out(so(str_pool[k]))

This code is used in section 601.

)

)
1.b0)
].b1)
].b2)
1.b3));

)

603. Versions of TEX intended for small computers might well choose to omit the ideas in the next few
parts of this program, since it is not really necessary to optimize the DVI code by making use of the w0, z0,
y0, and z0 commands. Furthermore, the algorithm that we are about to describe does not pretend to give
an optimum reduction in the length of the DVI code; after all, speed is more important than compactness.
But the method is surprisingly effective, and it takes comparatively little time.

We can best understand the basic idea by first considering a simpler problem that has the same essential
characteristics. Given a sequence of digits, say 3141592653589, we want to assign subscripts d, y, or z to
each digit so as to maximize the number of “y-hits” and “z-hits”; a y-hit is an instance of two appearances
of the same digit with the subscript y, where no y’s intervene between the two appearances, and a z-hit is
defined similarly. For example, the sequence above could be decorated with subscripts as follows:

3:1y441y5,932064 5y 3. 54 8494.

There are three y-hits (1,...1, and 5,...5,...5,) and one z-hit (3. ...3.); there are no d-hits, since the
two appearances of 9; have d’s between them, but we don’t count d-hits so it doesn’t matter how many
there are. These subscripts are analogous to the DVI commands called down, y, and z, and the digits are
analogous to different amounts of vertical motion; a y-hit or z-hit corresponds to the opportunity to use the
one-byte commands y0 or z0 in a DVI file.

TEX’s method of assigning subscripts works like this: Append a new digit, say §, to the right of the
sequence. Now look back through the sequence until one of the following things happens: (a) You see d, or
0., and this was the first time you encountered a y or z subscript, respectively. Then assign y or z to the
new §; you have scored a hit. (b) You see d4, and no y subscripts have been encountered so far during this
search. Then change the previous dq4 to d, (this corresponds to changing a command in the output buffer),
and assign y to the new J; it’s another hit. (c) You see d4, and a y subscript has been seen but not a z.
Change the previous 04 to ¢, and assign z to the new 4. (d) You encounter both y and z subscripts before
encountering a suitable §, or you scan all the way to the front of the sequence. Assign d to the new §; this
assignment may be changed later.

The subscripts 3, 1,44 ... in the example above were, in fact, produced by this procedure, as the reader
can verify. (Go ahead and try it.)

266 SHIPPING PAGES OUT TEXprof §604

604. In order to implement such an idea, TEX maintains a stack of pointers to the down, y, and z commands
that have been generated for the current page. And there is a similar stack for right, w, and x commands.
These stacks are called the down stack and right stack, and their top elements are maintained in the variables
down_ptr and right_ptr.

Each entry in these stacks contains four fields: The width field is the amount of motion down or to the
right; the location field is the byte number of the DVI command in question (including the appropriate
dvi_offset); the link field points to the next item below this one on the stack; and the info field encodes the
options for possible change in the DVI command.

#define movemeni_node_size 3 /*number of words per entry in the down and right stacks */
#define location(A) mem[A+2].i /+DVI byte number for a movement command */

{ Global variables 13) +=
static pointer down_pitr, right_ptr; /*heads of the down and right stacks*/

605. (Set initial values of key variables 21) +=
down_ptr = null,
right_ptr = null;

606. Here is a subroutine that produces a DVI command for some specified downward or rightward
motion. It has two parameters: w is the amount of motion, and o is either downl or rightl. We use
the fact that the command codes have convenient arithmetic properties: yI — downl = wl — rightl and
z1 — downl = x1 — rightl .
static void movement (scaled w, eight_bits o)
{ small_number mstate; /+have we seen a y or z7 x/
pointer p, q; /* current and top nodes on the stack x/
int k; /*index into dvi_buf, modulo dvi_buf_size x/
g = get_node(movement_node_size); /+new node for the top of the stack /
width (q) = w;
location (q) = dvi_offset + dvi_ptr;
if (o = downl) { link(q) = down_ptr;
down_ptr = q;

else { link(q) = right_ptr;
right_ptr = q;
}

(Look at the other stack entries until deciding what sort of DVI command to generate; goto found if
node p is a “hit” 610);
(Generate a down or right command for w and return 609);
found: { Generate a y0 or z0 command in order to reuse a previous appearance of w 608);

}

8607 TEXprof SHIPPING PAGES OUT 267

607. The info fields in the entries of the down stack or the right stack have six possible settings: y_here
or z_here mean that the DVI command refers to y or z, respectively (or to w or z, in the case of horizontal
motion); yz_ OK means that the DVI command is down (or right) but can be changed to either y or z (or
to either w or z); y_ OK means that it is down and can be changed to y but not z; 2_ OK is similar; and
d_fixed means it must stay down.

The four settings yz_OK, y_OK, z_OK, d_fixed would not need to be distinguished from each other
if we were simply solving the digit-subscripting problem mentioned above. But in TEX’s case there is a
complication because of the nested structure of push and pop commands. Suppose we add parentheses to
the digit-subscripting problem, redefining hits so that d, ...d, is a hit if all y’s between the §’s are enclosed
in properly nested parentheses, and if the parenthesis level of the right-hand d, is deeper than or equal to
that of the left-hand one. Thus, ‘(" and)’ correspond to ‘push’ and ‘pop’. Now if we want to assign a
subscript to the final 1 in the sequence

2,7a14(8.2,8.)1

we cannot change the previous 14 to 1,, since that would invalidate the 2, ...2, hit. But we can change it
to 1,, scoring a hit since the intervening 8,’s are enclosed in parentheses.

The program below removes movement nodes that are introduced after a push, before it outputs the
corresponding pop.

#define y_here 1 /* info when the movement entry points to a y command */
#define z_here 2 /* info when the movement entry points to a z command */
#define yz_OK 3 /* info corresponding to an unconstrained down command */
#define y_OK 4 /*info corresponding to a down that can’t become a z */
#define 2_OK 5 /x info corresponding to a down that can’t become a y */
#define d_fized 6 /xinfo corresponding to a down that can’t change */

608. When the movement procedure gets to the label found, the value of info(p) will be either y_here or
z_here. If it is, say, y_here, the procedure generates a y0 command (or a w0 command), and marks all info
fields between ¢ and p so that y is not OK in that range.

{ Generate a y0 or z0 command in order to reuse a previous appearance of w 608) =
info(q) = info(p);
if (info(q) = y_here) { dvi_out(o+ y0 — downl); /*y0 or w0 */
while (link(q) # p) { q = link(q);
switch (info(q)) {
case yz_OK: info(q) = z_OK; break;
case y_OK: info(q) = d_fized; break;
default: do_nothing;
}
}
¥
else { dvi_out(o+ 20 — downl); /%20 or x0 %/
while (link(q) # p) { q = link(q);
switch (info(q)) {
case yz_OK: info(q) = y_OK; break;
case z_OK: info(q) = d_fized; break;
default: do_nothing;
}
}
}

This code is used in section 606.

268 SHIPPING PAGES OUT TpXprof §609

609. (Generate a down or right command for w and return 609) =

info(q) = y2_OK;

if (abs(w) > °40000000) { dvi_out(o+3); /xdown4 or right} =/
dvi_four (w);
return;

}

if (abs(w) > °100000) { dvi_out(o+2); /x down3 or right3 %/
if (w < 0) w=w+°100000000;
dvi_out (w/°200000);
w=w % °200000;
goto label2;

if (abs(w) > °200) { dvi_out(o+1); /* down2 or right2 x/
if (w < 0) w=w+ °200000;
goto label2;
}
dvi_out(0); /xdownl or rightl %/
if (w<0)w=w-+°400;
goto labell;
label2: dvi_out(w/°400);
labell : dvi_out(w % °400); return

This code is used in section 606.

610. As we search through the stack, we are in one of three states, y_seen, z_seen, or none_seen, depending
on whether we have encountered y_here or z_here nodes. These states are encoded as multiples of 6, so that
they can be added to the info fields for quick decision-making.

#define none_seen 0 /+no y_here or z_here nodes have been encountered yet %/
#define y_seen 6 /xwe have seen y_here but not z_here x/
#define z_seen 12 /xwe have seen z_here but not y_here */

(Look at the other stack entries until deciding what sort of DVI command to generate; goto found if node
pis a “hit” 610) =
p = link(q);
mstate = none_seen;
while (p # null) { if (width(p) = w)
(Consider a node with matching width; goto found if it’s a hit 611)
else
switch (mstate + info(p)) {
case none_seen + y_here: mstate = y_seen; break;
case none_seen + z_here: mstate = z_seen; break;
case y_seen + z_here: case z_seen + y_here: goto not_found;
default: do_nothing;
}
p = link(p);
¥
not_found:

This code is used in section 606.

8611 TEXprof SHIPPING PAGES OUT 269

611. We might find a valid hit in a y or z byte that is already gone from the buffer. But we can’t change
bytes that are gone forever; “the moving finger writes,”
{ Consider a node with matching width; goto found if it’s a hit 611) =
switch (mstate + info(p)) {
case none_seen + yz_OK : case none_seen + y_OK: case z_seen + yz_OK : case z_seen + y_OK:
if (location(p) < dvi_gone) goto not_found;
else (Change buffered instruction to y or w and goto found 612) break;
case none_seen + z_OK : case y_seen + yz_OK : case y_seen + z_OK:
if (location(p) < dvi_gone) goto not_found;
else (Change buffered instruction to z or x and goto found 613) break;
case none_seen + y_here: case none_seen + z_here: case y_seen + z_here: case z_seen + y_here:
goto found;
default: do_nothing;

}

This code is used in section 610.

612. (Change buffered instruction to y or w and goto found 612) =
{ k = location (p) — dvi_offset;
if (k<0) k=k+ dvi_buf_size;
dvi_buf [k] = dvi_buf [k] + yI — downl;
info(p) = y_here;
goto found;

}

This code is used in section 611.

613. (Change buffered instruction to z or x and goto found 613) =
{ k = location (p) — dvi_offset;
if (k<0) k=Fk+ dvi_buf_size;
dvi_buf [k] = dvi_buf [k] + 21 — downl;
info(p) = z_here;
goto found;

}

This code is used in section 611.

270 SHIPPING PAGES OUT TpXprof — §614

614. In case you are wondering when all the movement nodes are removed from TEX’s memory, the answer
is that they are recycled just before hlist_out and vlist_out finish outputting a box. This restores the down
and right stacks to the state they were in before the box was output, except that some info’s may have
become more restrictive.

static void prune_movements(int 1) /xdelete movement nodes with location > x/
{ pointer p; /xnode being deleted x/

while (down_ptr # null) { if (location(down_ptr) < 1) goto done;
p = down_ptr;
down_ptr = link(p);
free_node (p, movement_node_size);

}

done:
while (right_ptr # null) { if (location (right_ptr) < 1) return;
p = right_ptr;

right_ptr = link(p);
free_node (p, movement_node_size);
}
}

615. The actual distances by which we want to move might be computed as the sum of several separate
movements. For example, there might be several glue nodes in succession, or we might want to move right by
the width of some box plus some amount of glue. More importantly, the baselineskip distances are computed
in terms of glue together with the depth and height of adjacent boxes, and we want the DVI file to lump
these three quantities together into a single motion.

Therefore, TEX maintains two pairs of global variables: dvi_h and dvi_v are the h and v coordinates
corresponding to the commands actually output to the DVI file, while cur_h and cur_v are the coordinates
corresponding to the current state of the output routines. Coordinate changes will accumulate in cur_h and
cur_v without being reflected in the output, until such a change becomes necessary or desirable; we can call
the movement procedure whenever we want to make dvi_h = cur_h or dvi_v = cur_v.

The current font reflected in the DVI output is called dvi_f; there is no need for a ‘cur_f’ variable.

The depth of nesting of hlist_out and vlist_out is called cur_s; this is essentially the depth of push
commands in the DVI output.

#define synch_h
if (cur_h # dvi_h) { movement(cur_h — dvi_h, right1);
dvi_h = cur_h;

#define synch_v
if (cur_v # dvi_v) { movement (cur_v — dvi_v, downl);
dvi_v = cur_v;

}

(Global variables 13) +=

static scaled dvi_h, dvi_v; /+a DVI reader program thinks we are here %/
static scaled cur_h, cur_v; /* TEX thinks we are here /
static internal_font_number dvi_f; /*the current font x/

static int cur_s; /x current depth of output box nesting, initially —1 %/

8616 TEXprof SHIPPING PAGES OUT 271

616. (Initialize variables as ship_out begins 616) =
dvi_h = 0;
dvi_v = 0;
cur_h = h_offset;
dvi_f = null_font;
ensure_dvi_open;
if (total_pages = 0) { dvi_out(pre);
dvi_out (id_byte); /*output the preamble x/
dvi_four (25400000);
dvi_four(473628672); / conversion ratio for sp */
prepare_mag ();
dvi_four(mag); /+*magnification factor is frozen =/
old_setting = selector;
selector = new_string;
print (",TeX output,");
print_int (year);
print_char(?.”);
print_two (month);
print_char(’.”);
print_two (day);
print_char(’:’);
print_two (time /60);
print_two (time % 60);
selector = old_setting;
dvi_out (cur_length);
for (s = str_start[str_ptr]; s < pool_ptr — 1; s++) dvi_out(so(str_pool[s]));
pool_ptr = str_start|str_ptr]; /*flush the current string/

}

This code is used in section 639.

617. When hlist_out is called, its duty is to output the box represented by the hlist_node pointed to by
temp_ptr. The reference point of that box has coordinates (cur_h, cur_v).

Similarly, when vlist_out is called, its duty is to output the box represented by the wvlisi_node pointed to
by temp_ptr. The reference point of that box has coordinates (cur_h, cur_v).

static void vlist_out(void); /* hlist_out and vlist_out are mutually recursive %/

272 SHIPPING PAGES OUT TpXprof §618

618. The recursive procedures hlisi_out and vlist_out each have local variables save_h and save_v to hold
the values of dvi_h and dvi_v just before entering a new level of recursion. In effect, the values of save_h
and save_v on TEX’s run-time stack correspond to the values of & and v that a DVI-reading program will
push onto its coordinate stack.

{ Declare procedures needed in hlist_out, vlist_out 1367)
static void hlist_out(void) /xoutput an hlist_node box */

{ scaled base_line; /*the baseline coordinate for this box x/
scaled left_edge; /*the left coordinate for this box %/
scaled save_h, save_v; /*what dvi_h and dvi_v should pop tox*/
pointer this_box; /* pointer to containing box x/

glue_ord g_order; /= applicable order of infinity for glue */

int g_sign; /= selects type of glue */

pointer p; /*current position in the hlist */

int save_loc; /*DVI byte location upon entry */

pointer leader_boz; /*the leader box being replicated */

scaled leader_wd; /xwidth of leader box being replicated */

scaled lz; /xextra space between leader boxes */

bool outer_doing_leaders; /+were we doing leaders? x/

scaled edge; /xleft edge of sub-box, or right edge of leader space */

double glue_temp; /* glue value before rounding */

double cur_glue; /+glue seen so far*/

scaled cur_g; /+rounded equivalent of cur_glue times the glue ratio x/

cur_g = 0;

cur_glue = float_constant(0);

this_box = temp_ptr;

g_order = glue_order (this_bozx);

g_sign = glue_sign (this_boz);

p = list_ptr (this_box);

incr(cur_s);

if (cur_s > 0) dvi_out(push);

if (cur_s > maz_push) max_push = cur_s;

save_loc = dvi_offset + dvi_ptr;

base_line = cur_v;

left_edge = cur_h;

while (p # null) (Output node p for hlist_out and move to the next node, maintaining the
condition cur_v = base_line 619);

prune_movements (save_loc);

if (cur_s > 0) dvi_pop (save_loc);

decr(cur_s);

8619 TEXprof SHIPPING PAGES OUT 273

619. We ought to give special care to the efficiency of one part of hlist_out, since it belongs to TEX’s inner
loop. When a char_node is encountered, we save a little time by processing several nodes in succession until
reaching a non-char_node. The program uses the fact that set_char_0 = 0.
(Output node p for hlist_out and move to the next node, maintaining the condition cur_v = base_line 619) =
reswitch:
if (is_char_node(p)) { synch_h;
synch_v;
do {
f = font(p);
¢ = character(p);
if (f # dvi_f) (Change font dvi_f to f 620);
if (¢ > qi(128)) dvi_out(setl);
dvi_out(qo(c));
cur_h = cur_h + char_width(f, char_info(f,c));
p = link(p);
} while (—(—is_char_node(p)));
dvi_h = cur_h;
}
else (Output the non-char_node p for hlist_out and move to the next node 621)
This code is used in section 618.

620. (Change font dvi_f to f 620) =

{ if (—font_used[f]) { dvi_font_def (f);
font_used[f] = true;

if (f <64+ font_base) dvi_out(f — font_base — 1 + fnt_num_0)
else { dvi_out(fnt1);
dvi_out (f — font_base — 1);
}
dvi_f = f;
}

This code is used in section 619.

274 SHIPPING PAGES OUT TpXprof §621

621. (Output the non-char_node p for hlist_out and move to the next node 621) =
{ switch (type(p)) {
case hlist_node: case vlist_node: (Output a box in an hlist 622) break;
case rule_node:

{ rule_ht = height(p);
rule_dp = depth(p);
rule_wd = width (p);
goto fin_rule;

}

case whatsit_node: (Output the whatsit node p in an hlist 1366); break;
case glue_node: { Move right or output leaders 624)
case kern_node: case math_node: cur_h = cur_h + width(p); break;
case ligature_node: (Make node p look like a char_node and goto reswitch 651)
default: do_nothing;
}
goto next_p;
fin_rule: {Output a rule in an hlist 623);
move_past: cur_h = cur_h + rule_wd;
next_p: p = link(p);

}

This code is used in section 619.

622. (Output a box in an hlist 622) =

if (list_ptr(p) = null) cur_h = cur_h + width(p);

else { save_h = dvi_h;
save_v = dvi_v;
cur_v = base_line + shift_amount(p); /*shift the box down */
temp_ptr = p;
edge = cur_h;
if (type(p) = vlist_node) vlist_out(); else hlist_out();
dvi_h = save_h;
dvi_v = save_v;
cur_h = edge + width(p);
cur_v = base_line;

}

This code is used in section 621.

623. (Output a rule in an hlist 623) =
if (is_running(rule_ht)) rule_ht = height (this_box);
if (is_running(rule_dp)) rule_dp = depth(this_box);
rule_ht = rule_ht + rule_dp; /*this is the rule thickness /
if ((rule_ht > 0) A (rule_wd > 0)) /xwe don’t output empty rules */
{ synch_h;
cur_v = base_line + rule_dp;
synch_v;
dvi_out (set_rule);
dvi_four (rule_ht);
dvi_four (rule_wd);
cur_v = base_line;
dvi_h = dvi_h + rule_wd,;
}

This code is used in section 621.

8624 TEXprof SHIPPING PAGES OUT

624. #define billion float_constant(1000000000)
#define vet_glue(A) glue_temp = A,
if (glue_temp > billion) glue_temp = billion;
else if (glue_temp < —billion) glue_temp = —billion
{Move right or output leaders 624) =
{ 9= glue_ptr(p);
rule_wd = width(g) — cur_g;
if (g_sign # normal) { if (g_sign = stretching) { if (stretch_order(g) = g_order) {
cur_glue = cur_glue + stretch(g);
vet_glue (unfiz (glue_set (this_box)) * cur_glue);
cur_g = round (glue_temp);
}
}

else if (shrink_order(g) = g_order) { cur_glue = cur_glue — shrink(g);
vet_glue (unfiz (glue_set (this_box)) * cur_glue);
cur_g = round (glue_temp);
}
}
rule_wd = rule_wd + cur_g;
if (subtype(p) > a_leaders)
(Output leaders in an hlist, goto fin_rule if a rule or to next_p if done 625);
goto mowve_past;

}

This code is used in section 621.

625. (Output leaders in an hlist, goto fin_rule if a rule or to next_p if done 625) =
{ leader_box = leader_ptr(p);
if (type (leader_boxz) = rule_node) { rule_ht = height(leader_box);
rule_dp = depth (leader_boz);
goto fin_rule;
}
leader_wd = width (leader_box);
if ((leader_wd > 0) A (rule_wd > 0)) { rule_wd = rule_wd + 10;
/* compensate for floating-point rounding */
edge = cur_h + rule_wd;
lx = 0;
(Let cur_h be the position of the first box, and set leader_wd + lz to the spacing between
corresponding parts of boxes 626);
while (cur_h + leader_wd < edge)
(Output a leader box at cur_h, then advance cur_h by leader_wd + lx 627);
cur_h = edge — 10;
goto next_p;
}
}

This code is used in section 624.

275

276 SHIPPING PAGES OUT TpXprof — §626

626. The calculations related to leaders require a bit of care. First, in the case of a_leaders (aligned
leaders), we want to move cur_h to left_edge plus the smallest multiple of leader_wd for which the result
is not less than the current value of cur_h; i.e., cur_h should become left_edge + leader_wd x [(cur_h —
left_edge)/leader_wd]. The program here should work in all cases even though some implementations of
Pascal give nonstandard results for the / operation when cur_h is less than left_edge.

In the case of c_leaders (centered leaders), we want to increase cur_h by half of the excess space not
occupied by the leaders; and in the case of z_leaders (expanded leaders) we increase cur_h by 1/(q + 1) of
this excess space, where ¢ is the number of times the leader box will be replicated. Slight inaccuracies in the
division might accumulate; half of this rounding error is placed at each end of the leaders.

(Let cur_h be the position of the first box, and set leader_wd + lz to the spacing between corresponding
parts of boxes 626) =
if (subtype(p) = a_leaders) { save_h = cur_h;
cur_h = left_edge + leader_wd x ((cur_h — left_edge)/leader_wd);
if (cur_h < save_h) cur_h = cur_h + leader_wd;

else { lg = rule_wd /leader_wd; /*the number of box copies */
Ir = rule_wd % leader_wd; /+the remaining space */
if (subtype(p) = c_leaders) cur_h = cur_h + (Ir/2);
else { iz =1Ir/(lg + 1);
cur_h = cur_h + ((Ir — (lg — 1) * lz)/2);
}
}

This code is used in section 625.

627. The ‘synch’ operations here are intended to decrease the number of bytes needed to specify horizontal
and vertical motion in the DVI output.

(Output a leader box at cur_h, then advance cur_h by leader_wd + lx 627) =
{ cur_v = base_line + shift_amount (leader_bozx);
synch_v;
save_v = dvi_v;
synch_h;
save_h = dvi_h;
temp_ptr = leader_box;
outer_doing_leaders = doing_leaders;
doing_leaders = true;
if (type (leader_box) = vlist_node) vlist_out(); else hlist_out();
doing_leaders = outer_doing_leaders;
dvi_v = save_v;
dvi_h = save_h;
cur_v = base_line;
cur_h = save_h + leader_wd + lx;

}

This code is used in section 625.

8628 TEXprof SHIPPING PAGES OUT 277

628. The vlist_out routine is similar to hlist_out, but a bit simpler.

static void vlist_out(void) /*output a vlist_node box x/

{ scaled left_edge; /*the left coordinate for this box */
scaled top_edge; /*the top coordinate for this box */
scaled save_h, save_v; /*what dvi_h and dvi_v should pop tox*/
pointer this_box; /*pointer to containing box */
glue_ord g_order; /= applicable order of infinity for glue */
int g_sign; /xselects type of glue x/
pointer p; /* current position in the vlist x/
int save_loc; /*DVI byte location upon entry */
pointer leader_box; /xthe leader box being replicated */
scaled leader_ht; /+height of leader box being replicated */
scaled Iz; /* extra space between leader boxes */
bool outer_doing_leaders; /* were we doing leaders? x/
scaled edge; /+bottom boundary of leader space %/
double glue_temp; /x glue value before rounding */
double cur_glue; /*glue seen so far x/
scaled cur_g; /+rounded equivalent of cur_glue times the glue ratio x/
cur_g = 0;
cur_glue = float_constant(0);
this_box = temp_ptr;
g_order = glue_order (this_boz);
g_sign = glue_sign (this_box);

p = list_ptr (this_box);

incr (cur_s);

if (cur_s > 0) dvi_out(push);

if (cur_s > maz_push) maz_push = cur_s;

save_loc = dvi_offset + dvi_ptr;

left_edge = cur_h;

cur_v = cur_v — height (this_boz);

top_edge = cur_v;

while (p # null) (Output node p for vlist_out and move to the next node, maintaining the condition
cur_h = left_edge 629);

prune_movements (save_loc);

if (cur_s > 0) dvi_pop (save_loc);

decr (cur_s);

}

629. (Output node p for vlist_out and move to the next node, maintaining the condition
cur_h = left_edge 629) =
{ if (is_char_node(p)) confusion("vlistout");
else (Output the non-char_node p for vlist_out 630);
next_p: p = link(p);

This code is used in section 628.

278 SHIPPING PAGES OUT TpXprof §630

630. (Output the non-char_node p for vlist_out 630) =

{ switch (type(p)) {
case hlist_node: case vlist_node: (Output a box in a vlist 631) break;
case rule_node:

{ rule_ht = height(p);
rule_dp = depth(p);
rule_wd = width (p);
goto fin_rule;

}

case whatsit_node: (Output the whatsit node p in a vlist 1365); break;
case glue_node: (Move down or output leaders 633)
case kern_node: cur_v = cur_v + width(p); break;
default: do_nothing;
}
goto next_p;
fin_rule: (Output a rule in a vlist, goto next_p 632);
move_past: cur_v = cur_v + rule_ht;

}

This code is used in section 629.

631. The synch_v here allows the DVI output to use one-byte commands for adjusting v in most cases,
since the baselineskip distance will usually be constant.
(Output a box in a vlist 631) =
if (list_ptr(p) = null) cur_v = cur_v + height(p) + depth(p);
else { cur_v = cur_v + height(p);
synch_v;
save_h = dvi_h;
save_v = dvi_v;
cur_h = left_edge + shift_amount (p); /xshift the box right */
temp_ptr = p;
if (type(p) = vlist_node) vlist_out(); else hlist_out();
dvi_h = save_h;
dvi_v = save_v;
cur_v = save_v + depth(p);
cur_h = left_edge;

}

This code is used in section 630.

632. (Output a rule in a vlist, goto next_p 632) =
if (is_running (rule_wd)) rule_wd = width (this_bozx);
rule_ht = rule_ht 4+ rule_dp; /*this is the rule thickness %/
cur_v = cur_v + rule_ht;
if ((rule_ht > 0) A (rule_wd > 0)) /xwe don’t output empty rules */
{ synch_h;
synch_v;
dvi_out (put_rule);
dvi_four (rule_ht);
dvi_four (rule_wd);
}
goto next_p

This code is used in section 630.

8633 TEXprof SHIPPING PAGES OUT 279

633. (Move down or output leaders 633) =
{ 9 = glue_ptr(p);
rule_ht = width(g) — cur_g;
if (g_sign # normal) { if (g_sign = stretching) { if (stretch_order(g) = g_order) {
cur_glue = cur_glue + stretch(g);
vet_glue (unfix (glue_set (this_boz)) % cur_glue);
cur_g = round (glue_temp);

}

else if (shrink_order(g) = g_order) { cur_glue = cur_glue — shrink(g);
vet_glue (unfiz (glue_set (this_box)) * cur_glue);
cur_g = round (glue_temp);

}

rule_ht = rule_ht + cur_g;
if (subtype(p) > a_leaders) (Output leaders in a vlist, goto fin_rule if a rule or to next_p if done 634);

goto move_past;

}

This code is used in section 630.

634. (Output leaders in a vlist, goto fin_rule if a rule or to next_p if done 634) =
{ leader_bozx = leader_ptr(p);
if (type(leader_box) = rule_node) { rule_wd = width(leader_box);
rule_dp = 0;
goto fin_rule;
}
leader_ht = height (leader_box) + depth (leader_boz);
if ((leader_ht > 0) A (rule_ht > 0)) { rule_ht = rule_ht + 10;
/* compensate for floating-point rounding x/
edge = cur_v + rule_ht;
Iz = 0;
(Let cur_v be the position of the first box, and set leader_ht + lx to the spacing between
corresponding parts of boxes 635);
while (cur_v + leader_ht < edge)
(Output a leader box at cur_v, then advance cur_v by leader_ht + lx 636);
cur_v = edge — 10;
goto nexi_p;
}
¥

This code is used in section 633.

280 SHIPPING PAGES OUT

635. (Let cur_v be the position of the first box, and set leader_ht 4+ lz to the spacing between

corresponding parts of boxes 635) =
if (subtype(p) = a_leaders) { save_v = cur_v;
cur_v = top_edge + leader_ht * ((cur_v — top_edge)/leader_ht);
if (cur_v < save_v) cur_v = cur_v + leader_ht;
}
else { lg = rule_ht/leader_ht; /*the number of box copies x/
Ir = rule_ht % leader_ht; /*the remaining space */
if (subtype(p) = c_leaders) cur_v = cur_v + (Ir/2);
else { lx =1Ir/(lg +1);
cur_v = cur_v + ((Ir — (lg — 1) x lx)/2);
}
}

This code is used in section 634.

TEXprof

§635

636. When we reach this part of the program, cur_v indicates the top of a leader box, not its baseline.

(Output a leader box at cur_v, then advance cur_v by leader_ht + lz 636) =

{ cur_h = left_edge + shift_amount(leader_box);
synch_h;
save_h = dvi_h;
cur_v = cur_v + height (leader_boz);
synch_v;
save_v = dvi_v;
temp_ptr = leader_box;
outer_doing_leaders = doing_leaders;
doing_leaders = true;
if (type(leader_box) = vlist_node) vlist_out(); else hlist_out();
doing_leaders = outer_doing_leaders;
dvi_v = save_v;
dvi_h = save_h;
cur_h = left_edge;
cur_v = save_v — height (leader_box) + leader_ht + lz;

}

This code is used in section 634.

8637 TEXprof SHIPPING PAGES OUT 281

637. The hlist_out and wvlist_out procedures are now complete, so we are ready for the ship_out routine
that gets them started in the first place.

static void ship_out(pointer p) /*output the box px/

{ int page_loc; /xlocation of the current bop */
int j, k; /*indices to first ten count registers x/
int s; /xindex into str_pool */
int old_setting; /xsaved selector setting */

(Local variables to save the profiling context 1766)

(Charge the time used here on ship_out 1771)

if (tracing_output > 0) { print_nl("");
print_In();
print("Completed box being shipped out");

if (term_offset > max_print_line —9) print_in();
else if ((term_offset > 0) V (file_offset > 0)) print_char(’y’);
print_char(’ [’);
J=9
while ((count(j) =0) A (j > 0)) decr(j);
for (k=0; k <j; k++) { print_int(count(k));
if (k < j) print_char(’.’);
}
update_terminal;
if (tracing_output > 0) { print_char(’1°);
begin_diagnostic();
show_box (p);
end_diagnostic(true);
}
(Ship box p out 639);
if (tracing_output < 0) print_char(’1’);
dead_cycles = 0;
update_terminal; /* progress report */
(Flush the box from memory, showing statistics if requested 638);
(restore the previous current file, line, and command 1768)

282 SHIPPING PAGES OUT TpXprof §638

638. (Flush the box from memory, showing statistics if requested 638) =
#ifdef STAT
if (tracing_stats > 1) { print_nl("Memory usage before: ");
print_int (var_used);
print_char(’&’);
print_int (dyn_used);
print_char(?;’);

#endif
flush_node_list (p);
4ifdef STAT
if (tracing_stats > 1) { print("Lafter:");
print_int (var_used);
print_char(’&’);
print_int (dyn_used);
print(";ustill untouched:,");
print_int (hi_mem_min — lo_mem_maz — 1);
print_In();

#endif

This code is used in section 637.

639. (Ship box p out 639) =
(Update the values of maz_h and maz_v; but if the page is too large, goto done 640);
(Initialize variables as ship_out begins 616);
page_loc = dvi_offset + dvi_ptr;
dvi_out (bop);
for (k=0; k <9; k++) dvi_four(count(k));
dvi_four (last_bop);
last_bop = page_loc;
cur_v = height (p) + v_offset;
temp_ptr = p;
if (type(p) = vlist_node) vlist_out(); else hlist_out();
dvi_out(eop);
incr(total_pages);
cur_s = —1; done:

This code is used in section 637.

8640 TEXprof SHIPPING PAGES OUT 283

640. Sometimes the user will generate a huge page because other error messages are being ignored. Such
pages are not output to the dvi file, since they may confuse the printing software.

(Update the values of maz_h and maz_v; but if the page is too large, goto done 640) =
if ((height(p) > maz_dimen) V
(depth(p) > max_dimen) V
(height (p) + depth(p) + v_offset > maz_dimen) V
(width(p) + h_offset > maz_dimen)) { print_err("Huge page, cannot be shipped out");
help2 ("The page, justcreated is more than 18 feet tall or",
"more than 18 feet wide, ;soyI suspect something went wrong.");
error () ;
if (tracing_output < 0) { begin_diagnostic();
print_nl("The following box has been deleted:");
show_boz (p);
end_diagnostic(true);

}

goto done;

if (height(p) + depth(p) + v_offset > max_v) max_v = height(p) + depth(p) + v_offset;
if (width(p) + h_offset > maz_h) maz_h = width(p) + h_offset

This code is used in section 639.

284 SHIPPING PAGES OUT TpXprof — §641

641. At the end of the program, we must finish things off by writing the postamble. If total_pages = 0,
the DVI file was never opened. If total_pages > 65536, the DVI file will lie. And if maz_push > 65536, the
user deserves whatever chaos might ensue.

An integer variable k will be declared for use by this routine.

{ Finish the DVI file 641) =
while (cur_s > —1) { if (cur_s > 0) dvi_out(pop)
else { dvi_out(eop);
incr (total_pages);
}
decr(cur_s);
}
if (total_pages = 0) print_nl("No_pages_of output.");
else { dvi_out(post); /+beginning of the postamble x/
dvi_four (last_bop);
last_bop = dvi_offset + dvi_ptr — b; /* post location */
dwi_four (25400000);
dvi_four(473628672); /conversion ratio for sp x/
prepare_mag ();
dvi_four(mag); /*magnification factor x/
dvi_four (maz_v);
dvi_four (maz_h);
dvi_out (max_push /256);
dvi_out (maz_push % 256);
dvi_out ((total_pages /256) % 256);
dvi_out (total_pages % 256);
(Output the font definitions for all fonts that were used 642);
dvi_out (post_post);
dvi_four (last_bop);
dvi_out (id_byte);
k =4+ ((dvi_buf_size — dvi_ptr) % 4); /+the number of 223’s x/
while (k > 0) { dvi_out(223);
decr (k);
}
(Empty the last bytes out of dvi_buf 598);
print_nl("Output written on,");
slow_print (output_file_name);
pm‘nt(nu(n);
print_int (total_pages);
print ("_page");
if (total_pages # 1) print_char(’s’);
print(",u");
print_int (dvi_offset + dvi_ptr);
print("ubytes) .");
b_close(&dvi_file);
}

This code is used in section 1332.

642. (Output the font definitions for all fonts that were used 642) =
while (font_ptr > font_base) { if (font_used[font_ptr]) dvi_font_def (font_ptr);
decr (font_ptr);

}

This code is used in section 641.

8643 TEXprof PACKAGING 285

643. Packaging. We're essentially done with the parts of TEX that are concerned with the input
(get_next) and the output (ship_out). So it’s time to get heavily into the remaining part, which does
the real work of typesetting.

After lists are constructed, TEX wraps them up and puts them into boxes. Two major subroutines are
given the responsibility for this task: hpack applies to horizontal lists (hlists) and vpack applies to vertical
lists (vlists). The main duty of hpack and wpack is to compute the dimensions of the resulting boxes, and
to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the
material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or
if a \vbox includes other boxes that have been shifted left.

The subroutine call hpack (p, w, m) returns a pointer to an hlist_node for a box containing the hlist that
starts at p. Parameter w specifies a width; and parameter m is either ‘exactly’ or ‘additional’. Thus,
hpack (p, w, exactly) produces a box whose width is exactly w, while hpack (p, w, additional) yields a box
whose width is the natural width plus w. It is convenient to define a macro called ‘natural’ to cover the
most common case, so that we can say hpack (p, natural) to get a box that has the natural width of list p.

Similarly, vpack (p, w, m) returns a pointer to a vlist_node for a box containing the vlist that starts at p.
In this case w represents a height instead of a width; the parameter m is interpreted as in hpack.

#define ezactly 0 /xa box dimension is pre-specified */
#define additional 1 /*a box dimension is increased from the natural one %/
#define natural 0, additional /*shorthand for parameters to hpack and vpack x/

644. The parameters to hpack and wpack correspond to TEX’s primitives like ‘\hbox to 300pt’, ‘\hbox
spread 10pt’; note that ‘\hbox’ with no dimension following it is equivalent to ‘\hbox spread Opt’. The
scan_spec subroutine scans such constructions in the user’s input, including the mandatory left brace that
follows them, and it puts the specification onto save_stack so that the desired box can later be obtained by

executing the following code:
save_ptr = save_pitr — 2;

hpack (p, saved (1), saved (0)) .

Special care is necessary to ensure that the special save_stack codes are placed just below the new group
code, because scanning can change save_stack when \csname appears.

static void scan_spec(group_code ¢, bool three_codes) /*scans a box specification and left brace x/
{int s; /xtemporarily saved value x/
int spec_code;

if (three_codes) s = saved(0);
if (scan_keyword("to")) spec_code = exactly;
else if (scan_keyword ("spread")) spec_code = additional;
else { spec_code = additional;
cur_val = 0;
goto found;
}
scan_normal_dimen;
found:
if (three_codes) { saved(0) = s;
incr (save_ptr);
}
saved (0) = spec_code;
saved (1) = cur_val;
save_ptr = save_ptr + 2;
new_save_level (¢);
scan_left_brace();

286 PACKAGING TpXprof — §645

645. To figure out the glue setting, hpack and vpack determine how much stretchability and shrinkability
are present, considering all four orders of infinity. The highest order of infinity that has a nonzero coefficient
is then used as if no other orders were present.

For example, suppose that the given list contains six glue nodes with the respective stretchabilities 3pt,
8fill, 5fil, 6pt, —3fil, —8fill. Then the total is essentially 2fil; and if a total additional space of 6pt is to be
achieved by stretching, the actual amounts of stretch will be Opt, Opt, 15pt, Opt, —9pt, and Opt, since only
‘fil’ glue will be considered. (The ‘fill’ glue is therefore not really stretching infinitely with respect to ‘fil’;
nobody would actually want that to happen.)

The arrays total_stretch and total_shrink are used to determine how much glue of each kind is present. A
global variable last_badness is used to implement \badness.

(Global variables 13) +=
static scaled total_stretch0[filll — normal + 1], xconst total_stretch = total_stretch0 — normal,
total_shrink0[filll — normal + 1], xconst total_shrink = total_shrink0 — normal;
/x glue found by hpack or vpack x/
static int last_badness; /*badness of the most recently packaged box */

646. If the global variable adjust_tail is non-null, the hpack routine also removes all occurrences of
ins_node, mark_node, and adjust_node items and appends the resulting material onto the list that ends
at location adjust_tail.

(Global variables 13) +=
static pointer adjust_tail; /xtail of adjustment list x/

647. (Set initial values of key variables 21) +=
adjust_tail = null;
last_badness = 0;

8648 TEXprof PACKAGING

648. Here now is hpack, which contains few if any surprises.

static pointer hpack (pointer p,scaled w,small_number m)
{ pointer r; /*the box node that will be returned /
pointer ¢; /xtrails behind px*/
scaled h, d, x; /*height, depth, and natural width %/
scaled s; /«shift amount /
pointer g; /+points to a glue specification x/
glue_ord o; /+order of infinity */
internal_font_number f; /xthe font in a char_node */
four_quarters i; /«font information about a char_node x/
eight_bits hd; /+height and depth indices for a character */

last_badness = 0;

r = get_node (boz_node_size);
type (r) = hlist_node;

subtype (1) = min_quarterword;
shift_amount (r) = 0;

q =1+ list_offset;

link (q) = p;

h =0;

(Clear dimensions to zero 649);

287

while (p # null) (Examine node p in the hlist, taking account of its effect on the dimensions of the

new box, or moving it to the adjustment list; then advance p to the next node 650);

if (adjust_tail # null) link (adjust_tail) = null;

height (r) = h;

depth(r) = d;

(Determine the value of width(r) and the appropriate glue setting; then return or goto

common_ending 656);

common_ending: (Finish issuing a diagnostic message for an overfull or underfull hbox 662);
end: return r;

}

649. (Clear dimensions to zero 649) =
d = 0;
z = 0;
total_stretch[normal] = 0;
total_shrink [normal] = 0;
total_stretch[fil] = 0;
total_shrink|[fil] = 0;
total_stretch[fill] = 0;
total_shrink[fill] = 0;
total_stretch[filll] = 0; total_shrink[filll] = 0
This code is used in sections 648 and 667.

288 PACKAGING TpXprof §650

650. (Examine node p in the hlist, taking account of its effect on the dimensions of the new box, or
moving it to the adjustment list; then advance p to the next node 650) =
{ reswitch:
while (is_char_node(p)) (Incorporate character dimensions into the dimensions of the hbox that will
contain it, then move to the next node 653);
if (p # null) { switch (type(p)) {
case hlist_node: case vlist_node: case rule_node: case unset_node:
{Incorporate box dimensions into the dimensions of the hbox that will contain it 652) break;
case ins_node: case mark_node: case adjust_node:
if (adjust_tail # null) (Transfer node p to the adjustment list 654) break;
case whatsit_node: (Incorporate a whatsit node into an hbox 1359); break;
case glue_node: (Incorporate glue into the horizontal totals 655) break;
case kern_node: case math_node: © = x + width(p); break;
case ligature_node: (Make node p look like a char_node and goto reswitch 651)
default: do_nothing;

}
p = link(p);
}
}

This code is used in section 648.

651. (Make node p look like a char_node and goto reswitch 651) =
{ mem|lig_trick] = mem/[lig_char(p)];
link (lig_trick) = link (p);
p = lig_trick;
goto reswitch;

}

This code is used in sections 621, 650, and 1146.

652. The code here implicitly uses the fact that running dimensions are indicated by null_flag, which will
be ignored in the calculations because it is a highly negative number.

{Incorporate box dimensions into the dimensions of the hbox that will contain it 652) =
{ = =z + width(p);
if (type(p) > rule_node) s = 0; else s = shift_amount (p);
if (height(p) — s > h) h = height(p) — s;
if (depth(p) + s > d) d = depth(p) + s;

}

This code is used in section 650.

8653 TEXprof PACKAGING 289

653. The following code is part of TEX’s inner loop; i.e., adding another character of text to the user’s
input will cause each of these instructions to be exercised one more time.

(Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to the
next node 653) =

{ f = font(p);
© = char_info(f, character(p));
hd = height_depth (i);
x =z + char_width(f,1);
s = char_height(f,hd); if (s > h) h =s;
s = char_depth(f,hd); if (s > d) d=s;
p = link(p);

}

This code is used in section 650.

654. Although node ¢ is not necessarily the immediate predecessor of node p, it always points to some
node in the list preceding p. Thus, we can delete nodes by moving ¢ when necessary. The algorithm takes

linear time, and the extra computation does not intrude on the inner loop unless it is necessary to make a
deletion.

(Transfer node p to the adjustment list 654) =
{ while (link(q) # p) q = link(q);

if (type(p) = adjust_node) { link (adjust_tail) = adjust_ptr(p);
while (link (adjust_tail) # null) adjust_tail = link (adjust_tail);
p = link (p);
free_node(link (q), small_node_size);

}

else { link(adjust_tail) = p;
adjust_tail = p;

p = link(p);
}
link(q) = p;
P=gq

}

This code is used in section 650.

655. (Incorporate glue into the horizontal totals 655) =
{ 9 = glue_ptr(p);
x =z + width(g);
o = stretch_order(g);
total_stretch|o] = total_stretch|o] + stretch(g);
o = shrink_order(g);
total_shrink[o] = total_shrink[o] + shrink(g);
if (subtype(p) > a_leaders) { g = leader_ptr(p);
if (height(g) > h) h = height(g);
if (depth(g) > d) d = depth(g);
}
}

This code is used in section 650.

290 PACKAGING TpXprof §656

656. When we get to the present part of the program, z is the natural width of the box being packaged.

(Determine the value of width(r) and the appropriate glue setting; then return or goto
common_ending 656) =
if (m = additional) w =z + w;
width (r) = w;
x=w—ux; /*now x is the excess to be made up */
if (x=0) { glue_sign(r) = normal;
glue_order (r) = normal;
set_glue_ratio_zero (glue_set(r));
goto end;
}
else if (z > 0) (Determine horizontal glue stretch setting, then return or goto common_ending 657)
else (Determine horizontal glue shrink setting, then return or goto common_ending 663)

This code is used in section 648.

657. (Determine horizontal glue stretch setting, then return or goto common_ending 657) =
{ (Determine the stretch order 658);

glue_order (r) = o;
glue_sign(r) = stretching;
if (total_stretchlo] # 0) glue_set(r) = fix(x/(double) total_stretch|o]);
else { glue_sign(r) = normal;

set_glue_ratio_zero(glue_set(r)); /*there’s nothing to stretch */
}
if (0 = normal)

if (list_ptr(r) # null)

(Report an underfull hbox and goto common_ending, if this box is sufficiently bad 659);

goto end;

}

This code is used in section 656.

658. (Determine the stretch order 658) =
if (total_stretch[filll] # 0) o = filll;
else if (total_stretch[fill] # 0) o = fill;
else if (total_stretch[fil] # 0) o = fil;
else 0 = normal

This code is used in sections 657, 672, and 795.

659. (Report an underfull hbox and goto common_ending, if this box is sufficiently bad 659) =
{ last_badness = badness(x, total_stretch[normal));
if (last_badness > hbadness) { print_in();
if (last_badness > 100) print_nl("Underfull"); else print_nl("Loose");
print (",\\hbox , (badness ");
print_int (last_badness);
goto common_ending;

}
}

This code is used in section 657.

8660 TEXprof PACKAGING 291

660. In order to provide a decent indication of where an overfull or underfull box originated, we use a
global variable pack_begin_line that is set nonzero only when hpack is being called by the paragraph builder
or the alignment finishing routine.

(Global variables 13) +=
static int pack_begin_line; /*source file line where the current paragraph or alignment began; a
negative value denotes alignment */

661. (Set initial values of key variables 21) +=
pack_begin_line = 0;

662. (Finish issuing a diagnostic message for an overfull or underfull hbox 662) =
if (output_active) print(")_has occurred while \\output is active");
else { if (pack_begin_line # 0) { if (pack_begin_line > 0) print("),in paragraph at lines.");
else print("),in alignment at lines,");
print_int (abs(pack_begin_line));
prmt (n__n)’

else print(")_detected at line,");
print_int (line);

print_in();

font_in_short_display = null_font;
short_display (list_ptr(r));
print_In();

begin_diagnostic();

show_box (r); end_diagnostic(true)

This code is used in section 648.

663. (Determine horizontal glue shrink setting, then return or goto common_ending 663) =
{ (Determine the shrink order 664);
glue_order(r) = o;
glue_sign (r) = shrinking;
if (total_shrink|o] # 0) glue_set(r) = fix((—z)/(double) total_shrink|o]);
else { glue_sign(r) = normal;
set_glue_ratio_zero(glue_set(r)); /+there’s nothing to shrink x/

if ((total_shrink[o] < —z) A (0 = normal) A (list_ptr(r) # null)) { last_badness = 1000000;

set_glue_ratio_one(glue_set(r)); /*use the maximum shrinkage %/

(Report an overfull hbox and goto common_ending, if this box is sufficiently bad 665);
}
else if (0 = normal)

if (list_ptr(r) # null)

(Report a tight hbox and goto common_ending, if this box is sufficiently bad 666);

goto end;

}

This code is used in section 656.

292 PACKAGING TEXprof §664

664. (Determine the shrink order 664) =
if (total_shrink[filll] # 0) o = filll;
else if (total_shrink[fill] #0) o = fill;
else if (total_shrink[fil] # 0) o = fil;
else 0 = normal

This code is used in sections 663, 675, and 795.

665. (Report an overfull hbox and goto common_ending, if this box is sufficiently bad 665) =
if ((—x — total_shrink[normal] > hfuzz) V (hbadness < 100)) {
if ((overfull_rule > 0) A (—x — total_shrink[normal] > hfuzz)) { while (link(q) # null)
q = link(q);
link (q) = new_rule();
width (link (q)) = overfull_rule;

print_In();

print_nl("Overfull \\hbox,(");
print_scaled (—x — total_shrink [normal));
print ("pt_too wide");

goto common_ending;

}

This code is used in section 663.

666. (Report a tight hbox and goto common_ending, if this box is sufficiently bad 666) =
{ last_badness = badness(—x, total_shrink [normal)]);
if (last_badness > hbadness) { print_in();
print_nl("Tight, \\hbox,(badness ");
print_int (last_badness);
goto common_ending;

}
}

This code is used in section 663.

8667 TEXprof PACKAGING 293

667. The vpack subroutine is actually a special case of a slightly more general routine called vpackage,
which has four parameters. The fourth parameter, which is maz_dimen in the case of vpack, specifies the
maximum depth of the page box that is constructed. The depth is first computed by the normal rules; if it
exceeds this limit, the reference point is simply moved down until the limiting depth is attained.

#define wvpack(...) vpackage(__VA_ARGS__, max_dimen) /= special case of unconstrained depth */
static pointer vpackage (pointer p,scaled h,small_number m,scaled 1)
{ pointer r; /*the box node that will be returned x/
scaled w, d, x; /*width, depth, and natural height */
scaled s; /«shift amount /
pointer g; /*points to a glue specification */
glue_ord o; /xorder of infinity */

last_badness = 0;

r = get_node (boz_node_size);

type (r) = vlist_node;

subtype (1) = min_quarterword;

shift_amount (r) = 0;

list_ptr(r) = p;

w = 0;

(Clear dimensions to zero 649);

while (p # null) (Examine node p in the vlist, taking account of its effect on the dimensions of the
new box; then advance p to the next node 668);

width (r) = w;
if (d>){z=2x+d-1;
depth(r) =1,

else depth(r) = d;
(Determine the value of height(r) and the appropriate glue setting; then return or goto
common_ending 671);
common_ending: (Finish issuing a diagnostic message for an overfull or underfull vbox 674);
end: return r;

}

668. (Examine node p in the vlist, taking account of its effect on the dimensions of the new box; then
advance p to the next node 668) =
{ if (is_char_node(p)) confusion("vpack");
else
switch (type(p)) {
case hlist_node: case vlist_node: case rule_node: case unset_node:
{(Incorporate box dimensions into the dimensions of the vbox that will contain it 669) break;
case whatsit_node: {Incorporate a whatsit node into a vbox 1358); break;
case glue_node: (Incorporate glue into the vertical totals 670) break;
case kern_node:
{ z =2z +d+ width(p);
d = 0;
} break;
default: do_nothing;
¥
} p = link(p);

This code is used in section 667.

294 PACKAGING TpXprof §669

669. (Incorporate box dimensions into the dimensions of the vbox that will contain it 669) =
{ z =z +d+ height(p);
d = depth(p);
if (type(p) > rule_node) s = 0; else s = shift_amount (p);
if (width(p) + s > w) w = width(p) + s;

}

This code is used in section 668.

670. (Incorporate glue into the vertical totals 670) =
{z=x+4d;
d=0;
g = glue_ptr(p);
x = x + width(g);
o = stretch_order(g);
total_stretch o] = total_stretch[o] + stretch(g);
o = shrink_order(g);
total_shrink[o] = total_shrink[o] + shrink(g);
if (subtype(p) > a_leaders) { g = leader_ptr(p);
if (width(g) > w) w = width(g);
}
}

This code is used in section 668.

671. When we get to the present part of the program, = is the natural height of the box being packaged.

(Determine the value of height(r) and the appropriate glue setting; then return or goto
common_ending 671) =
if (m = additional) h =z + h;
height (r) = h;
r=h—-uz; /*now x is the excess to be made up x/
if (z=0) { glue_sign(r) = normal;
glue_order (r) = normal;
set_glue_ratio_zero(glue_set(r));
goto end;

else if (z > 0) (Determine vertical glue stretch setting, then return or goto common_ending 672)
else (Determine vertical glue shrink setting, then return or goto common_ending 675)

This code is used in section 667.

672. (Determine vertical glue stretch setting, then return or goto common_ending 672) =
{ (Determine the stretch order 658);

glue_order (r) = o;
glue_sign(r) = stretching;
if (total_stretchlo] # 0) glue_set(r) = fix(x/(double) total_stretch|o]);
else { glue_sign(r) = normal;

set_glue_ratio_zero(glue_set(r)); /*there’s nothing to stretch */
}
if (0 = normal)

if (list_ptr(r) # null)

(Report an underfull vbox and goto common_ending, if this box is sufficiently bad 673);

goto end;

}

This code is used in section 671.

8673 TEXprof PACKAGING

673. (Report an underfull vbox and goto common_ending, if this box is sufficiently bad 673) =
{ last_badness = badness(x, total_stretch[normal));
if (last_badness > vbadness) { print_in();
if (last_badness > 100) print_nl("Underfull"); else print_nl("Loose");
print (" \\vbox, (badness ");
print_int (last_badness);
goto common_ending;

}
}

This code is used in section 672.

674. (Finish issuing a diagnostic message for an overfull or underfull vbox 674) =
if (output_active) print(") has occurred while \\output_ is,active");
else { if (pack_begin_line # 0) /*it’s actually negative */
{ print(")Lin alignment at, lines.");
print_int (abs(pack_begin_line));
print ("==");

else print(") detected at line, ");
print_int (line);
print_In();

}

begin_diagnostic();

show_box (r); end_diagnostic(true)

This code is used in section 667.

675. (Determine vertical glue shrink setting, then return or goto common_ending 675) =
{ (Determine the shrink order 664);
glue_order(r) = o;
glue_sign (r) = shrinking;
if (total_shrink|[o] # 0) glue_set(r) = fix((—z)/(double) total_shrink|o]);
else { glue_sign(r) = normal;
set_glue_ratio_zero(glue_set(r)); /= there’s nothing to shrink x/

if ((total_shrink[o] < —x) A (0o = normal) A (list_ptr(r) # null)) { last_badness = 1000000;
set_glue_ratio_one(glue_set(r)); /*use the maximum shrinkage */
(Report an overfull vbox and goto common_ending, if this box is sufficiently bad 676);

}

else if (0 = normal)
if (list_ptr(r) # null)
(Report a tight vbox and goto common_ending, if this box is sufficiently bad 677);
goto end;

}

This code is used in section 671.

295

296 PACKAGING TpXprof — §676

676. (Report an overfull vbox and goto common_ending, if this box is sufficiently bad 676) =
if ((—x — total_shrink[normal] > vfuzz) V (vbadness < 100)) { print_in();
print_nl("0verfull \\vbox (");
print_scaled (—x — total_shrink [normal]);
print ("pt_too high");
goto common_ending;

}

This code is used in section 675.

677. (Report a tight vbox and goto common_ending, if this box is sufficiently bad 677) =
{ last_badness = badness(—x, total_shrink [normal]);
if (last_badness > vbadness) { print_In();
print_nl("Tight,\\vbox (badness ");
print_int (last_badness);
goto common_ending;

}
}

This code is used in section 675.

678. When a box is being appended to the current vertical list, the baselineskip calculation is handled by
the append_to_vlist routine.

static void append_to_vlist(pointer b)

{ scaled d; /+deficiency of space between baselines x/
pointer p; /xa new glue node x/

if (prev_depth > ignore_depth) { d = width(baseline_skip) — prev_depth — height (b);
if (d < line_skip_limit) p = new_param_glue (line_skip_code);
else { p = new_skip_param (baseline_skip_code);

width (temp_ptr) = d; /* temp_ptr = glue_ptr(p) */
}
link (tail) = p;
tail = p;

}

link (tail) = b;

tail = b;

prev_depth = depth(b);

8679 TEXprof DATA STRUCTURES FOR MATH MODE 297

679. Data structures for math mode. When TEX reads a formula that is enclosed between $’s, it
constructs an mlist, which is essentially a tree structure representing that formula. An mlist is a linear
sequence of items, but we can regard it as a tree structure because mlists can appear within mlists. For
example, many of the entries can be subscripted or superscripted, and such “scripts” are mlists in their own
right.

An entire formula is parsed into such a tree before any of the actual typesetting is done, because the
current style of type is usually not known until the formula has been fully scanned. For example, when the
formula ‘$a+b \over c+d$’ is being read, there is no way to tell that ‘a+b’ will be in script size until ‘\over’
has appeared.

During the scanning process, each element of the mlist being built is classified as a relation, a binary
operator, an open parenthesis, etc., or as a construct like ‘\sqrt’ that must be built up. This classification
appears in the mlist data structure.

After a formula has been fully scanned, the mlist is converted to an hlist so that it can be incorporated
into the surrounding text. This conversion is controlled by a recursive procedure that decides all of the
appropriate styles by a “top-down” process starting at the outermost level and working in towards the
subformulas. The formula is ultimately pasted together using combinations of horizontal and vertical boxes,
with glue and penalty nodes inserted as necessary.

An mlist is represented internally as a linked list consisting chiefly of “noads” (pronounced “no-adds”), to
distinguish them from the somewhat similar “nodes” in hlists and vlists. Certain kinds of ordinary nodes
are allowed to appear in mlists together with the noads; TEX tells the difference by means of the type field,
since a noad’s type is always greater than that of a node. An mlist does not contain character nodes, hlist
nodes, vlist nodes, math nodes, ligature nodes, or unset nodes; in particular, each mlist item appears in the
variable-size part of mem, so the type field is always present.

298 DATA STRUCTURES FOR MATH MODE TEXprof 8680

680. Each noad is four or more words long. The first word contains the type and subtype and link fields
that are already so familiar to us; the second, third, and fourth words are called the noad’s nucleus, subscr,
and supscr fields.

Consider, for example, the simple formula ‘$x~2$’, which would be parsed into an mlist containing a single
element called an ord_noad. The nucleus of this noad is a representation of ‘x’, the subscr is empty, and
the supscr is a representation of ‘2’.

The nucleus, subscr, and supscr fields are further broken into subfields. If p points to a noad, and if ¢ is
one of its principal fields (e.g., ¢ = subscr(p)), there are several possibilities for the subfields, depending on
the math_type of q.

math_type(q) = math_char means that fam(q) refers to one of the sixteen font families, and character(q) is
the number of a character within a font of that family, as in a character node.

math_type (q) = math_text_char is similar, but the character is unsubscripted and unsuperscripted and it is
followed immediately by another character from the same font. (This math_type setting appears only
briefly during the processing; it is used to suppress unwanted italic corrections.)

math_type(q) = empty indicates a field with no value (the corresponding attribute of noad p is not present).

math_type(q) = sub_box means that info(q) points to a box node (either an hlist_node or a vlist_node) that
should be used as the value of the field. The shift_amount in the subsidiary box node is the amount
by which that box will be shifted downward.

math_type (q) = sub_mlist means that info(q) points to an mlist; the mlist must be converted to an hlist in
order to obtain the value of this field.

In the latter case, we might have info(q) = null. This is not the same as math_type (q) = empty; for example,
‘$P_{}$’ and ‘P’ produce different results (the former will not have the “italic correction” added to the
width of P, but the “script skip” will be added).

The definitions of subfields given here are evidently wasteful of space, since a halfword is being used for the
math_type although only three bits would be needed. However, there are hardly ever many noads present
at once, since they are soon converted to nodes that take up even more space, so we can afford to represent
them in whatever way simplifies the programming.

#define noad_size 4 /*xnumber of words in a normal noad x/

#define nucleus(4) A+1 /xthe nucleus field of a noad x/

#define supscr(A) A+4+2 /xthe supscr field of a noad x/

#define subscr(A) A+3 /xthe subscr field of a noad */

#define math_type(A) link(A) /+a halfword in mem x/

#define fam font /*a quarterword in mem */

#define math_char 1 /* math_type when the attribute is simple %/
#define sub_box 2 /* math_type when the attribute is a box */

#define sub_mlist 3 /* math_type when the attribute is a formula */
#define math_text_char 4 /% math_type when italic correction is dubious %/

8681 TEXprof DATA STRUCTURES FOR MATH MODE 299

681. Each portion of a formula is classified as Ord, Op, Bin, Rel, Open, Close, Punct, or Inner, for
purposes of spacing and line breaking. An ord_noad, op_noad, bin_noad, rel_noad, open_noad, close_noad,
punct_noad, or inner_noad is used to represent portions of the various types. For example, an ‘=’ sign in a
formula leads to the creation of a rel_noad whose nucleus field is a representation of an equals sign (usually
fam =0, character = °75). A formula preceded by \mathrel also results in a rel_noad. When a rel_noad
is followed by an op_noad, say, and possibly separated by one or more ordinary nodes (not noads), TEX will
insert a penalty node (with the current rel_penalty) just after the formula that corresponds to the rel_noad,
unless there already was a penalty immediately following; and a “thick space” will be inserted just before
the formula that corresponds to the op_noad.

A noad of type ord_noad, op_noad, ..., inner_noad usually has a subtype = normal. The only exception
is that an op_noad might have subtype = limits or no_limits, if the normal positioning of limits has been
overridden for this operator.

#define ord_noad (unset_node +3) /*type of a noad classified Ord */
#define op_noad (ord_noad + 1) /* type of a noad classified Op */

#define bin_noad (ord_noad +2) /xtype of a noad classified Bin */

#define rel_noad (ord_noad +3) /*type of a noad classified Rel x/

#define open_noad (ord_noad +4) /+type of a noad classified Open */
#define close_noad (ord_noad +5) /+type of a noad classified Close %/
#define punct_noad (ord_noad +6) /*type of a noad classified Punct x/
#define inner_noad (ord_noad + 7) /x type of a noad classified Inner */
#define limits 1 /* subtype of op_noad whose scripts are to be above, below */
#define no_limits 2 /x subtype of op_noad whose scripts are to be normal */

300 DATA STRUCTURES FOR MATH MODE TEXprof 8682

682. A radical_noad is five words long; the fifth word is the left_delimiter field, which usually represents
a square root sign.

A fraction_noad is six words long; it has a right_delimiter field as well as a left_delimiter.

Delimiter fields are of type four_quarters, and they have four subfields called small_fam, small_char,
large_fam, large_char. These subfields represent variable-size delimiters by giving the “small” and “large”
starting characters, as explained in Chapter 17 of The TEXbook.

A fraction_noad is actually quite different from all other noads. Not only does it have six words, it has
thickness, denominator, and numerator fields instead of nucleus, subscr, and supscr. The thickness is a
scaled value that tells how thick to make a fraction rule; however, the special value default_code is used to
stand for the default_rule_thickness of the current size. The numerator and denominator point to mlists
that define a fraction; we always have

math_type (numerator) = math_type (denominator) = sub_mlist.

The left_delimiter and right_delimiter fields specify delimiters that will be placed at the left and right of
the fraction. In this way, a fraction_noad is able to represent all of TEX’s operators \over, \atop, \above,
\overwithdelims, \atopwithdelims, and \abovewithdelims.

#define left_delimiter(A) A+4 /xfirst delimiter field of a noad */

#define right_delimiter(A) A+5 /xsecond delimiter field of a fraction noad */
#define radical_noad (inner_noad +1) /xtype of a noad for square roots */
#define radical_noad_size 5 /xnumber of mem words in a radical noad */
#define fraction_noad (radical_noad + 1) /x type of a noad for generalized fractions x/
#define fraction_noad_size 6 /+*number of mem words in a fraction noad */
#define small_fam(A) mem][A].qqqq.00 /* fam for “small” delimiter x/
#define small_char(A) mem[A].qqqq.b1 /* character for “small” delimiter */
#define large_fam(A) mem[A].qqqq.b2 /xfam for “large” delimiter */
#define large_char(A) mem[A].qqqq.b3 /x character for “large” delimiter */
#define thickness(A) width(A) /*thickness field in a fraction noad */
#define default_code °10000000000 /x denotes default_rule_thickness */
#define numerator(A) supscr(A) /* numerator field in a fraction noad x/
#define denominator(A) subscr(A) /* denominator field in a fraction noad x/

683. The global variable empty_field is set up for initialization of empty fields in new noads. Similarly,
null_delimiter is for the initialization of delimiter fields.

(Global variables 13) +=
static two_halves empty_field;
static four_quarters null_delimiter;

684. (Set initial values of key variables 21) +=
empty_field.rh = empty;
empty_field.lh = null;
null_delimiter.b0 = 0;
null_delimiter.b1 = min_quarterword;
null_delimiter.b2 = 0;
null_delimiter.b8 = min_quarterword,

8685 TEXprof DATA STRUCTURES FOR MATH MODE 301

685. The new_noad function creates an ord_noad that is completely null.

static pointer new_noad(void)
{ pointer p;

p = get_node(noad_size);

type(p) = ord_noad;

subtype (p) = normal;

mem [nucleus (p)].hh = empty_field;
mem [subscr(p)].hh = empty_field;
mem [supscr(p)].hh = empty_field;
return p;

}

686. A few more kinds of noads will complete the set: An under_noad has its nucleus underlined; an
over_noad has it overlined. An accent_noad places an accent over its nucleus; the accent character appears
as fam(accent_chr(p)) and character(accent_chr(p)). A wvcenter_noad centers its nucleus vertically with
respect to the axis of the formula; in such noads we always have math_type (nucleus(p)) = sub_boz.

And finally, we have left_noad and right_noad types, to implement TEX’s \left and \right as well as
e-TEX’s \middle. The nucleus of such noads is replaced by a delimiter field; thus, for example, ‘\left (’
produces a left_noad such that delimiter(p) holds the family and character codes for all left parentheses. A
left_noad never appears in an mlist except as the first element, and a right_noad never appears in an mlist
except as the last element; furthermore, we either have both a left_noad and a right_noad, or neither one is
present. The subscr and supscr fields are always empty in a left_noad and a right_noad.

#define under_noad (fraction_noad + 1) /* type of a noad for underlining */
#define over_noad (under_noad + 1) /* type of a noad for overlining */
#define accent_noad (over_noad + 1) /* type of a noad for accented subformulas x/
#define accent_noad_size 5 /+xnumber of mem words in an accent noad x/
#define accent_chr(A) A+4 /xthe accent_chr field of an accent noad */
#define vcenter_noad (accent_noad + 1) /x type of a noad for \vcenter */
#define left_noad (vcenter_noad + 1) /* type of a noad for \left %/
#define right_noad (left_noad +1) /*type of a noad for \right */

#define delimiter(A) nucleus(A) /* delimiter field in left and right noads %/
#define middle_noad 1 /* subtype of right noad representing \middle */
#define scripts_allowed (A) (type(A) > ord_noad) A (type(A) < left_noad)

302 DATA STRUCTURES FOR MATH MODE TEXprof §687

687. Math formulas can also contain instructions like \textstyle that override TEX’s normal style rules.
A style_node is inserted into the data structure to record such instructions; it is three words long, so it
is considered a node instead of a noad. The subtype is either display_style or text_style or script_style or
script_script_style. The second and third words of a style_node are not used, but they are present because
a choice_node is converted to a style_node.

TEX uses even numbers 0, 2, 4, 6 to encode the basic styles display_style, ..., script_script_style, and
adds 1 to get the “cramped” versions of these styles. This gives a numerical order that is backwards from
the convention of Appendix G in The TgXbook; i.e., a smaller style has a larger numerical value.

#define style_node (unset_node + 1) /* type of a style node */

#define style_node_size 3~ /*number of words in a style node */

#define display_style 0 /* subtype for \displaystyle */

#define text_style 2 /x subtype for \textstyle %/

#define script_style 4 /* subtype for \scriptstyle %/

#define script_script_style 6 /* subtype for \scriptscriptstyle */

#define cramped 1 /*add this to an uncramped style if you want to cramp it */

static pointer new_style(small_number s) /* create a style node x/
{ pointer p; /xthe new nodex/

p = get_node (style_node_size);

type (p) = style_node;

subtype (p) = s;

width (p) = 0;
depth(p) =0; /+the width and depth are not used */
return p;

}

688. Finally, the \mathchoice primitive creates a choice_node, which has special subfields display_mlist,
text_mlist, script_mlist, and script_script_mlist pointing to the mlists for each style.

#define choice_node (unset_node +2) /*type of a choice node */

#define display_mlist(A) info(A+1) /*mlist to be used in display style */

#define text_mlist(A) link(A+1) /xmlist to be used in text style*/

#define script_mlist(A) info(A+2) /+mlist to be used in script style x/

#define script_script_mlist(A) link(A+2) /+mlist to be used in scriptscript style /

static pointer new_choice(void) /* create a choice node */
{ pointer p; /*the new node */

p = get_node (style_node_size);

type(p) = choice_node;

subtype (p) = 0; /*the subtype is not used x/

display_mlist(p) = null;

text_mlist(p) = null;

script_mlist (p) = null;

seript_script_mlist (p) = null;

return p;

8689 TEXprof DATA STRUCTURES FOR MATH MODE 303

689. Let’s consider now the previously unwritten part of show_node_list that displays the things that can
only be present in mlists; this program illustrates how to access the data structures just defined.

In the context of the following program, p points to a node or noad that should be displayed, and the
current string contains the “recursion history” that leads to this point. The recursion history consists of a
dot for each outer level in which p is subsidiary to some node, or in which p is subsidiary to the nucleus
field of some noad; the dot is replaced by ‘_” or *~’ or ‘/” or ‘\’ if p is descended from the subscr or supscr
or denominator or numerator fields of noads. For example, the current string would be ‘.~._/" if p points
to the ord_noad for x in the (ridiculous) formula ‘¢\sqrt{a"{\mathinner{b_{c\over x+y}}}}$’.

(Cases of show_node_list that arise in mlists only 689) =

case style_node: print_style (subtype(p)); break;

case choice_node: (Display choice node p 694) break;

case ord_noad: case op_noad: case bin_noad: case rel_noad: case open_noad: case close_noad:
case punct_noad: case inner_noad: case radical_noad: case over_noad: case under_noad:
case vcenter_noad: case accent_noad: case left_noad: case right_noad: {Display normal noad p 695)
break;

case fraction_noad: (Display fraction noad p 696) break;

This code is used in section 182.

690. Here are some simple routines used in the display of noads.

{ Declare procedures needed for displaying the elements of mlists 690) =
static void print_fam_and_char (pointer p) /= prints family and character */
{ print_esc("fam");
print_int (fam(p));
print_char(’.’);
print_ASCII (go(character (p)));
}
static void print_delimiter (pointer p) /+prints a delimiter as 24-bit hex value */
{int a; /*accumulator */
a = small_fam (p) * 256 + qo (small_char(p));
a = a * #1000 + large_fam (p) * 256 + qo(large_char(p));
if (a <0) print_int(a); /*this should never happen x/
else print_hez(a);
¥
See also sections 691 and 693.

This code is used in section 178.

304 DATA STRUCTURES FOR MATH MODE TEXprof §691

691. The next subroutine will descend to another level of recursion when a subsidiary mlist needs to be
displayed. The parameter ¢ indicates what character is to become part of the recursion history. An empty

mlist is distinguished from a field with math_type (p) = empty, because these are not equivalent (as explained
above).

(Declare procedures needed for displaying the elements of mlists 690) +=
static void show_info(void); /* show_node_list(info(temp_ptr)) =/

static void print_subsidiary_data(pointer p, ASCII_code c) /xdisplay a noad field x/
{ if (cur_length > depth_threshold) { if (math_type(p) # empty) print("L[1");

else { append_char(c); /+include ¢ in the recursion history %/
temp_ptr = p; /*x prepare for show_info if recursion is needed */
switch (math_type (p)) {
case math_char:
{ print_in();
print_current_string ();
print_fam_and_char (p);
} break;
case sub_box: show_info(); break; /xrecursive call x/
case sub_mlist:
if (info(p) = null) { print_in();
print_current_string ();
print ("{}");

else show_info(); break; /xrecursive call x/
default: do_nothing; /x empty */
}
flush_char; /xremove ¢ from the recursion history */
}
}

692. The inelegant introduction of show_info in the code above seems better than the alternative of using
Pascal’s strange forward declaration for a procedure with parameters. The Pascal convention about dropping
parameters from a post-forward procedure is, frankly, so intolerable to the author of TEX that he would
rather stoop to communication via a global temporary variable. (A similar stoopidity occurred with respect
to hlist_out and vlist_out above, and it will occur with respect to mlist_to_hlist below.)

static void show_info(void) /xthe reader will kindly forgive this/
{ show_node_list (info(temp_ptr));

}

693. (Declare procedures needed for displaying the elements of mlists 690) +=
static void print_style(int c)
{ switch (¢/2) {
case 0: print_esc("displaystyle"); break; / display_style = 0x/
case 1: print_esc("textstyle"); break; /x text_style = 2%/
case 2: print_esc("scriptstyle"); break; /* script_style = 4%/
case 3: print_esc("scriptscriptstyle"); break; /* script_script_style = 6 x/
default: print("Unknown style!");

}

6694 TEXprof DATA STRUCTURES FOR MATH MODE 305

694. (Display choice node p 694) =

{ print_esc("mathchoice");
append_char(’D?);
show_node_list (display_mlist (p));
flush_char;
append_char(’T?);
show_node_list (text_mlist (p));
flush_char;
append_char(’S?);
show_node_list (script_mlist (p));
flush_char;
append_char(’s’);
show_node_list (script_script_mlist(p));
flush_char;

}

This code is used in section 689.

306

695.

DATA STRUCTURES FOR MATH MODE

(Display normal noad p 695) =

{ switch (type(p)) {

}

case ord_noad: print_esc("mathord"); break;
case op_noad: print_esc("mathop"); break;
case bin_noad: print_esc("mathbin"); break;
case rel_noad: print_esc("mathrel"); break;
case open_noad: print_esc("mathopen"); break;
case close_noad: print_esc("mathclose"); break;
case punct_noad: print_esc("mathpunct"); break;
case inner_noad: print_esc("mathinner"); break;
case over_noad: print_esc("overline"); break;
case under_noad: print_esc("underline"); break;
case vcenter_noad: print_esc("vcenter"); break;
case radical_noad:
{ print_esc("radical");
print_delimiter (left_delimiter (p));
} break;
case accent_noad:
{ print_esc("accent");
print_fam_and_char (accent_chr(p));
} break;
case left_noad:
{ print_esc("left");
print_delimiter (delimiter (p));
} break;
case right_noad:
{ if (subtype(p) = normal) print_esc("right");
else print_esc("middle");
print_delimiter (delimiter (p));
}
}
if (type(p) < left_noad) { if (subtype(p) # normal)
if (subtype(p) = limits) print_esc("limits");
else print_esc("nolimits");
print_subsidiary_data(nucleus(p),’ .’);
}
print_subsidiary_data(supscr(p), >~);
print_subsidiary_data(subscr(p),’ _);

This code is used in section 689.

TEXprof

§695

8696 TEXprof DATA STRUCTURES FOR MATH MODE

696. (Display fraction noad p 696) =
{ print_esc("fraction, thickness,");

f (thickness(p) = default_code) print("=_default");

else print_scaled (thickness(p));

if ((small_fam (left_delimiter (p)) # 0) V (small_char (left_delimiter (p)) # min_quarterword) V
(large_fam (left_delimiter (p)) # 0) V
(large_char (left_delimiter (p)) # min_quarterword)) { print(", left-delimiter,");

print_delimiter (left_delimiter (p));

}
if ((small_fam (right_delimiter (p)) # 0) V
(small_char (right_delimiter (p)) # min_quarterword) V
(large_fam (right_delimiter (p)) # 0) V
(large_char (right_delimiter (p)) # min_quarterword)) { print(", right-delimiter,");
print_delimiter (right_delimiter (p));
}
print_subsidiary_data(numerator(p), >\\?);
print_subsidiary_data(denominator (p),’/?);

}

This code is used in section 689.

307

308 DATA STRUCTURES FOR MATH MODE TEXprof

697. That which can be displayed can also be destroyed.

(Cases of flush_node_list that arise in mlists only 697) =
case style_node:
{ free_node(p, style_node_size);
goto done;
}

case choice_node:

{ flush_node_list(display_mlist(p));
flush_node_list (text_mlist(p));
flush_node_list (script_mlist(p));
flush_node_list (script_script_mlist (p));
free_node (p, style_node_size);
goto done;

¥

case ord_noad: case op_noad: case bin_noad: case rel_noad: case open_noad: case close_noad:
case punct_noad: case inner_noad: case radical_noad: case over_noad: case under_noad:
case vcenter_noad: case accent_noad:

{ if (math_type(nucleus(p)) > sub_boz) flush_node_list (info(nucleus(p)));

if (math_type(supscr(p)) > sub_bozx) flush_node_list(info(supscr(p)));

if (math_type (subscr(p)) > sub_box) flush_node_list(info(subscr(p)));
if (type(p) = radical_noad) free_node(p, radical_noad_size);
else if (type(p) = accent_noad) free_node(p, accent_noad_size);
else free_node(p, noad_size);
goto done;

case left_noad: case right_noad:
{ free_node(p, noad_size);
goto done;
¥

case fraction_noad:

{ flush_node_list (info(numerator(p)));
flush_node_list (info (denominator (p)));
free_node(p, fraction_noad_size);
goto done;

¥

This code is used in section 201.

§697

6698 TEXprof SUBROUTINES FOR MATH MODE 309

698. Subroutines for math mode. In order to convert mlists to hlists, i.e., noads to nodes, we need
several subroutines that are conveniently dealt with now.

Let us first introduce the macros that make it easy to get at the parameters and other font information. A
size code, which is a multiple of 16, is added to a family number to get an index into the table of internal font
numbers for each combination of family and size. (Be alert: Size codes get larger as the type gets smaller.)

#define text_size 0 /xsize code for the largest size in a family */
#define script_size 16 /*size code for the medium size in a family */
#define script_script_size 32 /*size code for the smallest size in a family */

(Basic printing procedures 55) +=
static void print_size(int s)
{ if (s = text_size) print_esc("textfont");
else if (s = script_size) print_esc("scriptfont");
else print_esc("scriptscriptfont");

}

699. Before an mlist is converted to an hlist, TEX makes sure that the fonts in family 2 have enough
parameters to be math-symbol fonts, and that the fonts in family 3 have enough parameters to be math-
extension fonts. The math-symbol parameters are referred to by using the following macros, which take a
size code as their parameter; for example, numl (cur_size) gives the value of the numi1 parameter for the
current size.

#define mathsy_end(A) fam_fnt(24+ A)]] . sc

#define mathsy(A) font_info [A+ param_base | mathsy_end

#define math_x_height mathsy(5) /+height of ‘x’ %/

#define math_quad mathsy(6) /*18mux*/

#define numl mathsy(8) /xnumerator shift-up in display styles /

#define num?2 mathsy(9) /+numerator shift-up in non-display, non-\atop */
#define num3 mathsy(10) /+*numerator shift-up in non-display \atop */

#define denom! mathsy(11) /* denominator shift-down in display styles %/

#define denom?2 mathsy(12) /* denominator shift-down in non-display styles x/
#define sup! mathsy(13) /* superscript shift-up in uncramped display style */
#define sup2 mathsy(14) /*superscript shift-up in uncramped non-display */
#define supd mathsy(15) /*superscript shift-up in cramped styles /

#define subl mathsy(16) /xsubscript shift-down if superscript is absent */

#define sub2 mathsy(17) /+subscript shift-down if superscript is present */
#define sup_drop mathsy(18) /*superscript baseline below top of large box x/
#define sub_drop mathsy(19) /*subscript baseline below bottom of large box x/
#define delim1 mathsy(20) /xsize of \atopwithdelims delimiters in display styles */
#define delim2 mathsy(21) /xsize of \atopwithdelims delimiters in non-displays */
#define azis_height mathsy(22) /*height of fraction lines above the baseline */
#define total_mathsy_params 22

700. The math-extension parameters have similar macros, but the size code is omitted (since it is always
cur_size when we refer to such parameters).

#define mathex (A) font_infolA + param_base[fam_fnt (3 + cur_size)]].sc

#define default_rule_thickness mathex(8) /*thickness of \over barsx*/

#define big_op_spacingl mathex(9) /*minimum clearance above a displayed op */
#define big_op_spacing?2 mathex(10) /*minimum clearance below a displayed op */
#define big_op_spacingd mathex(11) /*minimum baselineskip above displayed op */
#define big_op_spacing) mathex(12) /* minimum baselineskip below displayed op */
#define big_op_spacing5 mathex (13) /* padding above and below displayed limits x/
#define total_mathexr_params 13

310 SUBROUTINES FOR MATH MODE TEXprof §701

701. We also need to compute the change in style between mlists and their subsidiaries. The following
macros define the subsidiary style for an overlined nucleus (cramped_style), for a subscript or a superscript
(sub_style or sup_style), or for a numerator or denominator (num_style or denom_style).

#define cramped_style(A) 2% (A/2) + cramped [+ cramp the style x/

#define sub_style(A) 2x (A/4)+ script_style + cramped ~ /+smaller and cramped */
#define sup_style(A) 2 (A/4) + script_style + (A% 2) /xsmallerx/

#define num_style(A) A+2—2x%(A/6) /+smaller unless already script-script =/
#define denom_style(A) 2% (A/2) + cramped +2 — 2% (A/6) /*smaller, cramped %/

702. When the style changes, the following piece of program computes associated information:

(Set up the values of cur_size and cur_mu, based on cur_style 702) =
{ if (cur_style < script_style) cur_size = text_size;
else cur_size = 16 * ((cur_style — text_style)/2);
cur_mu = z_over_n(math_quad (cur_size), 18);

}

This code is used in sections 719, 725, 726, 729, 753, 759, 761, and 762.

703. Here is a function that returns a pointer to a rule node having a given thickness ¢t. The rule will
extend horizontally to the boundary of the vlist that eventually contains it.

static pointer fraction_rule(scaled t) /* construct the bar for a fraction x/
{ pointer p; /*the new node */

p = new_rule();

height(p) = t;

depth(p) = 0;

return p;

}

704. The overbar function returns a pointer to a vlist box that consists of a given box b, above which has
been placed a kern of height k under a fraction rule of thickness ¢t under additional space of height ¢.

static pointer overbar(pointer b,scaled k,scaled t)
{ pointer p, g; /*mnodes being constructed */

p = new_kern(k);

link (p) = b;

q = fraction_rule (t);

link (q) = p;

p = new_kern(t);

link (p) = q;

return wvpack (p, natural);

6705 TEXprof SUBROUTINES FOR MATH MODE 311

705. The wvar_delimiter function, which finds or constructs a sufficiently large delimiter, is the most
interesting of the auxiliary functions that currently concern us. Given a pointer d to a delimiter field in
some noad, together with a size code s and a vertical distance v, this function returns a pointer to a box that
contains the smallest variant of d whose height plus depth is v or more. (And if no variant is large enough,
it returns the largest available variant.) In particular, this routine will construct arbitrarily large delimiters
from extensible components, if d leads to such characters.

The value returned is a box whose shift_amount has been set so that the box is vertically centered with
respect to the axis in the given size. If a built-up symbol is returned, the height of the box before shifting
will be the height of its topmost component.

(Declare subprocedures for var_delimiter 708)

static pointer var_delimiter (pointer d,small_number s,scaled v)

{ pointer b; /*the box that will be constructed */
internal_font_number f,g; /xbest-so-far and tentative font codes */
quarterword c, x,y; /xbest-so-far and tentative character codes */
int m,n; /*the number of extensible pieces */
scaled u; /* height-plus-depth of a tentative character */
scaled w; /*largest height-plus-depth so far x/

four_quarters ¢; /* character info */

eight_bits hd; /+height-depth byte */

four_quarters r; /* extensible pieces */

small_number z; /*runs through font family members x/
bool large_attempt; /*are we trying the “large” variant? x/
f = null_font;

w = 0;

large_attempt = false;
z = small_fam (d);
x = small_char(d);
loop { (Look at the variants of (z,z); set f and ¢ whenever a better character is found; goto found
as soon as a large enough variant is encountered 706);
if (large_attempt) goto found; /xthere were none large enough */
large_attempt = true;
z = large_fam (d);
x = large_char(d);
}
found:
if (f # null_font) (Make variable b point to a box for (f,c) 709);
else { b= new_null_boz ();
width (b) = null_delimiter_space; /% use this width if no delimiter was found */
}
shift_amount (b) = half (height(b) — depth (b)) — azis_height (s);
return b;

}

312 SUBROUTINES FOR MATH MODE TEXprof §706

706. The search process is complicated slightly by the facts that some of the characters might not be
present in some of the fonts, and they might not be probed in increasing order of height.

(Look at the variants of (z,x); set f and ¢ whenever a better character is found; goto found as soon as a
large enough variant is encountered 706) =
if ((z#£0)V (z # min_quarterword)) { z =z + s + 16;
do {
z=2z—16;
g = fam_fnt(z);
if (g # null_font) (Look at the list of characters starting with z in font g; set f and ¢ whenever a

better character is found; goto found as soon as a large enough variant is encountered 707);
} while (—=(z < 16));

This code is used in section 705.

707. (Look at the list of characters starting with x in font g; set f and ¢ whenever a better character is
found; goto found as soon as a large enough variant is encountered 707) =
{y=um;
if ((qo(y) > font_bclg]) A (qo(y) < font_ec[g])) { resume: q = char_info(g,y);
if (char_ezists(q)) { if (char_tag(q) = ext_tag) { f = g;
c=y;
goto found;
}
hd = height_depth(q);
u = char_height(g, hd) + char_depth(g, hd);
if (u>w) { =g
c=y;
w=u;
if (u > v) goto found;

if (char_tag(q) = list_tag) { y = rem_byte(q);
goto resume;
}

}
}
}

This code is used in section 706.

6708 TEXprof SUBROUTINES FOR MATH MODE 313

708. Here is a subroutine that creates a new box, whose list contains a single character, and whose width
includes the italic correction for that character. The height or depth of the box will be negative, if the height
or depth of the character is negative; thus, this routine may deliver a slightly different result than hpack
would produce.
(Declare subprocedures for var_delimiter 708) =
static pointer char_boz (internal_font_number f,quarterword c)
{ four_quarters g¢;
eight_bits hd; /* height_depth byte x/
pointer b,p; /xthe new box and its character node x/
q = char_info(f,c);
hd = height_depth(q);
b = new_null_box ();
width (b) = char_width(f,q) + char_italic(f,q);
height (b) = char_height (f, hd);
depth (b) = char_depth(f, hd);
p = get_avail();
character (p) = ¢;
font(p) = f;
list_ptr(b) = p;
return b;
}
See also sections 710 and 711.

This code is used in section 705.

709. When the following code is executed, char_tag(q) will be equal to ezxt_tag if and only if a built-up
symbol is supposed to be returned.
(Make variable b point to a box for (f,c) 709) =
if (char_tag(q) = ext_tag)
(Construct an extensible character in a new box b, using recipe rem_byte(q) and font f 712)
else b = char_boz(f,c)

This code is used in section 705.

710. When we build an extensible character, it’s handy to have the following subroutine, which puts a
given character on top of the characters already in box b:
(Declare subprocedures for var_delimiter 708) +=

static void stack_into_box (pointer b, internal_font_number [, quarterword c)

{ pointer p; /+new node placed into bx*/

p = char_box (f,c);
link (p) = list_ptr(b);
list_ptr (b) = p;
height (b) = height (p);

314 SUBROUTINES FOR MATH MODE TEXprof §711

711. Another handy subroutine computes the height plus depth of a given character:

(Declare subprocedures for var_delimiter 708) +=
static scaled height_plus_depth(internal_font_number f, quarterword c)
{ four_quarters ¢;
eight_bits hd; /x height_depth bytex/
q = char_info(f,c);
hd = height_depth(q);
return char_height (f, hd) + char_depth(f, hd);
¥

712. (Construct an extensible character in a new box b, using recipe rem_byte(q) and font f 712) =
{ b= new_null_box();
type (b) = vlist_node;
r = font_infolexten_base[f] + rem_byte(q)].qqqq;
(Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also
set width(b) 713);
¢ = ext_bot(r);
if (¢ # min_quarterword) stack_into_box (b, f,c);
¢ = ext_rep(r);
for (m =1; m <n; m++) stack_into_box (b, f,c);
¢ = ext_mid(r);
if (¢ # min_quarterword) { stack_into_boz (b, f,c);
c = ext_rep(r);
for (m =1; m <n; m++) stack_into_boz (b, f,c);
}
¢ = ext_top(r);
if (¢ # min_quarterword) stack_into_box (b, f,c);
depth(b) = w — height(b);
}

This code is used in section 709.

713. The width of an extensible character is the width of the repeatable module. If this module does not
have positive height plus depth, we don’t use any copies of it, otherwise we use as few as possible (in groups
of two if there is a middle part).

(Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also set
width(b) 713) =
c = ext_rep(r);
u = height_plus_depth(f,c);
w = 0;
q = char_info(f,c);
width (b) = char_width(f,q) + char_italic(f,q);
¢ = ext_bot(r); if (¢ # min_quarterword) w = w + height_plus_depth(f, c);
¢ = ext_mid(r); if (¢ # min_quarterword) w = w + height_plus_depth(f, c);
¢ = ext_top(r); if (¢ # min_quarterword) w = w + height_plus_depth(f, ¢);
n = 0;
if (u>0)
while (w <v) { w=w + u;
incr(n);
if (ext_mid(r) # min_quarterword) w = w + u;

}

This code is used in section 712.

8714 TEXprof SUBROUTINES FOR MATH MODE 315

714. The next subroutine is much simpler; it is used for numerators and denominators of fractions as well
as for displayed operators and their limits above and below. It takes a given box b and changes it so that
the new box is centered in a box of width w. The centering is done by putting \hss glue at the left and
right of the list inside b, then packaging the new box; thus, the actual box might not really be centered, if
it already contains infinite glue.

The given box might contain a single character whose italic correction has been added to the width of the
box; in this case a compensating kern is inserted.

static pointer reboz (pointer b,scaled w)

{ pointer p; /* temporary register for list manipulation */
internal_font_number f; /«xfont in a one-character box x/
scaled v; /+width of a character without italic correction */

if ((width(b) # w) A (list_ptr(b) # null)) { if (type(b) = vlist_node) b = hpack (b, natural);
p = list_ptr(b);
if ((is_char_node(p)) A (link(p) = null)) { f = font(p);
v = char_width (f, char_info(f, character (p)));
if (v # width (b)) link(p) = new_kern (width(b) — v);

free_node (b, box_node_size);
b = new_glue(ss_glue);
link (b) = p;
while (link(p) # null) p = link(p);
link (p) = new_glue (ss_glue);
return hpack (b, w, exactly);

}

else { width(b) = w;
return b;

}

}

715. Here is a subroutine that creates a new glue specification from another one that is expressed in ‘mu’,
given the value of the math unit.

#define mu_mult (A) nz_plus_y(n, A, xzn_over_d (A, f,°200000))

static pointer math_glue (pointer g,scaled m)
{ pointer p; /* the new glue specification %/
int n; /xinteger part of mx/
scaled f; /* fraction part of m x/
n = z_over_n(m, °200000);
f=rem;
if (f <0) { decr(n);
f=f+°200000;
}
p = get_node(glue_spec_size);
width (p) = mu_mult (width(g)); /*convert mu to pt x/
stretch_order (p) = stretch_order(g);
if (stretch_order(p) = normal) stretch(p) = mu_mult (stretch(g));
else stretch(p) = stretch(g);
shrink_order (p) = shrink_order(g);
if (shrink_order(p) = normal) shrink(p) = mu_mult (shrink(g));
else shrink(p) = shrink(g);
return p;

316 SUBROUTINES FOR MATH MODE

TEXprof 8716
716. The math_kern subroutine removes mu_glue from a kern node, given the value of the math unit.
static void math_kern(pointer p,scaled m) { int n; /xinteger part of m x/
scaled f; /xfraction part of mx*/
if (subtype(p) = mu_glue) { n = z_over_n(m,°200000);
f=rem;

if (f <0) { decr(n);
f=f+°200000:
}

width (p) = mu_mult (width(p)); subtype(p) = explicit; } }

717. Sometimes it is necessary to destroy an mlist. The following subroutine empties the current list,
assuming that abs(mode) = mmode.
static void flush_math(void)
{ flush_node_list(link (head));
flush_node_list (incompleat_noad);
link (head) = null;
tail = head;
incompleat_noad = null;

8718 TEXprof TYPESETTING MATH FORMULAS 317

718. Typesetting math formulas. TEX’s most important routine for dealing with formulas is called
mlist_to_hlist. After a formula has been scanned and represented as an mlist, this routine converts it to an
hlist that can be placed into a box or incorporated into the text of a paragraph. There are three implicit
parameters, passed in global variables: cur_mlist points to the first node or noad in the given mlist (and
it might be null); cur_style is a style code; and mlist_penalties is true if penalty nodes for potential line
breaks are to be inserted into the resulting hlist. After mlist_to_hlist has acted, link(temp_head) points to
the translated hlist.

Since mlists can be inside mlists, the procedure is recursive. And since this is not part of TEX’s inner
loop, the program has been written in a manner that stresses compactness over efficiency.

(Global variables 13) +=
static pointer cur_mlist; /+beginning of mlist to be translated x/
static small_number cur_style; /+style code at current place in the list x/
static small_number cur_size; /*size code corresponding to cur_style /
static scaled cur_mu; /*the math unit width corresponding to cur_size */
static bool mlist_penalties; /*should mlist_to_hlist insert penalties? x/

318 TYPESETTING MATH FORMULAS TEXprof 8719

719. The recursion in mlist_to_hlist is due primarily to a subroutine called clean_box that puts a given
noad field into a box using a given math style; mlist_to_hlist can call clean_boz, which can call mlist_to_hlist.
The box returned by clean_box is “clean” in the sense that its shift_amount is zero.
static void mlist_to_hlist(void);
static pointer clean_boz (pointer p,small_number s)
{ pointer ¢; /*beginning of a list to be boxed */

small_number save_style; /* cur_style to be restored x/
pointer z; /xbox to be returned x/
pointer r; /* temporary pointer */

switch (math_type(p)) {
case math_char:
{ cur_mlist = new_noad();
mem[nucleus (cur_mlist)] = mem|pl;
} break;
case sub_boz:
{ ¢ = info(p);
goto found;
}
case sub_mlist: cur_mlist = info(p); break;
default:
{ ¢ = new_null_box ();
goto found;
}
}

save_style = cur_style;
cur_style = s;
mlist_penalties = false;
mlist_to_hlist();

g = link(temp_head); /*recursive call x/

cur_style = save_style; /*restore the style x/

(Set up the values of cur_size and cur_mu, based on cur_style 702);
found:

hpack (q, natural);

if (is_char_node(q) V (¢ = null)) z =
) < wlist_node) A (shift_amount(q) = 0)) = = gq;

else if ((link(q) = null) A (type(q
/*it’s already clean */

else x = hpack(q, natural);

{ Simplify a trivial box 720);

return z;

}

6720 TEXprof TYPESETTING MATH FORMULAS 319

720. Here we save memory space in a common case.
(Simplify a trivial box 720) =
q = list_ptr(z);
if (is_char_node(q)) { r = link(q);
if (r # null)
if (link (r) = null)
if (—is_char_node(r))
if (type(r) = kern_node) /+unneeded italic correction */
{ free_node(r, small_node_size);
link (q) = null;

}

This code is used in section 719.

721. It is convenient to have a procedure that converts a math_char field to an “unpacked” form. The
fetch routine sets cur_f, cur_c, and cur_i to the font code, character code, and character information bytes
of a given noad field. It also takes care of issuing error messages for nonexistent characters; in such cases,
char_ezists(cur_i) will be false after fetch has acted, and the field will also have been reset to empty.
static void fetch(pointer a) /+unpack the math_char field a */
{ cur_c = character(a);
cur_f = fam_fnt(fam(a) + cur_size);
if (cur_f = null_font) (Complain about an undefined family and set cur_i null 722)
else { if ((go(cur_c) > font_bc[cur_f]) A (go(cur_c) < font_eclcur_f]))
cur_i = char_info(cur_f , cur_c);
else cur_i = null_character;
if (—(char_exists(cur_i))) { char_warning(cur_f, qo(cur_c));
math_type(a) = empty;
cur_i = null_character;
}
}
}

722. (Complain about an undefined family and set cur_i null 722) =
{ print_err("");

print_size (cur_size);
print_char(’’);
print_int (fam(a));
print ("Lisyundefined,,(character,");
print_ASCII (qo(cur_c));
print_char(?)’);
help/ ("Somewhereuinutheumathl_,f ormula ;justended, you used the",
"stated character from an undefined, font family. For ,example,",
"plain, TeX_ doesn’tallow \\ityor \\sl_in subscripts. Proceed,",
"and ,I’11,try toyforget that I needed that character.");
error () ;
cur_i = null_character;
math_type (a) = empty;

}

This code is used in section 721.

320 TYPESETTING MATH FORMULAS TEXprof 8723

723. The outputs of fetch are placed in global variables.
(Global variables 13) +=

static internal_font_number cur_f; /xthe font field of a math_char %/
static quarterword cur_c; /xthe character field of a math_char x/
static four_quarters cur_i; /xthe char_info of a math_char, or a lig/kern instruction %/

724. We need to do a lot of different things, so mlist_to_hlist makes two passes over the given mlist.

The first pass does most of the processing: It removes “mu” spacing from glue, it recursively evaluates all
subsidiary mlists so that only the top-level mlist remains to be handled, it puts fractions and square roots
and such things into boxes, it attaches subscripts and superscripts, and it computes the overall height and
depth of the top-level mlist so that the size of delimiters for a left_noad and a right_noad will be known.
The hlist resulting from each noad is recorded in that noad’s new_hlist field, an integer field that replaces
the nucleus or thickness.

The second pass eliminates all noads and inserts the correct glue and penalties between nodes.

#define new_hlist(A) mem[nucleus(A)].i /+the translation of an mlist %/

725. Here is the overall plan of mlist_to_hlist, and the list of its local variables.
(Declare math construction procedures 733)

static void mlist_to_hlist(void)
{ pointer mlist; /*beginning of the given list */
bool penalties; /*should penalty nodes be inserted? x/
small_number style; /xthe given style x/
small_number save_style; /*holds cur_style during recursion %/
pointer g; /+runs through the mlist x/
pointer r; /*the most recent noad preceding ¢ */
small_number r_type; /*the type of noad r, or op_noad if r = null x/
small_number ¢; /*the effective type of noad ¢ during the second pass */
pointer p, x,vy, z; /* temporary registers for list construction x/
int pen; /xa penalty to be inserted */
small_number s; /xthe size of a noad to be deleted x/
scaled maz_h, maz_d; /*maximum height and depth of the list translated so farx/
scaled delta; /* offset between subscript and superscript */
mlist = cur_mlist;
penalties = mlist_penalties;

style = cur_style; /xtuck global parameters away as local variables x/
q = mlist;

r = null;

r_type = op_noad;

maz_h = 0;

maz_d = 0;

{Set up the values of cur_size and cur_mu, based on cur_style 702);
while (¢ # null) (Process node-or-noad ¢ as much as possible in preparation for the second pass of
mlist_to_hlist, then move to the next item in the mlist 726);
(Convert a final bin_noad to an ord_noad 728);
(Make a second pass over the mlist, removing all noads and inserting the proper spacing and
penalties 759);

6726 TEXprof TYPESETTING MATH FORMULAS 321

726. We use the fact that no character nodes appear in an mlist, hence the field type(q) is always present.

(Process node-or-noad ¢ as much as possible in preparation for the second pass of mlist_to_hlist, then move
to the next item in the mlist 726) =
{ (Do first-pass processing based on type(q); goto done_with_noad if a noad has been fully processed,
goto check_dimensions if it has been translated into new_hlist(q), or goto done_with_node if a
node has been fully processed 727);
check_dimensions: z = hpack (new_hlist(q), natural);
if (height(z) > maxz_h) maz_h = height(z);
if (depth(z) > maz_d) maz_d = depth(z);
free_node(z, box_node_size);
done_with_noad: r = g;
r_type = type(r);
if (r_type = right_noad) { r_type = left_noad;
cur_style = style;
(Set up the values of cur_size and cur_mu, based on cur_style 702);

done_with_node: q = link(q);

}

This code is used in section 725.

727. One of the things we must do on the first pass is change a bin_noad to an ord_noad if the bin_noad
is not in the context of a binary operator. The values of r and r_type make this fairly easy.

(Do first-pass processing based on type(q); goto done_with_noad if a noad has been fully processed, goto
check_dimensions if it has been translated into new_hlist(q), or goto done_with_node if a node has
been fully processed 727) =

reswitch: delta = 0;

switch (type(q)) {
case bin_noad:
switch (r_type) {
case bin_noad: case op_noad: case rel_noad: case open_noad: case punct_noad: case left_noad:
{ type(q) = ord_noad;
goto reswitch;
}

default: do_nothing;
} break;
case rel_noad: case close_noad: case punct_noad: case right_noad:
{
(Convert a final bin_noad to an ord_noad 728);
if (type(q) = right_noad) goto done_with_noad;
} break;
(Cases for noads that can follow a bin_noad 732)

(Cases for nodes that can appear in an mlist, after which we goto done_with_node 729)
default: confusion("mlist1");

}

(Convert nucleus(q) to an hlist and attach the sub/superscripts 753)

This code is used in section 726.

728. (Convert a final bin_noad to an ord_noad 728) =
if (r_type = bin_noad) type(r) = ord_noad
This code is used in sections 725 and 727.

322 TYPESETTING MATH FORMULAS TEXprof 8729

729. (Cases for nodes that can appear in an mlist, after which we goto done_with_node 729) =
case style_node:
{ cur_style = subtype(q);
(Set up the values of cur_size and cur_mu, based on cur_style 702);
goto done_with_node;
¥
case chotice_node:
(Change this node to a style node followed by the correct choice, then goto done_with_node 730)
case ins_node: case mark_node: case adjust_node: case whatsit_node: case penalty_node:
case disc_node: goto done_with_node;
case rule_node:
{ if (height(q) > maz_h) max_h = height(q);
if (depth(q) > maz_d) maz_d = depth(q);
goto done_with_node;
}
case glue_node:
{ (Convert math glue to ordinary glue 731);
goto done_with_node;
}
case kern_node:
{ math_kern(q, cur_mu);
goto done_with_node;

}

This code is used in section 727.

730. F#define choose_mlist(A)
{ »=A0);
Alq) = null; }
(Change this node to a style node followed by the correct choice, then goto done_with_node 730) =
{ switch (cur_style/2) {
case 0: choose_mlist(display_mlist) break; /x display_style = 0x/
case 1: choose_mlist(text_mlist) break; [/ text_style = 2%/
case 2: choose_mlist(script_mlist) break; /* script_style = 4%/
case 3: choose_mlist (script_script_mlist); /x script_script_style = 6 x/
} /xthere are no other cases %/
flush_node_list (display_mlist(q));
flush_node_list (text_mlist(q));
flush_node_list (script_mlist(q));
flush_node_list (script_script_mlist (q));
type(q) = style_node;
subtype (q) = cur_style;

width(q) = 0;

depth(q) = 0;

if (p # null) { z = link(q);
link(q) = p;
while (link(p) # null) p = link(p);
link (p) = z;

}

goto done_with_node;

}

This code is used in section 729.

6731 TEXprof TYPESETTING MATH FORMULAS 323

731. Conditional math glue (‘\nonscript’) results in a glue_node pointing to zero_glue, with subtype (q) =
cond_math_glue; in such a case the node following will be eliminated if it is a glue or kern node and if the
current size is different from text_size. Unconditional math glue (‘\muskip’) is converted to normal glue by
multiplying the dimensions by cur_mu.

(Convert math glue to ordinary glue 731) =
if (subtype(q) = mu_glue) { = = glue_ptr(q);
y = math_glue(x, cur_mu);
delete_glue_ref (x);
glue_ptr(q) = y;
subtype (q) = normal;
}
else if ((cur_size # text_size) A (subtype(q) = cond_math_glue)) { p = link(q);
if (p # null)
if ((type(p) = glue_node) V (type(p) = kern_node)) { link(q) = link (p);
link (p) = null;
flush_node_list (p);
}
}

This code is used in section 729.

732. (Cases for noads that can follow a bin_noad 732) =
case left_noad: goto done_with_noad;
case fraction_noad:
{ make_fraction(q);
goto check_dimensions;
¥
case op_noad:
{ delta = make_op(q);
if (subtype(q) = limits) goto check_dimensions;
} break;
case ord_noad: make_ord(q); break;
case open_noad: case inner_noad: do_nothing; break;
case radical_noad: make_radical (q); break;
case over_noad: make_over(q); break;
case under_noad: make_under(q); break;
case accent_noad: make_math_accent(q); break;
case vcenter_noad: make_vcenter(q); break;

This code is used in section 727.

733. Most of the actual construction work of mlist_to_hlist is done by procedures with names like make_fraction i
make_radical, etc. To illustrate the general setup of such procedures, let’s begin with a couple of simple
ones.

(Declare math construction procedures 733) =
static void make_over (pointer ¢)
{ info(nucleus(q)) =
overbar (clean_box (nucleus(q), cramped_style (cur_style)),
3 * default_rule_thickness, default_rule_thickness);
math_type (nucleus(q)) = sub_box;
}
See also sections 734, 735, 736, 737, 742, 748, 751, 755, and 761.

This code is used in section 725.

324

734.

TYPESETTING MATH FORMULAS

(Declare math construction procedures 733) +=

static void make_under(pointer q)
{ pointer p,z,y; /= temporary registers for box construction */
scaled delta; /xoverall height plus depth */

x = clean_box (nucleus(q), cur_style);

p = new_kern (3 x default_rule_thickness);

link (x) = p;

link (p) = fraction_rule (default_rule_thickness);

y = vpack (z, natural);

delta = height(y) + depth(y) + default_rule_thickness;
height (y) = height(x);

depth(y) = delta — height (y);

info(nucleus(q)) = y;

math_type (nucleus(q)) = sub_boz;

}

735.

(Declare math construction procedures 733) +=

static void make_vcenter (pointer q)
{ pointer v; /*the box that should be centered vertically */
scaled delta; /*its height plus depth x/
v = info (nucleus(q));
if (type(v) # vlist_node) confusion("vcenter");
delta = height (v) + depth(v);
height (v) = azis_height (cur_size) + half (delta);
depth(v) = delta — height (v);

}

736.

TEXprof

§734

According to the rules in the DVI file specifications, we ensure alignment between a square root sign
and the rule above its nucleus by assuming that the baseline of the square-root symbol is the same as the
bottom of the rule. The height of the square-root symbol will be the thickness of the rule, and the depth of
the square-root symbol should exceed or equal the height-plus-depth of the nucleus plus a certain minimum
clearance clr. The symbol will be placed so that the actual clearance is cir plus half the excess.

(Declare math construction procedures 733) +=
static void make_radical (pointer q)
{ pointer z,y; /* temporary registers for box construction %/
scaled delta, clr; /* dimensions involved in the calculation x/

x = clean_boz (nucleus(q), cramped_style (cur_style));
if (cur_style < text_style) /+display stylex/

clr = default_rule_thickness + (abs(math_xz_height (cur_size))/4);

else { clr = default_rule_thickness;

}

y = var_delimiter (left_delimiter (q), cur_size, height (z) + depth(z) + clr + default_rule_thickness);

clr = clr + (abs(clr)/4);

delta = depth(y) — (height (x) + depth(x) + clr);

if (delta > 0) clr = clr + half (delta);

shift_amount (y) = —(height(x) + clr);
link (y) = overbar(x, clr, height (y));
info(nucleus(q)) = hpack (y, natural);
math_type (nucleus(q)) = sub_box;

/*increase the actual clearance */

6737 TEXprof TYPESETTING MATH FORMULAS 325

737. Slants are not considered when placing accents in math mode. The accenter is centered over the
accentee, and the accent width is treated as zero with respect to the size of the final box.

(Declare math construction procedures 733) +=

static void make_math_accent(pointer q)

{ pointer p, z,y; /= temporary registers for box construction */
int a; /*address of lig/kern instruction %/
quarterword c; /*accent character */
internal_font_number f; /*its font x/
four_quarters i; /xits char_info x/
scaled s; /+*amount to skew the accent to the right /
scaled h; /xheight of character being accented */
scaled delta; /xspace to remove between accent and accentee */
scaled w; /*width of the accentee, not including sub/superscripts */

fetch(accent_chr(q));

if (char_exists(cur_i)) { i = cur_i;
¢ = cur_c;
f=cur_f;
(Compute the amount of skew 740);
x = clean_box (nucleus(q), cramped_style (cur_style));
w = width(x);
h = height (x);
(Switch to a larger accent if available and appropriate 739);
if (h < z_height(f)) delta = h; else delta = xz_height(f);
if ((math_type (supscr(q)) # empty) V (math_type (subscr(q)) # empty))

if (math_type (nucleus(q)) = math_char) { Swap the subscript and superscript into box x 741);

y = char_box (f,c);
shift_amount (y) = s + half (w — width(y));
width (y) = 0;
p = new_kern(—delta);
link (p) = x;
link (y) = p;
y = vpack (y, natural);
width (y) = width (z);
if (height(y) < h) (Make the height of box y equal to h 738);
info(nucleus(q)) = y;
math_type (nucleus(q)) = sub_box;

}

}

738. (Make the height of box y equal to h 738) =
{ p = new_kern(h — height (y));
link (p) = list_ptr(y);
list_ptr(y) = p;
height(y) = h;

This code is used in section 737.

326 TYPESETTING MATH FORMULAS TEXprof 8739

739. (Switch to a larger accent if available and appropriate 739) =
loop { if (char_tag(i) # list_tag) goto done;
y = rem_byte(i);
1 = char_info(f,y);
if (—char_ e:czsts()) goto done;
if (char_width(f,i) > w) goto done;
c=y;
}
done:

This code is used in section 737.

740. (Compute the amount of skew 740) =
s =0;
if (math_type (nucleus(q)) = math_char) { fetch(nucleus(q));
if (char_tag(cur_i) = lig_tag) { a = lig_kern_start(cur_f, cur_i);
cur_i = font_infolal.qqqq;
if (skip_byte(cur_i) > stop_flag) { a = lig_kern_restart (cur_f, cur_i);
cur_i = font_infolal.qqqq;
}
loop { if (qo(next_char(cur_i)) = skew_char|cur_f]) { if (op_byte(cur_i) > kern_flag)
if (skip_byte(cur_i) < stop_flag) s = char_kern(cur_f, cur_i);
goto donel;

if (skip_byte(cur_i) > stop_flag) goto donel;
a = a+ qo(skip_byte(cur_i)) + 1;
cur_i = font_info|al.qqqq;
}
}
}
donel :

This code is used in section 737.

741. (Swap the subscript and superscript into box x 741) =

{ flush_node_list (z);
x = new_noad ();
mem [nucleus (z)] = mem [nucleus(q)];
mem[supscr(x)] = mem[supscr(q)];
mem [subscr(x)] = mem[subscr(q)];
mem [supscr(q)].hh = empty_field;
mem[subscr(q)].hh = empty_field;
math_type (nucleus(q)) = sub_mlist;
info(nucleus(q)) = x;
x = clean_boz (nucleus(q), cur_style);
delta = delta + height (x) — h;
h = height(x);

}

This code is used in section 737.

8742 TEXprof TYPESETTING MATH FORMULAS 327

742. The make_fraction procedure is a bit different because it sets new_hlist (¢) directly rather than making
a sub-box.

(Declare math construction procedures 733) +=
static void make_fraction (pointer q)
{ pointer p,v,z,y, z; /* temporary registers for box construction */
scaled delta, deltal , delta?2, shift_up, shift_down, clr; /+ dimensions for box calculations */

if (thickness(q) = default_code) thickness(q) = default_rule_thickness;

{ Create equal-width boxes z and z for the numerator and denominator, and compute the default
amounts shift_up and shift_down by which they are displaced from the baseline 743);

if (thickness(q) =0) (Adjust shifi_up and shift_down for the case of no fraction line 744)

else (Adjust shift_up and shift_down for the case of a fraction line 745);

(Construct a vlist box for the fraction, according to shift_up and shift_down 746);

(Put the fraction into a box with its delimiters, and make new_hlist(q) point to it 747);

}

743. (Create equal-width boxes x and z for the numerator and denominator, and compute the default
amounts shift_up and shift_down by which they are displaced from the baseline 743) =
x = clean_box (numerator(q), num_style (cur_style));
z = clean_boz (denominator(q), denom_style (cur_style));
if (width(z) < width(z)) x = rebox (x, width(2));
else z = rebox (z, width(x));
if (cur_style < text_style) /* display style x/
{ shift_up = numl (cur_size);
shift_down = denoml1 (cur_size);

else { shift_down = denom2 (cur_size);
if (thickness(q) # 0) shift_up = num?2 (cur_size);
else shift_up = num3 (cur_size);

}

This code is used in section 742.

744. The numerator and denominator must be separated by a certain minimum clearance, called clr in
the following program. The difference between clr and the actual clearance is twice delta.

(Adjust shift_up and shift_down for the case of no fraction line 744) =

{ if (cur_style < text_style) clr =7 % default_rule_thickness;
else clr = 3 * default_rule_thickness;
delta = half (clr — ((shift_up — depth(x)) — (height(z) — shift_down)));
if (delta > 0) { shift_up = shift_up + delta;

shift_down = shift_down + delta;

}

¥

This code is used in section 742.

328 TYPESETTING MATH FORMULAS TEXprof §745

745. In the case of a fraction line, the minimum clearance depends on the actual thickness of the line.

(Adjust shift_up and shift_down for the case of a fraction line 745) =
{ if (cur_style < text_style) clr = 3 thickness(q);
else clr = thickness(q);
delta = half (thickness(q));
deltal = clr — ((shift_up — depth(x)) — (azis_height (cur_size) + delta));
delta2 = clr — ((axis_height (cur_size) — delta) — (height (z) — shift_down));
if (deltal > 0) shift_up = shift_up + deltal;
if (delta2 > 0) shift_down = shift_down + delta2;

}

This code is used in section 742.

746. (Construct a vlist box for the fraction, according to shift_up and shift_down 746) =
v = new_null_box ();
type (v) = vlist_node;
height (v) = shift_up + height (z);
depth (v) = depth(z) + shift_down;
width (v) = width(x); /+this also equals width(z) x/
if (thickness(q) =0) { p = new_kern((shift_up — depth(zx)) — (height (z) — shift_down));
link (p) = z;

else { y = fraction_rule(thickness(q));
p = new_kern((axis_height (cur_size) — delta) —
(height(z) — shift_down));

link (y) = p;
link (p) = z;
p = new_kern((shift_up — depth(x)) — (axzis_height (cur_size) + delta));
link (p) = y;

}
link (x) = p; list_ptr(v) =z

This code is used in section 742.

747. (Put the fraction into a box with its delimiters, and make new_hlist(q) point to it 747) =
if (cur_style < text_style) delta = delim1 (cur_size);
else delta = delim2 (cur_size);
x = var_delimiter (left_delimiter(q), cur_size, delta);

link (z) = v;
z = var_delimiter (right_delimiter (q), cur_size, delta);
link (v) = z;

new_hlist(q) = hpack (x, natural)

This code is used in section 742.

6748 TEXprof TYPESETTING MATH FORMULAS 329

748. If the nucleus of an op_noad is a single character, it is to be centered vertically with respect to
the axis, after first being enlarged (via a character list in the font) if we are in display style. The normal
convention for placing displayed limits is to put them above and below the operator in display style.

The italic correction is removed from the character if there is a subscript and the limits are not being
displayed. The make_op routine returns the value that should be used as an offset between subscript and
superscript.

After make_op has acted, subtype(q) will be limits if and only if the limits have been set above and below
the operator. In that case, new_hlist(q) will already contain the desired final box.

{ Declare math construction procedures 733) +=
static scaled make_op(pointer q)
{ scaled delta; /x offset between subscript and superscript x/
pointer p,v,z,y, z; /* temporary registers for box construction */
quarterword c; four_quarters i; /+registers for character examination */
scaled shift_up, shift_down; /* dimensions for box calculation */

if ((subtype(q) = normal) A (cur_style < text_style)) subtype(q) = limits;
if (math_type (nucleus(q)) = math_char) { fetch(nucleus(q));
if ((cur_style < text_style) A (char_tag(cur_i) = list_tag)) /+make it larger */
{ ¢ = rem_byte(cur_i);
i = char_info(cur_f, c¢);
if (char_exists(i)) { cur_c = ¢
cur_i = 1;
character (nucleus(q)) = ¢;
}
}
delta = char_italic(cur_f , cur_i);
x = clean_boz (nucleus(q), cur_style);
if ((math_type (subscr(q)) # empty) A (subtype (q) # limits)) width(x) = width(x) — delta;
/* remove italic correction */
shift_amount (x) = half (height (z) — depth(z)) — axis_height (cur_size); [+ center vertically */
math_type (nucleus(q)) = sub_boz;
info(nucleus(q)) = x;
}
else delta = 0;

if (subtype(q) = limits) (Construct a box with limits above and below it, skewed by delta 749);
return delta;

}

330 TYPESETTING MATH FORMULAS TEXprof §749

749. The following program builds a vlist box v for displayed limits. The width of the box is not affected
by the fact that the limits may be skewed.

(Construct a box with limits above and below it, skewed by delta 749) =
{ z = clean_box (supscr(q), sup_style (cur_style));
y = clean_box (nucleus(q), cur_style);
z = clean_box (subscr(q), sub_style (cur_style));
v = new_null_box ();
type (v) = vlist_node;
width (v) = width (y);
if (width(z) > width(v)) width(v) = width(x);
if (width(z) > width(v)) width(v) = width(z);
x = rebox (x, width (v));
y = rebox (y, width(v));
z = reboz (z, width (v));
shift_amount (x) = half (delta);
shift_amount (z) = —shift_amount (x);
height (v) = height (y);
depth (v) = depth(y);
(Attach the limits to y and adjust height(v), depth(v) to account for their presence 750);
new_hlist(q) = v;

}

This code is used in section 748.

750. We use shift_up and shift_down in the following program for the amount of glue between the displayed
operator y and its limits and z. The vlist inside box v will consist of x followed by y followed by z, with
kern nodes for the spaces between and around them.

(Attach the limits to y and adjust height (v), depth(v) to account for their presence 750) =
if (math_type (supscr(q)) = empty) { free_node(x, boz_node_size);
list_ptr(v) = y;

else { shift_up = big_op_spacingd — depth(x);
if (shift_up < big_op_spacingl) shift_up = big_op_spacingl;
p = new_kern (shift_up);

link (p) = y;
link (z) = p;
p = new_kern (big_op_spacing);
link (p) = x;

list_ptr(v) = p;

height(v) = height (v) + big_op_spacing5 + height(x) + depth(x) + shift_up;
}
if (math_type (subscr(q)) = empty) free_node(z, box_node_size);
else { shift_down = big_op_spacing] — height(z);

if (shift_down < big_op_spacing2) shift_down = big_op_spacing2;

p = new_kern (shift_down);

link(y) = p;

link (p) = z;

p = new_kern (big_op_spacing);

link(z) = p;

depth(v) = depth(v) + big_op_spacing5 + height (z) + depth(z) + shift_down;

}

This code is used in section 749.

6751 TEXprof TYPESETTING MATH FORMULAS 331

751. A ligature found in a math formula does not create a ligature_node, because there is no question of
hyphenation afterwards; the ligature will simply be stored in an ordinary char_node, after residing in an
ord_noad.

The math_type is converted to math_text_char here if we would not want to apply an italic correction to
the current character unless it belongs to a math font (i.e., a font with space = 0).

No boundary characters enter into these ligatures.

(Declare math construction procedures 733) +=
static void make_ord(pointer q)

{int a; /+address of lig/kern instruction x/
pointer p, r; /*temporary registers for list manipulation x/
restart:

if (math_type (subscr(q)) = empty)
if (math_type(supscr(q)) = empty)
if (math_type(nucleus(q)) = math_char) { p = link(q);
if (p # null)
if ((type(p) > ord_noad) A (type(p) < punct_noad))
if (math_type (nucleus(p)) = math_char)
if (fam(nucleus(p)) = fam (nucleus(q))) { math_type (nucleus(q)) = math_text_char;
fetch (nucleus(q));
if (char_tag(cur_i) = lig_tag) { a = lig_kern_start(cur_f, cur_i);
cur_c = character (nucleus(p));
cur_i = font_infolal.qqqq;
if (skip_byte(cur_i) > stop_flag) { a = lig_kern_restart (cur_f, cur_i);
cur_i = font_infola).qqqq;
}
loop { (If instruction cur_i is a kern with cur_c, attach the kern after ¢; or if it is
a ligature with cur_c, combine noads ¢ and p appropriately; then return if
the cursor has moved past a noad, or goto restart 752);
if (skip_byte(cur_i) > stop_flag) return;
a = a+ qo(skip_byte(cur_i)) + 1;
cur_i = font_infolal.qqqq;
¥
¥
}

332 TYPESETTING MATH FORMULAS TEXprof 8752

752. Note that a ligature between an ord_noad and another kind of noad is replaced by an ord_noad,
when the two noads collapse into one. But we could make a parenthesis (say) change shape when it follows
certain letters. Presumably a font designer will define such ligatures only when this convention makes sense.

(If instruction cur_i is a kern with cur_c, attach the kern after ¢; or if it is a ligature with cur_c,
combine noads g and p appropriately; then return if the cursor has moved past a noad, or goto
restart 752) =

if (next_char(cur_i) = cur_c)
if (skip_byte(cur_i) < stop_flag)
if (op_byte(cur_i) > kern_flag) { p = new_kern(char_kern(cur_f, cur_i));
link (p) = link(q);

link (q) = p;
return;
}
else { check_interrupt; /*allow a way out of infinite ligature loop */
switch (op_byte(cur_i)) {
case ¢i(1): case qi(5): character (nucleus(q)) = rem_byte(cur_i); break; /x=:1,=:]>x%/
case ¢i(2): case qi(6): character (nucleus(p)) = rem_byte(cur_i); break; /x|=:, |=:>x%/
case ¢i(3): case ¢i(7): case ¢i(11):
{ r=new_noad(); /*xI=:1,1=:1> |=:]>>%/

character (nucleus(r)) = rem_byte (cur_i);
fam (nucleus(r)) = fam (nucleus(q));

link(q) = r;
link(r) = p;
if (op_byte(cur_i) < qi(11)) math_type (nucleus(r)) = math_char;
else math_type (nucleus(r)) = math_text_char; /+prevent combination */
} break;
default:
{ link(q) = link(p);
character (nucleus(q)) = rem_byte(cur_i); [x=: %/

mem[subscr(q)] = mem[subscr(p)];
mem [supscr(q)] = mem|[supscr(p)];
free_node (p, noad_size);

}

if (op_byte(cur_i) > qi(3)) return;
math_type (nucleus(q)) = math_char;
goto restart;

}

This code is used in section 751.

6753 TEXprof TYPESETTING MATH FORMULAS 333

753. When we get to the following part of the program, we have “fallen through” from cases that did not
lead to check_dimensions or done_with_noad or done_with_node. Thus, ¢ points to a noad whose nucleus
may need to be converted to an hlist, and whose subscripts and superscripts need to be appended if they
are present.

If nucleus(q) is not a math_char, the variable delta is the amount by which a superscript should be moved
right with respect to a subscript when both are present.

(Convert nucleus(q) to an hlist and attach the sub/superscripts 753) =
switch (math_type (nucleus(q))) {
case math_char: case math_text_char:
{ Create a character node p for nucleus(q), possibly followed by a kern node for the italic correction,
and set delta to the italic correction if a subscript is present 754) break;
case empty: p = null; break;
case sub_box: p = info(nucleus(q)); break;
case sub_mlist:
{ cur_mlist = info(nucleus(q));
save_style = cur_style;
mlist_penalties = false;
mlist_to_hlist(); /+recursive call x/
cur_style = save_style;
(Set up the values of cur_size and cur_mu, based on cur_style 702);
p = hpack (link (temp_head), natural);
} break;
default: confusion("mlist2");

}

new_hlist(q) = p;
if ((math_type (subscr(q)) = empty) A (math_type (supscr(q)) = empty)) goto check_dimensions;
make_scripts(q, delta)

This code is used in section 727.

754. (Create a character node p for nucleus(q), possibly followed by a kern node for the italic correction,
and set delta to the italic correction if a subscript is present 754) =
{ fetch(nucleus(q));
if (char_exists(cur_i)) { delta = char_italic(cur_f, cur_i);
p = new_character (cur_f, go(cur_c));
if ((math_type(nucleus(q)) = math_text_char) A (space(cur_f) # 0)) delta = 0;
/*mno italic correction in mid-word of text font */
if ((math_type (subscr(q)) = empty) A (delta # 0)) { link(p) = new_kern(delta);
delta = 0;
}

}

else p = null;

}

This code is used in section 753.

334

755.
list that starts at new_hlist(q), given that the subscript and superscript aren’t both empty. The superscript
will appear to the right of the subscript by a given distance delta.

We set shift_down and shift_up to the minimum amounts to shift the baseline of subscripts and superscripts
based on the given nucleus.

TYPESETTING MATH FORMULAS TEXprof 8755

The purpose of make_scripts(q, delta) is to attach the subscript and/or superscript of noad ¢ to the

{ Declare math construction procedures 733) +=
static void make_scripts(pointer ¢,scaled delta)

{ pointer p,z,y, z; /* temporary registers for box construction %/
scaled shift_up, shift_down, clr; /* dimensions in the calculation x/
small_number t; /xsubsidiary size code x/

}

756.

p = new_hlist(q);
if (is_char_node(p)) { shift_up = 0;

}

shift_down = 0;

else { z = hpack (p, natural);

if (cur_style < script_style) t = script_size; else t = script_script_size;
shift_up = height (z) — sup_drop(t);
shift_down = depth(z) + sub_drop(t);

free_node(z, box_node_size);

if (math_type(supscr(q)) = empty) (Construct a subscript box = when there is no superscript 756)
else { (Construct a superscript box x 757);

if (math_type(subscr(q)) = empty) shift_amount(x) = —shift_up;
else (Construct a sub/superscript combination box x, with the superscript offset by delta 758);

if (new_hlist(q) = null) new_hlist(q) = x;
else { p = new_hlist(q);

}

while (link (p) # null) p = link (p);

link (p) = x;

When there is a subscript without a superscript, the top of the subscript should not exceed the

baseline plus four-fifths of the x-height.

{ Construct a subscript box 2 when there is no superscript 756) =
{ z = clean_box (subscr(q), sub_style (cur_style));
width (x) = width (z) + script_space;
if (shift_down < subl (cur_size)) shift_down = subl (cur_size);
clr = height (z) — (abs(math_z_height (cur_size) x 4)/5);
if (shift_down < clr) shift_down = clr;
shift_amount (x) = shift_down;

}

This code is used in section 755.

§757 TEXprof TYPESETTING MATH FORMULAS 335

757. The bottom of a superscript should never descend below the baseline plus one-fourth of the x-height.

(Construct a superscript box z 757) =
{ z = clean_bozx (supscr(q), sup_style (cur_style));

width (x) = width(x) + script_space;
if (odd(cur_style)) clr = sup3 (cur_size);
else if (cur_style < text_style) clr = supl (cur_size);
else clr = sup2 (cur_size);
if (shift_up < clr) shift_up = clr;
clr = depth(zx) + (abs(math_z_height (cur_size))/4);
if (shift_up < clr) shift_up = clr;

}

This code is used in section 755.

758. When both subscript and superscript are present, the subscript must be separated from the super-
script by at least four times default_rule_thickness. If this condition would be violated, the subscript moves
down, after which both subscript and superscript move up so that the bottom of the superscript is at least
as high as the baseline plus four-fifths of the x-height.

(Construct a sub/superscript combination box x, with the superscript offset by delta 758) =
{ y = clean_box (subscr(q), sub_style (cur_style));
width (y) = width(y) + script_space;
if (shift_down < sub2(cur_size)) shift_down = sub2 (cur_size);
clr = 4 x default_rule_thickness — ((shift_up — depth(x)) — (height (y) — shift_down));
if (clr > 0) { shift_down = shift_down + clr;
clr = (abs(math_z_height (cur_size) x 4)/5) — (shift_up — depth(x));
if (clr > 0) { shift_up = shift_up + clr;
shift_down = shift_down — clr;
}

shift_amount (x) = delta; /*superscript is delta to the right of the subscript x/
p = new_kern ((shift_up — depth(x)) — (height (y) — shift_down));

link (x) = p;

link (p) = y;

x = vpack (x, natural);

shift_amount (x) = shift_down;

}

This code is used in section 755.

336 TYPESETTING MATH FORMULAS TEXprof 8759

759. We have now tied up all the loose ends of the first pass of mlist_to_hlist. The second pass simply goes
through and hooks everything together with the proper glue and penalties. It also handles the left_noad
and right_noad that might be present, since maz_h and maz_d are now known. Variable p points to a node
at the current end of the final hlist.

{Make a second pass over the mlist, removing all noads and inserting the proper spacing and
penalties 759) =
p = temp_head,;
link (p) = null;
q = milist;
r_type = 0;
cur_style = style;
(Set up the values of cur_size and cur_mu, based on cur_style 702);
while (g # null) { (If node ¢ is a style node, change the style and goto delete_q; otherwise if it is not a
noad, put it into the hlist, advance ¢, and goto done; otherwise set s to the size of noad ¢, set t
to the associated type (ord_noad .. inner_noad), and set pen to the associated penalty 760);
(Append inter-element spacing based on r_type and t 765);
(Append any new_hlist entries for ¢, and any appropriate penalties 766);
if (type(q) = right_noad) t = open_noad;
r_type = t;
delete_q: r = q;
q = link(q);
free_node(r, s);
done: ;

}

This code is used in section 725.

8760 TEXprof TYPESETTING MATH FORMULAS 337

760. Just before doing the big case switch in the second pass, the program sets up default values so that
most of the branches are short.

(If node ¢ is a style node, change the style and goto delete_gq; otherwise if it is not a noad, put it into the
hlist, advance ¢, and goto done; otherwise set s to the size of noad ¢, set t to the associated type
(ord_noad .. inner_noad), and set pen to the associated penalty 760) =

t = ord_noad;
s = noad_size;
pen = inf_penalty;
switch (type(q)) {
case op_noad: case open_noad: case close_noad: case punct_noad: case inner_noad: t = type(q);
break;
case bin_noad:
{ t = bin_noad;
pen = bin_op_penalty;
} break;
case rel_noad:
{ t = rel_noad;
pen = rel_penalty;
} break;
case ord_noad: case vcenter_noad: case over_noad: case under_noad: do_nothing; break;
case radical_noad: s = radical_noad_size; break;
case accent_noad: s = accent_noad_size; break;
case fraction_noad: s = fraction_noad_size; break;
case left_noad: case right_noad: t = make_left_right(q, style, maz_d, maz_h); break;
case style_node: { Change the current style and goto delete_q 762)
case whatsit_node: case penalty_node: case rule_node: case disc_node: case adjust_node:
case ins_node: case mark_node: case glue_node: case kern_node:
{ link(p) = q;
pP=q
q = link(q);
link (p) = null;
goto done;

}

default: confusion("mlist3");

}

This code is used in section 759.

338 TYPESETTING MATH FORMULAS TEXprof 8761

761. The make_left_right function constructs a left or right delimiter of the required size and returns the
value open_noad or close_noad. The right_noad and left_noad will both be based on the original style, so
they will have consistent sizes.

We use the fact that right_noad — left_noad = close_noad — open_noad.

(Declare math construction procedures 733) +=
static small_number make_left_right (pointer ¢,small_number style,scaled maz_d,scaled maz_h)
{ scaled delta, deltal, delta2; /* dimensions used in the calculation %/
cur_style = style;
(Set up the values of cur_size and cur_mu, based on cur_style 702);
delta2 = maz_d + axis_height (cur_size);
deltal = maz_h + maz_d — delta2;
if (delta2 > deltal) deltal = delta2; /xdeltal is max distance from axis %/
delta = (deltal /500) x delimiter_factor;
delta2 = deltal + deltal — delimiter_shortfall;
if (delta < delta2) delta = delta?2;
new_hlist(q) = var_delimiter (delimiter (q), cur_size, delta);
return type(q) — (left_noad — open_noad); /* open_noad or close_noad */

}

762. (Change the current style and goto delete_q 762) =
{ cur_style = subtype(q);
s = style_node_size;
{Set up the values of cur_size and cur_mu, based on cur_style 702);
goto delete_g;

}

This code is used in section 760.

763. The inter-element spacing in math formulas depends on an 8 x 8 table that TEX preloads as a 64-digit
string. The elements of this string have the following significance:

0 means no space;

1 means a conditional thin space (\nonscript\mskip\thinmuskip);

2 means a thin space (\mskip\thinmuskip);

3 means a conditional medium space (\nonscript\mskip\medmuskip);
4 means a conditional thick space (\nonscript\mskip\thickmuskip);
* means an impossible case.

This is all pretty cryptic, but The TEXbook explains what is supposed to happen, and the string makes it
happen.

A global variable magic_offset is computed so that if a and b are in the range ord_noad .. inner_noad,
then str_pool|a * 8 + b 4+ magic_offset] is the digit for spacing between noad types a and b.

If Pascal had provided a good way to preload constant arrays, this part of the program would not have
been so strange.

#define math_spacing
"0234000122%4000133**3%**x344*x0400400%x000000234000111%1111112341011"

764. (Global variables 13) +=
static const int magic_offset = —9 % ord_noad; /+used to find inter-element spacing */

6765 TEXprof TYPESETTING MATH FORMULAS

765. (Append inter-element spacing based on r_type and t 765) =
if (r_type >0) /xnot the first noad =/
{ switch (so(math_spacing[r_type x 8 + t + magic_offset])) {
case '0’: z = 0; break;
case ’1’:
if (cur_style < script_style) x = thin_mu_skip_code; else = = 0; break;
case ’2’: x = thin_mu_skip_code; break;
case ’3’:
if (cur_style < script_style) © = med_mu_skip_code; else x = 0; break;
case ’4’:
if (cur_style < script_style) x = thick_mu_skip_code; else x = 0; break;
default: confusion("mlist4");

if (z #0) { y = math_glue(glue_par(x), cur_mu);
z = new_glue (y);
glue_ref_count (y) = null;
link (p) = z;
p=2
subtype(z) = x + 1; /*store a symbolic subtype %/
}
}

This code is used in section 759.

339

766. We insert a penalty node after the hlist entries of noad ¢ if pen is not an “infinite” penalty, and if

the node immediately following ¢ is not a penalty node or a rel_noad or absent entirely.

(Append any new_hlist entries for g, and any appropriate penalties 766) =
if (new_hlist(q) # null) { link(p) = new_hlist(q);
do {
p = link(p);
} while (=(link (p) = null));

if (penalties)
if (link(q) # null)
if (pen < inf_penalty) { r_type = type(link(q));
if (r_type # penalty_node)
if (r_type # rel_noad) { z = new_penalty (pen);
link (p) = z;
p=2z
¥
¥

This code is used in section 759.

340 ALIGNMENT TEXprof — §767

767. Alignment. It’s sort of a miracle whenever \halign and \valign work, because they cut across
so many of the control structures of TEX.

Therefore the present page is probably not the best place for a beginner to start reading this program; it
is better to master everything else first.

Let us focus our thoughts on an example of what the input might be, in order to get some idea about
how the alignment miracle happens. The example doesn’t do anything useful, but it is sufficiently general
to indicate all of the special cases that must be dealt with; please do not be disturbed by its apparent
complexity and meaninglessness.

\tabskip 2pt plus 3pt
\halign to 300pt{ul#vi&
\tabskip 1pt plus 1fil u2#v2&
u3#v3\cr
al&\omit a2&\vrule\cr
\noalign{\vskip 3pt}
bi\span b2\cr
\omit&c2\span\omit\cr}

Here’s what happens:

(0) When ‘\halign to 300pt{’ is scanned, the scan_spec routine places the 300pt dimension onto the
save_stack, and an align_group code is placed above it. This will make it possible to complete the alignment
when the matching ‘}’ is found.

(1) The preamble is scanned next. Macros in the preamble are not expanded, except as part of a tabskip
specification. For example, if u2 had been a macro in the preamble above, it would have been expanded,
since TEX must look for ‘minus. ..’ as part of the tabskip glue. A “preamble list” is constructed based on
the user’s preamble; in our case it contains the following seven items:

\glue 2pt plus 3pt (the tabskip preceding column 1)
\alignrecord, width —oo (preamble info for column 1)
\glue 2pt plus 3pt (the tabskip between columns 1 and 2)
\alignrecord, width —oo (preamble info for column 2)
\glue 1pt plus 1fil (the tabskip between columns 2 and 3)
\alignrecord, width —oo (preamble info for column 3)

(

\glue 1pt plus 1fil the tabskip following column 3)

These “alignrecord” entries have the same size as an unset_node, since they will later be converted into such
nodes. However, at the moment they have no type or subtype fields; they have info fields instead, and these
info fields are initially set to the value end_span, for reasons explained below. Furthermore, the alignrecord
nodes have no height or depth fields; these are renamed u_part and v_part, and they point to token lists for
the templates of the alignment. For example, the u_part field in the first alignrecord points to the token list
‘ul’; i.e., the template preceding the ‘#’ for column 1.

(2) TEX now looks at what follows the \cr that ended the preamble. It is not ‘\noalign’ or ‘\omit’, so
this input is put back to be read again, and the template ‘ul’ is fed to the scanner. Just before reading ‘ul’,
TEX goes into restricted horizontal mode. Just after reading ‘ul’, TEX will see ‘al’, and then (when the & is
sensed) TEX will see ‘v1’. Then TEX scans an endv token, indicating the end of a column. At this point an
unset_node is created, containing the contents of the current hlist (i.e., ‘utalv1’). The natural width of this
unset node replaces the width field of the alignrecord for column 1; in general, the alignrecords will record
the maximum natural width that has occurred so far in a given column.

(3) Since ‘\omit’ follows the ‘&’; the templates for column 2 are now bypassed. Again TEX goes into
restricted horizontal mode and makes an unset_node from the resulting hlist; but this time the hlist contains
simply ‘a2’. The natural width of the new unset box is remembered in the width field of the alignrecord for
column 2.

8767 TEXprof ALIGNMENT 341

(4) A third unset_node is created for column 3, using essentially the mechanism that worked for column 1;
this unset box contains ‘u3\vrule v3’. The vertical rule in this case has running dimensions that will later
extend to the height and depth of the whole first row, since each unset_node in a row will eventually inherit
the height and depth of its enclosing box.

(5) The first row has now ended; it is made into a single unset box comprising the following seven items:

\glue 2pt plus 3pt

\unsetbox for 1 column: ulalvil
\glue 2pt plus 3pt

\unsetbox for 1 column: a2

\glue 1pt plus 1fil

\unsetbox for 1 column: u3\vrule v3
\glue 1pt plus 1fil

The width of this unset row is unimportant, but it has the correct height and depth, so the correct baselineskip
glue will be computed as the row is inserted into a vertical list.

(6) Since ‘\noalign’ follows the current \cr, TEX appends additional material (in this case \vskip 3pt)
to the vertical list. While processing this material, TEX will be in internal vertical mode, and no_align_group
will be on save_stack.

(7) The next row produces an unset box that looks like this:

\glue 2pt plus 3pt

\unsetbox for 2 columns: ulblviu2b2v2
\glue 1pt plus 1fil

\unsetbox for 1 column: (empty)

\glue 1pt plus 1fil

The natural width of the unset box that spans columns 1 and 2 is stored in a “span node,” which we will
explain later; the info field of the alignrecord for column 1 now points to the new span node, and the info
of the span node points to end_span.

(8) The final row produces the unset box

\glue 2pt plus 3pt
\unsetbox for 1 column: (empty)
\glue 2pt plus 3pt
\unsetbox for 2 columns: u2c2v2
\glue 1pt plus 1fil

A new span node is attached to the alignrecord for column 2.

(9) The last step is to compute the true column widths and to change all the unset boxes to hboxes,
appending the whole works to the vertical list that encloses the \halign. The rules for deciding on the final
widths of each unset column box will be explained below.

Note that as \halign is being processed, we fearlessly give up control to the rest of TEX. At critical junctures,
an alignment routine is called upon to step in and do some little action, but most of the time these routines
just lurk in the background. It’s something like post-hypnotic suggestion.

768. We have mentioned that alignrecords contain no height or depth fields. Their glue_sign and glue_order|l
are pre-empted as well, since it is necessary to store information about what to do when a template ends.
This information is called the extra_info field.

#define u_part(A) mem[A + height_offset].i /*pointer to (u;) token list %/
#define v_part(A) mem[A + depth_offset].i /+pointer to (v;) token list*/
#define extra_info(A) info(A + list_offset) /+info to remember during template */

342 ALIGNMENT TpXprof §769

769. Alignments can occur within alignments, so a small stack is used to access the alignrecord information.
At each level we have a preamble pointer, indicating the beginning of the preamble list; a cur_align pointer,
indicating the current position in the preamble list; a cur_span pointer, indicating the value of cur_align at
the beginning of a sequence of spanned columns; a cur_loop pointer, indicating the tabskip glue before an
alignrecord that should be copied next if the current list is extended; and the align_state variable, which
indicates the nesting of braces so that \cr and \span and tab marks are properly intercepted. There also are
pointers cur_head and cur_tail to the head and tail of a list of adjustments being moved out from horizontal
mode to vertical mode.

The current values of these seven quantities appear in global variables; when they have to be pushed down,
they are stored in 5-word nodes, and align_ptr points to the topmost such node.

#define preamble link(align_head) /*the current preamble list x/
#define align_stack_node_size 5 /*number of mem words to save alignment states x/

(Global variables 13) +=

static pointer cur_align; /* current position in preamble list x/

static pointer cur_span; /xstart of currently spanned columns in preamble list %/
static pointer cur_loop; /*place to copy when extending a periodic preamble */
static pointer align_ptr; /*most recently pushed-down alignment stack node */
static pointer cur_head, cur_tail; /*adjustment list pointers */

770. The align_state and preamble variables are initialized elsewhere.

(Set initial values of key variables 21) +=
align_ptr = null;
cur_align = null;
cur_span = null;
cur_loop = null;
cur_head = null;
cur_tail = null;

§771

771.

TEXprof

Alignment stack maintenance is handled by a pair

pop_alignment.

772.

static void push_alignment (void)

{ pointer p; /*the new alignment stack node */
p = get_node (align_stack_node_size);
link (p) = align_ptr;
info(p) = cur_align;
llink (p) = preamble;
rlink (p) = cur_span;
mem[p + 2].i = cur_loop;
mem[p + 3].i = align_state;
info(p+4) = cur_head;
link (p + 4) = cur_tail;
align_ptr = p;
cur_head = get_avail ();

}

static void pop_alignment (void)
{ pointer p; /*the top alignment stack node */
free_avail (cur_head);
p = align_ptr;
cur_tail = link(p + 4);
cur_head = info(p + 4);
align_state = mem|[p + 3].i;
cur_loop = mem|[p + 2].i;
cur_span = rlink(p);
preamble = llink (p);
cur_align = info(p);
align_ptr = link (p);
free_node (p, align_stack_node_size);

}

ALIGNMENT 343

of trivial routines called push_alignment and

TEX has eight procedures that govern alignments: init_align and fin_align are used at the very

beginning and the very end; init_row and fin_row are used at the beginning and end of individual rows;
init_span is used at the beginning of a sequence of spanned columns (possibly involving only one column);
init_col and fin_col are used at the beginning and end of individual columns; and align_peek is used after

\cr to see whether the next item is \noalign.

We shall consider these routines in the order they are first used during the course of a complete \halign,
namely nit_align, align_peek, init_row, init_span, init_col, fin_col, fin_row, fin_align.

344 ALIGNMENT TpXprof — §773

773. When \halign or \valign has been scanned in an appropriate mode, TEX calls init_align, whose
task is to get everything off to a good start. This mostly involves scanning the preamble and putting its
information into the preamble list.

(Declare the procedure called get_preamble_token 781)
static void align_peek (void);
static void normal_paragraph(void);
static void init_align(void)

{ pointer save_cs_ptr; /x warning_index value for error messages */
pointer p; /*for short-term temporary use */
save_cs_ptr = cur_cs; /+\halign or \valign, usually %/
push_alignment ();
align_state = —1000000; /+enter a new alignment level x/
(Check for improper alignment in displayed math 775);
push_nest(); /xenter a new semantic level x/

(Change current mode to —vmode for \halign, —hmode for \valign 774);
scan_spec(align_group, false);

(Scan the preamble and record it in the preamble list 776);

new_save_level (align_group);

if (every_cr # null) begin_token_list (every_cr, every_cr_text);

align_peek (); ~ /xlook for \noalign or \omit x/

}

774. In vertical modes, prev_depth already has the correct value. But if we are in mmode (displayed
formula mode), we reach out to the enclosing vertical mode for the prev_depth value that produces the
correct baseline calculations.

(Change current mode to —vmode for \halign, —hmode for \valign 774) =
if (mode = mmode) { mode = —vmode;
prev_depth = nest|[nest_ptr — 2].auz_field.sc;
}
else if (mode > 0) negate(mode)

This code is used in section 773.

775. When \halign is used as a displayed formula, there should be no other pieces of mlists present.
(Check for improper alignment in displayed math 775) =
if ((mode = mmode) A ((tail # head) V (incompleat_noad # null))) { print_err("Improper,");
print_esc("halign");
print("Linside, $$’s");
help3 ("Displays can use special alignments,(like \\eqalignno)",
"only if_ nothing but_ the alignment itself is between, $$’s.",
"So,I’ve deleted the ,formulas, ,that, preceded this alignment.");
error () ;
flush_math();
¥

This code is used in section 773.

8776 TEXprof ALIGNMENT 345

776. (Scan the preamble and record it in the preamble list 776) =

preamble = null;

cur_align = align_head;

cur_loop = null;

scanner_status = aligning;

warning_inder = save_cs_ptr;

align_state = —1000000; /*at this point, cur_cmd = left_brace */

loop { { Append the current tabskip glue to the preamble list 777);
if (cur_cmd = car_ret) goto done; /x\cr ends the preamble %/
(Scan preamble text until cur_cmd is tab_mark or car_ret, looking for changes in the tabskip glue;

append an alignrecord to the preamble list 778);
¥

done: scanner_status = normal

This code is used in section 773.

777. (Append the current tabskip glue to the preamble list 777) =
link (cur_align) = new_param_glue (tab_skip_code); cur_align = link (cur_align)

This code is used in section 776.

778. (Scan preamble text until cur_cmd is tab_mark or car_ret, looking for changes in the tabskip glue;

append an alignrecord to the preamble list 778) =

(Scan the template (u;), putting the resulting token list in hold_head 782);

link (cur_align) = new_null_box ();

cur_align = link (cur_align); /*a new alignrecord x/

info(cur_align) = end_span;

width (cur_align) = null_flag;

u_part (cur_align) = link (hold_head);

(Scan the template (v;), putting the resulting token list in hold_head 783);

v_part (cur_align) = link (hold_head)

This code is used in section 776.

346 ALIGNMENT TpXprof — §779

779. We enter ‘\span’ into eqtb with tab_mark as its command code, and with span_code as the command
modifier. This makes TEX interpret it essentially the same as an alignment delimiter like ‘&’, yet it is
recognizably different when we need to distinguish it from a normal delimiter. It also turns out to be useful
to give a special cr_code to ‘\cr’, and an even larger cr_cr_code to ‘\crcr’.

The end of a template is represented by two “frozen” control sequences called \endtemplate. The first
has the command code end_template, which is > outer_call, so it will not easily disappear in the presence
of errors. The get_z_token routine converts the first into the second, which has endv as its command code.

#define span_code 256 /xdistinct from any character %/

#define cr_code 257 /xdistinct from span_code and from any character */
#define cr_cr_code (cr_code +1) /xthis distinguishes \crcr from \cr x/
#define end_template_token cs_token_flag + frozen_end_template

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("span", tab_mark, span_code);
primitive("cr", car_ret, cr_code);
text(frozen_cr) = text(cur_val);
eqth[frozen_cr] = eqth[cur_val];
primitive ("crer", car_ret, cr_cr_code);
text (frozen_end_template) = text(frozen_endv) = s_no("endtemplate");
eq_type (frozen_endv) = endv;
equiv (frozen_endv) = null_list;
eq_level (frozen_endv) = level_one;
eqth[frozen_end_template] = eqth|frozen_endv];
eq_type (frozen_end_template) = end_template;

780. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case tab_mark:

if (chr_code = span_code) print_esc("span");

else chr_cmd("alignment tab character,") break;
case car_ret:

if (chr_code = cr_code) print_esc("cr");

else print_esc("crcr"); break;

8781 TEXprof ALIGNMENT 347

781. The preamble is copied directly, except that \tabskip causes a change to the tabskip glue, thereby
possibly expanding macros that immediately follow it. An appearance of \span also causes such an expansion.

Note that if the preamble contains ‘\global\tabskip’, the ‘\global’ token survives in the preamble and
the ‘\tabskip’ defines new tabskip glue (locally).

{ Declare the procedure called get_preamble_token 781) =
static void get_preamble_token (void)
{ restart: get_token();
while ((cur_chr = span_code) A (cur_emd = tab_mark)) { get_token();
/*this token will be expanded once */
if (cur_emd > maz_command) { expand();
get_token();

}
}

if (cur_cmd = endv) fatal_error (" (interwoven alignment, preambles are not,allowed)");
if ((cur_cmd = assign_glue) A (cur_chr = glue_base + tab_skip_code)) { scan_optional_equals();
scan_glue (glue_val);
if (global_defs > 0) geq_define(glue_base + tab_skip_code, glue_ref , cur_val);
else eq_define(glue_base + tab_skip_code, glue_ref , cur_val);
goto restart;

}
}

This code is used in section 773.

782. Spaces are eliminated from the beginning of a template.

(Scan the template (u;), putting the resulting token list in hold_head 782) =
p = hold_head;
link (p) = null;
loop { get_preamble_token();
if (cur_cmd = mac_param) goto donel;
if ((cur_emd < car_ret) A (cur_emd > tab_mark) A (align_state = —1000000))
if ((p = hold_head) A (cur_loop = null) A (cur_emd = tab_mark)) cur_loop = cur_align;
else { print_err("Missing, #,inserted in alignment preamble");
help3 ("There should, be exactly one # between &’s, when an",
"\\halign or \\valign is_ being set up.,In this case_ you had",
"none,;so,I’ve jput one in; maybe that will work.");
back_error();
goto donel;

else if ((cur_emd # spacer) V (p # hold_head)) { link(p) = get_avail ();
p = link (p);
info(p) = cur_tok;
}
}

donel:

This code is used in section 778.

348 ALIGNMENT TpXprof — §783

783. (Scan the template (v;), putting the resulting token list in hold_head 783) =
p = hold_head;
link (p) = null;
loop { resume: get_preamble_token();
if ((cur_emd < car_ret) A (cur_emd > tab_mark) A (align_state = —1000000)) goto done2;
if (cur_emd = mac_param) { print_err("Only_ one #,is allowed per tab");
help3 ("Thereushouldubeuexact ly,one # between &’s, when,an",
"\\halign or \\valign,is being set up.,In this case_ you had",
"more than jone, so,I’m ignoring ,all but the first.");
error () ;
goto resume;

link (p) = get_avail ();
p = link(p);
info(p) = cur_tok;

done2: link(p) = get_avail ();
p = link (p); info(p) = end_template_token /*put \endtemplate at the end x/

This code is used in section 778.

784. The tricky part about alignments is getting the templates into the scanner at the right time, and
recovering control when a row or column is finished.

We usually begin a row after each \cr has been sensed, unless that \cr is followed by \noalign or by the
right brace that terminates the alignment. The align_peek routine is used to look ahead and do the right
thing; it either gets a new row started, or gets a \noalign started, or finishes off the alignment.

{ Declare the procedure called align_peek 784) =
static void align_peek (void)
{ restart: align_state = 1000000;
do {
get_x_or_protected ();
} while (—(cur_cmd # spacer));
if (cur_emd = no_align) { scan_left_brace();
new_save_level (no_align_group);
if (mode = —vmode) normal_paragraph();

}

else if (cur_cmd = right_brace) fin_align();

else if ((cur_emd = car_ret) A (cur_chr = er_cr_code)) goto restart; /xignore \crcr */
else { init_row(); /+start a new row x/
init_col(); /+start a new column and replace what we peeked at */

}
}

This code is used in section 799.

8785 TEXprof ALIGNMENT 349

785. To start a row (i.e., a ‘row’ that rhymes with ‘dough’ but not with ‘bough’), we enter a new semantic
level, copy the first tabskip glue, and change from internal vertical mode to restricted horizontal mode or
vice versa. The space_factor and prev_depth are not used on this semantic level, but we clear them to zero
just to be tidy.
(Declare the procedure called init_span 786)
static void init_row (void)
{ push_nest();
mode = (—hmode — vmode) — mode;
if (mode = —hmode) space_factor = 0; else prev_depth = 0;
tail_append (new_glue (glue_ptr (preamble)));
subtype (tail) = tab_skip_code + 1;
cur_align = link (preamble);
cur_tail = cur_head;
init_span (cur_align);

}

786. The parameter to init_span is a pointer to the alignrecord where the next column or group of columns
will begin. A new semantic level is entered, so that the columns will generate a list for subsequent packaging.
(Declare the procedure called init_span 786) =
static void init_span (pointer p)
{ push_nest();
if (mode = —hmode) space_factor = 1000;
else { prev_depth = ignore_depth;
normal_paragraph ();
}

cur_span = p;

}

This code is used in section 785.

787. When a column begins, we assume that cur_cmd is either omit or else the current token should be
put back into the input until the (u;) template has been scanned. (Note that cur_cmd might be tab_mark
or car_ret.) We also assume that align_state is approximately 1000000 at this time. We remain in the same
mode, and start the template if it is called for.
static void init_col(void)
{ extra_info(cur_align) = cur_cmd;
if (cur_cmd = omit) align_state = 0
else { back_input();
begin_token_list (u_part (cur_align), u_template);
} /xnow align_state = 1000000 */
}

350 ALIGNMENT TpXprof — §788

788. The scanner sets align_state to zero when the (u;) template ends. When a subsequent \cr or \span
or tab mark occurs with align_state = 0, the scanner activates the following code, which fires up the (v;)
template. We need to remember the cur_chr, which is either cr_cr_code, cr_code, span_code, or a character
code, depending on how the column text has ended.

This part of the program had better not be activated when the preamble to another alignment is being
scanned, or when no alignment preamble is active.

(Insert the (v;) template and goto restart 788) =
{ if ((scanner_status = aligning) V (cur_align = null))
fatal_error (" (interwoven alignment preambles are not,allowed)");

cur_emd = extra_info (cur_align);
extra_info(cur_align) = cur_chr;
if (cur_cmd = omit) begin_token_list (omit_template, v_template);
else begin_token_list (v_part (cur_align), v_template);
align_state = 1000000;
goto restart;

}

This code is used in section 341.

789. The token list omit_template just referred to is a constant token list that contains the special control
sequence \endtemplate only.
(Initialize the special list heads and constant nodes 789) =
info(omit_template) = end_template_token; [+ link(omit_template) = null x/
See also sections 796, 819, 980, and 987.

This code is used in section 163.

8790 TEXprof ALIGNMENT 351

790. When the endv command at the end of a (v;) template comes through the scanner, things really
start to happen; and it is the fin_col routine that makes them happen. This routine returns true if a row as
well as a column has been finished.

static bool fin_col(void)

{ pointer p; /*the alignrecord after the current one x/
pointer g, ; /+ temporary pointers for list manipulation */
pointer s; /*a new span node %/
pointer u; /*a new unset box */
scaled w; /xnatural width x/
glue_ord o; /xorder of infinity */
halfword n; /+span counter x/

if (cur_align = null) confusion("endv");
q = link (cur_align); if (q = null) confusion("endv");
if (align_state < 500000) fatal_error(" (interwoven, alignment preambles are not,allowed)");
p = link(q);
(If the preamble list has been traversed, check that the row has ended 791);
if (extra_info(cur_align) # span_code) { unsave();
new_save_level (align_group);
(Package an unset box for the current column and record its width 795);
(Copy the tabskip glue between columns 794);
if (extra_info(cur_align) > cr_code) { return true;

init_span (p);
}
align_state = 1000000;
do {
get_x_or_protected ();
} while (—(cur_cmd # spacer));
cur_align = p;
init_col ();
return false;

}

791. (If the preamble list has been traversed, check that the row has ended 791) =
if ((p = null) A (extra_info(cur_align) < cr_code))

if (cur_loop # null) (Lengthen the preamble periodically 792)

else { print_err("Extra alignment tab_has been changed to,");
print_esc("cr");
help3 ("Youuhave._lgivenumoreu\\span._,oru&._,marksuthan._,thereuwere ",
"in the preamble to the \\halign or \\valign now_ in progress.",
"So,I’11 ,assume that you meant to_ type \\cr instead.");
extra_info (cur_align) = cr_code;
error () ;

}

This code is used in section 790.

352 ALIGNMENT

792. (Lengthen the preamble periodically 792) =

{ link(q) = new_null_box();
p = link(q); /+a new alignrecord x/
info(p) = end_span;
width (p) = null_flag;
cur_loop = link (cur_loop);
(Copy the templates from node cur_loop into node p 793);
cur_loop = link (cur_loop);
link (p) = new_glue(glue_ptr(cur_loop));
subtype (link (p)) = tab_skip_code + 1;

}

This code is used in section 791.

793. (Copy the templates from node cur_loop into node p 793) =
q = hold_head;
r = u_part (cur_loop);
while (r # null) { link(q) = get_avail ();

q = link(q);
info(q) = info(r);
r = link(r);

}

link (q) = null;

u_part(p) = link (hold_head);

q = hold_head;

r = v_part(cur_loop);

while (r # null) { link(q) = get_avail ();

q = link(q);
info(q) = info(r);
r = link(r);

link (q) = null; v_part(p) = link (hold_head)

This code is used in section 792.

794. (Copy the tabskip glue between columns 794) =

tail_append (new_glue (glue_ptr (link (cur_align)))); subtype(tail) = tab_skip_code + 1

This code is used in section 790.

TEXprof

§792

8795 TEXprof ALIGNMENT 353

795. (Package an unset box for the current column and record its width 795) =
{ if (mode = —hmode) { adjust_tail = cur_tail;
u = hpack (link (head), natural);
w = width(u);
cur_tail = adjust_tail;
adjust_tail = null;

else { u = wpackage (link (head), natural,0);
w = height (u);
}
n = min_quarterword; /= this represents a span count of 1%/
if (cur_span # cur_align) { Update width entry for spanned columns 797)
else if (w > width(cur_align)) width(cur_align) = w;
type (u) = unset_node;
span_count (u) = n;
(Determine the stretch order 658);
glue_order (u) = o;
glue_stretch (u) = total_stretch|o];
(Determine the shrink order 664);
glue_sign(u) = o;
glue_shrink (u) = total_shrink[o];
pop_nest();
link (tail) = u;
tail = u;

}

This code is used in section 790.

796. A span node is a 2-word record containing width, info, and link fields. The link field is not really a
link, it indicates the number of spanned columns; the info field points to a span node for the same starting
column, having a greater extent of spanning, or to end_span, which has the largest possible link field; the
width field holds the largest natural width corresponding to a particular set of spanned columns.

A list of the maximum widths so far, for spanned columns starting at a given column, begins with the
info field of the alignrecord for that column.

#define span_node_size 2 /+*number of mem words for a span node */

(Initialize the special list heads and constant nodes 789) +=
link (end_span) = maz_quarterword + 1;
info(end_span) = null;

354 ALIGNMENT TEXprof — §797

797. (Update width entry for spanned columns 797) =
{ ¢ = cur_span;

do {
incr(n);
q = link(link(q));

} while (=(q = cur_align));

if (n > max_quarterword) confusion("256spans"); /xthis can happen, but won’t x/

q = cur_span;

while (link (info(q)) < n) g = info(q);

if (link (info(q)) > n) { s = get_node(span_node_size);
info(s) = info();

link (s) = n;
info(q) = s
width (s) = w;

}
else if (width(info(q)) < w) width(info(q)) = w;

}

This code is used in section 795.

798. At the end of a row, we append an unset box to the current vlist (for \halign) or the current hlist
(for \valign). This unset box contains the unset boxes for the columns, separated by the tabskip glue.
Everything will be set later.

static void fin_row(void)

{ pointer p; /*the new unset box x/
if (mode = —hmode) { p = hpack (link (head), natural);
pop_nest();

append_to_vlist (p);

if (cur_head # cur_tail) { link(tail) = link (cur_head);
tail = cur_tail;

}

}
else { p = vpack (link (head), natural);
pop_nest();
link (tail) = p;
tail = p;
space_factor = 1000;
}
type (p) = unset_node;
glue_stretch (p) = 0;
if (every_cr # null) begin_token_list(every_cr, every_cr_text);
align_peek ();
} /xnote that glue_shrink (p) = 0 since glue_shrink == shift_amount */

8799 TEXprof ALIGNMENT 355

799. Finally, we will reach the end of the alignment, and we can breathe a sigh of relief that memory
hasn’t overflowed. All the unset boxes will now be set so that the columns line up, taking due account of
spanned columns.

static void do_assignments(void);
static void resume_after_display(void);
static void build_page (void);

static void fin_align(void)

{ pointer p, q,7, s, u, v; /xregisters for the list operations x/
scaled t,w; /*width of column */
scaled o; /= shift offset for unset boxes */
halfword n; /* matching span amount */
scaled rule_save; /* temporary storage for overfull_rule x/
memory_word auz_save; /xtemporary storage for auz x/
if (cur_group # align_group) confusion("aligni");
unsave(); /+that align_group was for individual entries x/
if (cur_group # align_group) confusion("align0");
unsave (); /xthat align_group was for the whole alignment */
if (nest[nest_ptr — 1].mode_field = mmode) o = display_indent;
else o0 = 0;

{ Go through the preamble list, determining the column widths and changing the alignrecords to
dummy unset boxes 800);

(Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this
prototype box 803);

(Set the glue in all the unset boxes of the current list 804);

flush_node_list (p);

pop_alignment ();

(Insert the current list into its environment 811);

}

{ Declare the procedure called align_peek 784)

356 ALIGNMENT TpXprof §800

800. It’s time now to dismantle the preamble list and to compute the column widths. Let w;; be the
maximum of the natural widths of all entries that span columns ¢ through j, inclusive. The alignrecord for
column ¢ contains w;; in its width field, and there is also a linked list of the nonzero w;; for increasing j,
accessible via the info field; these span nodes contain the value j — i + min_quarterword in their link fields.
The values of w;; were initialized to null_flag, which we regard as —oo.

The final column widths are defined by the formula

i<k<j

where ?j is the natural width of the tabskip glue between columns k and k + 1. However, if w;; = —oo for
all 7 in the range 1 < i < j (i.e., if every entry that involved column j also involved column j + 1), we let
w; = 0, and we zero out the tabskip glue after column j.

TEX computes these values by using the following scheme: First w; = wii. Then replace wy; by
max(wsy;,w1; —t1 — wi), for all j > 1. Then wy = wae. Then replace ws; by max(ws;, we; — ta — w2)
for all 7 > 2; and so on. If any w; turns out to be —oo, its value is changed to zero and so is the next
tabskip.

(Go through the preamble list, determining the column widths and changing the alignrecords to dummy
unset boxes 800) =

q = link (preamble);

do {

flush_list (u_part (q));
flush_list (v_part(q));
p = link (link (q));
if (width(q) = null_flag) (Nullify width(q) and the tabskip glue following this column 801);
if (info(q) # end_span)
(Merge the widths in the span nodes of ¢ with those of p, destroying the span nodes of g 802);
type(q) = unset_node;
span_count (q) = min_quarterword;
height(q) = 0;
depth(q) = 0;
glue_order(q) = normal;
glue_sign(q) = normal;
glue_stretch(q) = 0;
glue_shrink (q) = 0;

q=Dp;
} while (—(q = null))

This code is used in section 799.

801. (Nullify width(q) and the tabskip glue following this column 801) =
{ width(q) = 0;
r = link(q);
s = glue_ptr(r);
if (s # zero_glue) { add_glue_ref (zero_glue);
delete_glue_ref (s);
glue_ptr (r) = zero_glue;
}
}

This code is used in section 800.

6802 TEXprof ALIGNMENT 357

802. Merging of two span-node lists is a typical exercise in the manipulation of linearly linked data
structures. The essential invariant in the following do { loop is that we want to dispense with node r,
in ¢’s list, and wu is its successor; all nodes of p’s list up to and including s have been processed, and the
successor of s matches r or precedes r or follows r, according as link(r) = n or link(r) > n or link(r) < n.
{Merge the widths in the span nodes of ¢ with those of p, destroying the span nodes of ¢ 802) =
{ t = width(q) + width(glue_ptr (link(q)));
r = info(q);
s = end_span;
info(s) = p;
n = min_quarterword + 1;
do {
width (r) = width(r) — t;
u = info(r);
while (link(r) > n) { s = info(s);
n = link (info(s)) + 1;

if (link (r) <n) { info(r) = info(s);

info(s) =r;
decr (link(r));
s=r;

}
else { if (width(r) > width(info(s))) width(info(s)) = width(r);
free_node(r, span_node_size);
¥
r=u;
} while (—=(r = end_span));

}

This code is used in section 800.

358 ALIGNMENT TpXprof §803

803. Now the preamble list has been converted to a list of alternating unset boxes and tabskip glue, where
the box widths are equal to the final column sizes. In case of \valign, we change the widths to heights, so
that a correct error message will be produced if the alignment is overfull or underfull.

(Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototype

box 803) =
save_ptr = save_ptr — 2;
pack_begin_line = —mode_line;
if (mode = —vmode) { rule_save = overfull_rule;
overfull_rule = 0; /xprevent rule from being packaged */

p = hpack (preamble, saved (1), saved (0));
overfull_rule = rule_save;

else { ¢ = link(preamble);

do {
height (q) = width(q);
width (q) = 0;

q = link (link(q));
} while (—(q = null));
p = vpack (preamble, saved (1), saved (0));
q = link (preamble);
do {
width (q) = height (q);
height (q) = 0;
q = link(link(q));
} while (—(q = null));

pack_begin_line = 0

This code is used in section 799.

804. (Set the glue in all the unset boxes of the current list 804) =
q = link (head);
s = head;
while (g # null) { if (—is_char_node(q))
if (type(q) = unset_node) (Set the unset box ¢ and the unset boxes in it 806)
else if (type(q) = rule_node)
(Make the running dimensions in rule g extend to the boundaries of the alignment 805);
s=gq;
q = link(q);

}

This code is used in section 799.

8805 TEXprof ALIGNMENT 359

805. (Make the running dimensions in rule g extend to the boundaries of the alignment 805) =
{ if (is_running(width(q))) width(q) = width(p);
(is_running (height (q))) height(q) = height (p);
(is_running (depth(q))) depth(q) = depth(p);
if (0 0) { r = link(q):
link (q) = null;
q = hpack (q, natural);
shift_amount (q) = o;
link(q) = r;
link(s) = ¢;
}
}

This code is used in section 804.

806. The unset box g represents a row that contains one or more unset boxes, depending on how soon \cr
occurred in that row.

(Set the unset box ¢ and the unset boxes in it 806) =
{ if (mode = —vmode) { type(q) = hlist_node;
width (q) = width(p);

else { type(q) = vlist_node;
height (q) = height (p);

glue_order(q) = glue_order(p);
glue_sign(q) = glue_sign(p);
glue_set(q) = glue_set (p);
shift_amount (q) = o;
r = link (list_ptr(q));
s = link (list_ptr (p));
do {
(Set the glue in node r and change it from an unset node 807);
r = link (link (r));
s = link(link(s));
} while (—=(r = null));
}

This code is used in section 804.

360 ALIGNMENT TEXprof §807

807. A box made from spanned columns will be followed by tabskip glue nodes and by empty boxes as if
there were no spanning. This permits perfect alignment of subsequent entries, and it prevents values that
depend on floating point arithmetic from entering into the dimensions of any boxes.

(Set the glue in node r and change it from an unset node 807) =
n = span_count(r);

t = width(s);
w =t;
u = hold_head;

while (n > min_quarterword) { decr(n);
(Append tabskip glue and an empty box to list u, and update s and t as the prototype nodes are
passed 808);
}

if (mode = —vmode)

(Make the unset node r into an hlist_node of width w, setting the glue as if the width were ¢ 809)
else (Make the unset node r into a vlist_node of height w, setting the glue as if the height were ¢t 810);
shift_amount (r) = 0;
if (u # hold_head) /xappend blank boxes to account for spanned nodes */

{ link(u) = link(r);

link (r) = link (hold_head);

r=1;

}

This code is used in section 806.

808. (Append tabskip glue and an empty box to list u, and update s and ¢ as the prototype nodes are
passed 808) =

s = link(s);

v = glue_ptr(s);

link (u) = new_glue (v);

u = link (u);

subtype (u) = tab_skip_code + 1;

t =t + width(v);

if (glue_sign(p) = stretching) { if (stretch_order(v) = glue_order(p))
t =t + round (unfiz (glue_set (p)) * stretch(v));
}

else if (glue_sign(p) = shrinking) { if (shrink_order(v) = glue_order(p))
t =t — round (unfiz (glue_set (p)) * shrink (v));
}

s = link(s);
link (u) = new_null_box ();
u = link(u);

t =t + width(s);

if (mode = —vmode) width(u) = width(s); else { type(u) = vlist_node;
height (u) = width(s);

}

This code is used in section 807.

6809 TEXprof ALIGNMENT 361

809. (Make the unset node r into an hlist_node of width w, setting the glue as if the width were ¢ 809) =
{ height(r) = height(q);
depth(r) = depth(q);
if (t = width(r)) { glue_sign(r) = normal;
glue_order (r) = normal;
set_glue_ratio_zero(glue_set(r));

else if (¢t > width(r)) { glue_sign(r) = stretching;
if (glue_stretch(r) = 0) set_glue_ratio_zero(glue_set(r));
else glue_set(r) = fiz((t — width(r))/(double) glue_stretch(r));
}
else { glue_order(r) = glue_sign(r);
glue_sign (r) = shrinking;
if (glue_shrink(r) = 0) set_glue_ratio_zero(glue_set(r));
else if ((glue_order(r) = normal) A (width(r) — t > glue_shrink(r)))
set_glue_ratio_one(glue_set (r));
else glue_set(r) = fiz((width(r) — t)/(double) glue_shrink(r));

width (r) = w;
type (r) = hlist_node;
}

This code is used in section 807.

810. (Make the unset node r into a vlist_node of height w, setting the glue as if the height were ¢t 810) =
{ width(r) = width(q);
if (t = height(r)) { glue_sign(r) = normal;
glue_order (r) = normal;
set_glue_ratio_zero(glue_set(r));
}

else if (t > height(r)) { glue_sign(r) = stretching;
if (glue_stretch(r) = 0) set_glue_ratio_zero(glue_set(r));
else glue_set(r) = fix ((t — height(r))/(double) glue_stretch(r));

else { glue_order(r) = glue_sign(r);
glue_sign (r) = shrinking;
if (glue_shrink(r) = 0) set_glue_ratio_zero(glue_set(r));
else if ((glue_order(r) = normal) A (height(r) —t > glue_shrink(r)))
set_glue_ratio_one(glue_set (r));
else glue_set(r) = fix((height(r) —t)/(double) glue_shrink (r));
}
height(r) = w;
type (r) = vlist_node;

}

This code is used in section 807.

362 ALIGNMENT TpXprof §811

811. We now have a completed alignment, in the list that starts at head and ends at tail. This list will be
merged with the one that encloses it. (In case the enclosing mode is mmode, for displayed formulas, we will
need to insert glue before and after the display; that part of the program will be deferred until we’re more
familiar with such operations.)

In restricted horizontal mode, the clang part of auz is undefined; an over-cautious Pascal runtime system
may complain about this.

(Insert the current list into its environment 811) =
aQuI_save = aut;
p = link (head);
q = tail;
pop_nest();
if (mode = mmode) (Finish an alignment in a display 1205)
else { auz = auz_save;
link (tail) = p;
if (p # null) tail = g;
if (mode = vmode) build_page();

}

This code is used in section 799.

6812 TEXprof BREAKING PARAGRAPHS INTO LINES 363

812. Breaking paragraphs into lines. We come now to what is probably the most interesting algo-
rithm of TEX: the mechanism for choosing the “best possible” breakpoints that yield the individual lines of
a paragraph. TEX’s line-breaking algorithm takes a given horizontal list and converts it to a sequence of
boxes that are appended to the current vertical list. In the course of doing this, it creates a special data
structure containing three kinds of records that are not used elsewhere in TEX. Such nodes are created while
a paragraph is being processed, and they are destroyed afterwards; thus, the other parts of TEX do not need
to know anything about how line-breaking is done.

The method used here is based on an approach devised by Michael F. Plass and the author in 1977,
subsequently generalized and improved by the same two people in 1980. A detailed discussion appears in
Software—Practice and Experience 11 (1981), 1119-1184, where it is shown that the line-breaking problem
can be regarded as a special case of the problem of computing the shortest path in an acyclic network. The
cited paper includes numerous examples and describes the history of line breaking as it has been practiced
by printers through the ages. The present implementation adds two new ideas to the algorithm of 1980:
Memory space requirements are considerably reduced by using smaller records for inactive nodes than for
active ones, and arithmetic overflow is avoided by using “delta distances” instead of keeping track of the
total distance from the beginning of the paragraph to the current point.

813. The line_break procedure should be invoked only in horizontal mode; it leaves that mode and places
its output into the current vlist of the enclosing vertical mode (or internal vertical mode). There is one
explicit parameter: final_widow_penalty is the amount of additional penalty to be inserted before the final
line of the paragraph.

There are also a number of implicit parameters: The hlist to be broken starts at link(head), and it is
nonempty. The value of prev_graf in the enclosing semantic level tells where the paragraph should begin
in the sequence of line numbers, in case hanging indentation or \parshape is in use; prev_graf is zero
unless this paragraph is being continued after a displayed formula. Other implicit parameters, such as the
par_shape_ptr and various penalties to use for hyphenation, etc., appear in eqtb.

After line_break has acted, it will have updated the current vlist and the value of prev_graf. Furthermore,
the global variable just_box will point to the final box created by line_break, so that the width of this line can
be ascertained when it is necessary to decide whether to use above_display_skip or above_display_short_skip
before a displayed formula.

(Global variables 13) +=
static pointer just_boz; /*the hlist_node for the last line of the new paragraph =/

814. Since line_break is a rather lengthy procedure—sort of a small world unto itself—we must build it
up little by little, somewhat more cautiously than we have done with the simpler procedures of TEX. Here
is the general outline.

(Declare subprocedures for line_break 825)

static void line_break (int final_widow_penalty)
{ (Local variables for line breaking 861)
(Local variables to save the profiling context 1766)
(Charge the time used here on line_break 1767)
pack_begin_line = mode_line; /*this is for over/underfull box messages */
{ Get ready to start line breaking 815);
(Find optimal breakpoints 862);
(Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and
append them to the current vertical list 875);
(Clean up the memory by removing the break nodes 864);
pack_begin_line = 0;
(restore the previous current file, line, and command 1768)

}

{ Declare e-TEX procedures for use by main_control 1386)

364 BREAKING PARAGRAPHS INTO LINES TEXprof 6815

815. The first task is to move the list from head to temp_head and go into the enclosing semantic level.
We also append the \parfillskip glue to the end of the paragraph, removing a space (or other glue node)
if it was there, since spaces usually precede blank lines and instances of ‘$$’. The par_fill_skip is preceded
by an infinite penalty, so it will never be considered as a potential breakpoint.

This code assumes that a glue_node and a penalty_node occupy the same number of mem words.

{ Get ready to start line breaking 815) =
link (temp_head) = link (head);
if (is_char_node(tail)) tail_append (new_penalty (inf_penalty))
else if (type(tail) # glue_node) tail_append (new_penalty (inf_penalty))
else { type(tail) = penalty_node;
delete_glue_ref (glue_ptr(tail));
flush_node_list (leader_ptr (tail));
penalty (tail) = inf_penalty;

link (tail) = new_param_glue (par_fill_skip_code);
init_cur_lang = prev_graf % °200000;
init_I_hyf = prev_graf /°20000000;
ingt_r_hyf = (prev_graf /°200000) % °100;
pop_nest();

See also sections 826, 833, and 847.

This code is used in section 814.

816. When looking for optimal line breaks, TEX creates a “break node” for each break that is feasible,
in the sense that there is a way to end a line at the given place without requiring any line to stretch more
than a given tolerance. A break node is characterized by three things: the position of the break (which is
a pointer to a glue_node, math_node, penalty_node, or disc_node); the ordinal number of the line that will
follow this breakpoint; and the fitness classification of the line that has just ended, i.e., tight_fit, decent_fit,
loose_fit, or very_loose_fit.

#define tight_fit 3 /* fitness classification for lines shrinking 0.5 to 1.0 of their shrinkability */
#define loose_fit 1 /xfitness classification for lines stretching 0.5 to 1.0 of their stretchability x/
#define very_loose_fit 0 /= fitness classification for lines stretching more than their stretchability x/
#define decent_fit 2 /+fitness classification for all other lines*/

817. The algorithm essentially determines the best possible way to achieve each feasible combination of
position, line, and fitness. Thus, it answers questions like, “What is the best way to break the opening
part of the paragraph so that the fourth line is a tight line ending at such-and-such a place?” However, the
fact that all lines are to be the same length after a certain point makes it possible to regard all sufficiently
large line numbers as equivalent, when the looseness parameter is zero, and this makes it possible for the
algorithm to save space and time.

An “active node” and a “passive node” are created in mem for each feasible breakpoint that needs to be
considered. Active nodes are three words long and passive nodes are two words long. We need active nodes
only for breakpoints near the place in the paragraph that is currently being examined, so they are recycled
within a comparatively short time after they are created.

6818 TEXprof BREAKING PARAGRAPHS INTO LINES 365

818. An active node for a given breakpoint contains six fields:

link points to the next node in the list of active nodes; the last active node has link = last_active.
break_node points to the passive node associated with this breakpoint.

line_number is the number of the line that follows this breakpoint.

fitness is the fitness classification of the line ending at this breakpoint.

type is either hyphenated or unhyphenated, depending on whether this breakpoint is a disc_node.

total_demerits is the minimum possible sum of demerits over all lines leading from the beginning of the
paragraph to this breakpoint.

The value of link (active) points to the first active node on a linked list of all currently active nodes. This list
is in order by line_number, except that nodes with line_number > easy_line may be in any order relative
to each other.

#define active_node_size 3 /xnumber of words in active nodes */

#define fitness(A) subtype(A) /x very_loose_fit .. tight_fit on final line for this break */
#define break_node(A) rlink(A) /* pointer to the corresponding passive node %/
#define line_number(A) llink(A) /xline that begins at this breakpoint */

#define total_demerits(A) mem[A+2].i /+the quantity that TEX minimizes %/
#define unhyphenated 0 /xthe type of a normal active break node */

#define hyphenated 1 /xthe type of an active node that breaks at a disc_node x/
#define last_active active /*xthe active list ends where it begins x/

819. (Initialize the special list heads and constant nodes 789) +=
type (last_active) = hyphenated;
line_number (last_active) = maz_halfword;
subtype (last_active) = 0; /xthe subtype is never examined by the algorithm */

820. The passive node for a given breakpoint contains only four fields:

link points to the passive node created just before this one, if any, otherwise it is null.

cur_break points to the position of this breakpoint in the horizontal list for the paragraph being broken.
prev_break points to the passive node that should precede this one in an optimal path to this breakpoint.

serial is equal to n if this passive node is the nth one created during the current pass. (This field is used
only when printing out detailed statistics about the line-breaking calculations.)

There is a global variable called passive that points to the most recently created passive node. Another
global variable, printed_node, is used to help print out the paragraph when detailed information about the
line-breaking computation is being displayed.
#define passive_node_size 2 /*number of words in passive nodes */
#define cur_break(A) rlink(A) /*in passive node, points to position of this breakpoint x/
#define prev_break(A) llink(A) /*points to passive node that should precede this one */
#define serial(A) info(A) /xserial number for symbolic identification */
(Global variables 13) +=
static pointer passive; /+most recent node on passive list */
static pointer printed_node; /+most recent node that has been printed */
static halfword pass_number; /*the number of passive nodes allocated on this pass */

366 BREAKING PARAGRAPHS INTO LINES TEXprof 8821

821. The active list also contains “delta” nodes that help the algorithm compute the badness of individual
lines. Such nodes appear only between two active nodes, and they have type = delta_node. If p and r are
active nodes and if ¢ is a delta node between them, so that link(p) = ¢ and link(q) = r, then ¢ tells the
space difference between lines in the horizontal list that start after breakpoint p and lines that start after
breakpoint r. In other words, if we know the length of the line that starts after p and ends at our current
position, then the corresponding length of the line that starts after r is obtained by adding the amounts in
node ¢. A delta node contains six scaled numbers, since it must record the net change in glue stretchability
with respect to all orders of infinity. The natural width difference appears in mem[q + 1].sc; the stretch
differences in units of pt, fil, fill, and filll appear in mem[g+ 2 .. ¢+ 5].sc¢; and the shrink difference appears
in mem|[q + 6].sc. The subtype field of a delta node is not used.

#define delta_node_size 7 /*number of words in a delta node */
#define delta_node 2 /= type field in a delta node x/

822. As the algorithm runs, it maintains a set of six delta-like registers for the length of the line following
the first active breakpoint to the current position in the given hlist. When it makes a pass through the active
list, it also maintains a similar set of six registers for the length following the active breakpoint of current
interest. A third set holds the length of an empty line (namely, the sum of \leftskip and \rightskip);
and a fourth set is used to create new delta nodes.

When we pass a delta node we want to do operations like

for k =1 to 6 do cur_active_width[k] = cur_active_width[k] + mem[q + k].sc;

and we want to do this without the overhead of for loops. The do_all_sizx macro makes such six-tuples
convenient.
#define do_all_siz(A) A(1);
A(
A(
A()
A(5); A(6)
{ Global variables 13) +=
static scaled active_width0[6], xconst active_width = active_width0 — 1;
/* distance from first active node to cur_p */
static scaled cur_active_width0[6], xconst cur_active_width = cur_active_width0 — 1;
/+distance from current active node x/
static scaled background0|[6], xconst background = background0 — 1; /xlength of an “empty” line */
static scaled break_width0 6], *const break_width = break_width0 — 1;
/+length being computed after current break */

)

)
)a
)

=~ N

6823 TEXprof BREAKING PARAGRAPHS INTO LINES 367

823. Let’s state the principles of the delta nodes more precisely and concisely, so that the following
programs will be less obscure. For each legal breakpoint p in the paragraph, we define two quantities a(p)
and $(p) such that the length of material in a line from breakpoint p to breakpoint ¢ is v+ 58(¢q) — a(p), for
some fixed v. Intuitively, a(p) and S(g) are the total length of material from the beginning of the paragraph
to a point “after” a break at p and to a point “before” a break at ¢; and ~ is the width of an empty line,
namely the length contributed by \leftskip and \rightskip.

Suppose, for example, that the paragraph consists entirely of alternating boxes and glue skips; let
the boxes have widths z; ...z, and let the skips have widths y; ...y,, so that the paragraph can be
represented by x1y1 ... 2,y,. Let p; be the legal breakpoint at y;; then a(p;) = 1 +y1 + - + @ + yi,
and B(p;) = 1 +y1 + -+ + x;. To check this, note that the length of material from ps to ps, say, is
Y+ a3 +ys+rs+ys+ w5 =7+ B(ps) — alp2).

The quantities a, 8, v involve glue stretchability and shrinkability as well as a natural width. If we were
to compute a(p) and B(p) for each p, we would need multiple precision arithmetic, and the multiprecise
numbers would have to be kept in the active nodes. TEX avoids this problem by working entirely with
relative differences or “deltas.” Suppose, for example, that the active list contains ay d; as d2 az, where the
a’s are active breakpoints and the §’s are delta nodes. Then §; = a(a1) — a(az) and d2 = alaz) — a(as).
If the line breaking algorithm is currently positioned at some other breakpoint p, the active_width array
contains the value v 4+ 3(p) — a(ay). If we are scanning through the list of active nodes and considering a
tentative line that runs from ag to p, say, the cur_active_width array will contain the value v+ (p) — a(az).
Thus, when we move from as to az, we want to add a(as) — a(as) to cur_active_width; and this is just da,
which appears in the active list between as and a3. The background array contains . The break_width array
will be used to calculate values of new delta nodes when the active list is being updated.

824. Glue nodes in a horizontal list that is being paragraphed are not supposed to include “infinite”
shrinkability; that is why the algorithm maintains four registers for stretching but only one for shrinking. If
the user tries to introduce infinite shrinkability, the shrinkability will be reset to finite and an error message
will be issued. A boolean variable no_shrink_error_yet prevents this error message from appearing more
than once per paragraph.

#define check_shrinkage (A)
if ((shrink_order(A) # normal) A (shrink(A) # 0)) { A = finite_shrink (A);

(Global variables 13) +=
static bool no_shrink_error_yet; /*have we complained about infinite shrinkage? %/

368 BREAKING PARAGRAPHS INTO LINES TEXprof

825. (Declare subprocedures for line_break 825) =
static pointer finite_shrink (pointer p) /xrecovers from infinite shrinkage */
{ pointer ¢; /xnew glue specification */

if (no_shrink_error_yet) { no_shrink_error_yet = false;
#ifdef STAT
if (tracing_paragraphs > 0) end_diagnostic(true);
#endif
print_err ("Infinite_ glue shrinkage found,in a paragraph");
helps ("Theuparagraph._ljustuended_,includesusome_,glue_,thatuhas "
"infinite_ shrinkability,,e.g.,u‘\\hskip Opt minus 1fil’.",
"Such,glue doesn’t belong there---it,allows a paragraph",
"of jany length to fit on one line. But,it’s safe to proceed,",
"since the offensive shrinkability has been made finite.");
error () ;
#ifdef STAT
if (tracing_paragraphs > 0) begin_diagnostic();
#endif
}
q = new_spec(p);
shrink_order(q) = normal;
delete_glue_ref (p);
return g;
}
See also sections 828, 876, 894, and 941.

This code is used in section 814.

826. (Get ready to start line breaking 815) +=

no_shrink_error_yet = true;

check_shrinkage (left_skip);

check_shrinkage (right_skip);

q = left_skip;

r = right_skip;

background[1] = width(q) + width (r);

background[2] = 0;

background[3] = 0;

background[4] = 0;

background[5] = 0;
background[2 + stretch_order(q)] = stretch(q);
background[2 + stretch_order(r)] =

background[2 + stretch_order (r)] + stretch(r);

background[6] = shrink(q) + shrink (r);

o

§825

8827 TEXprof BREAKING PARAGRAPHS INTO LINES 369

827. A pointer variable cur_p runs through the given horizontal list as we look for breakpoints. This
variable is global, since it is used both by line_break and by its subprocedure try_break.

Another global variable called threshold is used to determine the feasibility of individual lines: Breakpoints
are feasible if there is a way to reach them without creating lines whose badness exceeds threshold. (The
badness is compared to threshold before penalties are added, so that penalty values do not affect the feasibility
of breakpoints, except that no break is allowed when the penalty is 10000 or more.) If threshold is 10000
or more, all legal breaks are considered feasible, since the badness function specified above never returns a
value greater than 10000.

Up to three passes might be made through the paragraph in an attempt to find at least one set of feasible
breakpoints. On the first pass, we have threshold = pretolerance and second_pass = final_pass = false.
If this pass fails to find a feasible solution, threshold is set to tolerance, second_pass is set true, and an
attempt is made to hyphenate as many words as possible. If that fails too, we add emergency_stretch to the
background stretchability and set final_pass = true.

{ Global variables 13) +=
static pointer cur_p; /*the current breakpoint under consideration x/
static bool second_pass; /*is this our second attempt to break this paragraph? x/
static bool final_pass; /1s this our final attempt to break this paragraph? */
static int threshold; /+*maximum badness on feasible lines */

370 BREAKING PARAGRAPHS INTO LINES TEXprof 8828

828. The heart of the line-breaking procedure is ‘try_break’, a subroutine that tests if the current break-
point cur_p is feasible, by running through the active list to see what lines of text can be made from active
nodes to cur_p. If feasible breaks are possible, new break nodes are created. If cur_p is too far from an
active node, that node is deactivated.

The parameter pi to try_break is the penalty associated with a break at cur_p; we have pi = eject_penalty
if the break is forced, and pi = inf_penalty if the break is illegal.

The other parameter, break_type, is set to hyphenated or unhyphenated, depending on whether or not
the current break is at a disc_node. The end of a paragraph is also regarded as ‘hyphenated’; this case is
distinguishable by the condition cur_p = null.

#define copy_to_cur_active(A) cur_active_width[A] = active_width[A]

(Declare subprocedures for line_break 825) +=
static void try_break (int pi,small_number break_type)
{ pointer r; /*runs through the active list %/
pointer prev_r; /xstays a step behind 7 */
halfword old_l; /+*maximum line number in current equivalence class of lines %/
bool no_break_yet; /+have we found a feasible break at cur_p?x/

(Other local variables for try_break 829)
(Make sure that pi is in the proper range 830);
no_break_yet = true;
prev_r = active;
old_l = 0;
do_all_siz (copy_to_cur_active);
loop { resume: r = link (prev_r);
(If node r is of type delta_node, update cur_active_width, set prev_r and prev_prev_r, then goto
resume 831);
(If a line number class has ended, create new active nodes for the best feasible breaks in that class;
then return if r = last_active, otherwise compute the new line_width 834);
(Consider the demerits for a line from r to cur_p; deactivate node r if it should no longer be
active; then goto resume if a line from r to cur_p is infeasible, otherwise record a new feasible
break 850);
}
end: ;
#ifdef STAT
(Update the value of printed_node for symbolic displays 857);
#endif

}

6829 TEXprof BREAKING PARAGRAPHS INTO LINES

829. (Other local variables for try_break 829) =
pointer prev_prev_r; /*a step behind prev_r, if type(prev_r) = delta_node x/

pointer s; /+runs through nodes ahead of cur_p */
pointer g; /*points to a new node being created x/
pointer v; /*points to a glue specification or a node ahead of cur_p x/
int ¢; /xmnode count, if cur_p is a discretionary node */
internal_font_number f; /*used in character width calculation %/
halfword I; /+line number of current active node */
bool node_r_stays_active; /xshould node r remain in the active list? /
scaled line_width; /xthe current line will be justified to this width x/
int fit_class; /* possible fitness class of test line */
halfword b; /*badness of test line x/
int d; /*demerits of test line */
bool artificial_demerits; /+has d been forced to zero? x/
#ifdef STAT
pointer save_link; /*temporarily holds value of link (cur_p) x/
#endif
scaled shortfall; /*used in badness calculations */

This code is used in section 828.

830. (Make sure that pi is in the proper range 830) =
if (abs(pi) > inf_penalty)
if (pi > 0) goto end; /*this breakpoint is inhibited by infinite penalty x/
else pi = eject_penalty /*this breakpoint will be forced %/

This code is used in section 828.

831. The following code uses the fact that type (last_active) # delta_node.
#define update_width(A) cur_active_width[A] = cur_active_width[A] + mem[r + A].sc

(If node r is of type delta_node, update cur_active_width, set prev_r and prev_prev_r, then goto
resume 831) =
if (type(r) = delta_node) { do_all_siz (update_width);
Prev_prev_r = prev_r;
prev_r =r;
goto resume;

}

This code is used in section 828.

371

372 BREAKING PARAGRAPHS INTO LINES TEXprof 8832

832. As we consider various ways to end a line at cur_p, in a given line number class, we keep track of the
best total demerits known, in an array with one entry for each of the fitness classifications. For example,
minimal_demerits [tight_fit] contains the fewest total demerits of feasible line breaks ending at cur_p with
a tight_fit line; best_place[tight_fit] points to the passive node for the break before cur_p that achieves
such an optimum; and best_pl_line[tight_fit] is the line_number field in the active node corresponding to
best_place[tight_fit]. When no feasible break sequence is known, the minimal_demerits entries will be equal
to awful_bad, which is 23° — 1. Another variable, minimum_demerits, keeps track of the smallest value in
the minimal_demerits array.

#define awful_bad °7777777777 /*more than a billion demerits */

(Global variables 13) +=
static int minimal_demerits0[tight_fit — very_loose_fit + 1],
xconst minimal_demerits = minimal_demerits0 — very_loose_fit;
/xDbest total demerits known for current line class and position, given the fitness */
static int minimum_demerits; /* best total demerits known for current line class and position */
static pointer best_place0 [tight_fit — very_loose_fit + 1], xconst best_place = best_placel — very_loose_fit;
/+how to achieve minimal_demerits x/
static halfword best_pl_line0 [tight_fit — very_loose_fit + 1],
xconst best_pl_line = best_pl_line0 — very_loose_fit; /* corresponding line number x/

833. (Get ready to start line breaking 815) +=
minimum_demerits = awful_bad;
minimal_demerits[tight_fit] = awful_bad;
minimal_demerits[decent_fit] = awful_bad;
minimal_demerits[loose_fit] = awful_bad;
minimal_demerits [very_loose_fit] = awful_bad;

834. The first part of the following code is part of TEX’s inner loop, so we don’t want to waste any time.
The current active node, namely node r, contains the line number that will be considered next. At the end
of the list we have arranged the data structure so that r = last_active and line_number (last_active) > old_l.

(If a line number class has ended, create new active nodes for the best feasible breaks in that class; then
return if r = last_active, otherwise compute the new line_width 834) =
{ 1 = line_number (r);
if (I > old_l) { /+*now we are no longer in the inner loop */
if ((minimum_demerits < awful_bad) A
((old_l # easy_line) V (r = last_active)))

(Create new active nodes for the best feasible breaks just found 835);
if (r = last_active) goto end;
(Compute the new line width 849);

}
}

This code is used in section 828.

6835 TEXprof BREAKING PARAGRAPHS INTO LINES 373

835. It is not necessary to create new active nodes having minimal_demerits greater than minimum_demerits+ii
abs (adj_demerits), since such active nodes will never be chosen in the final paragraph breaks. This obser-
vation allows us to omit a substantial number of feasible breakpoints from further consideration.

(Create new active nodes for the best feasible breaks just found 835) =
{ if (no_break_yet) (Compute the values of break_width 836);
(Insert a delta node to prepare for breaks at cur_p 842);
if (abs(adj_demerits) > awful_bad — minimum_demerits) minimum_demerits = awful_bad — 1;
else minimum_demerits = minimum_demerits + abs(adj_demerits);
for (fit_class = very_loose_fit; fit_class < tight_fit; fit_class++) {
if (minimal_demerits[fit_class] < minimum_demerits)
(Insert a new active node from best_place|[fit_class] to cur_p 844);
minimal_demerits[fit_class] = awful_bad;
}
minimum_demerits = awful_bad;
(Insert a delta node to prepare for the next active node 843);

}

This code is used in section 834.

836. When we insert a new active node for a break at cur_p, suppose this new node is to be placed just
before active node a; then we essentially want to insert ‘6 cur_p §’” before a, where § = a(a) — a(cur_p) and
8" = a(cur_p) — a(a) in the notation explained above. The cur_active_width array now holds v+ S(cur_p) —
a(a); so § can be obtained by subtracting cur_active_width from the quantity v+ B(cur_p) — a(cur_p). The
latter quantity can be regarded as the length of a line “from cur_p to cur_p”; we call it the break_width at
cur_p.

The break_width is usually negative, since it consists of the background (which is normally zero) minus the
width of nodes following cur_p that are eliminated after a break. If, for example, node cur_p is a glue node,
the width of this glue is subtracted from the background; and we also look ahead to eliminate all subsequent
glue and penalty and kern and math nodes, subtracting their widths as well.

Kern nodes do not disappear at a line break unless they are explicit.

#define set_break_width_to_background (A) break_width[A] = background[A]

(Compute the values of break_width 836) =
{ no_break_yet = false;
do_all_siz (set_break_width_to_background);
s = cur_p;
if (break_type > unhyphenated)
if (cur_p # null) (Compute the discretionary break_width values 839);
while (s # null) { if (is_char_node(s)) goto done;
switch (type(s)) {
case glue_node: (Subtract glue from break_width 837) break;
case penalty_node: do_nothing; break;
case math_node: break_width[1] = break_width[1] — width(s);
break; case kern_node: if (subtype(s) # explicit) goto done;
else break_width[1] = break_width[1] — width(s); break;
default: goto done; }
s = link(s); }
done: ; }

This code is used in section 835.

374 BREAKING PARAGRAPHS INTO LINES TpXprof — §837

837. (Subtract glue from break_width 837) =
{ v = glue_ptr(s);
break_width[1] = break_width[1] — width (v);
break_width|2 + stretch_order (v)] = break_width[2 + stretch_order (v)] — stretch(v);
break_width[6] = break_width[6] — shrink (v);
}

This code is used in section 836.

838. When cur_p is a discretionary break, the length of a line “from cur_p to cur_p” has to be defined
properly so that the other calculations work out. Suppose that the pre-break text at cur_p has length I,
the post-break text has length [y, and the replacement text has length I. Suppose also that ¢ is the node
following the replacement text. Then length of a line from cur_p to ¢ will be computed as v+ 3(q) —a(cur_p),
where ((q) = S(cur_p) — lp + 1. The actual length will be the background plus 1, so the length from cur_p
to cur_p should be v + Iy + I; — [. If the post-break text of the discretionary is empty, a break may also
discard ¢; in that unusual case we subtract the length of ¢ and any other nodes that will be discarded after
the discretionary break.

The value of [y need not be computed, since line_break will put it into the global variable disc_width
before calling try_break.

(Global variables 13) +=
static scaled disc_width; /the length of discretionary material preceding a break */

839. (Compute the discretionary break_width values 839) =
{ t = replace_count(cur_p);

v = cur_p;

s = post_break (cur_p);

while (¢t > 0) { decr(t);
v = link (v);
(Subtract the width of node v from break_width 840);

}

while (s # null) { (Add the width of node s to break_width 841);
s = link(s);

}

break_width[1] = break_width[1] + disc_width;

if (post_break (cur_p) = null) s = link(v); /+*nodes may be discardable after the break */

}

This code is used in section 836.

6840 TEXprof BREAKING PARAGRAPHS INTO LINES 375
840. Replacement texts and discretionary texts are supposed to contain only character nodes, kern nodes,
ligature nodes, and box or rule nodes.

(Subtract the width of node v from break_width 840) =
if (is_char_node(v)) { f = font(v);
break_width[1] = break_width[1] — char_width(f, char_info(f, character(v)));

else
switch (type (v)) {
case ligature_node:
{ f = font(lig_char(v));
break_width[1] =
break_width[1] — char_width (f, char_info(f, character (lig_char(v))));
} break;
case hlist_node: case vlist_node: case rule_node: case kern_node:
break_width[1] = break_width[1] — width (v); break;
default: confusion("disc1");

}

This code is used in section 839.

841. (Add the width of node s to break_width 841) =
if (is_char_node(s)) { f = font(s);
break_width[1] =
break_width[1] + char_width(f, char_info(f, character(s)));
}

else
switch (type(s)) {
case ligature_node:

{ f = font(lig_char(s));
break_width[1] = break_width[1] + char_width(f, char_info(f, character (lig_char(s))));

} break;

case hlist_node: case vlist_node: case rule_node: case kern_node:
break_width[1] = break_width[1] + width(s); break;

default: confusion("disc2");

}

This code is used in section 839.

376 BREAKING PARAGRAPHS INTO LINES TEXprof 6842

842. We use the fact that type(active) # delta_node.

#define convert_to_break_width(A) mem[prev_r + A].sc =
mem|[prev_r + A].sc — cur_active_width[A] + break_width[A]
#define store_break_width(A) active_width[A] = break_width[A]
#define new_delta_to_break_width(A) mem|q + A].sc = break_width[A] — cur_active_width[A]

(Insert a delta node to prepare for breaks at cur_p 842) =
if (type(prev_r) = delta_node) /+modify an existing delta node x/
{ do_all_siz (convert_to_break_width);
}
else if (prev_r = active) /*1no delta node needed at the beginning */
{ do_all_six (store_break_width);
}
else { ¢ = get_node(delta_node_size);
link(q) = r;
type(q) = delta_node;
subtype(q) = 0; /*the subtype is not used */
do_all_siz (new_delta_to_break_width);
link (prev_r) = ¢;
Prev_prev_r = prev_r;
prev_r = ¢;

}

This code is used in section 835.

843. When the following code is performed, we will have just inserted at least one active node before r,
so type(prev_r) # delta_node.

#define new_delta_from_break_width(A) mem|[q+ A].sc = cur_active_width[A] — break_width[A]

(Insert a delta node to prepare for the next active node 843) =
if (r # last_active) { q = get_node(delta_node_size);
link(q) = r;
type(q) = delta_node;
subtype(q) = 0; /xthe subtype is not used */
do_all_siz (new_delta_from_break_width);
link (prev_r) = ¢;
Prev_prev_r = prev_r;
prev_r = g;

}

This code is used in section 835.

6844 TEXprof BREAKING PARAGRAPHS INTO LINES 377

844. When we create an active node, we also create the corresponding passive node.

(Insert a new active node from best_place|fit_class] to cur_p 844) =
{ ¢ = get_node(passive_node_size);
link (q) = passive;
passive = q;
cur_break (q) = cur_p;
4ifdef STAT
incr (pass_number);
serial (q) = pass_number;
#endif
prev_break (q) = best_place|[fit_class];
q = get_node(active_node_size);
break_node(q) = passive;
line_number(q) = best_pl_line[fit_class] + 1;
fitness(q) = fit_class;
type(q) = break_type;
total_demerits (q) = minimal_demerits[fit_class];

link(q) =r;
link (prev_r) = g;
prev_r = q;

#ifdef STAT
if (tracing_paragraphs > 0) (Print a symbolic description of the new break node 845);
#endif
}

This code is used in section 835.

845. (Print a symbolic description of the new break node 845) =
{ print_nl("@e@");
print_int (serial (passive));
print(": line,");
print_int (line_number (q) — 1);
print_char(?.”);
print_int (fit_class);
if (break_type = hyphenated) print_char(’=");
print ("Lut=");
print_int (total_demerits(q));
print("u->,00");
if (prev_break (passive) = null) print_char(?0’);
else print_int(serial (prev_break (passive)));

}

This code is used in section 844.

378 BREAKING PARAGRAPHS INTO LINES TEXprof 6846

846. The length of lines depends on whether the user has specified \parshape or \hangindent. If
par_shape_ptr is not null, it points to a (2n + 1)-word record in mem, where the info in the first word
contains the value of n, and the other 2n words contain the left margins and line lengths for the first n lines
of the paragraph; the specifications for line n apply to all subsequent lines. If par_shape_ptr = null, the
shape of the paragraph depends on the value of n = hang_after; if n > 0, hanging indentation takes place on
lines n+1, n+2, ..., otherwise it takes place on lines 1, ..., |[n|]. When hanging indentation is active, the left
margin is hang_indent, if hang_indent > 0, else it is 0; the line length is hsize — |hang_indent|. The normal
setting is par_shape_ptr = null, hang_after = 1, and hang_indent = 0. Note that if hang_indent = 0, the
value of hang_after is irrelevant.
(Global variables 13) +=

static halfword easy_line; /+line numbers > easy_line are equivalent in break nodes x/

static halfword last_special_line; /xline numbers > last_special_line all have the same width */

static scaled first_width;

/*the width of all lines < last_special_line, if no \parshape has been specified %/

static scaled second_width; /*the width of all lines > last_special_line x/
static scaled first_indent; /xleft margin to go with first_width */
static scaled second_indent; /xleft margin to go with second_width */

847. We compute the values of easy_line and the other local variables relating to line length when the
line_break procedure is initializing itself.

(Get ready to start line breaking 815) +=
if (par_shape_ptr = null)
if (hang_indent = 0) { last_special_line = 0;
second_width = hsize;
second_indent = 0;
}
else (Set line length parameters in preparation for hanging indentation 848)
else { last_special_line = info(par_shape_ptr) — 1;
second_width = mem[par_shape_ptr + 2 x (last_special_line + 1)].sc;
second_indent = mem/[par_shape_ptr + 2 x last_special_line + 1].sc;
}
if (looseness = 0) easy_line = last_special_line;
else easy_line = max_halfword

848. (Set line length parameters in preparation for hanging indentation 848) =
{ last_special_line = abs(hang_after);

if (hang_after < 0) { first_width = hsize — abs(hang_indent);
if (hang_indent > 0) first_indent = hang_indent;
else first_indent = 0;
second_width = hsize;
second_indent = 0;

}

else { first_width = hsize;
first_indent = 0;
second_width = hsize — abs(hang_indent);
if (hang_indent > 0) second_indent = hang_indent;
else second_indent = 0;

}
}

This code is used in section 847.

6849 TEXprof BREAKING PARAGRAPHS INTO LINES 379

849. When we come to the following code, we have just encountered the first active node r whose
line_number field contains [. Thus we want to compute the length of the [th line of the current paragraph.
Furthermore, we want to set old_I to the last number in the class of line numbers equivalent to [.

(Compute the new line width 849) =
if (I > easy_line) { line_width = second_width;
old_l = maz_halfword — 1;

else { old_l =1;
if (I > last_special_line) line_width = second_width;
else if (par_shape_ptr = null) line_width = first_width;
else line_width = mem[par_shape_ptr + 2 x 1].sc;

}

This code is used in section 834.

850. The remaining part of try_break deals with the calculation of demerits for a break from r to cur_p.

The first thing to do is calculate the badness, b. This value will always be between zero and inf_bad + 1;
the latter value occurs only in the case of lines from 7 to cur_p that cannot shrink enough to fit the necessary
width. In such cases, node r will be deactivated. We also deactivate node r when a break at cur_p is forced,
since future breaks must go through a forced break.

{ Consider the demerits for a line from r to cur_p; deactivate node r if it should no longer be active; then
goto resume if a line from 7 to cur_p is infeasible, otherwise record a new feasible break 850) =
{ artificial_demerits = false;
shortfall = line_width — cur_active_width[1]; ~ /+we’re this much too short */
if (shortfall > 0) (Set the value of b to the badness for stretching the line, and compute the
corresponding fit_class 851)
else (Set the value of b to the badness for shrinking the line, and compute the corresponding
fit_class 852);
if ((b > inf_bad) V (pi = eject_penalty)) (Prepare to deactivate node r, and goto deactivate unless
there is a reason to consider lines of text from r to cur_p 853)
else { prev_r =r;
if (b > threshold) goto resume;
node_r_stays_active = true;
}
(Record a new feasible break 854);
if (node_r_stays_active) goto resume; /% prev_r has been set to r*/
deactivate: {Deactivate node 7 859);

}

This code is used in section 828.

380 BREAKING PARAGRAPHS INTO LINES TEXprof 8851

851. When a line must stretch, the available stretchability can be found in the subarray cur_active_width[2 . j
5], in units of points, fil, fill, and filll.

The present section is part of TEX’s inner loop, and it is most often performed when the badness is infinite;
therefore it is worth while to make a quick test for large width excess and small stretchability, before calling
the badness subroutine.

(Set the value of b to the badness for stretching the line, and compute the corresponding fit_class 851) =
if ((cur_active_width[3] # 0) V (cur_active_width[4] # 0) V
(cur_active_width[5] # 0)) { b= 0;
fit_class = decent_fit; /*infinite stretch*/

else { if (shortfall > 7230584)
if (cur_active_width[2] < 1663497) { b = inf_bad;
fit_class = very_loose_fit;
goto donel;

b = badness (shortfall, cur_active_width[2]);
if (b > 12)
if (b > 99) fit_class = very_loose_fit;
else fit_class = loose_fit;
else fit_class = decent_fit;
donel : ;

}

This code is used in section 850.

852. Shrinkability is never infinite in a paragraph; we can shrink the line from r to cur_p by at most
cur_active_width [6].

(Set the value of b to the badness for shrinking the line, and compute the corresponding fit_class 852) =
{ if (—=shortfall > cur_active_width[6]) b = inf_bad + 1;
else b = badness(—shortfall, cur_active_width[6]);
if (b > 12) fit_class = tight_fit; else fit_class = decent_fit;

This code is used in section 850.

853. During the final pass, we dare not lose all active nodes, lest we lose touch with the line breaks already
found. The code shown here makes sure that such a catastrophe does not happen, by permitting overfull
boxes as a last resort. This particular part of TEX was a source of several subtle bugs before the correct
program logic was finally discovered; readers who seek to “improve” TEX should therefore think thrice before
daring to make any changes here.

(Prepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from r
to cur_p 853) =
{ if (final_pass A (minimum_demerits = awful_bad) N
(link (r) = last_active) A (prev_r = active)) artificial_demerits = true;
/*set demerits zero, this break is forced */

else if (b > threshold) goto deactivate;

node_r_stays_active = false;
}

This code is used in section 850.

6854 TEXprof BREAKING PARAGRAPHS INTO LINES 381

854. When we get to this part of the code, the line from r to cur_p is feasible, its badness is b, and
its fitness classification is fit_class. We don’t want to make an active node for this break yet, but we will
compute the total demerits and record them in the minimal_demerits array, if such a break is the current
champion among all ways to get to cur_p in a given line-number class and fitness class.

(Record a new feasible break 854) =
if (artificial_demerits) d = 0;
else (Compute the demerits, d, from r to cur_p 858);
4ifdef STAT
if (tracing_paragraphs > 0) (Print a symbolic description of this feasible break 855);
#endif
d = d + total_demerits(r); /*this is the minimum total demerits from the beginning to cur_p via r %/
if (d < minimal_demerits[fit_class]) { minimal_demerits[fit_class] = d;
best_place|[fit_class] = break_node(r);
best_pl_line[fit_class] = I;
if (d < minimum_demerits) minimum_demerits = d;

}

This code is used in section 850.

855. (Print a symbolic description of this feasible break 855) =
{ if (printed_node # cur_p)

(Print the list between printed_node and cur_p, then set printed_node: = cur_p 856);

print_nl("@");

if (cur_p = null) print_esc("par");

else if (type(cur_p) # glue_node) { if (type(cur_p) = penalty_node) print_esc("penalty");
else if (type(cur_p) = disc_node) print_esc("discretionary");
else if (type(cur_p) = kern_node) print_esc("kern");
else print_esc("math");

}

print("Lvia 00");

if (break_node(r) = null) print_char(’0’);

else print_int(serial (break_node(r)));

print("ub=");

if (b > inf_bad) print_char(’*’); else print_int(b);

print("up=");

print_int (pi);

print("Ld=");

if (artificial_demerits) print_char(’*’); else print_int(d);

}

This code is used in section 854.

856. (Print the list between printed_node and cur_p, then set printed_node: = cur_p 856) =
{ print_nl("");

if (cur_p = null) short_display (link (printed_node));

else { save_link = link(cur_p);
link (cur_p) = null;
print_nl("");
short_display (link (printed_node));
link (cur_p) = save_link;

printed_node = cur_p;

}

This code is used in section 855.

382 BREAKING PARAGRAPHS INTO LINES TEXprof §857

857. When the data for a discretionary break is being displayed, we will have printed the pre_break and
post_break lists; we want to skip over the third list, so that the discretionary data will not appear twice.
The following code is performed at the very end of try_break.

(Update the value of printed_node for symbolic displays 857) =
if (cur_p = printed_node)
if (cur_p # null)

if (type(cur_p) = disc_node) { t = replace_count(cur_p);

while (¢t > 0) { decr(t);
printed_node = link (printed_node);

}

}

This code is used in section 828.

858. (Compute the demerits, d, from r to cur_p 858) =
{ d = line_penalty + b;
if (abs(d) > 10000) d = 100000000; else d = d * d;
if (pi #0)
if (pi >0) d=d+ pi = pi;
else if (pi > eject_penalty) d = d — pi * pi;
if ((break_type = hyphenated) A (type(r) = hyphenated))
if (cur_p # null) d = d 4+ double_hyphen_demerits;
else d = d + final_hyphen_demerits;
if (abs(fit_class — fitness(r)) > 1) d = d + adj_demerits;
}

This code is used in section 854.

859. When an active node disappears, we must delete an adjacent delta node if the active node was at the
beginning or the end of the active list, or if it was surrounded by delta nodes. We also must preserve the
property that cur_active_width represents the length of material from link (prev_r) to cur_p.

#define combine_two_deltas(A) mem[prev_r + A].sc = mem[prev_r + A].sc + mem[r + A].sc
#define downdate_width(A) cur_active_width[A] = cur_active_width[A] — mem[prev_r + A].sc

(Deactivate node r 859) =
link (prev_r) = link (r);
free_node(r, active_node_size);
if (prev_r = active) (Update the active widths, since the first active node has been deleted 860)
else if (type(prev_r) = delta_node) { r = link (prev_r);
if (r = last_active) { do_all_siz (downdate_width);
link (prev_prev_r) = last_active;
free_node(prev_r, delta_node_size);
pPrev_r = prev_prev_r;
}
else if (type(r) = delta_node) { do_all_siz (update_width);
do_all_siz (combine_two_deltas);
link (prev_r) = link(r);
free_node(r, delta_node_size);
}
}

This code is used in section 850.

8860 TEXprof BREAKING PARAGRAPHS INTO LINES 383

860. The following code uses the fact that type(last_active) # delta_node. If the active list has just
become empty, we do not need to update the active_width array, since it will be initialized when an active
node is next inserted.

#define update_active (A) active_width[A] = active_width[A] + mem[r + A].sc

(Update the active widths, since the first active node has been deleted 860) =
{ r = link (active);
if (type(r) = delta_node) { do_all_siz (update_active);
do_all_siz (copy_to_cur_active);
link (active) = link (r);
free_node(r, delta_node_size);
}
}

This code is used in section 859.

384 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof 8861

861. Breaking paragraphs into lines, continued. So far we have gotten a little way into the
line_break routine, having covered its important try_break subroutine. Now let’s consider the rest of the
process.

The main loop of line_break traverses the given hlist, starting at link (temp_head), and calls try_break at
each legal breakpoint. A variable called auto_breaking is set to true except within math formulas, since glue
nodes are not legal breakpoints when they appear in formulas.

The current node of interest in the hlist is pointed to by cur_p. Another variable, prev_p, is usually one
step behind cur_p, but the real meaning of prev_p is this: If type(cur_p) = glue_node then cur_p is a legal
breakpoint if and only if auto_breaking is true and prev_p does not point to a glue node, penalty node,
explicit kern node, or math node.

The following declarations provide for a few other local variables that are used in special calculations.

(Local variables for line breaking 861) =
bool auto_breaking; /*xis node cur_p outside a formula? x/
pointer prev_p; /*helps to determine when glue nodes are breakpoints */
pointer q,r, s, prev_s; /*miscellaneous nodes of temporary interest x/
internal_font_number f; /xused when calculating character widths*/
See also section 892.

This code is used in section 814.

8862 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 385

862. The ‘loop’ in the following code is performed at most thrice per call of line_break, since it is actually
a pass over the entire paragraph.

(Find optimal breakpoints 862) =
threshold = pretolerance;
if (threshold > 0) {
#ifdef STAT
if (tracing_paragraphs > 0) { begin_diagnostic();
print_nl("@firstpass"); }
#endif
second_pass = false;
final_pass = false;

else { threshold = tolerance;
second_pass = true;
final_pass = (emergency_stretch < 0);
#ifdef STAT
if (tracing_paragraphs > 0) begin_diagnostic();
#endif
}
loop { if (threshold > inf_bad) threshold = inf_bad;
if (second_pass) (Initialize for hyphenating a paragraph 890);
(Create an active breakpoint representing the beginning of the paragraph 863);
cur_p = link(temp_head);
auto_breaking = true;
Prev_p = cur_p; /* glue at beginning is not a legal breakpoint x/
while ((cur_p # null) A (link (active) # last_active)) (Call try_break if cur_p is a legal breakpoint;
on the second pass, also try to hyphenate the next word, if cur_p is a glue node; then advance
cur_p to the next node of the paragraph that could possibly be a legal breakpoint 865);
if (cur_p = null) {Try the final line break at the end of the paragraph, and goto done if the desired
breakpoints have been found 872);
(Clean up the memory by removing the break nodes 864);
if (—second_pass) {
#ifdef STAT
if (tracing_paragraphs > 0) print_nl("@secondpass");
#endif
threshold = tolerance;
second_pass = true;
final_pass = (emergency_stretch < 0);
} /xif at first you don’t succeed, ... */
else {
#ifdef STAT
if (tracing_paragraphs > 0) print_nl("@emergencypass");
#endif
background[2] = background[2] + emergency_stretch;
final_pass = true;
}
}
done:
#ifdef STAT
if (tracing_paragraphs > 0) { end_diagnostic(true);
normalize_selector();
}

386 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof 8862

#endif

This code is used in section 814.

863. The active node that represents the starting point does not need a corresponding passive node.
#define store_background(A) active_width[A] = background[A]

(Create an active breakpoint representing the beginning of the paragraph 863) =
q = get_node(active_node_size);
type (q) = unhyphenated;
fitness(q) = decent_fit;
link (q) = last_active;
break_node (q) = null;
line_number(q) = prev_graf + 1;
total_demerits(q) = 0;
link (active) = q;
do_all_siz (store_background);
passive = null;
printed_node = temp_head;
pass_number = 0; font_in_short_display = null_font

This code is used in section 862.

864. (Clean up the memory by removing the break nodes 864) =
q = link (active);
while (q # last_active) { cur_p = link(q);
if (type(q) = delta_node) free_node(q, delta_node_size);
else free_node(q, active_node_size);
q = cur_p;
} .
q = passive;
while (g # null) { cur_p = link(q);
free_node(q, passive_node_size);
q = cur_p;

}

This code is used in sections 814 and 862.

8865 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 387

865. Here is the main switch in the line_break routine, where legal breaks are determined. As we move
through the hlist, we need to keep the active_width array up to date, so that the badness of individual lines
is readily calculated by try_break. It is convenient to use the short name act_width for the component of
active width that represents real width as opposed to glue.

#define act_width active_width[l] /*length from first active node to current node */
#define kern_break
{ if (—is_char_node (link (cur_p)) A auto_breaking)
if (type (link(cur_p)) = glue_node) try_break (0, unhyphenated);
act_width = act_width + width(cur_p);

}

(Call try_break if cur_p is a legal breakpoint; on the second pass, also try to hyphenate the next word, if
cur_p is a glue node; then advance cur_p to the next node of the paragraph that could possibly be a
legal breakpoint 865) =

{ if (is_char_node(cur_p)) { Advance cur_p to the node following the present string of characters 866);
switch (type(cur_p)) {

case hlist_node: case vlist_node: case rule_node: act_width = act_width + width(cur_p); break;

case whatsit_node: { Advance past a whatsit node in the line_break loop 1361) break;

case glue_node:

{ (If node cur_p is a legal breakpoint, call ¢ry_break; then update the active widths by including the
glue in glue_ptr(cur_p) 867);
if (second_pass A auto_breaking) (Try to hyphenate the following word 893);
} break; case kern_node: if (subtype(cur_p) = explicit) kern_break
else act_width = act_width + width(cur_p); break;
case ligature_node:
{ f = font(lig_char (cur_p));
act_width = act_width + char_width(f, char_info(f, character (lig_char (cur_p))));
} break;
case disc_node: {Try to break after a discretionary fragment, then goto done5 868)
case math_node:
{ auto_breaking = (subtype(cur_p) = after);
kern_break;
} break;

case penalty_node: try_break (penalty (cur_p), unhyphenated); break;

case mark_node: case ins_node: case adjust_node: do_nothing; break;

default: confusion("paragraph"); }

Prev_p = cur_p;
cur_p = link (cur_p);
dones: ; }

This code is used in section 862.

388 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof 8866

866. The code that passes over the characters of words in a paragraph is part of TEX’s inner loop, so it has
been streamlined for speed. We use the fact that ‘\parfillskip’ glue appears at the end of each paragraph;
it is therefore unnecessary to check if link(cur_p) = null when cur_p is a character node.

(Advance cur_p to the node following the present string of characters 866) =
{ prev_p = cur_p;
do {
f = font (cur_p);
act_width = act_width + char_width(f, char_info(f, character (cur_p)));
cur_p = link (cur_p);
} while (—(—is_char_node(cur_p)));

This code is used in section 865.

867. When node cur_p is a glue node, we look at prev_p to see whether or not a breakpoint is legal at
cur_p, as explained above.

(If node cur_p is a legal breakpoint, call ¢ry_break; then update the active widths by including the glue in

glue_ptr(cur_p) 867) =

if (auto_breaking) { if (is_char_node(prev_p)) try_break (0, unhyphenated);

else if (precedes_break (prev_p)) try_break (0, unhyphenated);

else if ((type(prev_p) = kern_node) A (subtype(prev_p) # explicit)) try_break (0, unhyphenated); }
check_shrinkage (glue_ptr(cur_p));

q = glue_ptr(cur_p);

act_width = act_width + width(q);

active_width|[2 + stretch_order(q)] =
active_width[2 + stretch_order(q)] + stretch(q);
active_width [6] = active_width[6] + shrink(q)

This code is used in section 865.

8868 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 389

868. The following code knows that discretionary texts contain only character nodes, kern nodes, box
nodes, rule nodes, and ligature nodes.

(Try to break after a discretionary fragment, then goto dones 868) =
{ s = pre_break (cur_p);
disc_width = 0;
if (s = null) try_break (ex_hyphen_penalty, hyphenated);
else { do {
(Add the width of node s to disc_width 869);
s = link(s);
} while (—(s = null));
act_width = act_width + disc_width;
try_break (hyphen_penalty , hyphenated);
act_width = act_width — disc_width;
}

r = replace_count(cur_p);

s = link(cur_p);

while (r > 0) { (Add the width of node s to act_width 870);
decr (r);
s = link(s);

}

Prev_p = cur_p;

cur_p = s;

goto dones;

}

This code is used in section 865.

869. (Add the width of node s to disc_width 869) =
if (is_char_node(s)) { f = font(s);
disc_width = disc_width + char_width(f, char_info(f, character(s)));
}
else
switch (type(s)) {
case ligature_node:
{ f = font(lig_char(s));
disc_width = disc_width + char_width(f, char_info(f, character (lig_char(s))));
} break;
case hlist_node: case vlist_node: case rule_node: case kern_node:
disc_width = disc_width + width(s); break;
default: confusion("disc3");

}

This code is used in section 868.

390 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof 8870

870. (Add the width of node s to act_width 870) =
if (is_char_node(s)) { f = font(s);
act_width = act_width + char_width(f, char_info(f, character(s)));
}
else
switch (type(s)) {
case ligature_node:
{ f = font(lig_char(s));
act_width = act_width + char_width(f, char_info(f, character (lig_char(s))));
} break;
case hlist_node: case vlist_node: case rule_node: case kern_node:
act_width = act_width + width(s); break;
default: confusion("disc4");

}

This code is used in section 868.

871. The forced line break at the paragraph’s end will reduce the list of breakpoints so that all active
nodes represent breaks at cur_p = null. On the first pass, we insist on finding an active node that has the
correct “looseness.” On the final pass, there will be at least one active node, and we will match the desired
looseness as well as we can.

The global variable best_bet will be set to the active node for the best way to break the paragraph, and a
few other variables are used to help determine what is best.

(Global variables 13) +=

static pointer best_bet; /xuse this passive node and its predecessors */
static int fewest_demerits; /+the demerits associated with best_bet */
static halfword best_line; /*line number following the last line of the new paragraph =/

static int actual_looseness;
/+ the difference between line_number (best_bet) and the optimum best_line */
static int line_diff ; /xthe difference between the current line number and the optimum best_line */

872. (Try the final line break at the end of the paragraph, and goto done if the desired breakpoints have
been found 872) =
{ try_break (eject_penalty, hyphenated);
if (link (active) # last_active) { (Find an active node with fewest demerits 873);
if (looseness = 0) goto done;
(Find the best active node for the desired looseness 874);
if ((actual_looseness = looseness) V final_pass) goto done;

}
}

This code is used in section 862.

873. (Find an active node with fewest demerits 873) =
r = link (active);
fewest_demerits = awful_bad;
do {
if (type(r) # delta_node)
if (total_demerits(r) < fewest_demerits) { fewest_demerits = total_demerits(r);
best_bet = r;

r = link(r);
} while (—=(r = last_active)); best_line = line_number (best_bet)

This code is used in section 872.

6874 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 391

874. The adjustment for a desired looseness is a slightly more complicated version of the loop just
considered. Note that if a paragraph is broken into segments by displayed equations, each segment will
be subject to the looseness calculation, independently of the other segments.

(Find the best active node for the desired looseness 874) =
{ r = link (active);
actual_looseness = 0;
do {
if (type(r) # delta_node) { line_diff = line_number(r) — best_line;
if (((line_diff < actual_looseness) A (looseness < line_diff)) V
((line_diff > actual_looseness) A (looseness > line_diff))) { best_bet = r;
actual_looseness = line_diff ;
fewest_demerits = total_demerits(r);
}
else if ((line_diff = actual_looseness) A
(total_demerits(r) < fewest_demerits)) { best_bet = r;
fewest_demerits = total_demerits(r);
}
}
r = link(r);
} while (—(r = last_active));
best_line = line_number (best_bet);

}

This code is used in section 872.

875. Once the best sequence of breakpoints has been found (hurray), we call on the procedure post_line_break]]
to finish the remainder of the work. (By introducing this subprocedure, we are able to keep line_break from
getting extremely long.)
(Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and
append them to the current vertical list 875) =
post_line_break (final_widow_penalty)

This code is used in section 814.

392 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof 8876

876. The total number of lines that will be set by post_line_break is best_line — prev_graf — 1. The last
breakpoint is specified by break_node(best_bet), and this passive node points to the other breakpoints via
the prev_break links. The finishing-up phase starts by linking the relevant passive nodes in forward order,
changing prev_break to next_break. (The next_break fields actually reside in the same memory space as the
prev_break fields did, but we give them a new name because of their new significance.) Then the lines are
justified, one by one.

#define next_break prev_break /+new name for prev_break after links are reversed */

(Declare subprocedures for line_break 825) +=
static void post_line_break (int final_widow_penalty)

{ pointer ¢, r,s; /* temporary registers for list manipulation x/
bool disc_break; /*was the current break at a discretionary node? x/
bool post_disc_break; /*and did it have a nonempty post-break part? x/
scaled cur_width; /+width of line number cur_line x/
scaled cur_indent; /xleft margin of line number cur_line */
quarterword ¢t; /xused for replacement counts in discretionary nodes */
int pen; /* use when calculating penalties between lines */
halfword cur_line; /*the current line number being justified */

(Reverse the links of the relevant passive nodes, setting cur_p to the first breakpoint 877);
cur_line = prev_graf + 1;
do {

(Justify the line ending at breakpoint cur_p, and append it to the current vertical list, together with

associated penalties and other insertions 879);

incr (cur_line);

cur_p = next_break (cur_p);

if (cur_p # null)

if (—post_disc_break) (Prune unwanted nodes at the beginning of the next line 878);

} while (=(cur_p = null));
if ((cur_line # best_line) V (link (temp_head) # null)) confusion("line breaking");
prev_graf = best_line — 1;

}

877. The job of reversing links in a list is conveniently regarded as the job of taking items off one stack
and putting them on another. In this case we take them off a stack pointed to by ¢ and having prev_break
fields; we put them on a stack pointed to by cur_p and having next_break fields. Node r is the passive node
being moved from stack to stack.

(Reverse the links of the relevant passive nodes, setting cur_p to the first breakpoint 877) =
q = break_node (best_bet);
cur_p = null;
do {
r=q
q = prev_break(q);
next_break (r) = cur_p;
cur_p =r;
} while (—(q = null))

This code is used in section 876.

6878 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 393

878. Glue and penalty and kern and math nodes are deleted at the beginning of a line, except in the
anomalous case that the node to be deleted is actually one of the chosen breakpoints. Otherwise the pruning
done here is designed to match the lookahead computation in ¢ry_break, where the break_width values are
computed for non-discretionary breakpoints.

(Prune unwanted nodes at the beginning of the next line 878) =
{ r = temp_head; loop { q = link(r);
if (¢ = cur_break(cur_p)) goto donel; /% cur_break(cur_p) is the next breakpoint */
/*now ¢ cannot be null x/
if (is_char_node(q)) goto donel;
if (non_discardable(q)) goto donel;
if (type(q) = kern_node) if (subtype(q) # explicit) goto donel;
r=q; /+xnow type(q) = glue_node, kern_node, math_node, or penalty_node x/

}

donel :
if (r # temp_head) { link(r) = null;
flush_node_list (link (temp_head));
link (temp_head) = q;
}
}

This code is used in section 876.

879. The current line to be justified appears in a horizontal list starting at link (temp_head) and ending
at cur_break (cur_p). If cur_break(cur_p) is a glue node, we reset the glue to equal the right_skip glue;
otherwise we append the right_skip glue at the right. If cur_break (cur_p) is a discretionary node, we modify
the list so that the discretionary break is compulsory, and we set disc_break to true. We also append the
left_skip glue at the left of the line, unless it is zero.

(Justify the line ending at breakpoint cur_p, and append it to the current vertical list, together with

associated penalties and other insertions 879) =

(Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the
proper value of disc_break 880);

(Put the \leftskip glue at the left and detach this line 886);

(Call the packaging subroutine, setting just_box to the justified box 888);

(Append the new box to the current vertical list, followed by the list of special nodes taken out of the
box by the packager 887);

(Append a penalty node, if a nonzero penalty is appropriate 889)

This code is used in section 876.

394 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof §880

880. At the end of the following code, ¢ will point to the final node on the list about to be justified.

(Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the

proper value of disc_break 880) =

q = cur_break (cur_p);

disc_break = false;

post_disc_break = false;

if (¢ # null) /+q cannot be a char_node x/

if (type(q) = glue_node) { delete_glue_ref (glue_ptr(q));

glue_ptr(q) = right_skip;
subtype(q) = right_skip_code + 1;
add_glue_ref (right_skip);
goto done;

else { if (type(q) = disc_node) (Change discretionary to compulsory and set disc_break: = true 881)
else if ((type(q) = math_node) V (type(q) = kern_node)) width(q) = 0;

}

else { ¢ = temp_head;
while (link(q) # null) q = link(q);
}
(Put the \rightskip glue after node g 885);
done:

This code is used in section 879.

881. (Change discretionary to compulsory and set disc_break: = true 881) =
{ t = replace_count(q);
(Destroy the t nodes following ¢, and make r point to the following node 882);
if (post_break(q) # null) (Transplant the post-break list 883);
if (pre_break(q) # null) { Transplant the pre-break list 884);
link(q) = r;
disc_break = true;

}

This code is used in section 880.

882. (Destroy the t nodes following ¢, and make r point to the following node 882) =
if (t=0) r = link(q);
else { r =g;
while (¢t > 1) { r = link(r);
decr (t);
}

s = link(r);

r = link(s);

link (s) = null;
flush_node_list (link (q));
replace_count (q) = 0;

}

This code is used in section 881.

6883 TEXprof BREAKING PARAGRAPHS INTO LINES, CONTINUED 395

883. We move the post-break list from inside node ¢ to the main list by reattaching it just before the
present node r, then resetting r.

(Transplant the post-break list 883) =
{ s = post_break(q);
while (link(s) # null) s = link(s);
link(s) =r;
r = post_break (q);
post_break (q) = null;
post_disc_break = true;

}

This code is used in section 881.

884. We move the pre-break list from inside node ¢ to the main list by reattaching it just after the present
node ¢, then resetting q.

(Transplant the pre-break list 884) =
{ s = pre_break(q);
link(q) = s;
while (link(s) # null) s = link(s);
pre_break (q) = null;
q=-s;
}

This code is used in section 881.

885. (Put the \rightskip glue after node ¢ 885) =
r = new_param_glue (right_skip_code);
link (r) = link (q);
link(q)=r;q=r

This code is used in section 880.

886. The following code begins with ¢ at the end of the list to be justified. It ends with ¢ at the beginning
of that list, and with link (temp_head) pointing to the remainder of the paragraph, if any.

(Put the \leftskip glue at the left and detach this line 886) =

r = link(q);

link (q) = null;

q = link (temp_head);

link (temp_head) = r;

if (left_skip # zero_glue) { r = new_param_glue (left_skip_code);
link(r) = ¢;
q=r;

}

This code is used in section 879.

887. (Append the new box to the current vertical list, followed by the list of special nodes taken out of
the box by the packager 887) =
append_to_vlist (just_bozx);
if (adjust_head # adjust_tail) { link (tail) = link (adjust_head);
tail = adjust_tail;
}

adjust_tail = null

This code is used in section 879.

396 BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXprof §888

888. Now ¢ points to the hlist that represents the current line of the paragraph. We need to compute the
appropriate line width, pack the line into a box of this size, and shift the box by the appropriate amount of
indentation.

(Call the packaging subroutine, setting just_bozx to the justified box 888) =
if (cur_line > last_special_line) { cur_width = second_width;
cur_indent = second_indent;

else if (par_shape_ptr = null) { cur_width = first_width;
cur_indent = first_indent;

else { cur_width = mem/[par_shape_ptr + 2 % cur_line].sc;
cur_indent = mem [par_shape_ptr + 2 x cur_line — 1].sc;
¥
adjust_tail = adjust_head;
Just_box = hpack(q, cur_width, exactly); shift_amount (just_boxr) = cur_indent

This code is used in section 879.

889. Penalties between the lines of a paragraph come from club and widow lines, from the inter_line_penaltyll
parameter, and from lines that end at discretionary breaks. Breaking between lines of a two-line paragraph
gets both club-line and widow-line penalties. The local variable pen will be set to the sum of all relevant
penalties for the current line, except that the final line is never penalized.

(Append a penalty node, if a nonzero penalty is appropriate 889) =
if (cur_line + 1 # best_line) { pen = inter_line_penalty;
if (cur_line = prev_graf + 1) pen = pen + club_penalty;
if (cur_line 4+ 2 = best_line) pen = pen + final_widow_penalty;
if (disc_break) pen = pen + broken_penalty;
if (pen #0) { r = new_penalty (pen);
link (tail) = r;
tail = r;
}
¥

This code is used in section 879.

6890 TEXprof PRE-HYPHENATION 397

890. Pre-hyphenation. When the line-breaking routine is unable to find a feasible sequence of break-
points, it makes a second pass over the paragraph, attempting to hyphenate the hyphenatable words. The
goal of hyphenation is to insert discretionary material into the paragraph so that there are more potential
places to break.

The general rules for hyphenation are somewhat complex and technical, because we want to be able to
hyphenate words that are preceded or followed by punctuation marks, and because we want the rules to
work for languages other than English. We also must contend with the fact that hyphens might radically
alter the ligature and kerning structure of a word.

A sequence of characters will be considered for hyphenation only if it belongs to a “potentially hyphenatable
part” of the current paragraph. This is a sequence of nodes pop; . .. pm Where pg is a glue node, p;1 ... pm_1
are either character or ligature or whatsit or implicit kern nodes, and p,, is a glue or penalty or insertion
or adjust or mark or whatsit or explicit kern node. (Therefore hyphenation is disabled by boxes, math
formulas, and discretionary nodes already inserted by the user.) The ligature nodes among p; ...p;,—1 are
effectively expanded into the original non-ligature characters; the kern nodes and whatsits are ignored. Each
character ¢ is now classified as either a nonletter (if lc_code(c) = 0), a lowercase letter (if lc_code(c) = ¢),
or an uppercase letter (otherwise); an uppercase letter is treated as if it were lc_code(c) for purposes of
hyphenation. The characters generated by pi ...p,_1 may begin with nonletters; let ¢; be the first letter
that is not in the middle of a ligature. Whatsit nodes preceding c; are ignored; a whatsit found after ¢y
will be the terminating node p,,. All characters that do not have the same font as c¢; will be treated as
nonletters. The hyphen_char for that font must be between 0 and 255, otherwise hyphenation will not be
attempted. TEX looks ahead for as many consecutive letters ¢; ... ¢, as possible; however, n must be less
than 64, so a character that would otherwise be cg4 is effectively not a letter. Furthermore ¢, must not be
in the middle of a ligature. In this way we obtain a string of letters c¢; ...c, that are generated by nodes
Pa---Db, Where 1 < a < b+1<m. If n > [_hyf + r_hyf, this string qualifies for hyphenation; however,
uc_hyph must be positive, if ¢; is uppercase.

The hyphenation process takes place in three stages. First, the candidate sequence ¢ ... ¢, is found; then
potential positions for hyphens are determined by referring to hyphenation tables; and finally, the nodes
Pa - - - Pp are replaced by a new sequence of nodes that includes the discretionary breaks found.

Fortunately, we do not have to do all this calculation very often, because of the way it has been taken out
of TEX’s inner loop. For example, when the second edition of the author’s 700-page book Seminumerical
Algorithms was typeset by TEX, only about 1.2 hyphenations needed to be tried per paragraph, since the
line breaking algorithm needed to use two passes on only about 5 per cent of the paragraphs.

(Initialize for hyphenating a paragraph 890) =
{
#ifdef INIT
if (trie_not_ready) init_trie();
#endif
cur_lang = init_cur_lang;
I_hyf = init_I_hyf;
r_hyf = init_r_hyf;
set_hyph_indez;

}

This code is used in section 862.

398 PRE-HYPHENATION TEXprof §891

891. Thelettersc; ...c, that are candidates for hyphenation are placed into an array called hc; the number
n is placed into hn; pointers to nodes p,_1 and pp in the description above are placed into variables ha and
hb; and the font number is placed into hf.

(Global variables 13) +=
static int16_t hc[66]; /xword to be hyphenated x/
static int An; /*the number of positions occupied in hc¢; not always a small_number */
static pointer ha, hb; /xnodes ha .. hb should be replaced by the hyphenated result */
static internal_font_number Af; /xfont number of the letters in hc */
static int16_t hu[64]; /*like he, before conversion to lowercase */
static int hyf_char; /*hyphen character of the relevant font */
static ASCII_code cur_lang, init_cur_lang; /* current hyphenation table of interest x/
static int I_hyf, r_hyf, init_I_hyf , init_r_hyf; /xlimits on fragment sizes */
static halfword hyf_bchar; /+boundary character after ¢, */

892. Hyphenation routines need a few more local variables.

(Local variables for line breaking 861) +=
small_number j; /xan index into hc or hu x/
int c; /* character being considered for hyphenation x/

893. When the following code is activated, the line_break procedure is in its second pass, and cur_p points
to a glue node.

(Try to hyphenate the following word 893) =
{ prev_s = cur_p;

s = link (prev_s);

if (s # null) { (Skip to node ha, or goto donel if no hyphenation should be attempted 895);
if (I_hyf + r_hyf > 63) goto donel;
(Skip to node hb, putting letters into hu and he 896);
(Check that the nodes following hb permit hyphenation and that at least I_hyf + r_hyf letters have

been found, otherwise goto donel 898);

hyphenate();

}

donel : ;

}

This code is used in section 865.

894. (Declare subprocedures for line_break 825) +=
(Declare the function called reconstitute 905)

static void hyphenate(void)
{ (Local variables for hyphenation 900)

(Find hyphen locations for the word in hc, or return 922);

(If no hyphens were found, return 901);

(Replace nodes ha .. hb by a sequence of nodes that includes the discretionary hyphens 902);
¥

6895 TEXprof PRE-HYPHENATION 399

895. The first thing we need to do is find the node ha just before the first letter.

(Skip to node ha, or goto donel if no hyphenation should be attempted 895) =
loop { if (is_char_node(s)) { ¢ = qo(character(s));
hf = font(s);

else if (type(s) = ligature_node)
if (lig_ptr(s) = null) goto resume;
else { q = lig_ptr(s);
¢ = go(character(q));
= fona)

else if ((type(s) = kern_node) A (subtype(s) = normal)) goto resume;
else if (type(s) = whatsit_node) { (Advance past a whatsit node in the pre-hyphenation loop 1362);
goto resume;
}
else goto donel;
set_lc_code(c);
if (he[0] #0)
if ((he]0] = ¢) V (uc_hyph > 0)) goto doneZ;
else goto donel;
resume: prev_s = s;
s = link(prev_s);
}
done2: hyf_char = hyphen_char[hf];
if (hyf_char < 0) goto donel;
if (hyf_char > 255) goto donel ;
ha = prev_s

This code is used in section 893.

400 PRE-HYPHENATION TEXprof §896

896. The word to be hyphenated is now moved to the hu and hc arrays.
(Skip to node hb, putting letters into hu and he 896) =
hn = 0;
loop { if (is_char_node(s)) { if (font(s) # hf) goto done3;
hyf_bchar = character(s);
¢ = qo(hyf_bchar);
set_lc_code(c);
if (hc[0] =0) goto dones;
if (hn = 63) goto done3;

hb = s;

incr (hn);
hulhn] = ¢;
he[hn] = hel0];

hyf_bchar = non_char;

else if (type(s) = ligature_node) (Move the characters of a ligature node to hu and hc; but goto
done3 if they are not all letters 897)
else if ((type(s) = kern_node) A (subtype(s) = normal)) { hb = s;
hyf_bchar = font_bchar[hf];
}

else goto done3;
s = link(s);

}

dones:

This code is used in section 893.

897. We let j be the index of the character being stored when a ligature node is being expanded, since
we do not want to advance hn until we are sure that the entire ligature consists of letters. Note that it is
possible to get to doned with hn = 0 and hb not set to any value.

(Move the characters of a ligature node to hu and hc; but goto done? if they are not all letters 897) =
{ if (font(lig_char(s)) # hf) goto done3;
J=hn;
q = lig_ptr(s); if (¢ > null) hyf_bchar = character(q);
while (¢ > null) { ¢ = go(character(q));
set_le_code (c);
if (hc[0] =0) goto dones;
if (j =63) goto done3;
incr(4);
hulj] = ¢;
he(j] = he[0];
q = link(q);
}
hb = s;
hn = j;
if (odd(subtype(s))) hyf_bchar = font_bchar[hf]; else hyf_bchar = non_char;
¥

This code is used in section 896.

6898 TEXprof PRE-HYPHENATION 401

898. (Check that the nodes following hb permit hyphenation and that at least I_hyf + r_hyf letters have
been found, otherwise goto donel 898) =
if (hn < I_hyf + r_hyf) goto donel; /xI_hyf and r_hyf are > 1x/
loop { if (—(is_char_node(s)))
switch (type(s)) {
case ligature_node: do_nothing; break;
case kern_node:
if (subtype(s) # normal) goto done/ ; break;
case whatsit_node: case glue_node: case penalty_node: case ins_node: case adjust_node:
case mark_node: goto donej;
default: goto donel;
}
s = link(s);
}
done/ :

This code is used in section 893.

402 POST-HYPHENATION TEXprof 6899

899. Post-hyphenation. If a hyphen may be inserted between hc[j] and he[j + 1], the hyphenation
procedure will set hyf[j] to some small odd number. But before we look at TEX’s hyphenation procedure,
which is independent of the rest of the line-breaking algorithm, let us consider what we will do with the
hyphens it finds, since it is better to work on this part of the program before forgetting what ha and hb,
etc., are all about.

{ Global variables 13) +=
static int8_t hyf[65]; /+odd values indicate discretionary hyphens %/
static pointer init_list; /*list of punctuation characters preceding the word */
static bool init_lig; /* does init_list represent a ligature? /
static bool init_Ift; /*if so, did the ligature involve a left boundary? */

900. (Local variables for hyphenation 900) =

int 4,7,1[; /*indices into hc or hu */
pointer ¢, 7, s; /* temporary registers for list manipulation */
halfword bchar; /*boundary character of hyphenated word, or non_char */

See also sections 911, 921, and 928.

This code is used in section 894.

901. TgX will never insert a hyphen that has fewer than \lefthyphenmin letters before it or fewer than
\righthyphenmin after it; hence, a short word has comparatively little chance of being hyphenated. If no
hyphens have been found, we can save time by not having to make any changes to the paragraph.
(If no hyphens were found, return 901) =
for (j = L_hyf; j < hn —r_hyf; j++)
if (odd(hyf[j])) goto foundl;
return; foundlI:

This code is used in section 894.

6902 TEXprof POST-HYPHENATION 403

902. If hyphens are in fact going to be inserted, TEX first deletes the subsequence of nodes between ha
and hb. An attempt is made to preserve the effect that implicit boundary characters and punctuation marks
had on ligatures inside the hyphenated word, by storing a left boundary or preceding character in hu[0] and
by storing a possible right boundary in bchar. We set j = 0 if hu[0] is to be part of the reconstruction;
otherwise j = 1. The variable s will point to the tail of the current hlist, and ¢ will point to the node
following hb, so that things can be hooked up after we reconstitute the hyphenated word.

(Replace nodes ha .. hb by a sequence of nodes that includes the discretionary hyphens 902) =

q = link (hb);
link (hb) = null;
r = link(ha);

link (ha) = null;
bchar = hyf_bchar;
if (is_char_node(ha))
if (font(ha) # hf) goto found2;
else { init_list = ha;
nit_lig = false;
hu[0] = qo(character(ha));
}
else if (type(ha) = ligature_node)
if (font(lig_char(ha)) # hf) goto found2;
else { init_list = lig_ptr(ha);
nit_lig = true;
init_lft = (subtype(ha) > 1);
hu0] = go(character (lig_char(ha)));
if (indt_list = null)
if (indt_ift) { hu[0] = 256;
init_lig = false;
} /«xin this case a ligature will be reconstructed from scratch */
free_node(ha, small_node_size);

else { /*no punctuation found; look for left boundary */
if (—is_char_node(r))
if (type(r) = ligature_node)
if (subtype(r) > 1) goto found2;
Jj=1
s = ha;
inat_list = null;
goto common_ending;
}
s = cur_p; /*we have cur_p # ha because type(cur_p) = glue_node x/
while (link(s) # ha) s = link(s);
Jj=0;
goto common_ending;
found2: s = ha;
Jj=0;
hu[0] = 256;
nit_lig = false;
inat_list = null;
common_ending: flush_node_list (r);
(Reconstitute nodes for the hyphenated word, inserting discretionary hyphens 912);
flush_list (init_list)

This code is used in section 894.

404 POST-HYPHENATION TpXprof §903

903. We must now face the fact that the battle is not over, even though the hyphens have been found: The
process of reconstituting a word can be nontrivial because ligatures might change when a hyphen is present.
The TEXbook discusses the difficulties of the word “difficult”, and the discretionary material surrounding a
hyphen can be considerably more complex than that. Suppose abcdef is a word in a font for which the only
ligatures are bc, cd, de, and ef. If this word permits hyphenation between b and c, the two patterns with
and without hyphenation are ab-cd ef and abcde f. Thus the insertion of a hyphen might cause effects
to ripple arbitrarily far into the rest of the word. A further complication arises if additional hyphens appear
together with such rippling, e.g., if the word in the example just given could also be hyphenated between c
and d; TEX avoids this by simply ignoring the additional hyphens in such weird cases.

Still further complications arise in the presence of ligatures that do not delete the original characters.
When punctuation precedes the word being hyphenated, TEX’s method is not perfect under all possible
scenarios, because punctuation marks and letters can propagate information back and forth. For example,
suppose the original pre-hyphenation pair *a changes to *y via a |=: ligature, which changes to xy via a
=:| ligature; if p,—1 = x and p, = y, the reconstitution procedure isn’t smart enough to obtain xy again.
In such cases the font designer should include a ligature that goes from xa to xy.

904. The processing is facilitated by a subroutine called reconstitute. Given a string of characters x; . ..z,
there is a smallest index m > j such that the “translation” of x; ...z, by ligatures and kerning has the form
y1 ...y followed by the translation of x,, 41 ...z, where y; ...y: is some nonempty sequence of character,
ligature, and kern nodes. We call z; ...z, a “cut prefix” of z;...x,. For example, if 12223 = f1y, and if
the font contains ‘fl” as a ligature and a kern between ‘fl’ and ‘y’, then m = 2, t = 2, and y; will be a ligature
node for ‘fl’ followed by an appropriate kern node yo. In the most common case, x; forms no ligature with
zj41 and we simply have m = j, y1 = ;. If m < n we can repeat the procedure on ;41 ... 2, until the
entire translation has been found.

The reconstitute function returns the integer m and puts the nodes y; ...y into a linked list starting at
link (hold_head), getting the input z; ...z, from the hu array. If x; = 256, we consider z; to be an implicit
left boundary character; in this case j must be strictly less than n. There is a parameter bchar, which
is either 256 or an implicit right boundary character assumed to be present just following x,. (The value
hu[n 4 1] is never explicitly examined, but the algorithm imagines that bchar is there.)

If there exists an index k in the range j < k < m such that hyf[k] is odd and such that the result of
reconstitute would have been different if x5, had been hchar, then reconstitute sets hyphen_passed to the
smallest such k. Otherwise it sets hyphen_passed to zero.

A special convention is used in the case j = 0: Then we assume that the translation of hu[0] appears in
a special list of charnodes starting at init_list; moreover, if init_lig is true, then hu[0] will be a ligature
character, involving a left boundary if init_Ift is true. This facility is provided for cases when a hyphenated
word is preceded by punctuation (like single or double quotes) that might affect the translation of the
beginning of the word.

(Global variables 13) +=
static small_number hyphen_passed; /xfirst hyphen in a ligature, if any */

6905 TEXprof POST-HYPHENATION 405

905. (Declare the function called reconstitute 905) =
static small_number reconstitute (small_number j,small_number n, halfword bchar, halfword
hchar)

{ pointer p; /* temporary register for list manipulation */
pointer t; /*a node being appended to x/
four_quarters g¢; /* character information or a lig/kern instruction %/
halfword cur_rh; /*hyphen character for ligature testing */
halfword test_char; /*hyphen or other character for ligature testing */

scaled w; /+*amount of kerning */

font_index k; /*position of current lig/kern instruction */
hyphen_passed = 0;

t = hold_head,;

w = 0;

link (hold_head) = null; /*at this point ligature_present = Ilft_hit = rt_hit = false x/
(Set up data structures with the cursor following position j 907);
resume: (If there’s a ligature or kern at the cursor position, update the data structures, possibly
advancing j; continue until the cursor moves 908);
(Append a ligature and/or kern to the translation; goto resume if the stack of inserted ligatures is
nonempty 909);
return j;

}

This code is used in section 894.

906. The reconstitution procedure shares many of the global data structures by which TEX has processed
the words before they were hyphenated. There is an implied “cursor” between characters cur_l and cur_r;
these characters will be tested for possible ligature activity. If ligature_present then cur_l is a ligature
character formed from the original characters following cur_q in the current translation list. There is a
“ligature stack” between the cursor and character j + 1, consisting of pseudo-ligature nodes linked together
by their link fields. This stack is normally empty unless a ligature command has created a new character that
will need to be processed later. A pseudo-ligature is a special node having a character field that represents
a potential ligature and a lig_ptr field that points to a char_node or is null. We have

character (lig_stack), if lig_stack > null;
cur_r = ¢ qi(hulj + 1]), if lig_stack = null and j < n;
bchar, if lig_stack = null and j = n.

{ Global variables 13) +=
static halfword cur_l, cur_r; /* characters before and after the cursor x/
static pointer cur_g; /* where a ligature should be detached %/
static pointer lig_stack; /+unfinished business to the right of the cursor x/
static bool ligature_present; /+should a ligature node be made for cur_{? */
static bool [ft_hit, rt_hit; /xdid we hit a ligature with a boundary character? x/

406 POST-HYPHENATION TEXprof

907. Fdefine append_charnode_to_t(A)
{ link(t) = get_avail ();
t = link(t);
font(t) = hf;
character(t) = A;
}
#define set_cur_r
{if (j <n) cur_r = qi(hul[j + 1]); else cur_r = bchar;
if (odd(hyf[j])) cur_rh = hchar; else cur_rh = non_char;

(Set up data structures with the cursor following position j 907) =
cur_l = gi(hu[j]);

cur_q = t;
if (j =0) { ligature_present = init_lig;
p = init_list;

if (ligature_present) Ift_hit = indt_lft;
while (p > null) { append_charnode_to_t(character (p));
p = link(p);

else if (cur_l < non_char) append_charnode_to_t(cur_l);
lig_stack = null; set_cur_r

This code is used in section 905.

§907

8908 TEXprof POST-HYPHENATION 407

908. We may want to look at the lig/kern program twice, once for a hyphen and once for a normal letter.
(The hyphen might appear after the letter in the program, so we’d better not try to look for both at once.)

(If there’s a ligature or kern at the cursor position, update the data structures, possibly advancing j;
continue until the cursor moves 908) =
if (cur_l = non_char) { k = bchar_label [hf];
if (k = non_address) goto done; else g = font_infok].qqqq;

else { g = char_info(hf, cur_l);
if (char_tag(q) # lig_tag) goto done;
k = lig_kern_start (hf,q);
q = font_info[k].qqqq;
if (skip_byte(q) > stop_flag) { k = lig_kern_restart(hf,q);
} q = font_info[k].qqqq;
} /xnow k is the starting address of the lig/kern program x/
if (cur_rh < non_char) test_char = cur_rh; else test_char = cur_r;
loop { if (next_char(q) = test_char)
if (skip_byte(q) < stop_flag)
if (cur_rh < non_char) { hyphen_passed = j;
hchar = non_char;
cur_rh = non_char;
goto resume;
}
else { if (hchar < non_char)
if (odd(hyf[j])) { hyphen_passed = j;
hchar = non_char;

if (op_byte(q) < kern_flag)
(Carry out a ligature replacement, updating the cursor structure and possibly advancing j;
goto resume if the cursor doesn’t advance, otherwise goto done 910);
w = char_kern(hf, q);
goto done; /+this kern will be inserted below */
}
if (skip_byte(q) > stop_flag)
if (cur_rh = non_char) goto done;
else { cur_rh = non_char;
goto resume;
}
k =k + qo(skip_byte(q)) + 1;
q = font_info[k].qqqq;

done:

This code is used in section 905.

408 POST-HYPHENATION TEXprof §909

909. #define wrap_lig(A)
if (ligature_present) { p = new_ligature (hf, cur_l, link (cur_q));
if (Ift_hit) { subtype(p) = 2;
Ift_hit = false;
}
if (A4)
if (lig_stack = null) { incr(subtype(p));
rt_hit = false;
}
link (cur_q) = p;
t=p;
ligature_present = false;
}
#define pop_lig_stack
{ if (lig_ptr(lig_stack) > null) { link(t) = lig_ptr (lig_stack);
/*this is a charnode for hu[j + 1] */
t = link(t);
incr(j);

p = lig_stack;
lig_stack = link(p);
free_node(p, small_node_size);
if (lig_stack = null) set_cur_r else cur_r = character (lig_stack);
o /xif lig_stack isn’t null we have cur_rh = non_char */
(Append a ligature and/or kern to the translation; goto resume if the stack of inserted ligatures is
nonempty 909) =
wrap_lig (rt_hit);
if (w #0) { link(t) = new_kern(w);
t = link(t);
w = 0;
}
if (lig_stack > null) { cur_q =t;
cur_l = character (lig_stack);
ligature_present = true;
pop_lig_stack;
goto resume;

}

This code is used in section 905.

6910 TEXprof POST-HYPHENATION 409

910. (Carry out a ligature replacement, updating the cursor structure and possibly advancing j; goto
resume if the cursor doesn’t advance, otherwise goto done 910) =
{ if (cur_l = non_char) Ift_hit = true;

if (j=n)
if (lig_stack = null) rt_hit = true;
check_interrupt; /xallow a way out in case there’s an infinite ligature loop */

switch (op_byte(q)) {
case ¢i(1): case ¢i(5):

{ cur_l = rem_byte(q); /[x=:1,=:1>x%/
ligature_present = true;
} break;
case ¢i(2): case ¢i(6):
{ cur_r = rem_byte(q); /*|=:, |=:>%/

if (lig_stack > null) character(lig_stack) = cur_r;
else { lig_stack = new_lig_item (cur_r);
if (j =n) bchar = non_char;
else { p = get_avail ();
lig_ptr(lig_stack) = p;
character (p) = qi(hulj + 1]);

Jont(p) = hf;
}
} break;
case ¢i(3):
{ cur_r = rem_byte(q); /x|=:1%/
p = lig_stack;

lig_stack = new_lig_item (cur_r);
link (lig_stack) = p;

} break;

case ¢i(7): case ¢i(11):

{ wrap_lig(false); /x|=:1>, [=:1>>x%/
cur_q =t;
cur_l = rem_byte(q);
ligature_present = true;

} break;
default:
{ cur_l = rem_byte(q);
ligature_present = true; [x=1%/

if (lig_stack > null) pop_lig_stack
else if (j =n) goto done;
else { append_charnode_to_t(cur_r);
iner ()
set_cur_r;
}
}
}
if (op_byte(q) > qi(4))
if (op_byte(q) # qi(7)) goto done;
goto resume;

}

This code is used in section 908.

410 POST-HYPHENATION TEXprof §911

911. Okay, we're ready to insert the potential hyphenations that were found. When the following program
is executed, we want to append the word hu[l .. hn] after node ha, and node ¢ should be appended to
the result. During this process, the variable ¢ will be a temporary index into hu; the variable j will be an
index to our current position in hu; the variable [will be the counterpart of j, in a discretionary branch; the
variable r will point to new nodes being created; and we need a few new local variables:

(Local variables for hyphenation 900) +=
pointer major_tail, minor_tail
/+the end of lists in the main and discretionary branches being reconstructed */
ASCII_code c; /* character temporarily replaced by a hyphen x/
int c_loc; /xwhere that character came from */
int r_count; /+replacement count for discretionary */
pointer hyf_node; /+the hyphen, if it exists /

912. When the following code is performed, hyf[0] and hyf[hn] will be zero.

(Reconstitute nodes for the hyphenated word, inserting discretionary hyphens 912) =
do {
l=7;
j = reconstitute (j, hn, bchar, gi (hyf_char)) + 1;
if (hyphen_passed = 0) { link(s) = link (hold_head);
while (link(s) > null) s = link(s);
if (odd (hyf[j — 1)) { 1 = ji
hyphen_passed = j — 1;
link (hold_head) = null;

if (hyphen_passed > 0)
(Create and append a discretionary node as an alternative to the unhyphenated word, and continue
to develop both branches until they become equivalent 913);
} while (=(j > hn)); link(s) =q

This code is used in section 902.

6913 TEXprof POST-HYPHENATION 411

913. In this repeat loop we will insert another discretionary if hyf[j — 1] is odd, when both branches of the
previous discretionary end at position j — 1. Strictly speaking, we aren’t justified in doing this, because we
don’t know that a hyphen after j — 1 is truly independent of those branches. But in almost all applications
we would rather not lose a potentially valuable hyphenation point. (Consider the word ‘difficult’, where the
letter ‘c’ is in position j.)
#define advance_major_tail

{ major_tail = link(major_tail);

incr (r_count);
}

(Create and append a discretionary node as an alternative to the unhyphenated word, and continue to
develop both branches until they become equivalent 913) =

do {
r = get_node(small_node_size);
link (r) = link (hold_head);
type (r) = disc_node;
magor_tail = r;
r_count = 0;
while (link(major_tail) > null) advance_magor_tail;
i = hyphen_passed;
hyf [i] = 0;
(Put the characters hull .. 7] and a hyphen into pre_break(r) 914);
(Put the characters huli 4+ 1..] into post_break(r), appending to this list and to major_tail until

synchronization has been achieved 915);

{Move pointer s to the end of the current list, and set replace_count (r) appropriately 917);
hyphen_passed = j — 1;
link (hold_head) = null;

} while (=(—odd (hyf[j — 1])))

This code is used in section 912.

412 POST-HYPHENATION TEXprof §914

914. The new hyphen might combine with the previous character via ligature or kern. At this point we
have | — 1 <i<jand i< hn.
(Put the characters hull .. i] and a hyphen into pre_break(r) 914) =
minor_tail = null;
pre_break (r) = null;
hyf_node = new_character (hf , hyf_char);
if (hyf_node # null) { incr(i);
¢ = hulil;
huli] = hyf_char;
free_avail (hyf_node);

while (I < i) { | = reconstitute(l, i, font_bchar[hf], non_char) + 1;
if (link(hold_head) > null) { if (minor_tail = null) pre_break (r) = link(hold_head);
else link (minor_tail) = link (hold_head);
minor_tail = link (hold_head);
while (link (minor_tail) > null) minor_tail = link (minor_tail);
}
}
if (hyf_node # null) { huli] =¢; /+restore the character in the hyphen position x/
l=1;
decr (i);
}

This code is used in section 913.

915. The synchronization algorithm begins with [=7+ 1 < j.

(Put the characters huli + 1..] into post_break(r), appending to this list and to major_tail until
synchronization has been achieved 915) =
minor_tail = null;
post_break (r) = null;
c_loc = 0;
if (bchar_label[hf] # non_address) [« put left boundary at beginning of new line x/
{ decr(l);

¢ = hu[l];
c_loc =1;
hull] = 256;

while (I < j) { do {
I = reconstitute (I, hn, bechar, non_char) + 1;
if (c_loc > 0) { hu[c_loc] = ¢;
c_loc = 0;

if (link (hold_head) > null) { if (minor_tail = null) post_break (r) = link (hold_head);
else link (minor_tail) = link (hold_head);
minor_tail = link (hold_head);
while (link (minor_tail) > null) minor_tail = link (minor_tail);

} while (=(1 = j7));
while (I > j) (Append characters of hu [j .. | to major_tail, advancing j 916);

}

This code is used in section 913.

6916 TEXprof POST-HYPHENATION 413

916. (Append characters of hu [j ..] to major_tail, advancing j 916) =
{ j = reconstitute(j, hn, bchar, non_char) + 1;
link (magjor_tail) = link (hold_head);
while (link(major_tail) > null) advance_magor_tail;

}

This code is used in section 915.

917. Ligature insertion can cause a word to grow exponentially in size. Therefore we must test the size of
r_count here, even though the hyphenated text was at most 63 characters long.
{Move pointer s to the end of the current list, and set replace_count(r) appropriately 917) =
if (r_count > 127) /*we have to forget the discretionary hyphen */
{ link(s) = link(r);
link (r) = null;
flush_node_list (r);

else { link(s) =r;
replace_count (r) = r_count;

}

s = magor_tail

This code is used in section 913.

414 HYPHENATION TpXprof §918

918. Hyphenation. When a word hc[l .. hn] has been set up to contain a candidate for hyphenation,
TEX first looks to see if it is in the user’s exception dictionary. If not, hyphens are inserted based on patterns
that appear within the given word, using an algorithm due to Frank M. Liang.

Let’s consider Liang’s method first, since it is much more interesting than the exception-lookup routine.
The algorithm begins by setting hyf[j] to zero for all j, and invalid characters are inserted into hc[0] and
he[hn + 1] to serve as delimiters. Then a reasonably fast method is used to see which of a given set
of patterns occurs in the word he[0 .. (hn + 1)]. Each pattern p;...pg of length k has an associated
sequence of k + 1 numbers ng...ng; and if the pattern occurs in he[(j + 1) .. (§ + k)], TEX will set
hyf 7 + 4] = max(hyf[j + 4], n-i) for 0 < i < k. After this has been done for each pattern that occurs, a
discretionary hyphen will be inserted between hc[j] and he[j + 1] when hyf[j] is odd, as we have already
seen.

The set of patterns p; ...pr and associated numbers ng...n, depends, of course, on the language whose
words are being hyphenated, and on the degree of hyphenation that is desired. A method for finding
appropriate p’s and n’s, from a given dictionary of words and acceptable hyphenations, is discussed in
Liang’s Ph.D. thesis (Stanford University, 1983); TEX simply starts with the patterns and works from there.

919. The patterns are stored in a compact table that is also efficient for retrieval, using a variant of “trie
memory” [cf. The Art of Computer Programming 3 (1973), 481-505]. We can find each pattern p; ...ps
by letting zy be one greater than the relevant language index and then, for 1 < i < k, setting zi =
trie_link (2 — 1) + p_i; the pattern will be identified by the number z;. Since all the pattern information
is packed together into a single trie_link array, it is necessary to prevent confusion between the data from
inequivalent patterns, so another table is provided such that trie_char(z_i) = p_i for all i. There is also a
table trie_op(zx) to identify the numbers ng . ..ny associated with p; ... ps.

Comparatively few different number sequences ny . ..ny actually occur, since most of the n’s are generally
zero. Therefore the number sequences are encoded in such a way that ¢rie_op(zx) is only one byte long.
If trie_op(z_k) # min_quarterword, when pj...py has matched the letters in he[(l — k + 1) .. 1] of
language t, we perform all of the required operations for this pattern by carrying out the following little
program: Set v = trie_op(z-k). Then set v = v + op_start[t], hyf[l — hyf_distance[v]] = max(hyf[l —
hyf_distance[v]], hyf_num[v]), and v = hyf_next[v]; repeat, if necessary, until v = min_quarterword.

(Types in the outer block 18) +=
typedef int32_t trie_pointer; /*an index into trie */

920. #define trie_link(A) trie[Al.rh /x “downward” link in a trie*/
#define trie_char(A) trie[A].b1 /x character matched at this trie location x/
#define trie_op(A) trie[A].b0 /*program for hyphenation at this trie location %/

{ Global variables 13) +=
static two_halves trie[trie_size + 1]; [* trie_link, trie_char, trie_op */
static small_number hyf_distance0 [trie_op_size], xconst hyf_distance = hyf_distance0 — 1;
/* position k — j of n;*/
static small_number hyf_num0[trie_op_size], xconst hyf_num = hyf_num0 — 1; /*value of n; x/
static quarterword hyf_next0 [trie_op_size], *const hyf_next = hyf_next0 — 1;
/* continuation code */
static uint16_t op_start[256]; /*offset for current language %/

921. (Local variables for hyphenation 900) +=
trie_pointer z; /xan index into trie */
int v; /xan index into hyf_distance, etc. x/

8922 TpXprof HYPHENATION 415

922. Assuming that these auxiliary tables have been set up properly, the hyphenation algorithm is quite
short. In the following code we set hc[hn + 2] to the impossible value 256, in order to guarantee that
helhn + 3] will never be fetched.
(Find hyphen locations for the word in he, or return 922) =
for (j =0; j < hn; j++) hyf[j] = 0;
(Look for the word he[l..hn] in the exception table, and goto found (with hyf containing the hyphens)
if an entry is found 929);

if (trie_char(cur_lang + 1) # qi(cur_lang)) return; /«no patterns for cur_lang */
he[0] = 0;
he[hn 4+ 1] = 0;

he[hn 4 2] = 256; /«insert delimiters /
for (j=0; j < hn—r_hyf +1; j++) { z = trie_link (cur_lang + 1) + hc[j];
l=17;
while (he[l] = go(trie_char(z))) { if (trie_op(z) # min_quarterword)
(Store maximum values in the hyf table 923);
incr(1);
z = trie_link(z) + hell];
}
}
found:
for (j =0; j < Lhyf —1; j++) hyf[j] = 0;
for (j =0; j < r_hyf —1; j++) hyflhn —j] =0

This code is used in section 894.

923. (Store maximum values in the hyf table 923) =
{ v =trie_op(z);

do {
v =0 + op_start[cur_lang];
i =1 — hyf_distance|v];
ift (hyf_num[v] > hyf [i]) hyf[i] = hyf_num [v];
v = hyf_next[v];

} while (—(v = min_quarterword));

This code is used in section 922.

924. The exception table that is built by TEX’s \hyphenation primitive is organized as an ordered hash
table [cf. Amble and Knuth, The Computer Journal 17 (1974), 135-142] using linear probing. If o and 3
are words, we will say that o < S if |a| < |B] or if |a| = |5] and « is lexicographically smaller than 3. (The
notation |«| stands for the length of «.) The idea of ordered hashing is to arrange the table so that a given
word « can be sought by computing a hash address h = h(«) and then looking in table positions h, h — 1,
..., until encountering the first word < «. If this word is different from «, we can conclude that « is not in
the table.

The words in the table point to lists in mem that specify hyphen positions in their info fields. The list
for ¢; ... ¢, contains the number k if the word ¢; ... ¢, has a discretionary hyphen between ¢ and cy41.

(Types in the outer block 18) 4+=
typedef int16_t hyph_pointer; /*an index into the ordered hash table x/

925. (Global variables 13) +=
static str_number hyph_word [hyph_size + 1]; /* exception words */
static pointer hyph_list[hyph_size + 1]; /xlists of hyphen positions */
static hyph_pointer hyph_count; /*the number of words in the exception dictionary */

416 HYPHENATION TpXprof §926

926. (Local variables for initialization 19) +=
int z; /xruns through the exception dictionary x/

927. (Set initial values of key variables 21) +=
for (z =0; z < hyph_size; z++) { hyph_word[z] = 0;
hyph_list[z] = null;
}

hyph_count = 0;

928. The algorithm for exception lookup is quite simple, as soon as we have a few more local variables to
work with.

{Local variables for hyphenation 900) +=
hyph_pointer h; /xan index into hyph_word and hyph_list x/
str_number k; /*an index into str_start x/
pool_pointer u; /*an index into str_pool %/

929. First we compute the hash code h, then we search until we either find the word or we don’t. Words
from different languages are kept separate by appending the language code to the string.

(Look for the word he[l..hn] in the exception table, and goto found (with hyf containing the hyphens) if
an entry is found 929) =
h = hell];
incr(hn);
he[hn] = cur_lang;
for (j =2; j < hn; j++) h = (h+ h+ helj]) % hyph_size;
loop { (If the string hyph_word[h] is less than hc[l..hn], goto not_found; but if the two strings are
equal, set hyf to the hyphen positions and goto found 930);
if (h > 0) decr(h); else h = hyph_size;

not_found: decr(hn)

This code is used in section 922.

930. (If the string hyph_word[h] is less than he[l..hn], goto not_found; but if the two strings are equal,
set hyf to the hyphen positions and goto found 930) =
k = hyph_word[h];
if (k=0) goto not_found;
if (length(k) < hn) goto not_found;
if (length(k)=hn) { j=1;
u = str_start [k];
do {
if (so(str_poollu]) < hc[j]) goto not_found;
if (so(str_poollu]) > hc[j]) goto done;
incr (j);
incr(u);
} while (—=(j > hn));
(Insert hyphens as specified in hyph_list[h] 931);
decr (hn);
goto found;

}

done:

o
o

This code is used in section 929.

8931 TEXprof HYPHENATION 417

931. (Insert hyphens as specified in hyph_list[h] 931) =
s = hyph_list[h];
while (s # null) { hyf[info(s)] = 1;
s = link(s);
¥

This code is used in section 930.

932. (Search hyph_list for pointers to p 932) =
for (¢ =0; q < hyph_size; q++) { if (hyph_list|q] = p) { print_nl("HYPH(");
print_int(q);
print_char(’)?);
}
}

This code is used in section 171.

933. We have now completed the hyphenation routine, so the line_break procedure is finished at last.
Since the hyphenation exception table is fresh in our minds, it’s a good time to deal with the routine that
adds new entries to it.
When TEX has scanned ‘\hyphenation’, it calls on a procedure named new_hyph_ezceptions to do the

right thing.
#define set_cur_lang

if (language < 0) cur_lang = 0;

else if (language > 255) cur_lang = 0;

else cur_lang = language

static void new_hyph_exceptions(void) /* enters new exceptions */
{int n; /«xlength of current word; not always a small_number x/
int j; /xan index into hc */
hyph_pointer h; /*an index into hyph_word and hyph_list x/
str_number k; /+an index into str_start */
pointer p; /*head of a list of hyphen positions x/
pointer g; /xused when creating a new node for list p*/
str_number s, t; /xstrings being compared or stored */
pool_pointer u,v; /indices into str_pool */

scan_left_brace(); /xa left brace must follow \hyphenation %/

set_cur_lang;
#ifdef INIT

if (trie_not_ready) { hyph_index = 0;

goto not_foundl ;

}
#endif

set_hyph_index;

not_foundl :
(Enter as many hyphenation exceptions as are listed, until coming to a right brace; then return 934);

}

418 HYPHENATION TEXprof — §934

934. (Enter as many hyphenation exceptions as are listed, until coming to a right brace; then
return 934) =

n = 0;
p = null;
loop { get_z_token();
reswitch:
switch (cur_cmd) {
case letter: case other_char: case char_given: { Append a new letter or hyphen 936) break;
case char_num:
{ scan_char_num();
cur_chr = cur_val;
cur_cmd = char_given;
goto reswitch;
}
case spacer: case right_brace:
{if (n > 1) (Enter a hyphenation exception 938);
if (cur_cmd = right_brace) return;

n = 0;
p = null;
} break;

default: (Give improper \hyphenation error 935)

}
}

This code is used in section 933.

935. (Give improper \hyphenation error 935) =
{ print_err("Improper,");
print_esc("hyphenation");
print("will be_ flushed");
help2 ("Hyphenationuexcept ions must ,contain only letters",
"and hyphens. Butcontinue;_ I’11 forgive and forget.");
error () ;

}

This code is used in section 934.

936. (Append a new letter or hyphen 936) =
if (cur_chr = ’-’) (Append the value n to list p 937)
else { set_lc_code(cur_chr);
if (he[0] =0) { print_err("Not a letter");
help2 ("Letters,in \\hyphenation words must have \\lccode>0.",

"Proceed; ;1’11 ignore the character, I, just read.");
error () ;

else if (n < 63) { incr(n);
he[n] = hel0];
}
}

This code is used in section 934.

8937 TEXprof HYPHENATION 419

937. (Append the value n to list p 937) =
{if (n <63) { ¢ = get_avail ();

link(q) = p;
info(q) = n;
P=q
}
}

This code is used in section 936.

938. (Enter a hyphenation exception 938) =
{ incr(n);
heln) = cur_lang;
str_room (n);
h =0;
for (j=1; j <mn; j++) { h=(h+ h+ he[j]) % hyph_size;
append_char (he[j]);
}

s = make_string();
(Insert the pair (s,p) into the exception table 939);

}

This code is used in section 934.

939. (Insert the pair (s,p) into the exception table 939) =
if (hyph_count = hyph_size) overflow ("exception dictionary", hyph_size);
incr (hyph_count);
while (hyph_word[h] # 0) { (If the string hyph_word[h] is less than or equal to s, interchange
(hyph_word[h], hyph_list[h]) with (s,p) 940);
if (h > 0) decr(h); else h = hyph_size;

hyph_word[h] = s; hyph_list[h] = p

This code is used in section 938.

940. (If the string hyph_word[h] is less than or equal to s, interchange (hyph_word[h], hyph_list[h]) with
(s,p) 940) =
k = hyph_word[h];
if (length(k) < length(s)) goto found;
if (length(k) > length(s)) goto not_found;
u = str_start[k];
v = str_start[s];
do {
if (str_poollu] < str_pool[v]) goto found;
if (str_poollu] > str_pool[v]) goto not_found;
incr(u);
incr (v);
} while (—(u = str_start[k + 1]));
found: q = hyph_list[h];
hyph_list[h] = p;
pP=q
t = hyph_word[h];
hyph_word[h] = s;
s = t; not_found:

This code is used in section 939.

420 INITIALIZING THE HYPHENATION TABLES TEXprof §941

941. Initializing the hyphenation tables. The trie for TEX’s hyphenation algorithm is built from a
sequence of patterns following a \patterns specification. Such a specification is allowed only in INITEX,
since the extra memory for auxiliary tables and for the initialization program itself would only clutter up
the production version of TEX with a lot of deadwood.

The first step is to build a trie that is linked, instead of packed into sequential storage, so that insertions
are readily made. After all patterns have been processed, INITEX compresses the linked trie by identifying
common subtries. Finally the trie is packed into the efficient sequential form that the hyphenation algorithm
actually uses.

(Declare subprocedures for line_break 825) +=
#ifdef INIT

(Declare procedures for preprocessing hyphenation patterns 943)
#endif

942. Before we discuss trie building in detail, let’s consider the simpler problem of creating the hyf_distance
hyf_num, and hyf_next arrays.

Suppose, for example, that TEX reads the pattern ‘ab2cdel’. This is a pattern of length 5, with ng...n
002001 in the notation above. We want the corresponding ¢rie_op code v to have hyf_distance[v] =
hyf_num(v] = 2, and hyf_next[v] = v/, where the auxiliary trie_op code v’ has hyf_distance[v'] =
hyf_num[v'] = 1, and hyf_next[v'] = min_quarterword.

TEX computes an appropriate value v with the new_trie_op subroutine below, by setting

ot

3,
0,

v = new_trie_op (0, 1, min_quarterword), v = new_trie_op (3,2, v').

This subroutine looks up its three parameters in a special hash table, assigning a new value only if these
three have not appeared before for the current language.
The hash table is called trie_op_hash, and the number of entries it contains is trie_op_ptr.

{ Global variables 13) +=
#ifdef INIT
static uint16_t trie_op_hash0 [trie_op_size + trie_op_size + 1],
xconst trie_op_hash = trie_op_hash0 + trie_op_size; /xtrie op codes for quadruples */
static quarterword trie_used [256]; /xlargest opcode used so far for this language %/
static ASCII_code trie_op_lang0 [trie_op_size], xconst trie_op_lang = trie_op_lang0 — 1;
/xlanguage part of a hashed quadruple */
static quarterword trie_op_val0[trie_op_size], xconst trie_op_val = trie_op_val0 — 1;
/+opcode corresponding to a hashed quadruple */
static int trie_op_ptr; /+number of stored ops so far */
#endif

8943 TEXprof INITIALIZING THE HYPHENATION TABLES 421

943. It’s tempting to remove the overflow stops in the following procedure; new_trie_op could return
min_quarterword (thereby simply ignoring part of a hyphenation pattern) instead of aborting the job.
However, that would lead to different hyphenation results on different installations of TEX using the same
patterns. The overflow stops are necessary for portability of patterns.

(Declare procedures for preprocessing hyphenation patterns 943) =
static quarterword new_trie_op(small_number d,small_number n, quarterword v)
{int h; /xtrial hash location %/
quarterword u; /*trial op code x/
int I; /xpointer to stored data*/

h = abs(n + 313 xd + 361 * v 4+ 1009 * cur_lang) % (trie_op_size + trie_op_size) — trie_op_size;
loop { I = trie_op_hashlh];
if 1=0) /xempty position found for a new op x/
{ if (trie_op_ptr = trie_op_size) overflow ("pattern memory ops", trie_op_size);
u = trie_used[cur_lang];
if (u = maz_quarterword)
overflow ("pattern memory ops_per language", maz_quarterword — min_quarterword);
incr (trie_op_ptr);
incr(u);
trie_used[cur_lang] = u;
hyf_distance[trie_op_ptr| = d;
hyf_num[trie_op_ptr] = n;
hyf_next[trie_op_ptr] = v;
trie_op_lang[trie_op_ptr] = cur_lang;
trie_op_hash[h] = trie_op_ptr;
trie_op_val [trie_op_ptr] = u;
return u;

if ((hyf_distance[l] = d) A (hyfonum[l] = n) A (hyf_next[l] = v) A (trie_op_lang[l] = cur_lang)) {
return trie_op_val[l];

}

if (h > —trie_op_size) decr(h); else h = trie_op_size;
}
}

See also sections 947, 948, 952, 956, 958, 959, and 965.

This code is used in section 941.

422 INITIALIZING THE HYPHENATION TABLES TEXprof §944

944. After new_trie_op has compressed the necessary opcode information, plenty of information is available
to unscramble the data into the final form needed by our hyphenation algorithm.

(Sort the hyphenation op tables into proper order 944) =

op_start[0] = —min_quarterword;

for (j =1; j <255; j++) op_start[j] = op_start[j — 1] + qo(trie_used[j — 1]);

for (j =1; j < trie_op_ptr; j++) trie_op_hash[j] = op_start|trie_op_lang|[j]] + trie_op_val[j];
/* destination */

for (j =1; j < trie_op_ptr; j++)

while (trie_op_hash[j] > j) { k = trie_op_hash[j);

t = hyf_distance [k];
hyf_distance[k] = hyf_distancelj);
hyf_distance[j] = t;
t = hyf_numlk];
hyf_num[k] = hyf_num|j];

hyf_num[j] = t;
t = hyf_next[k];
hyf_next[k] = hyf_next[j];
hyf_next[j] = t;

trie_op_hash[j] = trie_op_hash[k];
trie_op_hash[k] = k;
}

This code is used in section 951.

945. Before we forget how to initialize the data structures that have been mentioned so far, let’s write
down the code that gets them started.

(Initialize table entries (done by INITEX only) 163) +=
for (k = —trie_op_size; k < trie_op_size; k++) trie_op_hash[k] = 0;
for (k =0; k < 255; k++) trie_used[k] = min_quarterword;
trie_op_ptr = 0;

946. The linked trie that is used to preprocess hyphenation patterns appears in several global arrays. Each
node represents an instruction of the form “if you see character ¢, then perform operation o, move to the
next character, and go to node [; otherwise go to node r.” The four quantities ¢, o, [, and r are stored in
four arrays trie_c, trie_o, trie_l, and trie_r. The root of the trie is trie_l[0], and the number of nodes is
trie_ptr. Null trie pointers are represented by zero. To initialize the trie, we simply set ¢rie_l[0] and trie_ptr
to zero. We also set trie_c[0] to some arbitrary value, since the algorithm may access it.

The algorithms maintain the condition

trie_c[trie_r[z]] > trie_c[z] whenever z # 0 and trie_r[z] # 0;

in other words, sibling nodes are ordered by their c fields.
#define trie_root trie_l[0] /xroot of the linked triex/

(Global variables 13) +=
#ifdef INIT
static packed_ASCII_code trie_c[trie_size +1]; /*characters to match %/
static quarterword trie_o[trie_size + 1]; /x operations to perform */
static trie_pointer trie_l[trie_size + 1]; /xleft subtrie links */
static trie_pointer trie_r[trie_size + 1]; /*xright subtrie links */
static trie_pointer trie_ptr; /*the number of nodes in the trie /
static trie_pointer trie_hash[trie_size + 1]; /*used to identify equivalent subtries */
#endif

8947 TEXprof INITIALIZING THE HYPHENATION TABLES 423

947. Let us suppose that a linked trie has already been constructed. Experience shows that we can often
reduce its size by recognizing common subtries; therefore another hash table is introduced for this purpose,
somewhat similar to trie_op_hash. The new hash table will be initialized to zero.

The function trie_node(p) returns p if p is distinct from other nodes that it has seen, otherwise it returns
the number of the first equivalent node that it has seen.

Notice that we might make subtries equivalent even if they correspond to patterns for different languages,
in which the trie ops might mean quite different things. That’s perfectly all right.

(Declare procedures for preprocessing hyphenation patterns 943) +=

static trie_pointer trie_node(trie_pointer p) /* converts to a canonical form */
{ trie_pointer h; /*trial hash location */
trie_pointer g; /= trial trie node */

h = abs(trie_c[p] + 1009 * trie_o[p] +
2718 x trie_l[p] + 3142 * trie_r[p]) % trie_size;
loop { ¢ = trie_hash[h];
if (¢ =0) { trie_hash|h] = p;
return p;
}
if ((trie_clg] = trie_c[p]) A (trie_o[q] = trie_o[p]) A
(trie_l[q] = trie_l[p]) A (trie_r[q] = trie_r[p])) { return g;
}

if (h > 0) decr(h); else h = trie_size;
}
}

948. A neat recursive procedure is now able to compress a trie by traversing it and applying trie_node to
its nodes in “bottom up” fashion. We will compress the entire trie by clearing trie_hash to zero and then
saying ‘trie_root = compress_trie(trie_root)’.
(Declare procedures for preprocessing hyphenation patterns 943) +=
static trie_pointer compress_trie(trie_pointer p)
{if (p =0) return 0;
else { trie_l[p] = compress_trie(trie_l[p]);
trie_r[p] = compress_trie(trie_r[p]);
return trie_node(p);
}
}

424 INITIALIZING THE HYPHENATION TABLES TpXprof §949

949. The compressed trie will be packed into the trie array using a “top-down first-fit” procedure. This
is a little tricky, so the reader should pay close attention: The trie_hash array is cleared to zero again and
renamed trie_ref for this phase of the operation; later on, ¢rie_ref [p] will be nonzero only if the linked trie
node p is the smallest character in a family and if the characters ¢ of that family have been allocated to
locations trie_ref [p] + ¢ in the trie array. Locations of trie that are in use will have trie_link = 0, while
the unused holes in trie will be doubly linked with trie_link pointing to the next larger vacant location and
trie_back pointing to the next smaller one. This double linking will have been carried out only as far as
trie_mazx, where trie_maz is the largest index of trie that will be needed. To save time at the low end of
the trie, we maintain array entries trie_min|[c] pointing to the smallest hole that is greater than ¢. Another
array trie_taken tells whether or not a given location is equal to trie_ref [p] for some p; this array is used to
ensure that distinct nodes in the compressed trie will have distinct ¢rie_ref entries.

#define trie_ref trie_hash /*where linked trie families go into trie */

#define trie_back(A) trie[A].lh /xbackward links in trie holes x/

{ Global variables 13) +=

#ifdef INIT

static bool trie_taken0 [trie_size], xconst trie_taken = trie_taken0 — 1;
/xdoes a family start here? x/

static trie_pointer trie_min[256]; /xthe first possible slot for each character */
static trie_pointer trie_max; /xlargest location used in trie */
static bool trie_not_ready; /x1s the trie still in linked form? /

#endif

950. Each time \patterns appears, it contributes further patterns to the future trie, which will be built
only when hyphenation is attempted or when a format file is dumped. The boolean variable trie_not_ready
will change to false when the trie is compressed; this will disable further patterns.

(Initialize table entries (done by INITEX only) 163) +=
trie_not_ready = true;
trie_root = 0;
trie_c[0] = si(0);
trie_ptr = 0;

951. Here is how the trie-compression data structures are initialized. If storage is tight, it would be possible
to overlap trie_op_hash, trie_op_lang, and trie_op_val with trie, trie_hash, and trie_taken, because we finish
with the former just before we need the latter.

(Get ready to compress the trie 951) =
(Sort the hyphenation op tables into proper order 944);
for (p =0; p < trie_size; p++) trie_hash[p] = 0;
hyph_root = compress_trie (hyph_root);
trie_root = compress_trie(trie_root); /*identify equivalent subtries */
for (p = 0; p < trie_ptr; p++) trie_ref [p] = 0;
for (p =0; p <255; p++) trie_minlp] =p+ 1;
trie_link (0) = 1; trie_maz =0

This code is used in section 965.

8952 TEXprof INITIALIZING THE HYPHENATION TABLES 425

952. The first_fit procedure finds the smallest hole z in trie such that a trie family starting at a given
node p will fit into vacant positions starting at z. If ¢ = trie_c[p], this means that location z — ¢ must not
already be taken by some other family, and that z — ¢ +¢’ must be vacant for all characters ¢’ in the family.
The procedure sets trie_ref [p] to z — ¢ when the first fit has been found.

(Declare procedures for preprocessing hyphenation patterns 943) 4+=
static void first_fit(trie_pointer p) /+packs a family into trie x/
{ trie_pointer h; /xcandidate for trie_ref [p]*/

trie_pointer z; /*runs through holes x/
trie_pointer ¢; /*runs through the family starting at px/
ASCII_code ¢; /+smallest character in the family %/
trie_pointer [, r; /*left and right neighbors */
int [[; /xupper limit of trie_min updating/
¢ = so(trie_c[p]);
z = trie_min[c|; /*get the first conceivably good hole x/
loop { h=2—¢;

(Ensure that trie_maz > h + 256 953);

if (trie_taken[h]) goto not_found;

(If all characters of the family fit relative to h, then goto found, otherwise goto not_found 954);
not_found: z = trie_link(z); /*move to the next hole */

found: (Pack the family into trie relative to h 955);

}

953. By making sure that trie_max is at least h + 256, we can be sure that trie_maz > z, since h = z —c.
It follows that location trie_maz will never be occupied in trie, and we will have trie_maz > trie_link(z).

(Ensure that trie_maz > h + 256 953) =
if (trie_max < h+256) { if (trie_size < h + 256) overflow ("pattern memory", trie_size);

do {
incr (trie_maz);
trie_taken[trie_maz] = false;
trie_link (trie_maz) = trie_mazx + 1;
trie_back (trie_max) = trie_mazx — 1;

} while (=(trie_maz = h + 256));

This code is used in section 952.

954. (If all characters of the family fit relative to h, then goto found, otherwise goto not_found 954) =
q = trie_r[p);
while (¢ > 0) { if (trie_link(h 4 so(trie_c[g])) = 0) goto not_found;
a = trie_rlg;
}
goto found

This code is used in section 952.

426 INITIALIZING THE HYPHENATION TABLES TEXprof 8955

955. (Pack the family into ¢rie relative to h 955) =
trie_taken[h] = true;
trie_ref [p] = h;
q=D;
do {
z = h+ so(trie_c[q]);
I = trie_back(z);
r = trie_link(2);
trie_back (r) = I;
trie_link (1) = r;
trie_link(z) = 0;
if (I <256) { if (z < 256) Il = z; else Il = 256;
do {
trie_min[l] = r;
incer(1);

} while (=(I =1I));

q = trie_r[ql;
} while (—=(¢ =0))

This code is used in section 952.

956. To pack the entire linked trie, we use the following recursive procedure.

(Declare procedures for preprocessing hyphenation patterns 943) +=
static void trie_pack (trie_pointer p) /xpack subtries of a family x/

{ trie_pointer g¢; /*a local variable that need not be saved on recursive calls x/
do {
q = trie_l[p|;

if ((q > 0) A (trie_ref[q] = 0)) { first_fit(q);
trie_pack(q);

p = trie_r[pl;
} } while (=(p =0));

6957 TEXprof INITIALIZING THE HYPHENATION TABLES 427

957. When the whole trie has been allocated into the sequential table, we must go through it once again so
that trie contains the correct information. Null pointers in the linked trie will be represented by the value 0,
which properly implements an “empty” family.

(Move the data into trie 957) =

h.rh = 0;

h.b0 = min_quarterword;

h.b1 = min_quarterword; /x trie_link = 0, trie_op = min_quarterword, trie_char = qi(0) */
if (trie_max =0) /% no patterns were given x/

{ for (r =0; r < 256; r++) trie[r] = h;
trie_max = 256;

}
else { if (hyph_root > 0) trie_fix (hyph_root);
if (trie_root > 0) trie_fix (trie_root); /«this fixes the non-holes in trie x/

r=0; /*now we will zero out all the holes /
do {

s = trie_link (r);

trie[r] = h;

r=s;

} while (=(r > trie_maz));

trie_char(0) = qi(>?’); /+make trie_char(c) # c for all c¢x/

This code is used in section 965.

958. The fixing-up procedure is, of course, recursive. Since the linked trie usually has overlapping subtries,
the same data may be moved several times; but that causes no harm, and at most as much work is done as
it took to build the uncompressed trie.

(Declare procedures for preprocessing hyphenation patterns 943) +=

static void trie_fiz (trie_pointer p) /*moves p and its siblings into trie */
{ trie_pointer g¢; /*a local variable that need not be saved on recursive calls */
ASCII_code ¢; /+another one that need not be saved x/
trie_pointer z; /* trie reference; this local variable must be saved */
z = trie_ref [p];
do {
q = trie_l[p|;

¢ = so(trie_c[p]);
trie_link (z + ¢) = trie_ref[q];
trie_char(z + ¢) = qi(c);
trie_op(z + ¢) = trie_o|pl;
if (¢ > 0) trie_fiz(q);
p = trie_r|p);
} while (=(p = 0));
}

428 INITIALIZING THE HYPHENATION TABLES TEXprof §959

959. Now let’s go back to the easier problem, of building the linked trie. When INITEX has scanned the
‘\patterns’ control sequence, it calls on new_patterns to do the right thing.

{ Declare procedures for preprocessing hyphenation patterns 943) 4+=

static void new_patterns(void) /*initializes the hyphenation pattern data =/
{ int k,I; /*indices into hc and hyf; not always in small_number range */
bool digit_sensed; /+should the next digit be treated as a letter? x/
quarterword v; /xtrie op code */
trie_pointer p, g; /xnodes of trie traversed during insertion */
bool first_child; /xis p = trie_l[q]? */
int c; /* character being inserted */

if (trie_not_ready) { set_cur_lang;
scan_left_brace(); /xa left brace must follow \patterns */
(Enter all of the patterns into a linked trie, until coming to a right brace 960);
if (saving_hyph_codes > 0) (Store hyphenation codes for current language 1525);

else { print_err("Tooylate for ");
print_esc("patterns");
help1 ("Al1._,patterns._,must._,beugiven._,beforeutypesettingubegins ");
error () ;
link (garbage) = scan_toks(false, false);
flush_list (def_ref);

}

}

960. Novices are not supposed to be using \patterns, so the error messages are terse. (Note that all error
messages appear in TEX’s string pool, even if they are used only by INITEX.)
(Enter all of the patterns into a linked trie, until coming to a right brace 960) =
k=0;
hyf [0] = 0;
digit_sensed = false;
loop { get_xz_token();
switch (cur_emd) {
case letter: case other_char: (Append a new letter or a hyphen level 961) break;
case spacer: case right_brace:
{if (k> 0) (Insert a new pattern into the linked trie 962);
if (cur_cmd = right_brace) goto done;

k=0;
hyf [0] = 0;
digit_sensed = false;
} break;
default:

{ print_err("Bad,");
print_esc("patterns");
help1 (" (See_Appendix H.)");
error () ;
¥
}

}

done:

This code is used in section 959.

8961 TEXprof INITIALIZING THE HYPHENATION TABLES 429

961. (Append a new letter or a hyphen level 961) =
if (digit_sensed V (cur_chr < 20°)V (cur_chr > *9?)) { if (cur_chr =.°) cur_chr = 0;
/* edge-of-word delimiter */
else { cur_chr = lc_code(cur_chr);
if (cur_chr =0) { print_err("Nonletter");
help1 (" (See Appendix H.)");
error () ;

}

if (k <63) { incr(k);
he[k] = cur_chr;
hyf [k] = 0;
digit_sensed = false;

}

}
else if (k < 63) { hyf[k] = cur_chr —°07;
digit_sensed = true;

}

This code is used in section 960.

962. When the following code comes into play, the pattern p;...p; appears in he[l .. k|, and the
corresponding sequence of numbers ng . ..nx appears in hyf [0 .. k].

(Insert a new pattern into the linked trie 962) =
{ (Compute the trie op code, v, and set I: = 0 964);
q=0;
he[0] = cur_lang;
while (I < k) { ¢ = hell];
incr(1);
p = trie_l[g];
first_child = true;
while ((p > 0) A (¢ > so(trie_c[p]))) { ¢ = p;
p = trie_r[ql;
first_child = false;
¥
if (p=0)V(c< so(trie_c[p])))
(Insert a new trie node between g and p, and make p point to it 963);
q=7p; /*now node g represents py ...p;_1 */

if (trie_o[q] # min_quarterword) { print_err("Duplicate pattern");
help! (" (See Appendix H.)");
error () ;

trie_o[q] = v;

}

This code is used in section 960.

430 INITIALIZING THE HYPHENATION TABLES TEXprof 8963

963. (Insert a new trie node between ¢ and p, and make p point to it 963) =
{ if (trie_ptr = trie_size) overflow ("pattern memory", trie_size);
incr (trie_ptr);
trie_r[trie_ptr] = p;
p = trie_ptr;
trie_l[p] = 0;
if (first_child) trie_l[q] = p; else trie_r[q] = p;
trie_c[p] = si(c);
trie_o[p] = min_quarterword;

}

This code is used in sections 962, 1525, and 1526.

964. (Compute the trie op code, v, and set I: = 0 964) =
if (he[l] =0) hyf[0] = 0;
if (hel[k] =0) hyf[k] = 0;
l=k;
v = min_quarterword;
loop { if (hyf[l] #0) v = new_trie_op(k — L, hyf[l], v);
if (I >0) decr(l); else goto donel;
}

donel :

This code is used in section 962.

965. Finally we put everything together: Here is how the trie gets to its final, efficient form. The following
packing routine is rigged so that the root of the linked tree gets mapped into location 1 of ¢rie, as required
by the hyphenation algorithm. This happens because the first call of first_fit will “take” location 1.
{ Declare procedures for preprocessing hyphenation patterns 943) 4+=
static void init_trie(void)
{int p; /«xpointer for initialization %/
int j,k,t; /xall-purpose registers for initialization */
int r,s; /*used to clean up the packed trie */
two_halves h; /* template used to zero out trie’s holes*/

(Local variables to save the profiling context 1766)
(Charge the time used here on init_trie 1769)
(Get ready to compress the trie 951);
if (trie_root # 0) { first_fit(trie_root);
trie_pack (trie_root);
}
if (hyph_root # 0) (Pack all stored hyph_codes 1527);
(Move the data into trie 957);
trie_not_ready = false;
(restore the previous current file, line, and command 1768)

6966 TEXprof BREAKING VERTICAL LISTS INTO PAGES 431

966. Breaking vertical lists into pages. The wsplit procedure, which implements TEX’s \vsplit
operation, is considerably simpler than line_break because it doesn’t have to worry about hyphenation, and
because its mission is to discover a single break instead of an optimum sequence of breakpoints. But before
we get into the details of vsplit, we need to consider a few more basic things.

967. A subroutine called prune_page_top takes a pointer to a vlist and returns a pointer to a modified
vlist in which all glue, kern, and penalty nodes have been deleted before the first box or rule node. However,
the first box or rule is actually preceded by a newly created glue node designed so that the topmost baseline
will be at distance split_top_skip from the top, whenever this is possible without backspacing.

When the second argument s is false the deleted nodes are destroyed, otherwise they are collected in a
list starting at split_disc.

In this routine and those that follow, we make use of the fact that a vertical list contains no character
nodes, hence the type field exists for each node in the list.

static pointer prune_page_top (pointer p,bool s) /xadjust top after page break x/
{ pointer prev_p; /xlags one step behind p*/
pointer g, 7; /*temporary variables for list manipulation */
prev_p = temp_head;
link (temp_head) = p;
while (p # null)
switch (type (p)) {
case hlist_node: case vlist_node: case rule_node:
(Insert glue for split_top_skip and set p: = null 968) break;
case whatsit_node: case mark_node: case ins_node:
{ prev_p = p;
p = link (prev_p);
} break;
case glue_node: case kern_node: case penalty_node:
{a=n
p = link(q);
link (q) = null;
link (prev_p) = p;
if (s) { if (split_disc = null) split_disc = ¢; else link(r) = q;
r=q;
¥
else flush_node_list(q);
} break;
default: confusion("pruning");

}

return link (temp_head);

}

968. (Insert glue for split_top_skip and set p: = null 968) =
{ ¢ = new_skip_param (split_top_skip_code);
link (prev_p) = g;
link(q) = p; /xnow temp_ptr = glue_ptr(q) x/
if (width (temp_ptr) > height (p)) width(temp_ptr) = width(temp_ptr) — height (p);
else width (temp_ptr) = 0;
p = null;

}

This code is used in section 967.

432 BREAKING VERTICAL LISTS INTO PAGES TEXprof §969

969. The next subroutine finds the best place to break a given vertical list so as to obtain a box of
height h, with maximum depth d. A pointer to the beginning of the vertical list is given, and a pointer to
the optimum breakpoint is returned. The list is effectively followed by a forced break, i.e., a penalty node
with the eject_penalty; if the best break occurs at this artificial node, the value null is returned.

An array of six scaled distances is used to keep track of the height from the beginning of the list to the
current place, just as in line_break. In fact, we use one of the same arrays, only changing its name to reflect
its new significance.

#define active_height active_width /+*new name for the six distance variables x/
#define cur_height active_height[1] ~ /+the natural height %/
#define set_height_zero(A) active_height[A] =0 /«initialize the height to zero x/

static pointer vert_break (pointer p,scaled h,scaled d) /xfinds optimum page break */
{ pointer prev_p; /xif p is a glue node, type(prev_p) determines whether p is a legal breakpoint */
pointer g, r; /* glue specifications */
int pi; /* penalty value */
int b; /*badness at a trial breakpoint %/
int least_cost; /+the smallest badness plus penalties found so far */
pointer best_place; /*the most recent break that leads to least_cost */
scaled prev_dp; /* depth of previous box in the list */
small_number t; /* type of the node following a kern */

Prev_p = p; /+an initial glue node is not a legal breakpoint */
least_cost = awful_bad;
do_all_siz (set_height_zero);
prev_dp = 0;
loop { (If node p is a legal breakpoint, check if this break is the best known, and goto done if p is
null or if the page-so-far is already too full to accept more stuff 971);
prev_p = p;
p = link (prev_p);

done: return best_place;

}

970. A global variable best_height_plus_depth will be set to the natural size of the box that corresponds
to the optimum breakpoint found by wvert_break. (This value is used by the insertion-splitting algorithm of
the page builder.)
(Global variables 13) +=

static scaled best_height_plus_depth; /*height of the best box, without stretching or shrinking x/

8971 TEXprof BREAKING VERTICAL LISTS INTO PAGES 433

971. A subtle point to be noted here is that the maximum depth d might be negative, so cur_height and
prev_dp might need to be corrected even after a glue or kern node.

(If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if the
page-so-far is already too full to accept more stuff 971) =
if (p = null) pi = eject_penalty;
else (Use node p to update the current height and depth measurements; if this node is not a legal
breakpoint, goto not_found or update_heights, otherwise set pi to the associated penalty at the
break 972);
(Check if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-far
is already too full 973);
if ((type(p) < glue_node) V (type(p) > kern_node)) goto not_found;
update_heights:
(Update the current height and depth measurements with respect to a glue or kern node p 975);
not_found:
if (prev_dp > d) { cur_height = cur_height + prev_dp — d;
prev_dp = d;

}

This code is used in section 969.

972. (Use node p to update the current height and depth measurements; if this node is not a legal
breakpoint, goto not_found or update_heights, otherwise set pi to the associated penalty at the
break 972) =

switch (type(p)) {
case hlist_node: case vlist_node: case rule_node:

{
cur_height = cur_height + prev_dp + height(p);
prev_dp = depth(p);
goto not_found;
}
case whatsit_node: (Process whatsit p in vert_break loop, goto not_found 1364);
case glue_node:
if (precedes_break (prev_p)) pi = 0;
else goto update_heights; break;
case kern_node:
{ if (link(p) = null) t = penalty_node;
else t = type (link(p));
if (t = glue_node) pi = 0; else goto update_heights;
} break;
case penalty_node: pi = penalty(p); break;
case mark_node: case ins_node: goto not_found;
default: confusion("vertbreak");

}

This code is used in section 971.

434 BREAKING VERTICAL LISTS INTO PAGES TpXprof §973

973. #define deplorable 100000 /*more than inf_bad, but less than awful_bad */

(Check if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-far
is already too full 973) =
if (pi < inf_penalty) { { Compute the badness, b, using awful_bad if the box is too full 974);

if (b < awful_bad)
if (pi < eject_penalty)
else if (b < inf_bad) b
else b = deplorable;

if (b < least_cost) { best_place = p;
least_cost = b;
best_height_plus_depth = cur_height + prev_dp;

}

if ((b= awful_bad) V (pi < eject_penalty)) goto done;

}

This code is used in section 971.

pi;

b:
= b+ pi;

974. (Compute the badness, b, using awful_bad if the box is too full 974) =
if (cur_height < h)
if ((active_height[3] # 0) V (active_height[4] # 0) V (active_height 5] # 0)) b = 0;
else b = badness(h — cur_height, active_height[2]);
else if (cur_height — h > active_height[6]) b = awful_bad;
else b = badness(cur_height — h, active_height[6])

This code is used in section 973.

975. Vertical lists that are subject to the wvert_break procedure should not contain infinite shrinkability,
since that would permit any amount of information to “fit” on one page.

(Update the current height and depth measurements with respect to a glue or kern node p 975) =
if (type(p) = kern_node) q = p;
else { q = glue_ptr(p);
active_height[2 + stretch_order(q)] =
active_height[2 + stretch_order(q)] + stretch(q);
active_height[6] = active_height [6] + shrink(q);
if ((shrink_order(q) # normal) A (shrink(q) # 0)) {
print_err ("Infinite_ glue shrinkage found,in box being split");
help4 ("The box you are \\vsplitting contains some infinitely",
"shrinkable glue, e.g., . \\vss’yor,‘\\vskip Optuminus 1£fil’.",
"Such,glue doesn’t belong there; but you,can safely proceed,",
"since the offensive shrinkability has been made finite.");
error () ;
r = new_spec(q);
shrink_order (r) = normal;
delete_glue_ref (q);
glue_ptr(p) =r;
q=r;
}
}

cur_height = cur_height + prev_dp + width(q); prev_dp =0

This code is used in section 971.

8976 TEXprof BREAKING VERTICAL LISTS INTO PAGES 435

976. Now we are ready to consider vsplit itself. Most of its work is accomplished by the two subroutines
that we have just considered.

Given the number of a vlist box n, and given a desired page height h, the wvsplit function finds the best
initial segment of the vlist and returns a box for a page of height h. The remainder of the vlist, if any,
replaces the original box, after removing glue and penalties and adjusting for split_top_skip. Mark nodes
in the split-off box are used to set the values of split_first_mark and split_bot_mark; we use the fact that
split_first_mark = null if and only if split_bot_mark = null.

The original box becomes “void” if and only if it has been entirely extracted. The extracted box is “void”
if and only if the original box was void (or if it was, erroneously, an hlist box).

(Declare the function called do_marks 1507)

static pointer wvsplit (halfword n,scaled h) /* extracts a page of height h from box n */
{ pointer v; /xthe box to be split x/

pointer p; /*runs through the vlist x/

pointer g; /*points to where the break occurs */

cur_val = n;
fetch_boz (v);
flush_node_list (split_disc);
split_disc = null;
if (sa_mark # null)
if (do_marks(vsplit_init,0, sa_mark)) sa_mark = null;
if (split_first_mark # null) { delete_token_ref (split_first_mark);
split_first_mark = null;
delete_token_ref (split_bot_mark);
split_bot_mark = null;
}
(Dispense with trivial cases of void or bad boxes 977);
q = vert_break (list_ptr(v), h, split_maz_depth);
(Look at all the marks in nodes before the break, and set the final link to null at the break 978);
q = prune_page_top(q, saving_vdiscards > 0);
p = list_ptr (v);
free_node (v, boz_node_size);
if (q # null) q = vpack (g, natural);
change_boz (q); /+the eq_level of the box stays the same */
return wvpackage (p, h, exactly, split_maxz_depth);

}

977. (Dispense with trivial cases of void or bad boxes 977) =

if (v = null) { return null;

}

if (type(v) # vlist_node) { print_err("");
print_esc("vsplit");
print("uneeds_ a,");
print_esc("vbox");
help2 ("The box_ you are trying to split is_ an \\hbox.",
"I can’tsplitsucha box, so I’11 ,leave it alone.");
error () ;
return null;

}

This code is used in section 976.

436 BREAKING VERTICAL LISTS INTO PAGES TpXprof — §978

978. 1It’s possible that the box begins with a penalty node that is the “best” break, so we must be careful
to handle this special case correctly.

(Look at all the marks in nodes before the break, and set the final link to null at the break 978) =
p = list_ptr(v);
if (p=q) list_ptr(v) = null;
else
loop { if (type(p) = mark_node)
if (mark_class(p) # 0) (Update the current marks for vsplit 1509)
else if (split_first_mark = null) { split_first_mark = mark_ptr(p);
split_bot_mark = split_first_mark;
token_ref_count (split_first_mark) =
token_ref_count (split_first_mark) + 2;
}

else { delete_token_ref (split_bot_mark);
split_bot_mark = mark_ptr(p);
add_token_ref (split_bot_mark);

if (link(p) = q) { link(p) = null;
goto done;
¥
p = link(p);
}

done:

This code is used in section 976.

8979 TEXprof THE PAGE BUILDER 437

979. The page builder. When TEX appends new material to its main vlist in vertical mode, it uses a
method something like wvsplit to decide where a page ends, except that the calculations are done “on line”
as new items come in. The main complication in this process is that insertions must be put into their boxes
and removed from the vlist, in a more-or-less optimum manner.

We shall use the term “current page” for that part of the main vlist that is being considered as a candidate
for being broken off and sent to the user’s output routine. The current page starts at link(page_head), and
it ends at page_tail. We have page_head = page_tail if this list is empty.

Utter chaos would reign if the user kept changing page specifications while a page is being constructed,
so the page builder keeps the pertinent specifications frozen as soon as the page receives its first box or
insertion. The global variable page_contents is empty when the current page contains only mark nodes and
content-less whatsit nodes; it is inserts_only if the page contains only insertion nodes in addition to marks
and whatsits. Glue nodes, kern nodes, and penalty nodes are discarded until a box or rule node appears, at
which time page_contents changes to box_there. As soon as page_contents becomes non-empty, the current
vsize and mazx_depth are squirreled away into page_goal and page_max_depth; the latter values will be used
until the page has been forwarded to the user’s output routine. The \topskip adjustment is made when
page_contents changes to box_there.

Although page_goal starts out equal to wvsize, it is decreased by the scaled natural height-plus-depth of
the insertions considered so far, and by the \skip corrections for those insertions. Therefore it represents
the size into which the non-inserted material should fit, assuming that all insertions in the current page have
been made.

The global variables best_page_break and least_page_cost correspond respectively to the local variables
best_place and least_cost in the vert_break routine that we have already studied; i.e., they record the location
and value of the best place currently known for breaking the current page. The value of page_goal at the
time of the best break is stored in best_size.

#define inserts_only 1 /* page_contents when an insert node has been contributed, but no boxes x/
#define bor_there 2 /* page_contents when a box or rule has been contributed */

{ Global variables 13) +=
static pointer page_tail; /*the final node on the current page */
static int page_contents; /*what is on the current page so far? /
static scaled page_maz_depth; /+*maximum box depth on page being built */
static pointer best_page_break; /xbreak here to get the best page known so farx/
static int least_page_cost; /= the score for this currently best page */
static scaled best_size; /*its page_goal */

438 THE PAGE BUILDER TEXprof §980

980. The page builder has another data structure to keep track of insertions. This is a list of four-
word nodes, starting and ending at page_ins_head. That is, the first element of the list is node r_.1 =
link (page_ins_head); node r; is followed by r_j + 1 = link(r_j); and if there are n items we have r-n+1 =
page_ins_head. The subtype field of each node in this list refers to an insertion number; for example,
“\insert 250’ would correspond to a node whose subtype is ¢i(250) (the same as the subtype field of the
relevant ins_node). These subtype fields are in increasing order, and subtype(page_ins_head) = ¢i(255), so
page_ins_head serves as a convenient sentinel at the end of the list. A record is present for each insertion
number that appears in the current page.

The type field in these nodes distinguishes two possibilities that might occur as we look ahead before
deciding on the optimum page break. If type(r) = inserting, then height(r) contains the total of the height-
plus-depth dimensions of the box and all its inserts seen so far. If type(r) = split_up, then no more insertions
will be made into this box, because at least one previous insertion was too big to fit on the current page;
broken_ptr(r) points to the node where that insertion will be split, if TEX decides to split it, broken_ins(r)
points to the insertion node that was tentatively split, and height(r) includes also the natural height plus
depth of the part that would be split off.

In both cases, last_ins_ptr(r) points to the last ins_node encountered for box go(subtype(r)) that would
be at least partially inserted on the next page; and best_ins_ptr(r) points to the last such ins_node that
should actually be inserted, to get the page with minimum badness among all page breaks considered so
far. We have best_ins_ptr(r) = null if and only if no insertion for this box should be made to produce this
optimum page.

The data structure definitions here use the fact that the height field appears in the fourth word of a box
node.

#define page_ins_node_size 4 /+number of words for a page insertion node x/

#define inserting 0 /xan insertion class that has not yet overflowed */

#define split_up 1 /*an overflowed insertion class %/

#define broken_ptr(A) link(A+1) /xan insertion for this class will break here if anywhere x/
#define broken_ins(A) info(A+1) /xthis insertion might break at broken_ptr */

#define last_ins_ptr(A) link(A+2) /*the most recent insertion for this subtype */

#define best_ins_ptr(A) info(A+2) /+the optimum most recent insertion */

(Initialize the special list heads and constant nodes 789) +=
subtype (page_ins_head) = qi(255);
type (page_ins_head) = split_up;
link (page_ins_head) = page_ins_head;

6981 TEXprof THE PAGE BUILDER 439

981. An array page_so_far records the heights and depths of everything on the current page. This array
contains six scaled numbers, like the similar arrays already considered in line_break and vert_break; and it
also contains page_goal and page_depth, since these values are all accessible to the user via set_page_dimen
commands. The value of page_so_far[1] is also called page_total. The stretch and shrink components of the
\skip corrections for each insertion are included in page_so_far, but the natural space components of these
corrections are not, since they have been subtracted from page_goal.

The variable page_depth records the depth of the current page; it has been adjusted so that it is at most
page_max_depth. The variable last_glue points to the glue specification of the most recent node contributed
from the contribution list, if this was a glue node; otherwise last_glue = max_halfword. (If the contribution
list is nonempty, however, the value of lasi_glue is not necessarily accurate.) The variables last_penalty,
last_kern, and last_node_type are similar. And finally, insert_penalties holds the sum of the penalties
associated with all split and floating insertions.

#define page_goal page_so_far|0] /* desired height of information on page being built */
#define page_total page_so_far[1] /*height of the current page */
#define page_shrink page_so_far[6] /* shrinkability of the current page */
#define page_depth page_so_far][7) /* depth of the current page */
(Global variables 13) +=
static scaled page_so_far[8]; /xheight and glue of the current page */

static pointer last_glue; /+used to implement \lastskip %/

static int last_penalty; /xused to implement \lastpenalty */

static scaled last_kern; /xused to implement \lastkern */

static int last_node_type; /*used to implement \lastnodetype */

static int insert_penalties; /*sum of the penalties for insertions that were held over x/

982. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("pagegoal", set_page_dimen,0);
primitive ("pagetotal", set_page_dimen,1);
primitive ("pagestretch", set_page_dimen,2);
primitive ("pagefilstretch", set_page_dimen,3);
primitive ("pagefillstretch", set_page_dimen,4);
primitive ("pagefilllstretch", set_page_dimen,5);
primitive ("pageshrink", set_page_dimen, 6);
primitive ("pagedepth", set_page_dimen, 7);

983. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case set_page_dimen:
switch (chr_code) {
case 0: print_esc("pagegoal"); break;
case 1: print_esc("pagetotal"); break;
case 2: print_esc("pagestretch"); break;
case 3: print_esc("pagefilstretch"); break;
case 4: print_esc("pagefillstretch"); break;
case b5: print_esc("pagefilllstretch"); break;
case 6: print_esc("pageshrink"); break;
default: print_esc("pagedepth");
} break;

440 THE PAGE BUILDER TEXprof — §984

984. Fdefine print_plus(A, B)
if (page_so_far[A] #0) { print("Luplus,");
print_scaled (page_so_far[A]);
print(B); }
static void print_totals(void)
{ print_scaled (page_total);
print_plus(2,"");
print_plus(3,"£i1");
print_plus (4, "£111");
print_plus (5, "£i111");
if (page_shrink # 0) { print(" minus ");
print_scaled (page_shrink);
}
¥

985. (Show the status of the current page 985) =
if (page_head # page_tail) { print_nl("###_ current page:");
if (output_active) print(",(held over for next output)");
show_boz (link (page_head));
if (page_contents > empty) { print_nl("total height ");
print_totals ();
print_nl (" goal height ");
print_scaled (page_goal);
r = link (page_ins_head);
while (r # page_ins_head) { print_In();
print_esc("insert");
t = qo(subtype(r));
print_int (t);
print("Ladds,");
if (count(t) = 1000) t = height(r);
else t = x_over_n(height(r), 1000) * count(t);
print_scaled (t);
if (type(r) = split_up) { q = page_head;
t=0;
do {
q = link(q);
if ((type(q) = ins_node) A (subtype(q) = subtype(r))) incr(t);
} while (—(q = broken_ins(r)));
print (", #");
print_int(t);
print("umight, split");
}
r = link(r);
}
}
}

This code is used in section 217.

8986 TEXprof THE PAGE BUILDER 441

986. Here is a procedure that is called when the page_contents is changing from empty to inserts_only or
boz_there.
#define set_page_so_far_zero(A) page_so_far[A] =0
static void freeze_page_specs(small_number s)
{ page_contents = s;
page_goal = vsize;
page_max_depth = max_depth;
page_depth = 0;
do_all_siz (set_page_so_far_zero);
least_page_cost = awful_bad;
#ifdef STAT
if (tracing_pages > 0) { begin_diagnostic();
print_nl ("%%.goal _height=");
print_scaled (page_goal);
print (", max depth=");
print_scaled (page_maz_depth);
end_diagnostic(false);
}

#endif
}

987. Pages are built by appending nodes to the current list in TEX’s vertical mode, which is at the
outermost level of the semantic nest. This vlist is split into two parts; the “current page” that we have been
talking so much about already, and the “contribution list” that receives new nodes as they are created. The
current page contains everything that the page builder has accounted for in its data structures, as described
above, while the contribution list contains other things that have been generated by other parts of TEX but
have not yet been seen by the page builder. The contribution list starts at link (contrib_head), and it ends
at the current node in TEX’s vertical mode.

When TEX has appended new material in vertical mode, it calls the procedure build_page, which tries to
catch up by moving nodes from the contribution list to the current page. This procedure will succeed in its
goal of emptying the contribution list, unless a page break is discovered, i.e., unless the current page has
grown to the point where the optimum next page break has been determined. In the latter case, the nodes
after the optimum break will go back onto the contribution list, and control will effectively pass to the user’s
output routine.

We make type(page_head) = glue_node, so that an initial glue node on the current page will not be
considered a valid breakpoint.

(Initialize the special list heads and constant nodes 789) +=
type (page_head) = glue_node;
subtype (page_head) = normal;

988. The global variable output_active is true during the time the user’s output routine is driving TEX.

(Global variables 13) +=
static bool output_active; /*are we in the midst of an output routine? */

989. (Set initial values of key variables 21) 4=
output_active = false;
insert_penalties = 0;

442 THE PAGE BUILDER TpXprof §990

990. The page builder is ready to start a fresh page if we initialize the following state variables. (However,
the page insertion list is initialized elsewhere.)
(Start a new current page 990) =
page_contents = empty;
page_tail = page_head;
link (page_head) = null;
last_glue = max_halfword,;
last_penalty = 0;
last_kern = 0;
last_node_type = —1;
page_depth = 0; page_maz_depth =0
This code is used in sections 214 and 1016.

991. At certain times box 255 is supposed to be void (i.e., null), or an insertion box is supposed to be
ready to accept a vertical list. If not, an error message is printed, and the following subroutine flushes the
unwanted contents, reporting them to the user.
static void boz_error(eight_bits n)
{ error () ;
begin_diagnostic();
print_nl("The following box has been deleted:");
show_bozx (box (n));
end_diagnostic(true);
flush_node_list (box (n));
boz (n) = null;

}

992. The following procedure guarantees that a given box register does not contain an \hbox.
static void ensure_vboz (eight_bits n)
{ pointer p; /*xthe box register contents */
p = boz(n);
if (p # null)
if (type(p) = hlist_node) { print_err("Insertions can only be added to,a vbox");
help8 ("Tut tut: You’re trying to,\\insert into,a",
"\\box register that now, contains an \\hbox.",

"Proceed, and ;1’11 discard its present ,contents.");
boz_error(n);

8993 TEXprof THE PAGE BUILDER 443

993. TEXis not always in vertical mode at the time build_page is called; the current mode reflects what TEX
should return to, after the contribution list has been emptied. A call on build_page should be immediately
followed by ‘goto big_switch’, which is TEX’s central control point.

(Declare the procedure called fire_up 1011)

static void build_page(void) /+append contributions to the current page */
{ pointer p; /*the node being appended */

pointer g, 7; /*nodes being examined */

int b,c; /xbadness and cost of current page */

int pi; /xpenalty to be added to the badness */

int n; /*insertion box number */

scaled delta, h, w; /*sizes used for insertion calculations x/

(Local variables to save the profiling context 1766)
if ((link (contrib_head) = null) V outpul_active) return;
{ Charge the time used here on build_page 1770)
do {
resume: p = link (contrib_head);
(Update the values of last_glue, last_penalty, and last_kern 995);
(Move node p to the current page; if it is time for a page break, put the nodes following the break
back onto the contribution list, and return to the user’s output routine if there is one 996);
} while (=(link (contrib_head) = null));
{Make the contribution list empty by setting its tail to contrib_head 994);
(restore the previous current file, line, and command 1768)

}

994. #define contrib_tail nest[0].tail_field /*tail of the contribution list %/

(Make the contribution list empty by setting its tail to contrib_head 994) =
if (nest_ptr =0) tail = contrib_head; /*vertical mode %/
else contrib_tail = contrib_head /*other modes */

This code is used in section 993.

995. (Update the values of last_glue, last_penalty, and last_kern 995) =
if (last_glue # maz_halfword) delete_glue_ref (last_glue);
last_penalty = 0;
last_kern = 0;
last_node_type = type(p) + 1;
if (type(p) = glue_node) { last_glue = glue_ptr(p);
add_glue_ref (last_glue);

else { last_glue = maz_halfword;
if (type(p) = penalty_node) last_penalty = penalty (p);
else if (type(p) = kern_node) last_kern = width(p);

}

This code is used in section 993.

444 THE PAGE BUILDER TpXprof §996

996. The code here is an example of a many-way switch into routines that merge together in different
places. Some people call this unstructured programming, but the author doesn’t see much wrong with it, as
long as the various labels have a well-understood meaning.

(Move node p to the current page; if it is time for a page break, put the nodes following the break back
onto the contribution list, and return to the user’s output routine if there is one 996) =
(If the current page is empty and node p is to be deleted, goto donel; otherwise use node p to update
the state of the current page; if this node is an insertion, goto contribute; otherwise if this node is
not a legal breakpoint, goto contribute or update_heights; otherwise set pi to the penalty associated
with this breakpoint 999);
(Check if node p is a new champion breakpoint; then if it is time for a page break, prepare for output,
and either fire up the user’s output routine and return or ship out the page and goto done 1004);
if ((type(p) < glue_node) V (type(p) > kern_node)) goto contribute;
update_heights:
(Update the current page measurements with respect to the glue or kern specified by node p 1003);
contribute: (Make sure that page_maz_depth is not exceeded 1002);
(Link node p into the current page and goto done 997);
donel: {Recycle node p 998);
done:

This code is used in section 993.

997. (Link node p into the current page and goto done 997) =
link (page_tail) = p;
page_tail = p;
link (contrib_head) = link (p);
link (p) = null; goto done

This code is used in section 996.

998. (Recycle node p 998) =
link (contrib_head) = link (p);
link (p) = null;
if (saving_vdiscards > 0) { if (page_disc = null) page_disc = p; else link (tail_page_disc) = p;
tail_page_disc = p;
¥
else flush_node_list(p)

This code is used in section 996.

§999 TEXprof THE PAGE BUILDER 445

999. The title of this section is already so long, it seems best to avoid making it more accurate but still
longer, by mentioning the fact that a kern node at the end of the contribution list will not be contributed
until we know its successor.

(If the current page is empty and node p is to be deleted, goto donel; otherwise use node p to update the
state of the current page; if this node is an insertion, goto contribute; otherwise if this node is not a
legal breakpoint, goto contribute or update_heights; otherwise set pi to the penalty associated with
this breakpoint 999) =

switch (type(p)) {
case hlist_node: case vlist_node: case rule_node:
if (page_contents < box_there)
(Initialize the current page, insert the \topskip glue ahead of p, and goto resume 1000)
else (Prepare to move a box or rule node to the current page, then goto contribute 1001) break;
case whatsit_node: (Prepare to move whatsit p to the current page, then goto contribute 1363);
case glue_node:
if (page_contents < box_there) goto donel;
else if (precedes_break (page_tail)) pi = 0;
else goto update_heights; break;
case kern_node:
if (page_contents < box_there) goto donel;
else if (link(p) = null) return;
else if (type(link(p)) = glue_node) pi = 0;
else goto update_heights; break;
case penalty_node:
if (page_contents < box_there) goto donel; else pi = penalty(p); break;
case mark_node: goto contribute;
case ins_node: { Append an insertion to the current page and goto contribute 1007)
default: confusion("page");

}

This code is used in section 996.

1000. (Initialize the current page, insert the \topskip glue ahead of p, and goto resume 1000) =
{ if (page_contents = empty) freeze_page_specs(box_there);
else page_contents = box_there;
q = new_skip_param (top_skip_code); /xnow temp_ptr = glue_ptr(q) =/
if (width(temp_ptr) > height(p)) width(temp_ptr) = width(temp_ptr) — height (p);
else width (temp_ptr) = 0;
link (q) = p;
link (contrib_head) = g;
goto resume;

}

This code is used in section 999.

1001. (Prepare to move a box or rule node to the current page, then goto contribute 1001) =
{ page_total = page_total + page_depth + height (p);
page_depth = depth(p);
goto contribute;

}

This code is used in section 999.

446 THE PAGE BUILDER TEXprof

1002. (Make sure that page_maz_depth is not exceeded 1002) =
if (page_depth > page_maz_depth) { page_total =
page_total + page_depth — page_max_depth;
page_depth = page_maz_depth;

}

This code is used in section 996.

1003. (Update the current page measurements with respect to the glue or kern specified by
node p 1003) =
if (type(p) = kern_node) q = p;
else { ¢ = glue_ptr(p);
page_so_far[2 + stretch_order(q)] =
page_so_far|2 + stretch_order(q)] + stretch(q);
page_shrink = page_shrink + shrink (q);
if ((shrink_order(q) # normal) A (shrink(q) # 0)) {
print_err("Infinite glue shrinkage found jon current page");
help/ ("The page about to be output,contains some infinitely",
"shrinkable glue, e.g.,u‘\\vss’ jor,‘\\vskip Opt minus ,1fil’.",
"Such ,glue doesn’t belong there; but, you,can safely proceed,",
"sincetheoffensive shrinkability has been made finite.");
error () ;
r = new_spec(q);
shrink_order (r) = normal;
delete_glue_ref (q);
glue_ptr(p) =r;
q=r;
}
}

page_total = page_total + page_depth + width(q); page_depth = 0

This code is used in section 996.

§1002

§1004 TEXprof THE PAGE BUILDER 447

1004. (Check if node p is a new champion breakpoint; then if it is time for a page break, prepare for
output, and either fire up the user’s output routine and return or ship out the page and goto
done 1004) =

if (pi < inf_penalty) {
(Compute the badness, b, of the current page, using awful_bad if the box is too full 1006);
if (b < awful_bad)
if (pi < eject_penalty) ¢ = pi;
else if (b < inf_bad) ¢ = b+ pi + insert_penalties;
else ¢ = deplorable;
else c = b;
if (insert_penalties > 10000) ¢ = awful_bad;
#ifdef STAT
if (tracing_pages > 0) (Display the page break cost 1005);
#endif
if (¢ < least_page_cost) { best_page_break = p;
best_size = page_goal;
least_page_cost = c;
r = link (page_ins_head);
while (r # page_ins_head) { best_ins_ptr(r) = last_ins_ptr(r);
r = link(r);
¥
¥
if ((c = awful_bad) V (pi < eject_penalty)) { fire_up(p);
/*output the current page at the best place /
if (output_active) {
(restore the previous current file, line, and command 1768)
return; /*user’s output routine will act x/
¥
goto done; /* the page has been shipped out by default output routine */
}
¥

This code is used in section 996.

1005. (Display the page break cost 1005) =
{ begin_diagnostic();
print_nl("%");
print("Lut=");
print_totals();
print (" g=");
print_scaled (page_goal);
print("ub=");
if (b= awful_bad) print_char(’*’); else print_int(b);
print (" p=");
print_int(pi);
print("Lue=");
if (¢ = awful_bad) print_char(’*’); else print_int(c);
if (c < least_page_cost) print_char(’#°);
end_diagnostic(false);

}

This code is used in section 1004.

448 THE PAGE BUILDER TpXprof §1006

1006. (Compute the badness, b, of the current page, using awful_bad if the box is too full 1006) =
if (page_total < page_goal)
if ((page_so_far[3] # 0) V (page_so_far[4] # 0) V
(page_so_far[5] # 0)) b= 0;
else b = badness(page_goal — page_total, page_so_far[2]);
else if (page_total — page_goal > page_shrink) b = awful_bad;
else b = badness(page_total — page_goal, page_shrink)

This code is used in section 1004.

1007. (Append an insertion to the current page and goto contribute 1007) =
{ if (page_contents = empty) freeze_page_specs(inserts_only);
n = subtype (p);
r = page_ins_head;
while (n > subtype(link(r))) r = link(r);
n = qo(n);
if (subtype(r) # qi(n)) (Create a page insertion node with subtype(r) = ¢i(n), and include the glue
correction for box n in the current page state 1008);
if (type(r) = split_up) insert_penalties = insert_penalties + float_cost(p);
else { last_ins_ptr(r) = p;
delta = page_goal — page_total — page_depth + page_shrink;
/* this much room is left if we shrink the maximum */
if (count(n) = 1000) h = height (p);
else h = z_over_n(height(p),1000) * count(n); /+this much room is needed */
if ((h<0)V (h<delta)) A (height(p) + height(r) < dimen(n))) { page_goal = page_goal — h;
height(r) = height(r) + height(p);
}

else (Find the best way to split the insertion, and change type(r) to split_up 1009);

}

goto contribute;

}

This code is used in section 999.

§1008 TEXprof THE PAGE BUILDER 449

1008. We take note of the value of \skip n and the height plus depth of \box n only when the first
\insert n node is encountered for a new page. A user who changes the contents of \box n after that first
\insert n had better be either extremely careful or extremely lucky, or both.

(Create a page insertion node with subtype(r) = ¢i(n), and include the glue correction for box n in the
current page state 1008) =
{ q = get_node(page_ins_node_size);

link (q) = link (r);

link(r) = ¢;

r=g;

subtype(r) = qi(n);

type (r) = inserting;

ensure_vbox (n);

if (boxz(n) = null) height(r) = 0;

else height(r) = height (box (n)) + depth(box(n));

best_ins_ptr(r) = null;

q = skip(n);

if (count(n) =1000) h = height(r);

else h = z_over_n(height(r),1000) * count(n);

page_goal = page_goal — h — width(q);

page_so_far[2 + stretch_order(q)] =

page_so_far|2 + stretch_order(q)] + stretch(q);

page_shrink = page_shrink + shrink (q);

if ((shrink_order(q) # normal) A (shrink(q) # 0)) {
print_err("Infinite glue shrinkage inserted from,");
print_esc("skip");
print_int(n);
help3 ("The._,correct ionygluefor page breaking with_ insertions",
"must have finite shrinkability. But,you may proceed,",
"since the offensive shrinkability has been made finite.");
error () ;

}
}

This code is used in section 1007.

450 THE PAGE BUILDER TeXprof §1009

1009. Here is the code that will split a long footnote between pages, in an emergency. The current situation
deserves to be recapitulated: Node p is an insertion into box n; the insertion will not fit, in its entirety, either
because it would make the total contents of box n greater than \dimen n, or because it would make the
incremental amount of growth h greater than the available space delta, or both. (This amount h has been
weighted by the insertion scaling factor, i.e., by \count n over 1000.) Now we will choose the best way to
break the vlist of the insertion, using the same criteria as in the \vsplit operation.

(Find the best way to split the insertion, and change type(r) to split_up 1009) =
{ if (count(n) < 0) w = maz_dimen;
else { w = page_goal — page_total — page_depth;
if (count(n) # 1000) w = x_over_n(w, count(n)) * 1000;

if (w > dimen(n) — height(r)) w = dimen(n) — height(r);
q = vert_break (ins_ptr(p), w, depth(p));
height(r) = height(r) + best_height_plus_depth;
#ifdef STAT
if (tracing_pages > 0) (Display the insertion split cost 1010);
#endif
if (count(n) # 1000) best_height_plus_depth = x_over_n(best_height_plus_depth,1000) * count(n);
page_goal = page_goal — best_height_plus_depth;
type (r) = split_up;
broken_ptr(r) = ¢;
broken_ins(r) = p;
if (¢ = null) insert_penalties = insert_penalties + eject_penalty;
else if (type(q) = penalty_node) insert_penalties = insert_penalties + penalty(q);

}

This code is used in section 1007.

1010. (Display the insertion split cost 1010) =
{ begin_diagnostic();
print_nl("%usplit");
print_int(n);
print("uto,");
print_scaled (w);
print_char(’,’);
print_scaled (best_height_plus_depth);
print (" p="):
if (¢ = null) print_int (eject_penalty);
else if (type(q) = penalty_node) print_int(penalty(q));
else print_char(’0?);
end_diagnostic(false);

}

This code is used in section 1009.

61011 TEXprof THE PAGE BUILDER 451

1011. When the page builder has looked at as much material as could appear before the next page break,
it makes its decision. The break that gave minimum badness will be used to put a completed “page” into
box 255, with insertions appended to their other boxes.

We also set the values of top_mark, first_mark, and bot_mark. The program uses the fact that bot_mark #
null implies first_mark # null; it also knows that bot_mark = null implies top_mark = first_mark = null.

The fire_up subroutine prepares to output the current page at the best place; then it fires up the user’s
output routine, if there is one, or it simply ships out the page. There is one parameter, ¢, which represents
the node that was being contributed to the page when the decision to force an output was made.

{Declare the procedure called fire_up 1011) =
static void fire_up (pointer c)

{ pointer p,q,r,s; /+nodes being examined and/or changed x/
pointer prev_p; /* predecessor of px/
int n; /*insertion box number */
bool wait; /xshould the present insertion be held over? x/
int save_vbadness; /xsaved value of vbadness */
scaled save_uvfuzz; /xsaved value of vfuzz x/

pointer save_split_top_skip; /xsaved value of split_top_skip x/

(Set the value of output_penalty 1012);
if (sa_mark # null)
if (do_marks(fire_up_init, 0, sa_mark)) sa_mark = null;
if (bot_mark # null) { if (top_mark # null) delete_token_ref (top_mark);
top_mark = bot_mark;
add_token_ref (top_mark);
delete_token_ref (first_mark);
first_mark = null;
}
(Put the optimal current page into box 255, update first_mark and bot_mark, append insertions to
their boxes, and put the remaining nodes back on the contribution list 1013);
if (sa_mark # null)
if (do_marks(fire_up_done,0, sa_mark)) sa_mark = null;
if ((top_mark # null) A (first_mark = null)) { first_mark = top_mark;
add_token_ref (top_mark);
}
if (output_routine # null)
if (dead_cycles > maz_dead_cycles)
(Explain that too many dead cycles have occurred in a row 1023)
else (Fire up the user’s output routine and return 1024);
(Perform the default output routine 1022);

}

This code is used in section 993.

1012. (Set the value of output_penalty 1012) =
if (type(best_page_break) = penalty_node) {
geq_word_define (int_base + output_penalty_code, penalty (best_page_break));
penalty (best_page_break) = inf_penalty;
}
else geq_word_define(int_base + output_penalty_code, inf_penalty)

This code is used in section 1011.

452 THE PAGE BUILDER TeXprof §1013

1013. As the page is finally being prepared for output, pointer p runs through the vlist, with prev_p
trailing behind; pointer ¢ is the tail of a list of insertions that are being held over for a subsequent page.

(Put the optimal current page into box 255, update first_mark and bot_mark, append insertions to their
boxes, and put the remaining nodes back on the contribution list 1013) =
if (c = best_page_break) best_page_break = null; /xc not yet linked in*/
(Ensure that box 255 is empty before output 1014);
insert_penalties = 0; /xthis will count the number of insertions held over x/
save_split_top_skip = split_top_skip;
if (holding_inserts < 0) (Prepare all the boxes involved in insertions to act as queues 1017);
q = hold_head,;
link (q) = null;
prev_p = page_head;
p = link (prev_p);
while (p # best_page_break) { if (type(p) = ins_node) { if (holding_inserts < 0)
(Either insert the material specified by node p into the appropriate box, or hold it for the next
page; also delete node p from the current page 1019);

else if (type(p) = mark_node)
if (mark_class(p) # 0) (Update the current marks for fire_up 1512)
else (Update the values of first_mark and bot_mark 1015);
prev_p = p;
p = link (prev_p);
}
split_top_skip = save_split_top_skip;
(Break the current page at node p, put it in box 255, and put the remaining nodes on the contribution
list 1016);
(Delete the page-insertion nodes 1018)

This code is used in section 1011.

1014. (Ensure that box 255 is empty before output 1014) =
if (box(255) # null) { print_err("");
print_esc("box");
print ("255,is not void");
help2("You,shouldn’t use \\box255 except, in \\output_ routines.",
"Proceed,and ;1’11 discard its present,,contents.");
boz_error(255);

}

This code is used in section 1013.

1015. (Update the values of first_mark and bot_mark 1015) =
{ if (first_mark = null) { first_mark = mark_ptr(p);
add_token_ref (first_mark);

if (bot_mark # null) delete_token_ref (bot_mark);
bot_mark = mark_ptr(p);
add_token_ref (bot_mark);

}

This code is used in section 1013.

61016 TEXprof THE PAGE BUILDER 453

1016. When the following code is executed, the current page runs from node link(page_head) to node
prev_p, and the nodes from p to page_tail are to be placed back at the front of the contribution list.
Furthermore the heldover insertions appear in a list from link (hold_head) to q; we will put them into the
current page list for safekeeping while the user’s output routine is active. We might have ¢ = hold_head;
and p = null if and only if prev_p = page_tail. Error messages are suppressed within vpackage, since the
box might appear to be overfull or underfull simply because the stretch and shrink from the \skip registers
for inserts are not actually present in the box.

(Break the current page at node p, put it in box 255, and put the remaining nodes on the contribution
list 1016) =
if (p # null) { if (link (contrib_head) = null)
if (nest_ptr =0) tail = page_tail;
else contrib_tail = page_tail;
link (page_tail) = link (contrib_head);
link (contrib_head) = p;
link (prev_p) = null;
}
save_vbadness = vbadness;
vbadness = inf_bad;
save_vfuzz = vfuzz;
vfuzz = max_dimen; /*inhibit error messages */
boz (255) = wvpackage (link (page_head), best_size, exactly, page_maz_depth);
vbadness = save_vbadness;
vfuzz = save_vfuzz;
if (last_glue # maz_halfword) delete_glue_ref (last_glue);

(Start a new current page 990); /*this sets last_glue = maz_halfword */
if (¢ # hold_head) { link(page_head) = link (hold_head);
page_tail = g;

}

This code is used in section 1013.

1017. If many insertions are supposed to go into the same box, we want to know the position of the
last node in that box, so that we don’t need to waste time when linking further information into it. The
last_ins_ptr fields of the page insertion nodes are therefore used for this purpose during the packaging phase.

(Prepare all the boxes involved in insertions to act as queues 1017) =
{ r = link(page_ins_head);
while (r # page_ins_head) { if (best_ins_ptr(r) # null) { n = qo(subtype(r));
ensure_vbox (n);
if (boz(n) = null) box(n) = new_null_box ();
p = box(n) + list_offset;
while (link (p) # null) p = link (p);
last_ins_ptr(r) = p;
}
r = link(r);
}
}

This code is used in section 1013.

454 THE PAGE BUILDER TpXprof §1018
1018. (Delete the page-insertion nodes 1018) =
r = link (page_ins_head);
while (r # page_ins_head) { q = link(r);
free_node (r, page_ins_node_size);
r=g

}

link (page_ins_head) = page_ins_head

This code is used in section 1013.

1019. We will set best_ins_ptr = null and package the box corresponding to insertion node r, just after
making the final insertion into that box. If this final insertion is ‘split_up’, the remainder after splitting and
pruning (if any) will be carried over to the next page.
(Either insert the material specified by node p into the appropriate box, or hold it for the next page; also
delete node p from the current page 1019) =
{ r = link(page_ins_head);
while (subtype (r) # subtype(p)) r = link(r);
if (best_ins_ptr(r) = null) wait = true;
else { wait = false;
s = last_ins_ptr(r);
link (s) = ins_ptr(p);
if (best_ins_ptr(r) = p) (Wrap up the box specified by node r, splitting node p if called for; set
wait: = true if node p holds a remainder after splitting 1020)
else { while (link(s) # null) s = link(s);
last_ins_ptr(r) = s;
¥
}

(Either append the insertion node p after node ¢, and remove it from the current page, or delete
node(p) 1021);

}

This code is used in section 1013.

1020. (Wrap up the box specified by node r, splitting node p if called for; set wait: = true if node p
holds a remainder after splitting 1020) =
{ if (type(r) = split_up)
if ((broken_ins(r) = p) A (broken_ptr(r) # null)) { while (link(s) # broken_ptr(r)) s = link(s);
link (s) = null;
split_top_skip = split_top_ptr(p);
ins_ptr(p) = prune_page_top (broken_ptr(r), false);
if (ins_ptr(p) # null) { temp_ptr = vpack (ins_ptr(p), natural);
height (p) = height (temp_ptr) + depth(temp_ptr);
free_node (temp_ptr, boxz_node_size);
wait = true;

}

best_ins_ptr(r) = null;

n = qo(subtype(r));

temp_ptr = list_ptr(box (n));

free_node (box (n), box_node_size);

box (n) = vpack (temp_ptr, natural);
}

This code is used in section 1019.

61021 TEXprof THE PAGE BUILDER 455

1021. (Either append the insertion node p after node ¢, and remove it from the current page, or delete
node(p) 1021) =

link (prev_p) = link(p);

link (p) = null;

if (wait) { link(q) = p;
q=Dp;
incr (insert_penalties);

}

else { delete_glue_ref (split_top_ptr(p));
free_node(p, ins_node_size);

}

p = prev_p

This code is used in section 1019.

1022. The list of heldover insertions, running from link (page_head) to page_tail, must be moved to the
contribution list when the user has specified no output routine.
(Perform the default output routine 1022) =
{ if (link(page_head) # null) { if (link (contrib_head) = null)
if (nest_ptr =0) tail = page_tail; else contrib_tail = page_tail;
else link (page_tail) = link (contrib_head);
link (contrib_head) = link (page_head);
link (page_head) = null;
page_tail = page_head;
}
flush_node_list (page_disc);
page_disc = null;
ship_out (boz (255));
boz (255) = null;
}

This code is used in section 1011.

1023. (Explain that too many dead cycles have occurred in a row 1023) =
{ print_err("Output loop---");
print_int (dead_cycles);
print (", consecutive dead cycles");
help3 ("I’ve,concluded, that_ your, \\output_is awry;_ it never does,a",
"\\shipout,so,I’m shipping \\box255 out myself. Next time",

"increase;\\maxdeadcycles if jyou want me to_be_more patient!");
error () ;

}

This code is used in section 1011.

456 ~ THE PAGE BUILDER TEXprof §1024

1024. (Fire up the user’s output routine and return 1024) =
{ output_active = true;
incr (dead_cycles);
push_nest();

mode = —uvmode;
prev_depth = ignore_depth;
mode_line = —line;

begin_token_list (output_routine, output_text);
new_save_level (output_group);
normal_paragraph ();

scan_left_brace();

return;

}

This code is used in section 1011.

1025. When the user’s output routine finishes, it has constructed a vlist in internal vertical mode, and
TEX will do the following:

(Resume the page builder after an output routine has come to an end 1025) =
{ if ((loc # null) v ((token_type # output_text) A (token_type # backed_up)))
(Recover from an unbalanced output routine 1026);
end_token_list(); /* conserve stack space in case more outputs are triggered */
end_graf ();
unsave ();
output_active = false;
insert_penalties = 0;
(Ensure that box 255 is empty after output 1027);
if (tail # head) /xcurrent list goes after heldover insertions */
{ link (page_tail) = link (head);
page_tail = tail;
}
if (link (page_head) # null) /xand both go before heldover contributions x/
{ if (link (contrib_head) = null) contrib_tail = page_tail;
link (page_tail) = link (contrib_head);
link (contrib_head) = link (page_head);
link (page_head) = null;
page_tail = page_head;
}
flush_node_list (page_disc);
page_disc = null;
pop_nest();
build_page();

}

This code is used in section 1099.

61026 TEXprof THE PAGE BUILDER

1026. (Recover from an unbalanced output routine 1026) =
{ print_err("Unbalanced output routine");
help2 ("Your, ;sneaky output_ routine has problematic_{’s_and/or }’s.",
"I,can’t handle that very well; good luck.");
error () ;
do {
get_token();
} while (—(loc = null));
} /xloops forever if reading from a file, since null = min_halfword < 0x/
This code is used in section 1025.

1027. (Ensure that box 255 is empty after output 1027) =
if (box(255) # null) { print_err("Output routine didn’t_ use_ all of ");

print_esc("box");
print_int (255);
help3 ("Your, \\output,commands should empty \\box255,",
"e.g.,ubyusaying ‘\\shipout\\box255’.",
"Proceed; 1’11, discard, its present contents.");
box_error(255);

}

This code is used in section 1025.

457

458 THE CHIEF EXECUTIVE TEXprof §1028

1028. The chief executive. We come now to the main_control routine, which contains the master
switch that causes all the various pieces of TEX to do their things, in the right order.

In a sense, this is the grand climax of the program: It applies all the tools that we have worked so hard
to construct. In another sense, this is the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can’t fully understand what is going on without paging back
and forth to be reminded of conventions that are defined elsewhere. We are now at the hub of the web, the
central nervous system that touches most of the other parts and ties them together.

The structure of main_control itself is quite simple. There’s a label called big_switch, at which point the
next token of input is fetched using get_z_token. Then the program branches at high speed into one of about
100 possible directions, based on the value of the current mode and the newly fetched command code; the
sum abs(mode) + cur_cmd indicates what to do next. For example, the case ‘vmode + letter’ arises when a
letter occurs in vertical mode (or internal vertical mode); this case leads to instructions that initialize a new
paragraph and enter horizontal mode.

The big case statement that contains this multiway switch has been labeled reswitch, so that the program
can goto reswitch when the next token has already been fetched. Most of the cases are quite short; they
call an “action procedure” that does the work for that case, and then they either goto reswitch or they “fall
through” to the end of the case statement, which returns control back to big_switch. Thus, main_control
is not an extremely large procedure, in spite of the multiplicity of things it must do; it is small enough to
be handled by Pascal compilers that put severe restrictions on procedure size.

One case is singled out for special treatment, because it accounts for most of TEX’s activities in typical
applications. The process of reading simple text and converting it into char_node records, while looking for
ligatures and kerns, is part of TEX’s “inner loop”; the whole program runs efficiently when its inner loop is
fast, so this part has been written with particular care.

61029 TEXprof THE CHIEF EXECUTIVE 459

1029. We shall concentrate first on the inner loop of main_control, deferring consideration of the other
cases until later.

(Declare action procedures for use by main_control 1042)
(Declare the procedure called handle_right_brace 1067)

static void main_control(void) /* governs TEX’s activities x/
{ int ¢; /* general-purpose temporary variable */
(Initialize profiling 1759)
if (every_job # null) begin_token_list (every_job, every_job_text);
big_switch: (record timing information 1761)
get_x_token();
big_reswitch: (set current file, line, and command for the current time slot 1765)
(Give diagnostic information, if requested 1030);
switch (abs(mode) + cur_emd) {
case hmode + letter: case hmode + other_char: case hmode + char_given: goto main_loop;
case hmode + char_num:
{ scan_char_num/();
cur_chr = cur_val;
goto main_loop; }
case hmode + no_boundary:
{ get_x_token();
if ((cur_emd = letter) V (cur_cmd = other_char) V (cur_cmd = char_given) V (cur_cmd =
char_num)) cancel_boundary = true;
goto big_reswitch;
¥
case hmode + spacer:
if (space_factor = 1000) goto append_normal_space;
else app_space(); break;
case hmode + ex_space: case mmode + ex_space: goto append_normal_space;
(Cases of main_control that are not part of the inner loop 1044)
} /*of the big case statement */
goto big_switch;
main_loop: (record timing information 1761)
(set current file, line, and command for the current time slot 1765)
(Append character cur_chr and the following characters (if any) to the current hlist in the current
font; goto big_reswitch when a non-character has been fetched 1033);
append_normal_space:
(Append a normal inter-word space to the current list, then goto big_switch 1040);

}

460 THE CHIEF EXECUTIVE TEXprof §1030

1030. When a new token has just been fetched at big_switch, we have an ideal place to monitor TEX’s
activity.
(Give diagnostic information, if requested 1030) =
if (interrupt #0)
if (OK_to_interrupt) { back_input();
check_interrupt;
goto big_switch;
}
#ifdef DEBUG
if (panicking) check_mem false);
#endif
if (tracing_commands > 0) show_cur_cmd_chr()

This code is used in section 1029.

1031. The following part of the program was first written in a structured manner, according to the
philosophy that “premature optimization is the root of all evil.” Then it was rearranged into pieces of
spaghetti so that the most common actions could proceed with little or no redundancy.

The original unoptimized form of this algorithm resembles the reconstitute procedure, which was described
earlier in connection with hyphenation. Again we have an implied “cursor” between characters cur_l and
cur_r. The main difference is that the lig_stack can now contain a charnode as well as pseudo-ligatures;
that stack is now usually nonempty, because the next character of input (if any) has been appended to it.
In main_control we have

cur T — character (lig_stack), if lig_stack > null;
=" 7\ font_bchar|cur_font], otherwise;

except when character (lig_stack) = font_false_bchar[cur_font]. Several additional global variables are
needed.
{ Global variables 13) +=
static internal_font_number main_f; /*the current font */
static four_quarters main_i; /* character information bytes for cur_{ */
static four_quarters main_j; /xligature/kern command %/
static font_index main_k; /+index into font_info x/
static pointer main_p; /* temporary register for list manipulation x/
static int main_s; /xspace factor value x/
static halfword bchar; /*boundary character of current font, or non_char */
static halfword false_bchar; /+*nonexistent character matching bchar, or non_char /
static bool cancel_boundary; /*should the left boundary be ignored? x/
static bool ins_disc; /xshould we insert a discretionary node? */

1032. The boolean variables of the main loop are normally false, and always reset to false before the loop
is left. That saves us the extra work of initializing each time.

(Set initial values of key variables 21) +=
ligature_present = false;
cancel_boundary = false;

Ift_hit = false;
rt_hit = false;
ins_disc = false;

61033 TEXprof THE CHIEF EXECUTIVE 461

1033. We leave the space_factor unchanged if sf_code (cur_chr) = 0; otherwise we set it equal to sf_code (cur_chr)]
except that it should never change from a value less than 1000 to a value exceeding 1000. The most common
case is sf_code (cur_chr) = 1000, so we want that case to be fast.

The overall structure of the main loop is presented here. Some program labels are inside the individual
sections.

#define adjust_space_factor
main_s = sf_code(cur_chr);
if (main_s = 1000) space_factor = 1000;
else if (main_s < 1000) { if (main_s > 0) space_factor = main_s;

else if (space_factor < 1000) space_factor = 1000;
else space_factor = main_s

(Append character cur_chr and the following characters (if any) to the current hlist in the current font;
goto big_reswitch when a non-character has been fetched 1033) =
adjust_space_factor;
main_f = cur_font;
behar = font_bchar [main_f;
false_bchar = font_false_bchar[main_f];
if (mode > 0)
if (language # clang) fiz_language();
fast_get_avail (lig_stack);
font (lig_stack) = main_f;
cur_l = qi(cur_chr);
character (lig_stack) = cur_l;
cur_q = tail;
if (cancel_boundary) { cancel_boundary = false;
main_k = non_address;
}
else main_k = bchar_label [main_f;
if (main_k = non_address) goto main_loop_move2; /x 10 left boundary processing */
cur_r = cur_l;
cur_l = non_char;
goto main_lig_loop1 ; /*begin with cursor after left boundary %/

main_loop_wrapup:
(Make a ligature node, if ligature_present; insert a null discretionary, if appropriate 1034);
main_loop_move: (If the cursor is immediately followed by the right boundary, goto big_reswitch; if it’s
followed by an invalid character, goto big_switch; otherwise move the cursor one step to the right
and goto main_lig_loop 1035);
main_loop_lookahead :
(Look ahead for another character, or leave lig_stack empty if there’s none there 1037);
main_lig_loop:
(If there’s a ligature/kern command relevant to cur_l and cur_r, adjust the text appropriately; exit to
main_loop_wrapup 1038);
main_loop_move_lig:
(Move the cursor past a pseudo-ligature, then goto main_loop_lookahead or main_lig_loop 1036)

This code is used in section 1029.

462 THE CHIEF EXECUTIVE TEXprof §1034

1034. If link(cur_q) is nonnull when wrapup is invoked, cur_qg points to the list of characters that were
consumed while building the ligature character cur_I.

A discretionary break is not inserted for an explicit hyphen when we are in restricted horizontal mode. In
particular, this avoids putting discretionary nodes inside of other discretionaries.

#define pack_lig(X) /*the parameter is either rt_hit or false x/
{ main_p = new_ligature (main_f , cur_l, link (cur_q));
if (Ift_hit) { subtype(main_p) = 2;
Ift_hit = false;
}
if (X)
if (lig_stack = null) { incr(subtype (main_p));
rt_hit = false;
}
link (cur_q) = main_p;
tail = main_p;
ligature_present = false;

#define wrapup(A)
if (cur_l < non_char) { if (link(cur_q) > null)
if (character(tail) = qi(hyphen_char|main_f))) ins_disc = true;
if (ligature_present) pack_lig(A);
if (ins_disc) { ins_disc = false;
if (mode > 0) tail_append (new_disc());
}
}

(Make a ligature node, if ligature_present; insert a null discretionary, if appropriate 1034) =
wrapup (rt_hit)

This code is used in section 1033.

1035. (If the cursor is immediately followed by the right boundary, goto big_reswitch; if it’s followed by
an invalid character, goto big_switch; otherwise move the cursor one step to the right and goto
main_lig_loop 1035) =

if (lig_stack = null) goto big_reswitch;
cur_q = tail;
cur_l = character (lig_stack);
main_loop_movel :
if (—is_char_node (lig_stack)) goto main_loop_move_lig;
main_loop_move2:
if ((cur_chr < font_bc[main_f]) V (cur_chr > font_ec[main_f])) { char_warning(main_f, cur_chr);
free_avail (lig_stack);
goto big_switch;
}
main_i = char_info(main_f , cur_l);
if (—char_exists(main_i)) { char_warning (main_f , cur_chr);
free_avail (lig_stack);
goto big_switch;
}
link (tail) = lig_stack; tail = lig_stack /* main_loop_lookahead is next x/

This code is used in section 1033.

61036 TEXprof THE CHIEF EXECUTIVE 463

1036. Here we are at main_loop_move_lig. When we begin this code we have cur_q = tail and cur_l =
character (lig_stack).

(Move the cursor past a pseudo-ligature, then goto main_loop_lookahead or main_lig_loop 1036) =
main_p = lig_ptr(lig_stack);
if (main_p > null) tail_append (main_p); /+append a single character x/
temp_ptr = lig_stack;
lig_stack = link (temp_ptr);
free_node (temp_ptr, small_node_size);
main_i = char_info(main_f , cur_l);
ligature_present = true;
if (lig_stack = null)
if (main_p > null) goto main_loop_lookahead;
else cur_r = bchar;
else cur_r = character(lig_stack);
goto main_lig_loop

This code is used in section 1033.

1037. The result of \char can participate in a ligature or kern, so we must look ahead for it.

{Look ahead for another character, or leave lig_stack empty if there’s none there 1037) =
get_next(); /xset only cur_cmd and cur_chr, for speed x/
if (cur_cmd = letter) goto main_loop_lookahead1 ;
if (cur_cmd = other_char) goto main_loop_lookaheadl ;
if (cur_cmd = char_given) goto main_loop_lookaheadl ;
z_token(); /*now expand and set cur_cmd, cur_chr, cur_tok x/
if (cur_cmd = letter) goto main_loop_lookaheadl ;
if (cur_cmd = other_char) goto main_loop_lookaheadl ;
if (cur_cmd = char_given) goto main_loop_lookaheadl ;
if (cur_emd = char_num) { scan_char_num();
cur_chr = cur_val;
goto main_loop_lookaheadl ;

if (cur_cmd = no_boundary) bchar = non_char;
cur_r = bchar;
lig_stack = null;
goto main_lig_loop;
main_loop_lookaheadl : adjust_space_factor;
fast_get_avail (lig_stack);
font (lig_stack) = main_f;
cur_r = qi(cur_chr);
character (lig_stack) = cur_r; if (cur_r = false_bchar) cur_r = non_char
/= this prevents spurious ligatures x/

This code is used in section 1033.

464 THE CHIEF EXECUTIVE TpXprof §1038

1038. Even though comparatively few characters have a lig/kern program, several of the instructions here
count as part of TEX’s inner loop, since a potentially long sequential search must be performed. For example,
tests with Computer Modern Roman showed that about 40 per cent of all characters actually encountered
in practice had a lig/kern program, and that about four lig/kern commands were investigated for every such
character.

At the beginning of this code we have main_i = char_info(main_f, cur_l).

(If there’s a ligature/kern command relevant to cur_l and cur_r, adjust the text appropriately; exit to
main_loop_wrapup 1038) =
if (char_tag(main_i) # lig_tag) goto main_loop_wrapup;
if (cur_r = non_char) goto main_loop_wrapup;
main_k = lig_kern_start (main_f , main_i);
main_j = font_info[main_k].qqqq;
if (skip_byte(main_j) < stop_flag) goto main_lig_loop2;
main_k = lig_kern_restart (main_f , main_j);
main_lig_loopl: main_j = font_info[main_k].qqqq;
main_lig_loop2:
if (next_char(main_j) = cur_r)
if (skip_byte(main_j) < stop_flag) (Do ligature or kern command, returning to main_lig_loop or
main_loop_wrapup or main_loop_move 1039);
if (skip_byte(main_j) = qi(0)) incr(main_k);
else { if (skip_byte(main_j) > stop_flag) goto main_loop_wrapup;
main_k = main_k + qo(skip_byte(main_j)) + 1;
¥
goto main_lig_loop1

This code is used in section 1033.

61039 TEXprof THE CHIEF EXECUTIVE 465

1039. When a ligature or kern instruction matches a character, we know from read_font_info that the
character exists in the font, even though we haven’t verified its existence in the normal way.
This section could be made into a subroutine, if the code inside main_control needs to be shortened.

(Do ligature or kern command, returning to main_lig_loop or main_loop_wrapup or main_loop_move 1039) =
{ if (op_byte(main_j) > kern_flag) { wrapup (rt_hit);
tail_append (new_kern (char_kern(main_f , main_j)));
goto main_loop_move;
}
if (cur_l = non_char) Ilft_hit = true;
else if (lig_stack = null) ri_hit = true;
check_interrupt; /xallow a way out in case there’s an infinite ligature loop x/
switch (op_byte(main_j)) {
case ¢i(1): case ¢i(5):
{ cur_l = rem_byte(main_j); /x=:1,=:1>%/
main_i = char_info(main_f, cur_l);
ligature_present = true;

} break;
case ¢i(2): case ¢i(6):
{ cur_r = rem_byte(main_j); [x|=:, |=:>x%/
if (lig_stack = null) /*right boundary character is being consumed x/

{ lig_stack = new_lig_item (cur_r);
bchar = non_char;
}
else if (is_char_node(lig_stack)) /[« link(lig_stack) = null x/
{ main_p = lig_stack;
lig_stack = new_lig_item (cur_r);
lig_ptr (lig_stack) = main_p;
}

else character(lig_stack) = cur_r;
} break;
case ¢i(3):
{ cur_r = rem_byte(main_j); /[x|=:1x/
main_p = lig_stack;
lig_stack = new_lig_item (cur_r);
link (lig_stack) = main_p;

} break;
case ¢i(7): case ¢i(11):
{ wrapup(false); /x|1=:1> |=:1>>x%/

cur_q = tail;

cur_l = rem_byte(main_j);

main_i = char_info(main_f, cur_l);
ligature_present = true;

} break;
default:
{ cur_l = rem_byte(main_j);
ligature_present = true; [x=:%/

if (lig_stack = null) goto main_loop_wrapup;
else goto main_loop_movel ;

}

if (op_byte(main_j) > qi(4))
if (op_byte(main_j) # ¢i(7)) goto main_loop_wrapup;

466 ~ THE CHIEF EXECUTIVE TeXprof §1039

if (cur_l < non_char) goto main_lig_loop;
main_k = bchar_label[main_f];
goto main_lig_loop1 ;

}

This code is used in section 1038.

1040. The occurrence of blank spaces is almost part of TEX’s inner loop, since we usually encounter
about one space for every five non-blank characters. Therefore main_control gives second-highest priority
to ordinary spaces.

When a glue parameter like \spaceskip is set to ‘Opt’, we will see to it later that the corresponding glue
specification is precisely zero_glue, not merely a pointer to some specification that happens to be full of
zeroes. Therefore it is simple to test whether a glue parameter is zero or not.

(Append a normal inter-word space to the current list, then goto big_switch 1040) =

if (space_skip = zero_glue) {
(Find the glue specification, main_p, for text spaces in the current font 1041);
temp_ptr = new_glue (main_p);

}

else temp_ptr = new_param_glue (space_skip_code);

link (tail) = temp_ptr;

tail = temp_ptr; goto big_switch

This code is used in section 1029.

1041. Having font_glue allocated for each text font saves both time and memory. If any of the three
spacing parameters are subsequently changed by the use of \fontdimen, the find_font_dimen procedure
deallocates the font_glue specification allocated here.

(Find the glue specification, main_p, for text spaces in the current font 1041) =
{ main_p = fonit_glue[cur_font];
if (main_p = null) { main_p = new_spec(zero_glue);
main_k = param_base[cur_font] + space_code;
width(main_p) = font_info[main_k].sc; /xthat’s space(cur_font) */
stretch (main_p) = font_info[main_k + 1].sc; /+*and space_stretch (cur_font) x/
shrink (main_p) = font_info[main_k + 2].sc; /+and space_shrink (cur_font) x/
font_glue[cur_font] = main_p;
}
}

This code is used in sections 1040 and 1042.

81042 TEXprof THE CHIEF EXECUTIVE 467

1042. (Declare action procedures for use by main_control 1042) =
static void app_space(void) /xhandle spaces when space_factor # 1000 */
{ pointer ¢; /x glue node x/

if ((space_factor > 2000) A (xspace_skip # zero_glue)) q = new_param_glue (zspace_skip_code);
else { if (space_skip # zero_glue) main_p = space_skip;

else (Find the glue specification, main_p, for text spaces in the current font 1041);

main_p = new_spec(main_p);

(Modify the glue specification in main_p according to the space factor 1043);

q = new_glue(main_p);

glue_ref_count (main_p) = null;

link (tail) = ¢;
tail = q;
}

See also sections 1046, 1048, 1049, 1050, 1053, 1059, 1060, 1063, 1068, 1069, 1074, 1078, 1083, 1085, 1090, 1092, 1094, 1095,
1098, 1100, 1102, 1104, 1109, 1112, 1116, 1118, 1122, 1126, 1128, 1130, 1134, 1135, 1137, 1141, 1150, 1154, 1158, 1159,
1162, 1164, 1171, 1173, 1175, 1180, 1190, 1193, 1199, 1210, 1269, 1274, 1278, 1287, 1292, 1301, 1347, and 1375.

This code is used in section 1029.

1043. (Modify the glue specification in main_p according to the space factor 1043) =
if (space_factor > 2000) width(main_p) = width(main_p) + extra_space (cur_font);
stretch(main_p) = xn_over_d (stretch(main_p), space_factor,

1000); shrink(main_p) = zn_over_d(shrink (main_p), 1000, space_factor)

This code is used in section 1042.

1044. Whew—that covers the main loop. We can now proceed at a leisurely pace through the other
combinations of possibilities.

#define any_mode(A) case vmode + A: case hmode + A: case mmode + A
/* for mode-independent commands */

(Cases of main_control that are not part of the inner loop 1044) =
any_mode (relax): case vmode + spacer: case mmode + spacer: case mmode + no_boundary: do_nothing;
break;
any_mode (ignore_spaces):
{ (Get the next non-blank non-call token 405);
goto big_reswitch;

}

case vmode + stop:
if (its_all_over()) {
(record the end of TEX 1764)
return; /*this is the only way out */
} break;
(Forbidden cases detected in main_control 1047) any_mode(mac_param): report_illegal_case(); break;
(Math-only cases in non-math modes, or vice versa 1045): insert_dollar_sign(); break;
(Cases of main_control that build boxes and lists 1055)
(Cases of main_control that don’t depend on mode 1209)
(Cases of main_control that are for extensions to TEX 1346)

This code is used in section 1029.

468 THE CHIEF EXECUTIVE TpXprof §1045

1045. Here is a list of cases where the user has probably gotten into or out of math mode by mistake. TEX
will insert a dollar sign and rescan the current token.

#define non_math(A) case vmode + A: case hmode + A

(Math-only cases in non-math modes, or vice versa 1045) =
non_math (sup_mark): non_math(sub_mark): non_math(math_char_num): non_math(math_given):
non_math (math_comp): non_math(delim_num): non_math (left_right): non_math(above):
non_math (radical): non_math(math_style): non_math(math_choice): non_math (vcenter):
non_math(non_script): non_math(mkern): non_math (limit_switch): non_math(mskip):
non_math (math_accent): case mmode + endv: case mmode + par_end: case mmode + stop:
case mmode + vskip: case mmode + un_vbox: case mmode + valign: case mmode + hrule

This code is used in section 1044.

1046. (Declare action procedures for use by main_control 1042) +=

static void insert_dollar_sign (void)

{ back_input();
cur_tok = math_shift_token + >$°;
print_err("Missing, $,inserted");
help2("I’ve, inserted a begin-math/end-math symbol, since I think",
"you,,left one out. Proceed, with fingers crossed.");
ins_error();

}

1047. When erroneous situations arise, TEX usually issues an error message specific to the particular error.
For example, ‘\noalign’ should not appear in any mode, since it is recognized by the align_peek routine in
all of its legitimate appearances; a special error message is given when ‘\noalign’ occurs elsewhere. But
sometimes the most appropriate error message is simply that the user is not allowed to do what he or she
has attempted. For example, ‘\moveleft’ is allowed only in vertical mode, and ‘\lower’ only in non-vertical
modes. Such cases are enumerated here and in the other sections referred to under ‘See also’

(Forbidden cases detected in main_control 1047) =
case vmode + vmove: case hmode + hmove: case mmode + hmove: any_mode (last_item):
See also sections 1097, 1110, and 1143.

This code is used in section 1044.

1048. The ‘you_cant’ procedure prints a line saying that the current command is illegal in the current
mode; it identifies these things symbolically.

(Declare action procedures for use by main_control 1042) +=
static void you_cant(void)
{ print_err("You,can’t use ‘");
print_cmd_chr (cur_cmd, cur_chr);
print("’Ling");
print_mode(mode);

§1049 TEXprof THE CHIEF EXECUTIVE 469

1049. (Declare action procedures for use by main_control 1042) +=

static void report_illegal_case(void)

{ you_cant();
help/ ("Sorry, ubutyI’m not programmed, to handle this case;",
"I’11,,just pretend that you didn’t ask for,it.",
"If you’re,in the wrong mode, you might, be able to",
"return to the right one by typing I}’ or,‘I$’or,‘I\\par’.");
error () ;

}

1050. Some operations are allowed only in privileged modes, i.e., in cases that mode > 0. The privileged
function is used to detect violations of this rule; it issues an error message and returns false if the current
mode is negative.

{Declare action procedures for use by main_control 1042) +=
static bool privileged (void)
{ if (mode > 0) return true;
else { report_illegal_case();
return false;

}
}

1051. Either \dump or \end will cause main_control to enter the endgame, since both of them have ‘stop’
as their command code.

(Put each of TEX’s primitives into the hash table 225) +=
primitive("end", stop, 0);
primitive ("dump", stop, 1);

1052. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case stop:
if (chr_code = 1) print_esc("dump"); else print_esc("end"); break;

1053. We don’t want to leave main_control immediately when a stop command is sensed, because it may
be necessary to invoke an \output routine several times before things really grind to a halt. (The output
routine might even say ‘\gdef\end{...}’, to prolong the life of the job.) Therefore its_all_over is true only
when the current page and contribution list are empty, and when the last output was not a “dead cycle.”

(Declare action procedures for use by main_control 1042) +=
static bool its_all_over(void) /xdo this when \end or \dump occurs */
{ if (privileged ()) { if ((page_head = page_tail) A (head = tail) A (dead_cycles = 0)) { return true;

back_input (); /*we will try to end again after ejecting residual material */

tail_append (new_null_boz ());

width (tail) = hsize;

tail_append (new_glue (fill_glue));

tail_append (new_penalty (—°10000000000));

build_page(); /*append \hbox to \hsize{}\vfill\penalty-’10000000000 %/
}

return false;

}

470 BUILDING BOXES AND LISTS TEXprof §1054

1054. Building boxes and lists. The most important parts of main_control are concerned with TEX’s
chief mission of box-making. We need to control the activities that put entries on vlists and hlists, as well as
the activities that convert those lists into boxes. All of the necessary machinery has already been developed;
it remains for us to “push the buttons” at the right times.

1055. As an introduction to these routines, let’s consider one of the simplest cases: What happens when
“\hrule’ occurs in vertical mode, or ‘\vrule’ in horizontal mode or math mode? The code in main_control
is short, since the scan_rule_spec routine already does most of what is required; thus, there is no need for a
special action procedure.

Note that baselineskip calculations are disabled after a rule in vertical mode, by setting prev_depth =
ignore_depth.

(Cases of main_control that build boxes and lists 1055) =
case vmode + hrule: case hmode + vrule: case mmode + vrule:
{ tail_append (scan_rule_spec());
if (abs(mode) = vmode) prev_depth = ignore_depth;
else if (abs(mode) = hmode) space_factor = 1000;
} break;

See also sections 1056, 1062, 1066, 1072, 1089, 1091, 1093, 1096, 1101, 1103, 1108, 1111, 1115, 1121, 1125, 1129, 1133, 1136,
1139, 1149, 1153, 1157, 1161, 1163, 1166, 1170, 1174, 1179, 1189, and 1192.

This code is used in section 1044.

1056. The processing of things like \hskip and \vskip is slightly more complicated. But the code in
main_control is very short, since it simply calls on the action routine append_glue. Similarly, \kern activates
append_kern.

{ Cases of main_control that build boxes and lists 1055) +=

case vmode + vskip: case hmode + hskip: case mmode + hskip: case mmode + mskip: append_glue();
break;

any_mode (kern): case mmode + mkern: append_kern(); break;

1057. The hskip and vskip command codes are used for control sequences like \hss and \vfil as well as
for \hskip and \vskip. The difference is in the value of cur_chr.

#define fil_code 0 /+identifies \hfil and \vfil */

#define fill_code 1 /xidentifies \hfill and \v£fill */
#define ss_code 2 /«identifies \hss and \vss %/

#define fil_neg_code 3 /*identifies \hfilneg and \vfilneg */
#define skip_code 4 /+identifies \hskip and \vskip */
#define mskip_code 5 /*identifies \mskip */

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("hskip", hskip, skip_code);

primiative ("hfil" hskip, fil_code);
primiative("hfil1", hskip, fill_code);
primitive ("hss", hskip, ss_code);
primitive ("hfilneg", hskip, fil_neg_code);
primitive ("vskip", vskip, skip_code);
primative ("vEil" vskip, fil_code);
primitive ("vEill", vskip, fill_code);
primitive ("vss", vskip, ss_code);
primitive ("vEiilneg", vskip, fil_neg_code);
primitive ("mskip", mskip, mskip_code);
primitive ("kern", kern, explicit);
primitive ("mkern" , mkern, mu_glue);

61058 TEXprof BUILDING BOXES AND LISTS

1058. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=

case hskip:
switch (chr_code) {
case skip_code: print_esc("hskip"); break;
case fil_code: print_esc("hfil"); break;
case fill_code: print_esc("hfill"); break;
case ss_code: print_esc("hss"); break;
default: print_esc("hfilneg");
} break;

case vskip:
switch (chr_code) {
case skip_code: print_esc("vskip"); break;
case fil_code: print_esc("vfil"); break;
case fill_code: print_esc("vEill"); break;
case ss_code: print_esc("vss"); break;
default: print_esc("vfilneg");
} break;

case mskip: print_esc("mskip"); break;

case kern: print_esc("kern"); break;

case mkern: print_esc("mkern"); break;

1059. All the work relating to glue creation has been relegated to the following subroutine. It does
call build_page, because it is used in at least one place where that would be a mistake.

(Declare action procedures for use by main_control 1042) +=
static void append_glue(void)
{ small_number s; /+modifier of skip command %/

s = cur_chr;
switch (s) {
case fil_code: cur_val = fil_glue; break;
case fill_code: cur_val = fill_glue; break;
case ss_code: cur_val = ss_glue; break;
case fil_neg_code: cur_val = fil_neg_glue; break;
case skip_code: scan_glue(glue_val); break;
case mskip_code: scan_glue(mu_val);
} /xnow cur_val points to the glue specification x/
tail_append (new_glue (cur_val));
if (s > skip_code) { decr(glue_ref_count (cur_val));
if (s > skip_code) subtype (tail) = mu_glue;
}
}

1060. (Declare action procedures for use by main_control 1042) +=
static void append_kern(void)
{ quarterword s; /xsubtype of the kern node x/
s = cur_chr;
scan_dimen (s = mu_glue, false, false);
tail_append (new_kern (cur_val));
subtype (tail) = s;

471

not

472 BUILDING BOXES AND LISTS TEXprof §1061

1061. Many of the actions related to box-making are triggered by the appearance of braces in the
input. For example, when the user says ‘\hbox to 100pt{(hlist)}’ in vertical mode, the information
about the box size (100pt, ezactly) is put onto save_stack with a level boundary word just above it, and
cur_group = adjusted_hboz_group; TEX enters restricted horizontal mode to process the hlist. The right
brace eventually causes save_stack to be restored to its former state, at which time the information about
the box size (100pt, ezactly) is available once again; a box is packaged and we leave restricted horizontal
mode, appending the new box to the current list of the enclosing mode (in this case to the current list of
vertical mode), followed by any vertical adjustments that were removed from the box by hpack.

The next few sections of the program are therefore concerned with the treatment of left and right curly
braces.

1062. If a left brace occurs in the middle of a page or paragraph, it simply introduces a new level of
grouping, and the matching right brace will not have such a drastic effect. Such grouping affects neither the
mode nor the current list.

(Cases of main_control that build boxes and lists 1055) +=
non_math (left_brace): new_save_level (simple_group); break;
any_mode (begin_group): new_save_level (semi_simple_group); break;
any_mode (end_group):

if (cur_group = semi_simple_group) unsave();

else off_save(); break;

1063. We have to deal with errors in which braces and such things are not properly nested. Sometimes
the user makes an error of commission by inserting an extra symbol, but sometimes the user makes an error
of omission. TEX can’t always tell one from the other, so it makes a guess and tries to avoid getting into a
loop.

The off_save routine is called when the current group code is wrong. It tries to insert something into the
user’s input that will help clean off the top level.

(Declare action procedures for use by main_control 1042) +=
static void off_save(void)
{ pointer p; /xinserted token x/

if (cur_group = bottom_level) (Drop current token and complain that it was unmatched 1065)
else { back_input();
p = get_avail ();
link (temp_head) = p;
print_err ("Missing,");
(Prepare to insert a token that matches cur_group, and print what it is 1064);
print (", inserted");
ins_list (link (temp_head));
help5 ("I’ve_ inserted something that you may_ have forgotten.",
"(See_the <inserted, jtext> above.)",
"With luck, this will get me junwedged. But if you",
"really_ didn’t_ forget anything, try_typing,‘2’ now; then",
"my_insertion and my,current dilemma will both, disappear.");
error () ;

§1064 TEXprof BUILDING BOXES AND LISTS 473

1064. At this point, link(temp_head) = p, a pointer to an empty one-word node.
(Prepare to insert a token that matches cur_group, and print what it is 1064) =
switch (cur_group) {
case semi_simple_group:
{ info(p) = cs_token_flag + frozen_end_group;
print_esc("endgroup");
} break;
case math_shift_group:
{ info(p) = math_shift_token + *$’;
print_char(’$’);
} break;
case math_left_group:
{ info(p) = cs_token_flag + frozen_right;
link (p) = get_avail ();
p = link(p);
info(p) = other_token + .”;
print_esc("right.");
} break;
default:
{ info(p) = right_brace_token + >}’
print_char(’}?);
}
}

This code is used in section 1063.

1065. (Drop current token and complain that it was unmatched 1065) =
{ print_err("Extra,");

print_cmd_chr (cur_cmd, cur_chr);
help1 ("Thingsuareuprettyumixeduup ,ubut I, think, the worst_is over.");
error () ;

}

This code is used in section 1063.

1066. The routine for a right_brace character branches into many subcases, since a variety of things may
happen, depending on cur_group. Some types of groups are not supposed to be ended by a right brace; error
messages are given in hopes of pinpointing the problem. Most branches of this routine will be filled in later,
when we are ready to understand them; meanwhile, we must prepare ourselves to deal with such errors.

(Cases of main_control that build boxes and lists 1055) +=

any_mode (right_brace): handle_right_brace(); break;

474 BUILDING BOXES AND LISTS TpXprof §1067

1067. (Declare the procedure called handle_right_brace 1067) =
static void handle_right_brace(void)
{ pointer p, g; /= for short-term use */
scaled d; /+holds split_maz_depth in insert_group x/
int f; /xholds floating_penalty in insert_group x/
switch (cur_group) {
case simple_group: unsave(); break;
case bottom_level:
{ print_err("Too_many }’s");
help2 ("You ’ve ,closed, more ,groups, than you opened.",
"Such booboos are ,generally harmless, so_keep going.");
error () ;
} break;
case semi_simple_group: case math_shift_group: case math_left_group: extra_right_brace(); break;
(Cases of handle_right_brace where a right_brace triggers a delayed action 1084)
default: confusion("rightbrace");

}
}

This code is used in section 1029.

1068. (Declare action procedures for use by main_control 1042) +=

static void extra_right_brace(void)

{ print_err("Extra,}, or forgotten, ");
switch (cur_group) {
case semi_simple_group: print_esc("endgroup"); break;
case math_shift_group: print_char(’$’); break;
case math_left_group: print_esc("right");
}
helps ("I ’vedeleted, ja ,group-closing symbol, because it ;seems to be",
"spurious, as_in, ‘$x}$’ . But perhaps the } is legitimate and",
"you,forgot something else, as in, ‘\\hbox{$x}’. ,In such cases",
"the way toyrecover;is to insert both the forgotten and the",
"deleted material, e.g., by typing, ‘I$}’.");
error () ;
incr (align_state);

}

1069. Here is where we clear the parameters that are supposed to revert to their default values after every
paragraph and when internal vertical mode is entered.

(Declare action procedures for use by main_control 1042) +=
static void normal_paragraph(void)
{ if (looseness # 0) eq_word_define (int_base + looseness_code,0);
f (hang_indent # 0) eq_word_define(dimen_base + hang_indent_code,0);
f (hang_after # 1) eq_word_define (int_base + hang_after_code,1);
if (par_shape_ptr # null) eq_define (par_shape_loc, shape_ref , null);
if (inter_line_penalties_ptr # null) eq_define (inter_line_penalties_loc, shape_ref , null);

i
i

81070 TEXprof BUILDING BOXES AND LISTS 475

1070. Now let’s turn to the question of how \hbox is treated. We actually need to consider also a slightly

larger context, since constructions like ‘\setbox3=\hbox. .. and ‘\leaders\hbox. ..’ and ‘\lower3.8pt\hbox. .

are supposed to invoke quite different actions after the box has been packaged. Conversely, constructions
like ‘\setbox3=’ can be followed by a variety of different kinds of boxes, and we would like to encode such
things in an efficient way.

In other words, there are two problems: to represent the context of a box, and to represent its type.

The first problem is solved by putting a “context code” on the save_stack, just below the two entries
that give the dimensions produced by scan_spec. The context code is either a (signed) shift amount,
or it is a large integer > boz_flag, where boxr_flag = 23°. Codes box_flag through global_box_flag — 1
represent ‘\setbox0’ through ‘\setbox32767’; codes global_box_flag through ship_out_flag — 1 represent
“\global\setbox0’ through ‘\global\setbox32767’; code ship_out_flag represents ‘\shipout’; and codes
leader_flag through leader_flag + 2 represent ‘\leaders’, ‘\cleaders’, and ‘\xleaders’.

The second problem is solved by giving the command code make_boz to all control sequences that produce
a box, and by using the following chr_code values to distinguish between them: box_code, copy_code,
last_box_code, wvsplit_code, vtop_code, vtop_code + vmode, and vtop_code + hmode, where the latter two
are used to denote \vbox and \hbox, respectively.

#define boz_flag °10000000000 /x context code for ‘\setbox0’*/

#define global_box_flag °10000100000 /* context code for ‘\global\setbox0’*/
#define ship_out_flag °10000200000 /* context code for ‘\shipout’x*/

#define leader_flag °10000200001 /* context code for ‘\leaders’*/

#define bor_code 0 /xchr_code for ‘\box’*/

#define copy_code 1 /* chr_code for ‘\copy’ x/

#define last_box_code 2 [+ chr_code for ‘\lastbox’x/

#define vsplit_code 3 /*chr_code for ‘\vsplit’x/

#define vtop_code 4 [+ chr_code for ‘\vtop’ */

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("moveleft", hmove, 1);
primitive ("moveright" hmove, 0);
primitive ("raise", vmove, 1);

primitive ("lower", vmove, 0);

(
(
(
primitive ("box", make_box, box_code);
primitive ("copy", make_box, copy_code);
primitive ("lastbox", make_box , last_box_code);
primitive ("vsplit", make_box , vsplit_code);
primitive ("vtop", make_box, vtop_code);
primitive ("vbox", make_boz , vtop_code + vmode);
primitive ("hbox" , make_box , vtop_code + hmode);
primitive ("shipout", leader_ship, a_leaders — 1); /* ship_out_flag = leader_flag — 1%/
primitive ("leaders", leader_ship, a_leaders);
primitive ("cleaders", leader_ship, c_leaders);
(

primitive ("xleaders", leader_ship, z_leaders);

1

476 BUILDING BOXES AND LISTS TEXprof §1071

1071. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case hmove:

if (chr_code = 1) print_esc("moveleft"); else print_esc("moveright"); break;
case vmove:

if (chr_code = 1) print_esc("raise"); else print_esc("lower"); break;
case make_box:

switch (chr_code) {

case boz_code: print_esc("box"); break;

case copy_code: print_esc("copy"); break;

case last_boxz_code: print_esc("lastbox"); break;

case vsplit_code: print_esc("vsplit"); break;

case vtop_code: print_esc("vtop"); break;

case vtop_code + vmode: print_esc("vbox"); break;

default: print_esc("hbox");

} break;
case leader_ship:

if (chr_code = a_leaders) print_esc("leaders");

else if (chr_code = c_leaders) print_esc("cleaders");

else if (chr_code = z_leaders) print_esc("xleaders");

else print_esc("shipout"); break;

1072. Constructions that require a box are started by calling scan_bozr with a specified context code. The
scan_box routine verifies that a make_bor command comes next and then it calls begin_box.

(Cases of main_control that build boxes and lists 1055) +=
case vmode + hmove: case hmode + vmove: case mmode + vmove:
{ t = cur_chr;
scan_normal_dimen;
if (t =0) scan_box (cur_val); else scan_box (—cur_val);
} break;
any_mode (leader_ship): scan_box (leader_flag — a_leaders + cur_chr); break;
any_mode (make_boz): begin_box (0); break;

1073. The global variable cur_box will point to a newly made box. If the box is void, we will have
cur_box = null. Otherwise we will have type(cur_box) = hlist_node or vlist_node or rule_node; the
rule_node case can occur only with leaders.

(Global variables 13) +=
static pointer cur_box; /*box to be placed into its context */

1074. The box_end procedure does the right thing with cur_boz, if box_context represents the context as
explained above.

(Declare action procedures for use by main_control 1042) +=
static void boz_end (int boz_context)
{ pointer p; /* ord_noad for new box in math mode x/
small_number q; / global prefix x/

if (box_context < box_flag) { Append box cur_bozx to the current list, shifted by boz_context 1075)
else if (box_contert < ship_out_flag) (Store cur_boz in a box register 1076)
else if (cur_box # null)

if (box_context > ship_out_flag) { Append a new leader node that uses cur_boz 1077)

else ship_out (cur_box);

81075 TEXprof BUILDING BOXES AND LISTS 477

1075. The global variable adjust_tail will be non-null if and only if the current box might include adjust-
ments that should be appended to the current vertical list.

(Append box cur_boz to the current list, shifted by boz_context 1075) =
{ if (cur_box # null) { shift_amount(cur_boxz) = box_context;
if (abs(mode) = vmode) { append_to_vlist(cur_boz);
if (adjust_tail # null) { if (adjust_head # adjust_tail) { link (tail) = link (adjust_head);
tail = adjust_tail;
}

adjust_tail = null;
}
if (mode > 0) build_page();

else { if (abs(mode) = hmode) space_factor = 1000;
else { p = new_noad();
math_type (nucleus(p)) = sub_boz;
info(nucleus (p)) = cur_bor;
cur_boxr = p;
}
link (tail) = cur_box;
tail = cur_box;
}
}
}

This code is used in section 1074.

1076. (Store cur_box in a box register 1076) =

{ if (box_context < global_box_flag) { cur_val = box_context — box_flag;
a = 0;

}

else { cur_val = box_context — global_boz_flag;
a=4;

}

if (cur_val < 256) define (boz_base + cur_val, box_ref , cur_box);

else sa_def_bozx;

}

This code is used in section 1074.

478 BUILDING BOXES AND LISTS TpXprof — §1077

1077. (Append a new leader node that uses cur_box 1077) =
{ (Get the next non-blank non-relax non-call token 403);
if (((cur_cmd = hskip) A (abs(mode) # vmode)) V
((cur_emd = wskip) A (abs(mode) = vmode))) { append_glue();
subtype (tail) = boz_context — (leader_flag — a_leaders);
leader_ptr(tail) = cur_box;

else { print_err("Leadersunot._,followed,_,byuproper._,glue");
help3 ("You,should say ¢ \\leaders <box or rule><hskip or vskip>’."
"I found the <box or_rule>, but there’s no suitable",
"<hskip or,vskip>,_so,I’m ignoring these jleaders.");
back_error();
flush_node_list (cur_box);

}
}

This code is used in section 1074.

)

1078. Now that we can see what eventually happens to boxes, we can consider the first steps in their
creation. The begin_box routine is called when box_context is a context specification, cur_chr specifies the
type of box desired, and cur_cmd = make_boz.

{Declare action procedures for use by main_control 1042) +=
static void begin_box (int boz_context)
{ pointer p, g; /+run through the current list x/

int m; /+the length of a replacement list */
halfword k; /%0 or vmode or hmode */
halfword n; /xa box number */

switch (cur_chr) {
case boz_code:
{ scan_register_num();
fetch_box (cur_box);
change_box (null); ~ /+the box becomes void, at the same level x/
} break;
case copy_code:
{ scan_register_num();
fetch_boz (q);
cur_box = copy_node_list(q);

} break;
case last_box_code: (If the current list ends with a box node, delete it from the list and make cur_boz
point to it; otherwise set cur_boz: = null 1079) break;

case wvsplit_code: (Split off part of a vertical box, make cur_boxz point to it 1081) break;
default: (Initiate the construction of an hbox or vbox, then return 1082)

}

boz_end (box_context); /*in simple cases, we use the box immediately */

81079 TEXprof BUILDING BOXES AND LISTS 479

1079. Note that the condition —is_char_node(tail) implies that head # tail, since head is a one-word
node.

(If the current list ends with a box node, delete it from the list and make cur_boz point to it; otherwise set
cur_box: = null 1079) =
{ cur_box = null;
if (abs(mode) = mmode) { you_cant();
help! ("Sorry;,this \\lastbox will be void.");
error () ;

else if ((mode = vmode) A (head = tail)) { you_cant();
help2 ("Sorry. ..I usuallycan’t take things from the current page.",
"This_ \\lastbox will therefore be void.");
error () ;
}
else { if (—is_char_node(tail))
if ((type(tail) = hlist_node) V (type(tail) = vlist_node))
(Remove the last box, unless it’s part of a discretionary 1080);
}
}

This code is used in section 1078.

1080. (Remove the last box, unless it’s part of a discretionary 1080) =
{ ¢ = head;
do {
p=gq;
if (—is_char_node(q))
if (type(q) = disc_node) { for (m = 1; m < replace_count(q); m++) p = link(p);
if (p = tail) goto done;
}
q = link (p);
} while (—(q = tail));
cur_box = tail;
shift_amount (cur_box) = 0;

tail = p;
link (p) = null;
done: ;

}

This code is used in section 1079.

480 BUILDING BOXES AND LISTS TEXprof §1081

1081. Here we deal with things like ‘\vsplit 13 to 100pt’.

(Split off part of a vertical box, make cur_boz point to it 1081) =
{ scan_register_num();

n = cur_val;

if (—scan_keyword("to")) { print_err("Missing,,‘to’ inserted");
help2 ("I’m_ working on ¢ \\vsplit<box number> to,<dimen>’ ;"
"will look for the <dimen> next.");
error () ;

}

scan_normal_dimen;

cur_box = wvsplit(n, cur_val);

}

This code is used in section 1078.

)

1082. Here is where we enter restricted horizontal mode or internal vertical mode, in order to make a box.

(Initiate the construction of an hbox or vbox, then return 1082) =
{ k = cur_chr — vtop_code;
saved (0) = box_context;
if (k= hmode)
if ((boz_context < box_flag) A (abs(mode) = vmode)) scan_spec(adjusted_hbox_group, true);
else scan_spec(hbox_group, true);
else { if (k= vmode) scan_spec(vboz_group, true);
else { scan_spec(vtop_group, true);
k = vmode;
}
normal_paragraph();
}
push_nest();
mode = —k;
if (k= vmode) { prev_depth = ignore_depth;
if (every_vboz # null) begin_token_list (every_vboz, every_vbox_text);
}
else { space_factor = 1000;
if (every_hbox # null) begin_token_list(every_hbox, every_hbox_text);

}

return;

}

This code is used in section 1078.

61083 TEXprof BUILDING BOXES AND LISTS 481

1083. (Declare action procedures for use by main_control 1042) +=
static void scan_bozx (int box_context) /*the next input should specify a box or perhaps a rule x/
{ (Get the next non-blank non-relax non-call token 403);
if (cur_cmd = make_boz) begin_boz (box_context);
else if ((boz_context > leader_flag) A ((cur_cmd = hrule) V (cur_cmd = vrule))) {
cur_box = scan_rule_spec();
boz_end (box_context);
}
else {
print_err ("A_<box>_was_supposed, to be here");
help3 ("I was expecting to,see \\hbox or \\vbox or \\copy or \\box or",
"something,like jthat. So,you might find ;something missing ,in",
"your output. But_keep trying; you,can fix this later.");
back_error();
}
}

1084. When the right brace occurs at the end of an \hbox or \vbox or \vtop construction, the package
routine comes into action. We might also have to finish a paragraph that hasn’t ended.

(Cases of handle_right_brace where a right_brace triggers a delayed action 1084) =
case hboz_group: package(0); break;
case adjusted_hbox_group:
{ adjust_tail = adjust_head;
package (0);
} break;
case vbor_group:
{ end_graf ();
package (0);
} break;
case vtop_group:
{ end_graf ();
package (vtop_code);
} break;
See also sections 1099, 1117, 1131, 1132, 1167, 1172, and 1185.

This code is used in section 1067.

1085. (Declare action procedures for use by main_control 1042) +=
static void package (small_number c)
{ scaled h; /xheight of box*/
pointer p; /= first node in a box */
scaled d; /+max depth %/

d = box_maz_depth;
unsave ();
save_ptr = save_pir — 3;
if (mode = —hmode) cur_box = hpack (link (head), saved (2), saved (1));
else { cur_box = vpackage (link (head), saved (2), saved (1), d);
if (¢ = vtop_code) (Readjust the height and depth of cur_bozx, for \vtop 1086);
}
pop_nest();
boz_end (saved (0));

482 BUILDING BOXES AND LISTS TEXprof §1086

1086. The height of a ‘\vtop’ box is inherited from the first item on its list, if that item is an hlist_node,
vlist_node, or rule_node; otherwise the \vtop height is zero.

(Readjust the height and depth of cur_boz, for \vtop 1086) =
{ h=0;
p = list_ptr (cur_boz);
if (p # null)
if (type(p) < rule_node) h = height(p);
depth (cur_boz) = depth(cur_box) — h + height (cur_boz);
height(cur_box) = h;

}

This code is used in section 1085.

1087. A paragraph begins when horizontal-mode material occurs in vertical mode, or when the paragraph
is explicitly started by ‘\indent’ or ‘\noindent’.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("indent", start_par,1);
primitive ("noindent", start_par,0);

1088. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case start_par:
if (chr_code = 0) print_esc("noindent"); else print_esc("indent"); break;

1089. (Cases of main_control that build boxes and lists 1055) +=

case vmode + start_par: new_graf (cur_chr > 0); break;

case vmode + letter: case vmode + other_char: case vmode + char_num: case vmode + char_given:
case vmode + math_shift: case vmode + un_hbox: case vmode + vrule: case vmode + accent:
case vmode + discretionary: case vmode + hskip: case vmode + valign: case vmode + ex_space:
case vmode + no_boundary:
{ back_input();

new_graf (true);

} break;

1090. (Declare action procedures for use by main_control 1042) +=
static small_number norm_min (int h)
{if (h <0) return 1; else if (h > 63) return 63; else return h;

}

static void new_graf (bool indented)
{ prev_graf = 0;
if ((mode = vmode) V (head # tail)) tail_append (new_param_glue (par_skip_code));
push_nest();
mode = hmode;
space_factor = 1000;
set_cur_lang;
clang = cur_lang;
prev_graf = (norm_min(left_hyphen_min)*°100 +norm_min (right_hyphen_min))*°200000 + cur_lang;
if (indented) { tail = new_null_box();
link (head) = tail
width (tail) = par_indent; }
if (every_par # null) begin_token_list(every_par, every_par_text);
if (nest_ptr =1) build_page(); /xput par_skip glue on current page */

61091 TEXprof BUILDING BOXES AND LISTS 483

1091. (Cases of main_control that build boxes and lists 1055) +=
case hmode + start_par: case mmode + start_par: indent_in_hmode(); break;

1092. (Declare action procedures for use by main_control 1042) +=
static void indent_in_hmode(void)
{ pointer p, ¢;
if (cur_chr >0) /+\indent %/
{ p = new_null_boz();
width (p) = par_indent;
if (abs(mode) = hmode) space_factor = 1000;
else { ¢ = new_noad();
math_type (nucleus(q)) = sub_box;
info(nucleus(q)) = p;
p=q;
}
tail_append (p);
}
}

1093. A paragraph ends when a par_end command is sensed, or when we are in horizontal mode when
reaching the right brace of vertical-mode routines like \vbox, \insert, or \output.

(Cases of main_control that build boxes and lists 1055) +=
case vmode + par_end:
{ normal_paragraph();
if (mode > 0) build_page();
} break;
case hmode + par_end:
{ if (align_state < 0) off_save(); /*this tries to recover from an alignment that didn’t end properly x/
end_graf (); /xthis takes us to the enclosing mode, if mode > 0x/
if (mode = vmode) build_page();
} break;
case hmode + stop: case hmode + vskip: case hmode + hrule: case hmode 4+ un_vbozx:
case hmode + halign: head_for_vmode(); break;

1094. (Declare action procedures for use by main_control 1042) +=
static void head_for_vmode(void)
{ if (mode < 0)
if (cur_cmd # hrule) off_save();
else { print_err("You,can’t use, ");
print_esc("hrule");
print ("’ here except with leaders");
help2 ("To_put,a_horizontal rule in an hbox or an alignment,",
"you,,should use \\leaders or, \\hrulefill (see The TeXbook).");
error () ;

else { back_input();
cur_tok = par_token;
back_input ();
token_type = inserted;
}
}

484 BUILDING BOXES AND LISTS TpXprof §1095

1095. (Declare action procedures for use by main_control 1042) +=
static void end_graf (void)
{ if (mode = hmode) { if (head = tail) pop_nest(); /*null paragraphs are ignored x/
else line_break (widow_penalty);
normal_paragraph();
error_count = 0;
}

}

1096. Insertion and adjustment and mark nodes are constructed by the following pieces of the program.

(Cases of main_control that build boxes and lists 1055) +=
any_mode (insert): case hmode + vadjust: case mmode + vadjust: begin_insert_or_adjust(); break;
any_mode (mark): make_mark(); break;

1097. (Forbidden cases detected in main_control 1047) +=
case vmode + vadjust:

1098. (Declare action procedures for use by main_control 1042) +=
static void begin_insert_or_adjust(void)
{ if (cur_emd = vadjust) cur_val = 255;
else { scan_eight_bit_int();
if (cur_val = 255) { print_err("You,can’t,");
print_esc("insert");
print_int (255);
help! ("I’m,changing to \\insert0; box 255 is special.");
error () ;
cur_val = 0;
}

}

saved (0) = cur_val;

incr (save_ptr);
new_save_level (insert_group);
scan_left_brace();
normal_paragraph ();
push_nest();

mode = —vmode;

prev_depth = ignore_depth;

61099 TEXprof BUILDING BOXES AND LISTS 485

1099. (Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case nsert_group:
{ end_graf ();
q = split_top_skip;
add_glue_ref (q);
d = split_maz_depth;
f = floating_penalty;

unsave ();

decr (save_ptr); /+*now saved(0) is the insertion number, or 255 for vadjust x/
p = vpack (link (head), natural);

pop_nest();

if (saved(0) < 255) { tail_append(get_node (ins_node_size));
type (tail) = ins_node;
subtype (tail) = qi(saved (0));
height (tail) = height (p) + depth(p);
ins_ptr(tail) = list_ptr(p);
split_top_ptr (tail) = g;
depth (tail) = d;
float_cost (tail) = f;

}

else { tail_append(get_node(small_node_size));
type (tail) = adjust_node;
subtype(tail) = 0; /xthe subtype is not used x/
adjust_ptr(tail) = list_ptr(p);
delete_glue_ref (q);

}

free_node (p, box_node_size);

if (nest_ptr = 0) build_page();

} break;
case output_group: (Resume the page builder after an output routine has come to an end 1025) break;

1100. (Declare action procedures for use by main_control 1042) +=
static void make_mark(void)
{ pointer p; /*new node */
halfword ¢; /*the mark class*/
if (cur_chr =0) ¢=0;
else { scan_register_num/();
c = cur_val;
}

p = scan_toks (false, true);

p = get_node(small_node_size);

mark_class(p) = ¢;

type (p) = mark_node;

subtype (p) = 0; /xthe subtype is not used */
mark_ptr(p) = def_ref;

link (tail) = p;

tail = p;

486 BUILDING BOXES AND LISTS TEXprof §1101

1101. Penalty nodes get into a list via the break_penalty command.

(Cases of main_control that build boxes and lists 1055) +=
any_mode (break_penalty): append_penalty(); break;

1102. (Declare action procedures for use by main_control 1042) +=
static void append_penalty (void)
{ scan_int();
tail_append (new_penalty (cur_val));
if (mode = vmode) build_page();

}

1103. The remove_item command removes a penalty, kern, or glue node if it appears at the tail of the
current list, using a brute-force linear scan. Like \lastbox, this command is not allowed in vertical mode
(except internal vertical mode), since the current list in vertical mode is sent to the page builder. But if we
happen to be able to implement it in vertical mode, we do.

(Cases of main_control that build boxes and lists 1055) +=
any_mode (remove_item): delete_last(); break;

1104. When delete_last is called, cur_chr is the type of node that will be deleted, if present.

(Declare action procedures for use by main_control 1042) +=
static void delete_last(void)
{ pointer p, g; /+run through the current list x/
int m; /+the length of a replacement list */
if ((mode = vmode) A (tail = head))
(Apologize for inability to do the operation now, unless \unskip follows non-glue 1105)
else { if (—is_char_node(tail))
if (type(tail) = cur_chr) { q = head;
do {
pP=q
if (—is_char_node(q))
if (type(q) = disc_node) { for (m =1; m < replace_count(q); m++) p = link(p);
if (p = tail) return;

q = link (p);
} while (—(q = tail));
link (p) = null;
flush_node_list (tail);
tail = p;

61105 TEXprof BUILDING BOXES AND LISTS

1105. ({ Apologize for inability to do the operation now, unless \unskip follows non-glue 1105) =

{ if ((cur_chr # glue_node) V (last_glue # maz_halfword)) { you_cant();

help2 ("Sorry. ..I usually ,can’t take things from the current page.",

"Try, ‘I\\vskip-\\lastskip’ instead.");

if (cur_chr = kern_node) help_line[0] = ("Tryy‘I\\kern-\\lastkern’ instead.");

else if (cur_chr # glue_node) help_line[0] =

("Perhapsuyouucanumakeutheuoutputurout ine do it.");
error () ;
}

}

This code is used in section 1104.

1106. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("unpenalty", remove_item., penalty_node);
primitive ("unkern" , remove_item, kern_node);
primitive ("unskip", remove_item, glue_node);
primitive ("unhbox", un_hboz, box_code);
primiative ("unhcopy", un_hboz, copy_code);
primitive ("unvbox", un_vbox, box_code);
primitive ("unvcopy", un_vbox , copy_code);

1107. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case remove_item:

if (chr_code = glue_node) print_esc("unskip");

else if (chr_code = kern_node) print_esc("unkern");

else print_esc("unpenalty"); break;
case un_hbox:

if (chr_code = copy_code) print_esc("unhcopy");

else print_esc("unhbox"); break; case un_vboz: if (chr_code = copy_code) print_esc("unvcopy")

(Cases of un_vbox for print_cmd_chr 1532);
else print_esc("unvbox"); break;

1108. The un_hbox and un_vbor commands unwrap one of the 256 current boxes.

(Cases of main_control that build boxes and lists 1055) +=
case vmode + un_vboz: case hmode + un_hboz: case mmode + un_hbox: unpackage(); break;

487

488 BUILDING BOXES AND LISTS TEXprof §1109

1109. (Declare action procedures for use by main_control 1042) +=
static void unpackage (void)
{ pointer p; /xthe box x/
int ¢; /xshould we copy? */

if (cur_chr > copy_code) (Handle saved items and goto done 1533);

c = cur_chr;

scan_register_num();

fetch_boz (p);

if (p = null) return;

if ((abs(mode) = mmode) V ((abs(mode) = vmode) A (type(p) # vlist_node)) V

((abs(mode) = hmode) A (type(p) # hlist_node))) {

print_err("Incompatible list can’t be unboxed");
help3 ("Sorry, Pandora. (You sneaky devil.)",
"I refuse to unbox, an, \\hbox in vertical_mode or vice versa.",
"And I ,can’t open any, boxes in math mode.");
error () ;
return;

}

if (¢ = copy_code) link(tail) = copy_node_list (list_ptr(p));

else { link(tail) = list_ptr(p);
change_box (null);
free_node (p, box_node_size);

}

done:
while (link (tail) # null) tail = link (tail);
}

1110. (Forbidden cases detected in main_control 1047) +=
case vmode + ital_corr:

1111. TItalic corrections are converted to kern nodes when the ital_corr command follows a character. In
math mode the same effect is achieved by appending a kern of zero here, since italic corrections are supplied
later.

(Cases of main_control that build boxes and lists 1055) +=
case hmode + ital_corr: append_italic_correction(); break;
case mmode + ital_corr: tail_append (new_kern(0)) break;

1112. (Declare action procedures for use by main_control 1042) +=
static void append_italic_correction(void) { pointer p; /* char_node at the tail of the current list x/

internal_font_number f; /xthe font in the char_node %/
if (tail # head) { if (is_char_node(tail)) p = tail;
else if (type(tail) = ligature_node) p = lig_char (tail);
else return;
f = font (p);
tail_append (new_kern (char_italic(f, char_info(f, character(p))))); subtype(tail) = explicit; } }

1113. Discretionary nodes are easy in the common case ‘\-’, but in the general case we must process three
braces full of items.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("=", discretionary, 1);
primitive ("discretionary", discretionary,0);

61114 TEXprof BUILDING BOXES AND LISTS 489

1114. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case discretionary:
if (chr_code = 1) print_esc("-"); else print_esc("discretionary"); break;

1115. (Cases of main_control that build boxes and lists 1055) +=
case hmode + discretionary: case mmode + discretionary: append_discretionary(); break;

1116. The space factor does not change when we append a discretionary node, but it starts out as 1000
in the subsidiary lists.

(Declare action procedures for use by main_control 1042) +=
static void append_discretionary (void)
{int ¢; /+hyphen character */

tail_append (new_disc());
if (cur_chr = 1) { ¢ = hyphen_char[cur_font];
if (c>0)
if (c < 256) pre_break(tail) = new_character (cur_font, c);
}

else { incr(save_ptr);
saved (—1) = 0;
new_save_level (disc_group);
scan_left_brace();
push_nest();
mode = —hmode;
space_factor = 1000;

}

}

1117. The three discretionary lists are constructed somewhat as if they were hboxes. A subroutine called
build_discretionary handles the transitions. (This is sort of fun.)

(Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case disc_group: build_discretionary(); break;

490 BUILDING BOXES AND LISTS TEXprof §1118

1118. (Declare action procedures for use by main_control 1042) +=
static void build_discretionary(void)
{ pointer p, g; /*for link manipulation */
int n; /xlength of discretionary list x/

unsave ();

(Prune the current list, if necessary, until it contains only char_node, kern_node, hlist_node, vlist_node,
rule_node, and ligature_node items; set n to the length of the list, and set ¢ to the list’s tail 1120);

p = link (head);

pop_nest();

switch (saved(—1)) {

case 0: pre_break (tail) = p; break;

case 1: post_break (tail) = p; break;

case 2: (Attach list p to the current list, and record its length; then finish up and return 1119);

} /*there are no other cases */

incr (saved (—1));

new_save_level (disc_group);

scan_left_brace();

push_nest();

mode = —hmode;

space_factor = 1000;

}

1119. (Attach list p to the current list, and record its length; then finish up and return 1119) =
{if ((n > 0) A (abs(mode) = mmode)) { print_err("Illegal math, ");

print_esc("discretionary");
help2 (" Sorry:The third, part of a discretionary, break must be",
"empty,yin math formulas. I had to delete your third part.");
flush_node_list (p);
n = 0;
error () ;

}

else link(tail) = p;

if (n < max_quarterword) replace_count (tail) = n;

else { print_err("Discretionary_ list,is too_long");
help2 ("Wow---I_ never thought anybody would, tweak, me here.",
"You ,can’tseriously need such a huge discretionary list?");
error () ;

}

if (n >0) tail = q;

decr (save_ptr);

return;

}

This code is used in section 1118.

61120 TEXprof BUILDING BOXES AND LISTS 491

1120. During this loop, p = link(g) and there are n items preceding p.

(Prune the current list, if necessary, until it contains only char_node, kern_node, hlist_node, vlist_node,
rule_node, and ligature_node items; set n to the length of the list, and set ¢ to the list’s tail 1120) =
q = head;
p = link(q);
n = 0;
while (p # null) { if (—is_char_node(p))
if (type(p) > rule_node)
if (type(p) # kern_node)
if (type(p) # ligature_node) { print_err("Improper discretionary, list");
help1 ("Discretionaryulistsumust_,containuonlyuboxesuandukerns N);
error () ;
begin_diagnostic();
print_nl ("The following discretionary sublist has been deleted:");
show_box (p);
end_diagnostic(true);
flush_node_list(p);
link (q) = null;
goto done;

}
q=Dp;
p = link(q);
incr(n);
}

done:

This code is used in section 1118.

1121. We need only one more thing to complete the horizontal mode routines, namely the \accent
primitive.

(Cases of main_control that build boxes and lists 1055) +=

case hmode + accent: make_accent(); break;

492 BUILDING BOXES AND LISTS TEXprof §1122

1122. The positioning of accents is straightforward but tedious. Given an accent of width a, designed for
characters of height = and slant s; and given a character of width w, height h, and slant ¢: We will shift the
accent down by x — h, and we will insert kern nodes that have the effect of centering the accent over the
character and shifting the accent to the right by ¢ = %(w —a)+ h-t—x-s. If either character is absent
from the font, we will simply use the other, without shifting.

(Declare action procedures for use by main_control 1042) +=
static void make_accent(void)
{ double s,t; /+*amount of slant */
pointer p,q,r; /* character, box, and kern nodes */
internal_font_number f; /xrelevant font x/
scaled a, h, z,w, delta; /xheights and widths, as explained above x/
four_quarters i; /xcharacter information x/

scan_char_num();

f = cur_font;

p = new_character (f, cur_val);

if (p # null) { = = z_height(f);
s = slant(f)/float_constant (65536);
a = char_width(f, char_info(f, character(p)));
do_assignments ();
(Create a character node ¢ for the next character, but set ¢: = null if problems arise 1123);
if (¢ # null) { Append the accent with appropriate kerns, then set p: = g 1124);
link (tail) = p;
tail = p;
space_factor = 1000;

}

}

1123. (Create a character node ¢ for the next character, but set ¢: = null if problems arise 1123) =
q = null;
f = cur_font;

if ((cur_emd = letter) V (cur_emd = other_char) V (cur_cmd = char_given))
q = new_character (f, cur_chr);

else if (cur_emd = char_num) { scan_char_num();
q = new_character (f, cur_val);

else back_input()

This code is used in section 1122.

81124 TEXprof BUILDING BOXES AND LISTS 493

1124. The kern nodes appended here must be distinguished from other kerns, lest they be wiped away by
the hyphenation algorithm or by a previous line break.

The two kerns are computed with (machine-dependent) double arithmetic, but their sum is machine-
independent; the net effect is machine-independent, because the user cannot remove these nodes nor access
them via \lastkern.

(Append the accent with appropriate kerns, then set p: = ¢ 1124) =
{ t = slant(f)/float_constant(65536);
1 = char_info(f, character(q));
w = char_width(f,1);
h = char_height (f, height_depth(i));
if (h#£x) /*the accent must be shifted up or down */
{ p = hpack (p, natural);
shift_amount (p) = x — h;
}
delta = round ((w — a)/float_constant(2) + h xt — x * s);
r = new_kern(delta);
subtype (r) = acc_kern;
link (tail) = r;
link(r) = p;
tail = new_kern(—a — delta);
subtype (tail) = acc_kern;
link (p) = tail;
p=q
¥

This code is used in section 1122.

1125. When ‘\cr’ or ‘\span’ or a tab mark comes through the scanner into main_control, it might be that
the user has foolishly inserted one of them into something that has nothing to do with alignment. But it is
far more likely that a left brace or right brace has been omitted, since get_next takes actions appropriate
to alignment only when ‘\cr’ or ‘\span’ or tab marks occur with align_state = 0. The following program
attempts to make an appropriate recovery.

(Cases of main_control that build boxes and lists 1055) +=
any_mode (car_ret): any_mode(tab_mark): align_error(); break;
any_mode (no_align): no_align_error(); break;

any_mode (omit): omit_error(); break;

494 BUILDING BOXES AND LISTS TpXprof §1126

1126. (Declare action procedures for use by main_control 1042) +=
static void align_error(void)
{ if (abs(align_state) > 2) (Express consternation over the fact that no alignment is in progress 1127)
else { back_input();
if (align_state < 0) { print_err("Missing, { inserted");
incr (align_state);
cur_tok = left_brace_token + *{’;
}
else { print_err("Missing } inserted");
decr (align_state);
cur_tok = right_brace_token + ’}’;
}
help3 (" I’ve put,in what ;seems ,to be necessary to fix",
"the current,,column 0f the current,alignment.",
"Try_toyugoyon, since this might almost work.");
ins_error();

}
}

1127. (Express consternation over the fact that no alignment is in progress 1127) =
{ print_err("Misplaced,");

print_cmd_chr (cur_cmd, cur_chr);

if (cur_tok = tab_token + &) {
help6 ("I can’t figure out why_ you would want to use a tab mark",
"here. If you,just want an ampersand, the remedy is",
"simple: Just_typey‘I\\&’ now. But if ;some_ right brace",
"up ,above has ended, a previous alignment, prematurely,",
"you’re probably, due for more error messages, and,you",
"might try_typing, ‘S’ now just to see what_is_ salvageable.");

}

else { help5 ("I can’t figure out_ why_you would want to_use a tab mark",
"or, \\cryor \\span_just now. If_ something like a right brace",
"up ,above has ended a previous alignment, prematurely,",
"you’re probably due for more error messages, and,you",
"might try_typing,‘S’ now,just to see what_is_ salvageable.");

}

error () ;

}

This code is used in section 1126.

61128 TEXprof BUILDING BOXES AND LISTS 495

1128. The help messages here contain a little white lie, since \noalign and \omit are allowed also after
“\noalign{...}".
(Declare action procedures for use by main_control 1042) +=
static void no_align_error(void)
{ print_err("Misplaced,");
print_esc("noalign");
help2 ("I expect to,see \\noalign only after the \\cr of",
"an ,alignment. Proceed, and I’11 ignore this case.");
error () ;

}

static void omit_error(void)
{ print_err("Misplaced,");
print_esc("omit");
help2 ("I expect to,see \\omit only after tab_marks or the \\cr of",
"an ,alignment. Proceed, and I’11 ignore this case.");
error () ;

}

1129. We've now covered most of the abuses of \halign and \valign. Let’s take a look at what happens
when they are used correctly.

(Cases of main_control that build boxes and lists 1055) +=
case vmode + halign: case hmode + valign: init_align(); break;
case mmode + halign:
if (privileged())
if (cur_group = math_shift_group) init_align();
else off_save(); break;
case vmode + endv: case hmode + endv: do_endv(); break;

1130. An align_group code is supposed to remain on the save_stack during an entire alignment, until
fin_align removes it.

A devious user might force an endv command to occur just about anywhere; we must defeat such hacks.
{Declare action procedures for use by main_control 1042) +=
static void do_endv(void)
{ base_ptr = input_ptr;
input_stack [base_ptr] = cur_input;
while ((input_stack|base_ptr].indez_field # v_template) A (input_stack [base_ptr].loc_field =
null) A (input_stack [base_ptr]|.state_field = token_list)) decr(base_ptr);
if ((input_stack[base_ptr].index_field # v_template) V (input_stack [base_ptr].loc_field #
null) V (input_stack [base_ptr].state_field # token_list))
fatal_error (" (interwoven alignment preambles are not,allowed)");
if (cur_group = align_group) { end_graf ();
if (fin_col()) fin_row();
}

else off_save();

496 BUILDING BOXES AND LISTS TEXprof

1131. (Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case align_group:
{ back_input();

cur_tok = cs_token_flag + frozen_cr;

print_err("Missing ,");

print_esc("cr");

print("Luinserted");

help1 ("I ’m ,guessing that you meant to end an ,alignment here.");

ins_error();

} break;

1132. (Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case no_align_group:
{ end_graf ();
unsave ();
align_peek ();
} break;

1133. Finally, \endcsname is not supposed to get through to main_control.

(Cases of main_control that build boxes and lists 1055) +=
any_mode (end_cs_name): cs_error(); break;

1134. (Declare action procedures for use by main_control 1042) +=
static void cs_error(void)
{ print_err ("Extra,");
print_esc("endcsname");
helpl ("I’m_ ignoring this, since_ I wasn’t_ doing a \\csname.");
error () ;

}

§1131

81135 TEXprof BUILDING MATH LISTS 497

1135. Building math lists. The routines that TEX uses to create mlists are similar to those we have
just seen for the generation of hlists and vlists. But it is necessary to make “noads” as well as nodes, so the
reader should review the discussion of math mode data structures before trying to make sense out of the
following program.

Here is a little routine that needs to be done whenever a subformula is about to be processed. The
parameter is a code like math_group.

(Declare action procedures for use by main_control 1042) +=
static void push_math(group_code c)
{ push_nest();
mode = —mmode;
incompleat_noad = null;
new_save_level (c);

}

1136. We get into math mode from horizontal mode when a ‘$’ (i.e., a math_shift character) is scanned.
We must check to see whether this ‘¢’ is immediately followed by another, in case display math mode is
called for.

(Cases of main_control that build boxes and lists 1055) +=
case hmode + math_shift: init_math(); break;

1137. (Declare action procedures for use by main_control 1042) +=
static void nit_math(void)

{ scaled w; /xnew or partial pre_display_size /
scaled I; /xnew display_width =/
scaled s; /xnew display_indent */
pointer p; /* current node when calculating pre_display_size */
pointer g; /* glue specification when calculating pre_display_size x/
internal_font_number f; /xfont in current char_node x/
int n; /*scope of paragraph shape specification */
scaled v; /*w plus possible glue amount */
scaled d; /+increment to v */

get_token(); /x get_x_token would fail on \ifmmode !*/
if ((cur_emd = math_shift) A (mode > 0)) (Go into display math mode 1144)
else { back_input();
(Go into ordinary math mode 1138);
}
}

1138. (Go into ordinary math mode 1138) =
{ push_math(math_shift_group);
eq_word_define (int_base + cur_fam_code, —1);
if (every_math # null) begin_token_list(every_math, every_math_text);

}

This code is used in sections 1137 and 1141.

498 BUILDING MATH LISTS TEXprof §1139

1139. We get into ordinary math mode from display math mode when ‘\eqno’ or ‘\leqno’ appears. In
such cases cur_chr will be 0 or 1, respectively; the value of cur_chr is placed onto save_stack for safe keeping.

(Cases of main_control that build boxes and lists 1055) +=
case mmode + eq_no:
if (privileged())
if (cur_group = math_shift_group) start_eq_no();
else off_save(); break;

1140. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("eqno", eq_no,0);
primitive ("leqno", eq_no, 1);

1141. When TgX is in display math mode, cur_group = math_shift_group, so it is not necessary for the
start_eq_no procedure to test for this condition.

{ Declare action procedures for use by main_control 1042) +=
static void start_eq_no(void)
{ saved(0) = cur_chr;
incr (save_ptr);
(Go into ordinary math mode 1138);

}

1142. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case eq_no:
if (chr_code = 1) print_esc("legno"); else print_esc("eqno"); break;

1143. (Forbidden cases detected in main_control 1047) +=
non_math(eq_no):

1144. When we enter display math mode, we need to call line_break to process the partial paragraph
that has just been interrupted by the display. Then we can set the proper values of display_width and
display_indent and pre_display_size.

(Go into display math mode 1144) =
{ if (head = tail) /*“\noindent$$’ or ‘$$ $$ «/
{ pop_nest();
w = —mazx_dimen;
}
else { line_break (display_widow_penalty);

(Calculate the natural width, w, by which the characters of the final line extend to the right of the
reference point, plus two ems; or set w: = maz_dimen if the non-blank information on that line
is affected by stretching or shrinking 1145);

} /*now we are in vertical mode, working on the list that will contain the display */

(Calculate the length, I, and the shift amount, s, of the display lines 1148);

push_math (math_shift_group);

mode = mmode;

eq_word_define(int_base + cur_fam_code, —1);
eq_word_define (dimen_base + pre_display_size_code, w);
eq_word_define (dimen_base + display_width_code,l);
eq_word_define (dimen_base + display_indent_code, s);
if (every_display # null) begin_token_list (every_display, every_display_text);
if (nest_ptr = 1) build_page();

}

This code is used in section 1137.

81145 TEXprof BUILDING MATH LISTS 499

1145. (Calculate the natural width, w, by which the characters of the final line extend to the right of the
reference point, plus two ems; or set w: = maz_dimen if the non-blank information on that line is
affected by stretching or shrinking 1145) =

v = shift_amount (just_box) + 2 x quad (cur_font);
w = —mazx_dimen;
p = list_ptr (just_box);
while (p # null) { (Let d be the natural width of node p; if the node is “visible,” goto found; if the
node is glue that stretches or shrinks, set v: = maz_dimen 1146);
if (v < maz_dimen) v=v+d;
goto not_found;

found:
if (v < maz_dimen) { v=v+d;
w = v;

}
else { w = maz_dimen;
goto done;

}
not_found: p = link (p);
¥

done:

This code is used in section 1144.

1146. (Let d be the natural width of node p; if the node is “visible,” goto found; if the node is glue that
stretches or shrinks, set v: = maz_dimen 1146) =
reswitch:
if (is_char_node(p)) { f = font(p);
d = char_width(f, char_info(f, character(p)));
goto found;
¥
switch (type(p)) {
case hlist_node: case vlist_node: case rule_node:
{ d = width(p);
goto found;
}
case ligature_node: (Make node p look like a char_node and goto reswitch 651)
case kern_node: case math_node: d = width(p); break;
case glue_node: (Let d be the natural width of this glue; if stretching or shrinking, set v: = maz_dimen;
goto found in the case of leaders 1147) break;
case whatsit_node: {Let d be the width of the whatsit p 1360); break;
default: d = 0;

}

This code is used in section 1145.

500 BUILDING MATH LISTS TpXprof — §1147

1147. We need to be careful that w, v, and d do not depend on any glue_set values, since such values are
subject to system-dependent rounding. System-dependent numbers are not allowed to infiltrate parameters
like pre_display_size, since TEX82 is supposed to make the same decisions on all machines.
(Let d be the natural width of this glue; if stretching or shrinking, set v: = maz_dimen; goto found in the
case of leaders 1147) =
{ ¢ = glue_ptr(p);
d = width(q);
if (glue_sign (just_boz) = stretching) { if ((glue_order (just_box) = stretch_order(q)) A
(stretch(q) # 0)) v = maz_dimen;

else if (glue_sign (just_box) = shrinking) { if ((glue_order (just_box) = shrink_order(q)) A
(shrink(q) # 0)) v = maz_dimen;
}

if (subtype(p) > a_leaders) goto found;

}

This code is used in section 1146.

1148. A displayed equation is considered to be three lines long, so we calculate the length and offset of
line number prev_graf + 2.

(Calculate the length, I, and the shift amount, s, of the display lines 1148) =
if (par_shape_ptr = null)
if ((hang_indent # 0) A
(((hang_after > 0) A (prev_graf + 2 > hang_after)) V
(prev_graf + 1 < —hang_after))) { | = hsize — abs(hang_indent);
if (hang_indent > 0) s = hang_indent; else s = 0;

else { | = hsize;
s =0;

else { n = info(par_shape_ptr);
if (prev_graf +2 > n) p = par_shape_ptr + 2 x n;
else p = par_shape_ptr + 2 x (prev_graf + 2);
s = mem|[p — 1].sc;
I = mem|p|.sc;

}

This code is used in section 1144.

61149 TEXprof BUILDING MATH LISTS 501

1149. Subformulas of math formulas cause a new level of math mode to be entered, on the semantic nest
as well as the save stack. These subformulas arise in several ways: (1) A left brace by itself indicates the
beginning of a subformula that will be put into a box, thereby freezing its glue and preventing line breaks.
(2) A subscript or superscript is treated as a subformula if it is not a single character; the same applies to the
nucleus of things like \underline. (3) The \left primitive initiates a subformula that will be terminated by
a matching \right. The group codes placed on save_stack in these three cases are math_group, math_group,
and math_left_group, respectively.

Here is the code that handles case (1); the other cases are not quite as trivial, so we shall consider them
later.

(Cases of main_control that build boxes and lists 1055) +=
case mmode + left_brace:
{ tail_append (new_noad());
back_input ();
scan_math (nucleus (tail));
} break;

502 BUILDING MATH LISTS TEXprof §1150

1150. Recall that the nucleus, subscr, and supscr fields in a noad are broken down into subfields called
math_type and either info or (fam, character). The job of scan_math is to figure out what to place in one
of these principal fields; it looks at the subformula that comes next in the input, and places an encoding of
that subformula into a given word of mem.

#define fam_in_range ((cur_fam > 0) A (cur_fam < 16))
{Declare action procedures for use by main_control 1042) +=

static void scan_math(pointer p)
{int ¢; /+*math character code x/

restart: (Get the next non-blank non-relax non-call token 403);
reswitch:
switch (cur_cmd) {
case letter: case other_char: case char_given:
{ ¢ = ho(math_code (cur_chr));
if (¢=°100000) { (Treat cur_chr as an active character 1151);
goto restart;
}
} break;
case char_num:
{ scan_char_num();
cur_chr = cur_val;
cur_cmd = char_given;
goto reswitch;
}
case math_char_num:
{ scan_fifteen_bit_int();
c = cur_val;
} break;
case math_given: ¢ = cur_chr; break;
case delim_num:
{ scan_twenty_seven_bit_int();
¢ = cur_val /°10000;
} break;
default: (Scan a subformula enclosed in braces and return 1152)
}
math_type (p) = math_char;
character (p) = qi(c % 256);
if ((¢ > var_code) A fam_in_range) fam(p) = cur_fam;
else fam(p) = (c/256) % 16;
}

1151. An active character that is an outer_call is allowed here.

(Treat cur_chr as an active character 1151) =
{ cur_cs = cur_chr + active_base;
cur_cmd = eq_type (cur_cs);
cur_chr = equiv(cur_cs);
x_token();
back_input ();

}

This code is used in sections 1150 and 1154.

61152 TEXprof BUILDING MATH LISTS 503

1152. The pointer p is placed on save_stack while a complex subformula is being scanned.

(Scan a subformula enclosed in braces and return 1152) =
{ back_input();
scan_left_brace();
saved (0) = p;
incr (save_ptr);
push_math (math_group);
return;

}

This code is used in section 1150.

1153. The simplest math formula is, of course, ‘¢ $’, when no noads are generated. The next simplest
cases involve a single character, e.g., ‘x’. Even though such cases may not seem to be very interesting,
the reader can perhaps understand how happy the author was when ‘x’ was first properly typeset by TEX.
The code in this section was used.

(Cases of main_control that build boxes and lists 1055) +=
case mmode + letter: case mmode + other_char: case mmode + char_given:
set_math_char (ho(math_code (cur_chr))); break;
case mmode + char_num:
{ scan_char_num/();
cur_chr = cur_val;
set_math_char (ho(math_code (cur_chr)));
} break;
case mmode + math_char_num:
{ scan_fifteen_bit_int();
set_math_char (cur_val);
} break;
case mmode + math_given: set_math_char(cur_chr); break;
case mmode + delim_num:
{ scan_twenty_seven_bit_int();
set_math_char (cur_val /°10000);
} break;

504 BUILDING MATH LISTS TeXprof §1154

1154. The set_math_char procedure creates a new noad appropriate to a given math code, and appends
it to the current mlist. However, if the math code is sufficiently large, the cur_chr is treated as an active
character and nothing is appended.

(Declare action procedures for use by main_control 1042) +=
static void set_math_char(int c)
{ pointer p; /+the new noad %/

if (¢ >°100000) (Treat cur_chr as an active character 1151)
else { p = new_noad();
math_type (nucleus (p)) = math_char;
character (nucleus (p)) = qi(c % 256);
fam (nucleus (p)) = (¢/256) % 16;
if (¢ > var_code) { if (fam_in_range) fam(nucleus(p)) = cur_fam;
type (p) = ord_noad;

else type(p) = ord_noad + (c/°10000);
link (tail) = p;
tail = p;
}
}

1155. Primitive math operators like \mathop and \underline are given the command code math_comp,
supplemented by the noad type that they generate.

(Put each of TEX’s primitives into the hash table 225) +=

primitive ("mathord", math_comp, ord_noad);

primitive ("mathop", math_comp, op_noad);

primitive ("mathbin", math_comp, bin_noad);
primitive ("mathrel", math_comp, rel_noad);
primitive ("mathopen", math_comp, open_noad);
primitive ("mathclose", math_comp, close_noad);
primitive ("mathpunct", math_comp, punct_noad);
primitive ("mathinner", math_comp, inner_noad);
primitive ("underline", math_comp, under_noad);
primitive ("overline", math_comp, over_noad);
primitive ("displaylimits", limit_switch, normal);
primitive ("1imits", limit_switch, limits);
primitive ("nolimits", limit_switch, no_limits);

81156 TEXprof

BUILDING MATH LISTS

1156. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=

case math_comp:
switch (chr_code) {
case ord_noad: print_esc("mathord"); break;
case op_noad: print_esc("mathop"); break;
case bin_noad: print_esc("mathbin"); break;
case rel_noad: print_esc("mathrel"); break;
case open_noad: print_esc("mathopen"); break;
case close_noad: print_esc("mathclose"); break;
case punct_noad: print_esc("mathpunct"); break;
case inner_noad: print_esc("mathinner"); break;
case under_noad: print_esc("underline"); break;
default: print_esc("overline");
} break;

case limit_switch:
if (chr_code = limits) print_esc("limits");
else if (chr_code = no_limits) print_esc("nolimits");
else print_esc("displaylimits"); break;

1157. (Cases of main_control that build boxes and lists 1055) +=
case mmode + math_comp:
{ tail_append (new_noad());
type (tail) = cur_chr;
scan_math (nucleus (tail));
} break;
case mmode + limit_switch: math_limit_switch(); break;

1158. (Declare action procedures for use by main_control 1042) +=

static void math_limit_switch(void)
{ if (head # tail)
if (type(tail) = op_noad) { subtype(tail) = cur_chr;
return;

}

print_err ("Limitcontrols must follow,a math operator") ;

helpl ("I’m_ ignoring this misplaced \\limits_ or \\nolimits command.");

error () ;

}

505

506 BUILDING MATH LISTS TEXprof §1159

1159. Delimiter fields of noads are filled in by the scan_delimiter routine. The first parameter of this

procedure is the mem address where the delimiter is to be placed; the second tells if this delimiter follows
\radical or not.

{Declare action procedures for use by main_control 1042) +=
static void scan_delimiter (pointer p,bool r)
{if (r) scan_twenty_seven_bit_int();
else { (Get the next non-blank non-relax non-call token 403);
switch (cur_cmd) {
case letler: case other_char: cur_val = del_code(cur_chr); break;
case delim_num: scan_twenty_seven_bit_int(); break;
default: cur_val = —1;
}
}
if (cur_val <0)
(Report that an invalid delimiter code is being changed to null; set cur_val: = 0 1160);
small_fam (p) = (cur_val /°4000000) % 16;
small_char (p) = qi((cur_val /°10000) % 256);
large_fam (p) = (cur_val /256) % 16;
large_char (p) = qi(cur_val % 256);

}

1160. (Report that an invalid delimiter code is being changed to null; set cur_val: = 0 1160) =
{ print_err("Missing delimiter, (. inserted)");
help6 ("I was expecting to,see something like ¢ (’ or,‘\\{’or",
"\\}’_here. If you typed, e.g., {’Linstead 0f , \\{’, you",
"should probably delete the,‘{’ by typing ‘1’ now, so that",
"bracesdon’tget junbalanced. Otherwise just proceed.",
"Acceptable delimiters are characters whose \\delcode is",
"nonnegative, or you,can use,‘\\delimiter <delimiter code>’.");
back_error();
cur_val = 0;

}

This code is used in section 1159.

1161. (Cases of main_control that build boxes and lists 1055) +=
case mmode + radical: math_radical (); break;

1162. (Declare action procedures for use by main_control 1042) +=
static void math_radical(void)
{ tail_append (get_node(radical_noad_size));
type (tail) = radical_noad;
subtype (tail) = normal;
mem [nucleus (tail)].hh = empty_field;
mem[subscr(tail)].hh = empty_field,
mem [supscr(tail)].hh = empty_field;
scan_delimiter (left_delimiter (tail), true);
scan_math (nucleus (tail));

}

1163. (Cases of main_control that build boxes and lists 1055) +=
case mmode + accent: case mmode + math_accent: math_ac(); break;

61164 TEXprof BUILDING MATH LISTS

1164. (Declare action procedures for use by main_control 1042) +=
static void math_ac(void)

{

}

if (cur_cmd = accent) (Complain that the user should have said \mathaccent 1165);
tail_append (get_node (accent_noad_size));

type (tail) = accent_noad;

subtype (tail) = normal;

mem [nucleus (tail)].hh = empty_field;

mem [subscr(tail)].hh = empty_field;

mem [supscr(tail)].hh = empty_field;

math_type (accent_chr(tail)) = math_char;

scan_fifteen_bit_int ();

character (accent_chr (tail)) = qi(cur_val % 256);

if ((cur_val > var_code) A fam_in_range) fam (accent_chr(tail)) = cur_fam;
else fam(accent_chr(tail)) = (cur_val /256) % 16;

scan_math (nucleus (tail));

1165. (Complain that the user should have said \mathaccent 1165) =
{ print_err("Please use,");

}

print_esc("mathaccent");

print ("Lfor accents in math mode");

help2 ("I’m_changing \\accent_to_ \\mathaccent here; wish me luck.",
"(Accents are not_the same_in formulas as they_are in text.)");
error () ;

This code is used in section 1164.

1166. (Cases of main_control that build boxes and lists 1055) +=
case mmode + vcenter:

{

scan_spec(vcenter_group, false);

normal_paragraph();

push_nest();

mode = —uvmode;

prev_depth = ignore_depth;

if (every_vbox # null) begin_token_list(every_vbox, every_vbox_text);

} break;

1167. (Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case vcenter_group:

{

end_graf ();

unsave ();

save_ptr = save_pir — 2;

p = vpack (link (head), saved (1), saved (0));
pop_nest();

tail_append (new_noad());

type (tail) = veenter_noad;

math_type (nucleus (tail)) = sub_box;

info (nucleus (tail)) = p;

} break;

507

508 BUILDING MATH LISTS TEXprof

1168. The routine that inserts a style_node holds no surprises.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("displaystyle", math_style, display_style);
primitive ("textstyle", math_style, text_style);
primitive ("scriptstyle", math_style, script_style);
primitive ("scriptscriptstyle", math_style, script_script_style);

1169. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case math_style: print_style (chr_code); break;

1170. (Cases of main_control that build boxes and lists 1055) +=
case mmode + math_style: tail_append (new_style(cur_chr)) break;
case mmode + non_script:
{ tail_append (new_glue (zero_glue));
subtype (tail) = cond_math_glue;
} break;
case mmode + math_choice: append_choices(); break;

§1168

1171. The routine that scans the four mlists of a \mathchoice is very much like the routine that builds

discretionary nodes.

(Declare action procedures for use by main_control 1042) +=
static void append_choices(void)
{ tail_append (new_choice());
incr (save_ptr);
saved(—1) = 0;
push_math (math_choice_group);
scan_left_brace();

}

1172. (Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case math_choice_group: build_choices(); break;

81173 TEXprof

1173.

(Declare the function called fin_mlist 1183)

static void build_choices(void)

{

}

1174.

pointer p; /*the current mlist */

unsave ();
p = fin_mlist(null);
switch (saved(—1)) {
case 0: display_mlist(tail) = p; break;
case 1: text_mlist(tail) = p; break;
case 2: script_mlist(tail) = p; break;
case 3:
{ script_script_mlist (tail) = p;
decr (save_ptr);
return;

} /xthere are no other casesx*/
incr (saved (—1));

push_math (math_choice_group);
scan_left_brace();

(Declare action procedures for use by main_control 1042) +=

BUILDING MATH LISTS

Subscripts and superscripts are attached to the previous nucleus by the action procedure

sub_sup. We use the facts that sub_mark = sup_mark + 1 and subscr(p) = supscr(p) + 1.

(Cases of main_control that build boxes and lists 1055) +=
case mmode + sub_mark: case mmode + sup_mark: sub_sup(); break;

1175.

static void sub_sup(void)

{ small_number ¢;

t = empty;
p = null;
if (tail # head)

if (scripts_allowed (tail)) { p = supscr(tail) + cur_cmd — sup_mark;

t = math_type (p);

(Declare action procedures for use by main_control 1042) +=

/*type of previous sub/superscript */
pointer p; /*field to be filled by scan_math */

/* supscr or subscr x/

if ((p = null) vV (t # empty)) (Insert a dummy noad to be sub/superscripted 1176);

scan_math(p);

509

called

510 BUILDING MATH LISTS TEXprof §1176

1176. (Insert a dummy noad to be sub/superscripted 1176) =
{ tail_append (new_noad());
p = supscr(tail) + cur_cmd — sup_mark; /x supscr or subscr x/
if (t # empty) { if (cur_cmd = sup_mark) { print_err("Double superscript");
helpl ("I treat,‘x"172’ essentially like ‘x~1{}"2’.");
}
else { print_err("Double_ subscript");
helpl ("I treat,‘x_1_2’ essentially like ‘x_1{}_2’.");
}
error () ;
}
}

This code is used in section 1175.

1177. An operation like ‘\over’ causes the current mlist to go into a state of suspended animation:
incompleat_noad points to a fraction_noad that contains the mlist-so-far as its numerator, while the de-
nominator is yet to come. Finally when the mlist is finished, the denominator will go into the incompleat
fraction noad, and that noad will become the whole formula, unless it is surrounded by ‘\left’ and ‘\right’
delimiters.

#define above_code 0 /x ‘\above’ x/

#define over_code 1 /% “\over’ x/

#define atop_code 2 /x ‘\atop’ */

#define delimited_code 3 ~ /+ ‘\abovewithdelims’, etc.*/

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("above", above, above_code);
primitive ("over", above, over_code);
primitive ("atop", above, atop_code);
primitive ("abovewithdelims", above, delimited_code + above_code);
primitive ("overwithdelims", above, delimited_code + over_code);
primitive ("atopwithdelims", above, delimited_code + atop_code);

1178. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case above:
switch (chr_code) {
case over_code: print_esc("over"); break;
case atop_code: print_esc("atop"); break;
case delimited_code 4+ above_code: print_esc("abovewithdelims"); break;
case delimited_code + over_code: print_esc("overwithdelims"); break;
case delimited_code + atop_code: print_esc("atopwithdelims"); break;
default: print_esc("above");
} break;

1179. (Cases of main_control that build boxes and lists 1055) +=
case mmode + above: math_fraction(); break;

61180 TEXprof BUILDING MATH LISTS

1180. (Declare action procedures for use by main_control 1042) +=
static void math_fraction(void)
{ small_number c¢; /xthe type of generalized fraction we are scanning x/

c = cur_chr;
if (incompleat_noad # null)
(Ignore the fraction operation and complain about this ambiguous case 1182)
else { incompleat_noad = get_node (fraction_noad_size);
type (incompleat_noad) = fraction_noad;
subtype (incompleat_noad) = normal;
math_type (numerator (incompleat_noad)) = sub_mlist;
info (numerator (incompleat_noad)) = link (head);
mem [denominator (incompleat_noad)].hh = empty_field;
mem [left_delimiter (incompleat_noad)].qqqq = null_delimiter;
mem [right_delimiter (incompleat_noad)].qqqq = null_delimiter;
link (head) = null;
tail = head;
(Use code ¢ to distinguish between generalized fractions 1181);
}
¥

1181. (Use code ¢ to distinguish between generalized fractions 1181) =
if (¢ > delimited_code) { scan_delimiter (left_delimiter (incompleat_noad), false);
scan_delimiter (right_delimiter (incompleat_noad), false);
}
switch (¢ % delimited_code) {
case above_code:
{ scan_normal_dimen;
thickness (incompleat_noad) = cur_val;
} break;
case over_code: thickness(incompleat_noad) = default_code; break;
case atop_code: thickness(incompleat_noad) = 0;
} /xthere are no other cases*/

This code is used in section 1180.

1182. (Ignore the fraction operation and complain about this ambiguous case 1182) =
{ if (¢ > delimited_code) { scan_delimiter (garbage, false);
scan_delimiter (garbage, false);

if (¢ % delimited_code = above_code) scan_normal_dimen;

print_err ("Ambiguous; you need another { and }");

help3 ("I’m,ignoring this fraction specification, since, I don’t",
"know, whether a construction like,, ‘x \\over y,\\over z’",
"means,, ‘ {x \\over_y} \\over z’ or,‘x \\over {y_\\over z}’.");
error () ;

}

This code is used in section 1180.

511

512 BUILDING MATH LISTS TEXprof §1183

1183. At the end of a math formula or subformula, the fin_mlist routine is called upon to return a pointer
to the newly completed mlist, and to pop the nest back to the enclosing semantic level. The parameter to
fin_mlist, if not null, points to a right_noad that ends the current mlist; this right_noad has not yet been
appended.
{ Declare the function called fin_mlist 1183) =

static pointer fin_mlist(pointer p)

{ pointer ¢; /xthe mlist to return x/

if (incompleat_noad # null) (Compleat the incompleat noad 1184)
else { link(tail) = p;
q = link (head);

pop_nest();
return g;

}

This code is used in section 1173.

1184. (Compleat the incompleat noad 1184) =
{ math_type (denominator (incompleat_noad)) = sub_mlist;
info (denominator (incompleat_noad)) = link (head);
if (p = null) q = incompleat_noad;
else { ¢ = info(numerator (incompleat_noad));
if ((type(q) # left_noad) V (delim_ptr = null)) confusion("right");
info (numerator (incompleat_noad)) = link (delim_ptr);
link (delim_ptr) = incompleat_noad;
link (incompleat_noad) = p;
}
}

This code is used in section 1183.

1185. Now at last we’re ready to see what happens when a right brace occurs in a math formula. Two
special cases are simplified here: Braces are effectively removed when they surround a single Ord without
sub/superscripts, or when they surround an accent that is the nucleus of an Ord atom.
(Cases of handle_right_brace where a right_brace triggers a delayed action 1084) +=
case math_group:
{ unsave();
decr (save_ptr);
math_type (saved (0)) = sub_mlist;
p = fin_mlist(null);
info(saved (0)) = p;
if (p # null)
if (link(p) = null)
if (type(p) = ord_noad) { if (math_type (subscr(p)) = empty)
if (math_type (supscr(p)) = empty) { mem[saved (0)].hh = mem[nucleus(p)].hh;
free_node(p, noad_size);
}

}
else if (type(p) = accent_noad)
if (saved(0) = nucleus(tail))
if (type(tail) = ord_noad) (Replace the tail of the list by p 1186);
} break;

61186 TEXprof BUILDING MATH LISTS 513

1186. (Replace the tail of the list by p 1186) =
{ ¢ = head;
while (link (q) # tail) q = link(q);
link(q) = p;
free_node (tail, noad_size);
tail = p;

}

This code is used in section 1185.

1187. We have dealt with all constructions of math mode except ‘\left’ and ‘\right’, so the picture is
completed by the following sections of the program.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("left", left_right, left_noad);
primitive ("right", left_right, right_noad);
text (frozen_right) = text(cur_val);
eqth[frozen_right] = eqtb[cur_vall;

1188. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case left_right: if (chr_code = left_noad) print_esc("left")
(Cases of left_right for print_cmd_chr 1428);
else print_esc("right"); break;

1189. (Cases of main_control that build boxes and lists 1055) +=
case mmode + left_right: math_left_right(); break;

514 BUILDING MATH LISTS TEXprof §1190

1190. (Declare action procedures for use by main_control 1042) +=
static void math_left_right (void)

{ small_number ¢; /x left_noad or right_noad */
pointer p; /+new noad x/
pointer g; /*resulting mlist */

t = cur_chr;
if ((t # left_noad) A (cur_group # math_left_group)) (Try to recover from mismatched \right 1191)
else { p = new_noad();
type(p) = t;
scan_delimiter (delimiter (p), false);
if (t = middle_noad) { type(p) = right_noad;
subtype (p) = middle_noad;
}
if (t = left_noad) q = p;
else { q = fin_mlist(p);
unsave(); /+end of math_left_group x/

if (t # right_noad) { push_math(math_left_group);
link (head) = g;
tail = p;
delim_ptr = p;

else { tail_append(new_noad());
type (tail) = inner_noad;
math_type (nucleus (tail)) = sub_mlist;
info (nucleus(tail)) = g;
}
}
}

1191. (Try to recover from mismatched \right 1191) =
{ if (cur_group = math_shift_group) { scan_delimiter(garbage, false);
print_err ("Extra");
if (t = middle_noad) { print_esc("middle");
help? ("I’m ignoring ,a \\middle that_had, no matching \\left.");

else { print_esc("right");
helpl ("I’m ignoring a \\right that_ had no matching \\left.");

}

error () ;

}

else off_save();

}

This code is used in section 1190.

1192. Here is the only way out of math mode.

(Cases of main_control that build boxes and lists 1055) +=
case mmode + math_shift:

if (cur_group = math_shift_group) after_math();

else off_save(); break;

61193 TEXprof BUILDING MATH LISTS 515

1193. (Declare action procedures for use by main_control 1042) +=
static void after_math(void)
{ booll; /x‘\legno’ instead of ‘\eqno’x/

}

bool danger; /*1not enough symbol fonts are present */
int m; /+x mmode or —mmode x/

pointer p; /xthe formula*/

pointer a; /*box containing equation number */

(Local variables for finishing a displayed formula 1197)

danger = false;

{ Check that the necessary fonts for math symbols are present; if not, flush the current math lists and
set danger: = true 1194);

m = mode;

l = false;

p = fin_mlist(null); /*this pops the nest /

if (mode = —m) /xend of equation number */

{ (Check that another $ follows 1196);
cur_mlist = p;
cur_style = text_style;
mlist_penalties = false;
mlist_to_hlist();
a = hpack (link (temp_head), natural);
unsave();
decr (save_ptr); /*now cur_group = math_shift_group x/
if (saved(0) = 1) I = true;
danger = false;
(Check that the necessary fonts for math symbols are present; if not, flush the current math lists
and set danger: = true 1194);
m = mode;
p = fin_mlist(null);

else a = null;

if (m < 0) (Finish math in text 1195)

else { if (a = null) {Check that another $ follows 1196);
(Finish displayed math 1198);

}

516 BUILDING MATH LISTS TEXprof §1194

1194. (Check that the necessary fonts for math symbols are present; if not, flush the current math lists
and set danger: = true 1194) =
if ((font_params[fam_fnt(2 + text_size)] < total_mathsy_params) V
(font_params[fam_fnt (2 + script_size)| < total_mathsy_params) V
(font_params|fam_fnt (2 + script_script_size)] < total_mathsy_params)) {
print_err("Math,formula deleted: Insufficient symbol fonts");
help3 ("Sorry, but I can’t_ typeset_math unless,\\textfont 2",
"and, ,\\scriptfont_ 2, and \\scriptscriptfont 2 have all",
"the \\fontdimen values needed in math symbol fonts.");
error () ;
flush_math();
danger = true;
}
else if ((font_params[fam_fnt(3 + text_size)] < total_mathez_params) V
(font_params[fam_fnt (3 + script_size)] < total_mathex_params) V
(font_params[fam_fnt (3 + script_script_size)] < total_mathex_params)) {
print_err ("Math_formula deleted: Insufficient extension fonts");
help3 ("Sorry, but I can’t_ typeset_math unless,\\textfont 3",
"and, ,\\scriptfont_ 3 and \\scriptscriptfont 3_have_all",
"the \\fontdimen, values needed, in math extension fonts.");
error () ;
flush_math();
danger = true;

}

This code is used in section 1193.

1195. The unsave is done after everything else here; hence an appearance of ‘\mathsurround’ inside of
‘$...$ affects the spacing at these particular $’s. This is consistent with the conventions of ‘$$. . .$$’, since
‘\abovedisplayskip’ inside a display affects the space above that display.

(Finish math in text 1195) =

{ tail_append (new_math(math_surround, before));
cur_mlist = p;
cur_style = text_style;
mlist_penalties = (mode > 0);
mlist_to_hlist();
link (tail) = link (temp_head);
while (link (tail) # null) tail = link (tail);
tail_append (new_math (math_surround, after));
space_factor = 1000;
unsave ();

}

This code is used in section 1193.

61196 TEXprof BUILDING MATH LISTS 517

1196. TEX gets to the following part of the program when the first ‘¢’ ending a display has been scanned.

(Check that another $ follows 1196) =
{ get_z_token();
if (cur_cmd # math_shift) { print_err("Display_math_ should end with_ $$");
help2("The,‘$’ that I just, saw supposedly matches a previous,‘$$’.",
"So,Iushall assume that you typed, ‘$$’ both times.");
back_error();
}
}

This code is used in sections 1193 and 1205.

1197. We have saved the worst for last: The fussiest part of math mode processing occurs when a displayed
formula is being centered and placed with an optional equation number.

(Local variables for finishing a displayed formula 1197) =
pointer b; /+box containing the equation x/
scaled w; /*width of the equation x/
scaled z; /xwidth of the line %/

scaled e; /+width of equation number /

scaled ¢; /+width of equation number plus space to separate from equation x/
scaled d; /= displacement of equation in the line */

scaled s; /*move the line right this much */

small_number g1, ¢2; /* glue parameter codes for before and after */
pointer r; /xkern node used to position the display x/

pointer t; /«tail of adjustment list x/

This code is used in section 1193.

518 BUILDING MATH LISTS TEXprof §1198

1198. At this time p points to the mlist for the formula; a is either null or it points to a box containing
the equation number; and we are in vertical mode (or internal vertical mode).

(Finish displayed math 1198) =
cur_mlist = p;
cur_style = display_style;
mlist_penalties = false;
mlist_to_hlist();
p = link (temp_head);
adjust_tail = adjust_head;
b = hpack (p, natural);
p = list_ptr(b);
t = adjust_tail
adjust_tail = null;
w = width(b);
z = display_width;
s = display_indent;
if ((a = null) Vv danger) { e = 0;
q=0;
¥
else { e = width(a);
q = e + math_quad (text_size);
}
if (w+ g > z) (Squeeze the equation as much as possible; if there is an equation number that should go
on a separate line by itself, set e: = 0 1200);
(Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming
that [= false 1201);
(Append the glue or equation number preceding the display 1202);
(Append the display and perhaps also the equation number 1203);
(Append the glue or equation number following the display 1204);
resume_after_display ()

This code is used in section 1193.

1199. (Declare action procedures for use by main_control 1042) +=
static void resume_after_display(void)
{ if (cur_group # math_shift_group) confusion("display");
unsave ();
prev_graf = prev_graf + 3;
push_nest();
mode = hmode;
space_factor = 1000;
set_cur_lang;
clang = cur_lang;
prev_graf = (norm_min (left_hyphen_min)*°100 4+ norm_min (right_hyphen_min))*°200000 + cur_lang;
(Scan an optional space 442);
if (nest_ptr = 1) build_page();

61200 TEXprof BUILDING MATH LISTS 519

1200. The user can force the equation number to go on a separate line by causing its width to be zero.

(Squeeze the equation as much as possible; if there is an equation number that should go on a separate line
by itself, set e: = 0 1200) =
{if ((e # 0) A ((w — total_shrink[normal] + g < 2) V
(total_shrink[fil] # 0) V (total_shrink[fill] # 0) V (total_shrink[filll] # 0))) {
free_node (b, box_node_size);
b = hpack (p, z — q, exactly);
}
else { e=0;
if (w > z) { free_node (b, box_node_size);
b = hpack (p, z, exactly);
}
}
w = width(b);
}

This code is used in section 1198.

1201. We try first to center the display without regard to the existence of the equation number. If that
would make it too close (where “too close” means that the space between display and equation number is
less than the width of the equation number), we either center it in the remaining space or move it as far
from the equation number as possible. The latter alternative is taken only if the display begins with glue,
since we assume that the user put glue there to control the spacing precisely.

(Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming

that [= false 1201) =

d = half (z — w);

if (e>0)A(d<2xe)) /xtoo closex/

{d=haf(z—w—ce);

if (p # null)
if (—is_char_node(p))
if (type(p) = glue_node) d = 0;

This code is used in section 1198.

520 BUILDING MATH LISTS TEXprof §1202

1202. If the equation number is set on a line by itself, either before or after the formula, we append an
infinite penalty so that no page break will separate the display from its number; and we use the same size
and displacement for all three potential lines of the display, even though ‘\parshape’ may specify them
differently.

(Append the glue or equation number preceding the display 1202) =
tail_append (new_penalty (pre_display_penalty));
if ((d+ s < pre_display_size) V1) /*not enough clearance */
{ g1 = above_display_skip_code;
g2 = below_display_skip_code;

else { g1 = above_display_short_skip_code;
g2 = below_display_short_skip_code;

if (IA(e=0)) /it follows that type(a) = hlist_node */
{ shift_amount(a) = s;
append_to_vlist (a);
tail_append (new_penalty (inf_penalty));
¥
else tail_append (new_param_glue(g1))

This code is used in section 1198.

1203. (Append the display and perhaps also the equation number 1203) =
if (e#0) { r=new_kern(z —w — e — d);
if (1) { link(a) =r;

link (r) = b;
b=a;
d=0;

}

else { link(b) =r;
link (r) = a;

}

b

= hpack (b, natural);

shift_amount (b) = s + d; append_to_vlist (b)

This code is used in section 1198.

1204. (Append the glue or equation number following the display 1204) =
if ((a # null) A (e =0) A=l) { tail_append (new_penalty (inf_penalty));
shift_amount (a) = s + z — width(a);
append_to_vlist (a);

92 =0;
if (t # adjust_head) /* migrating material comes after equation number */
{ link (tail) = link (adjust_head);

tail = t;

}

tail_append (new_penalty (post_display_penalty)); if (g2 > 0) tail_append (new_param_glue(g2))

This code is used in section 1198.

61205 TEXprof BUILDING MATH LISTS 521

1205. When \halign appears in a display, the alignment routines operate essentially as they do in vertical
mode. Then the following program is activated, with p and ¢ pointing to the beginning and end of the
resulting list, and with auz_save holding the prev_depth value.
(Finish an alignment in a display 1205) =
{ do_assignments();

if (cur_cmd # math_shift) (Pontificate about improper alignment in display 1206)

else (Check that another $ follows 1196);

pop_nest();

tail_append (new_penalty (pre_display_penalty));

tail_append (new_param_glue (above_display_skip_code));

link (tail) = p;

if (p # null) tail = g;

tail_append (new_penalty (post_display_penalty));

tail_append (new_param_glue (below_display_skip_code));

prev_depth = auzr_save.sc;

resume_after_display ();

}

This code is used in section 811.

1206. (Pontificate about improper alignment in display 1206) =
{ print_err("Missing $$,inserted");
help2("Displays can use_ special alignments,(like \\eqalignno)",
"only_if nothing but the alignment itself is between $$’s.");
back_error();

}

This code is used in section 1205.

522 MODE-INDEPENDENT PROCESSING TEXprof §1207

1207. Mode-independent processing. The long main_control procedure has now been fully specified,
except for certain activities that are independent of the current mode. These activities do not change the
current vlist or hlist or mlist; if they change anything, it is the value of a parameter or the meaning of a
control sequence.

Assignments to values in eqtb can be global or local. Furthermore, a control sequence can be defined to be
“\long’, ‘\protected’, or ‘\outer’, and it might or might not be expanded. The prefixes ‘\global’, ‘\long’,
‘\protected’, and ‘\outer’ can occur in any order. Therefore we assign binary numeric codes, making it
possible to accumulate the union of all specified prefixes by adding the corresponding codes. (Pascal’s set
operations could also have been used.)

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("long", prefiz, 1);
primitive ("outer", prefix, 2);
primitive ("global", prefiz,4);
primitive ("def", def ,0);
primitive ("gdef", def , 1);
primitive ("edef", def , 2);
primitive ("xdef", def , 3);

1208. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case prefiz:
if (chr_code = 1) print_esc("long");
else if (chr_code = 2) print_esc("outer")
(Cases of prefix for print_cmd_chr 1453);
else print_esc("global"); break;

case def:
if (chr_code =0) print_esc("def");
else if (chr_code = 1) print_esc("gdef");
else if (chr_code = 2) print_esc("edef");
else print_esc("xdef"); break;

1209. Every prefix, and every command code that might or might not be prefixed, calls the action
procedure prefived_command. This routine accumulates a sequence of prefixes until coming to a non-prefix,
then it carries out the command.

(Cases of main_control that don’t depend on mode 1209) =
any_mode (toks_register): any_mode (assign_toks): any_mode (assign_int): any_mode (assign_dimen):
any_mode (assign_glue): any_mode (assign_mu_glue): any_mode (assign_font_dimen):
any_mode (assign_font_int): any_mode (set_auz): any_mode (set_prev_graf):
any_mode (set_page_dimen): any_mode (set_page_int): any_mode (set_boz_dimen): any_mode (set_shape):
any_mode (def_code): any_mode (def_family): any_mode(set_font): any_mode(def_font):
any_mode (internal_register): any_mode (advance): any_mode (multiply): any_mode(divide):
any_mode (prefix): any_mode (let): any_mode (shorthand_def): any_mode(read_to_cs): any_mode(def):
any_mode (set_boz): any_mode (hyph_data): any_mode (set_interaction): prefized_command(); break;
See also sections 1267, 1270, 1273, 1275, 1284, and 1289.

This code is used in section 1044.

81210 TEXprof MODE-INDEPENDENT PROCESSING

1210. If the user says, e.g., ‘\global\global’, the redundancy is silently accepted.

(Declare action procedures for use by main_control 1042) +=
{ Declare subprocedures for prefived_command 1214)

static void prefized_command (void)
{ small_number a; /xaccumulated prefix codes so far x/
internal_font_number f; /«xidentifies a font */
int j; /xindex into a \parshape specification */
font_index k; /xindex into font_info x/
pointer p, g; /# for temporary short-term use */
int n; /x ditto/
bool e; /xshould a definition be expanded? or was \let not done? x/
a = 0;
while (cur_cmd = prefix) { if (—odd(a/cur_chr)) a = a+ cur_chr;
(Get the next non-blank non-relax non-call token 403);
if (cur_emd < maz_non_prefized_command) (Discard erroneous prefixes and return 1211);
if (tracing_commands > 2)
if (eTeX_ex) show_cur_cmd_chr();
}

(Discard the prefixes \long and \outer if they are irrelevant 1212);
(Adjust for the setting of \globaldefs 1213);

switch (cur_cmd) {

(Assignments 1216)

default: confusion("prefix");

}

done: (Insert a token saved by \afterassignment, if any 1268);

}

1211. (Discard erroneous prefixes and return 1211) =
{ print_err("You can’t use a prefix with,‘");
print_cmd_chr(cur_cmd, cur_chr);
print_char(>\’?);
help1 ("I°11_pretend, you didn’tsay, \\long or \\outer or, \\global.");
if (eTeX_ex) help_line[0] =
"I°11 pretend, you didn’t say, \\long or \\outer or \\global or \\protected.";
back_error();
return;

}

This code is used in section 1210.

523

524 MODE-INDEPENDENT PROCESSING TEXprof §1212

1212. (Discard the prefixes \long and \outer if they are irrelevant 1212) =
if (a > 8) { j = protected_token;
a=a-—=_;
}

else j =0;
if ((cur_emd # def) N ((a%4#0)V (5 #0))) { print_err("You,can’t use, ");
print_esc("long");
prz'nt ("o LOT “n);
print_esc("outer");
help1 ("I°11 pretend you_didn’t say,\\long or \\outer here.");
if (eTeX_ex) { help_line[0] =
"I°11 pretend you didn’t say,\\long or \\outer or \\protected here.";
print(" ;uoruc n);
print_esc("protected");
}
print("? jwith,");
print_cmd_chr (cur_cmd, cur_chr);
print_char(’\’?);
error () ;

}

This code is used in section 1210.

1213. The previous routine does not have to adjust a so that a % 4 = 0, since the following routines test
for the \global prefix as follows.
#define global (a > 4)
#define define(A, B, C)
if (global) geq_define(A, B,C); else eq_define(A, B,C)
#define word_define (A, B)
if (global) geq_word_define(A, B); else eq_word_define(A, B)
{ Adjust for the setting of \globaldefs 1213) =
if (global_defs # 0)
if (global_defs < 0) { if (global) a =a —4;
}
else { if (—global) a = a+ 4;

}

This code is used in section 1210.

61214 TEXprof MODE-INDEPENDENT PROCESSING 525

1214. When a control sequence is to be defined, by \def or \let or something similar, the get_r_token
routine will substitute a special control sequence for a token that is not redefinable.

(Declare subprocedures for prefived_command 1214) =
static void get_r_token(void)
{ restart:
do {
get_token();
} while (—(cur_tok # space_token));
if ((cur_cs =0)V (cur_cs > frozen_control_sequence)) {
print_err("Missing._,contro1usequence|_,inserted");
help5 ("Please don’tysayy ‘\\def cs{...}’,usay,‘\\def\\cs{...}’.",
"I’ve inserted an ;inaccessible control ;sequence so that, your",
"definition;will, jbe completed without mixing me up too badly.",
"You,,can recovergraciously from this error, if you’re",
"careful; see_exercise 27.2,in, The_ TeXbook.");
if (cur_cs =0) back_input();
cur_tok = cs_token_flag + frozen_protection;
ins_error();
goto restart;

}
}

See also sections 1228, 1235, 1242, 1243, 1244, 1245, 1246, 1256, and 1264.

This code is used in section 1210.

1215. (Initialize table entries (done by INITEX only) 163) +=
text(frozen_protection) = s_no("inaccessible");

1216. Here’s an example of the way many of the following routines operate. (Unfortunately, they aren’t
all as simple as this.)

(Assignments 1216) =
case set_font: define (cur_font_loc, data, cur_chr); break;
See also sections 1217, 1220, 1223, 1224, 1225, 1227, 1231, 1233, 1234, 1240, 1241, 1247, 1251, 1252, 1255, and 1263.

This code is used in section 1210.

1217. When a def command has been scanned, cur_chr is odd if the definition is supposed to be global,
and cur_chr > 2 if the definition is supposed to be expanded.

(Assignments 1216) +=
case def: { uint32_t def_fi;

if (odd(cur_chr) A —global A (global_defs > 0)) a = a + 4;
e = (cur_chr > 2);
get_r_token();
D= cur_cs;
def_fl = cur_file_line;
q = scan_toks(true, e);
if (j £ 0) { g = get_avail();
info(q) = j;
link(q) = link (def_ref);
link (def_ref) = g;
¥
define (p, call + (a % 4), def_ref);
fl_mem|[def_ref] = def_fl; } break;

526 MODE-INDEPENDENT PROCESSING TEXprof

1218. Both \let and \futurelet share the command code let.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("let", let, normal);
primitive ("futurelet", let, normal + 1);

1219. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case let:
if (chr_code # normal) print_esc("futurelet"); else print_esc("let"); break;

1220. (Assignments 1216) +=
case let: { n = cur_chr;
get_r_token();
P = cur_cs;
if (n = normal) { do {
get_token();
} while (—(cur_cmd # spacer));
if (cur_tok = other_token + =) { get_token();
if (cur_cmd = spacer) get_token();

}

else { get_token();
q = cur_tok;
get_token();
back_input ();
cur_tok = q;
back_input(); /xlook ahead, then back up %/
} /*xnote that back_input doesn’t affect cur_cmd, cur_chr */
if (cur_emd > call) add_token_ref (cur_chr);
else if ((cur_cmd = internal_register) V (cur_cmd = toks_register))
if ((cur_chr < mem_bot) V (cur_chr > lo_mem_stat_maz)) add_sa_ref (cur_chr);
define (p, cur_cmd, cur_chr); } break;

§1218

1221. A \chardef creates a control sequence whose cmd is char_given; a \mathchardef creates a control
sequence whose cmd is math_given; and the corresponding chr is the character code or math code. A
\countdef or \dimendef or \skipdef or \muskipdef creates a control sequence whose cmd is assign_int
or ... or assign_mu_glue, and the corresponding chr is the eqtb location of the internal register in question.

#define char_def_code 0 /* shorthand_def for \chardef x/

#define math_char_def_code 1 /* shorthand_def for \mathchardef x/
#define count_def_code 2 /* shorthand_def for \countdef */
#define dimen_def_code 3 /x shorthand_def for \dimendef */
#define skip_def_code 4 /[shorthand_def for \skipdef x/

#define mu_skip_def_code 5 /* shorthand_def for \muskipdef */
#define toks_def_code 6 /* shorthand_def for \toksdef x/

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("chardef", shorthand_def , char_def_code);
primitive ("mathchardef", shorthand_def , math_char_def_code);
primitive ("countdef", shorthand_def , count_def_code);
primitive ("dimendef ", shorthand_def , dimen_def_code);
primitive ("skipdef", shorthand_def , skip_def_code);
primitive ("muskipdef", shorthand_def , mu_skip_def_code);
primitive ("toksdef", shorthand_def , toks_def_code);

61222 TEXprof MODE-INDEPENDENT PROCESSING 527

1222. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case shorthand_def:
switch (chr_code) {
case char_def_code: print_esc("chardef"); break;
case math_char_def_code: print_esc("mathchardef"); break;
case count_def_code: print_esc("countdef"); break;
case dimen_def_code: print_esc("dimendef"); break;
case skip_def_code: print_esc("skipdef"); break;
case mu_skip_def_code: print_esc("muskipdef"); break;
default: print_esc("toksdef");
} break;
case char_given:
{ print_esc("char");
print_hex (chr_code);
} break;
case math_given:
{ print_esc("mathchar");
print_hex (chr_code);
} break;

1223. We temporarily define p to be relax, so that an occurrence of p while scanning the definition will
simply stop the scanning instead of producing an “undefined control sequence” error or expanding the
previous meaning. This allows, for instance, ‘\chardef\foo=123\foo’.

(Assignments 1216) +=

case shorthand_def: { n = cur_chr;

get_r_token();

p = cur_cs; define (p, relaz,256);

scan_optional_equals (); switch (n) { case char_def_code: {

scan_char_num(); define (p, char_given, cur_val); } break; case math_char_def_code: {

scan_fifteen_bit_int(); define (p, math_given, cur_val); } break; default: {

scan_register_num (); if (cur_val > 255) { j = n — count_def_code; /[*int_val .. box_val */

if (j > mu_val) j = tok_val; /*int_val .. mu_val or tok_val */

find_sa_element(j, cur_val, true);

add_sa_ref (cur_ptr);

if (j = tok_val) j = toks_register; else j = internal_register;

define (p, j, cur_ptr); } else switch (n) { case count_def_code: define (p, assign_int,
count_base + cur_val);

break; case dimen_def_code: define (p, assign_dimen, scaled_base + cur_val);

break; case skip_def_code: define (p, assign_glue, skip_base + cur_val);

break; case mu_skip_def_code: define (p, assign_mu_glue, mu_skip_base + cur_val); break; case
toks_def_code: define (p, assign_toks, toks_base + cur_val); } /xthere are no other cases x/

} } } break;

528 MODE-INDEPENDENT PROCESSING TEXprof 81224

1224. (Assignments 1216) +=

case read_to_cs: { j = cur_chr;

scan_int();

n = cur_val;

if (—scan_keyword("to")) { print_err("Missing,‘to’ jinserted");
help2 ("Youshould have said,,‘\\read<number> to \\cs’.",
"I’m_going to look for the \\cs now.");
error () ;

¥

get_r_token();

p = cur_cs;

read_toks(n, p, j); define (p, call, cur_val); } break;

81225 TEXprof MODE-INDEPENDENT PROCESSING 529

1225. The token-list parameters, \output and \everypar, etc., receive their values in the following way.
(For safety’s sake, we place an enclosing pair of braces around an \output list.)

(Assignments 1216) +=

case toks_register: case assign_toks:
{ uint32_t def_fl = cur_file_line;

q = cur_cs;
e = false; /*just in case, will be set true for sparse array elements x/
if (cur_cmd = toks_register)
if (cur_chr = mem_bot) { scan_register_num/();
if (cur_val > 255) { find_sa_element (tok_val, cur_val, true);
cur_chr = cur_ptr;
e = true;
}
else cur_chr = toks_base + cur_val;
}
else e = true;
p = cur_chr; /*p = every_par_loc or output_routine_loc or ... x/
scan_optional_equals ();
(Get the next non-blank non-relax non-call token 403);
if (cur_emd # left_brace) (If the right-hand side is a token parameter or token register, finish the
assignment and goto done 1226);
back_input();
cur_cs = q;
q = scan_toks (false, false);
if (link(def_ref) = null) /*empty list: revert to the default x/
{ sa_define(p, null, p, undefined_cs, null);
free_avail (def_ref);

else { if ((p = output_routine_loc) A—e) /+enclose in curlies */
{ link(q) = get_avail ();
q = link(q);
info(q) = right_brace_token + >}’
fl_mem|[q] = FILE_LINE (system_file, system_insert);
q = get_avail ();
info(q) = left_brace_token + *{’;
fl_mem|q] = FILE_LINE(system_file, system_insert);
link (q) = link (def_ref);
link (def_ref) = ¢;
}
sa_define (p, def_ref ,p, call, def_ref);
fl_mem|[def_ref] = def_fl;
}
} break;

530 MODE-INDEPENDENT PROCESSING TEXprof 81226

1226. (If the right-hand side is a token parameter or token register, finish the assignment and goto
done 1226) =
if ((cur_cmd = toks_register) V (cur_emd = assign_toks)) { if (cur_cmd = toks_register)
if (cur_chr = mem_bot) { scan_register_num/();
if (cur_val < 256) q = equiv(toks_base + cur_val);
else { find_sa_element (tok_val, cur_val, false);
if (cur_ptr = null) ¢ = null;
else ¢ = sa_ptr(cur_ptr);
}
}
else ¢ = sa_ptr(cur_chr);
else q = equiv(cur_chr);
if (¢ = null) sa_define(p, null, p, undefined_cs, null);
else { add_token_ref (¢);
sa_define(p, ¢, p, call, q);

}

goto done;

}

This code is used in section 1225.

1227. Similar routines are used to assign values to the numeric parameters.
(Assignments 1216) +=
case assign_int:
{ p= cur_chr;
scan_optional_equals ();
scan_int();
word_define (p, cur_val);
} break;
case assign_dimen:
{ p= cur_chr;
scan_optional_equals();
scan_normal_dimen;
word_define (p, cur_val);
} break; case assign_glue: case assign_mu_glue: { p = cur_chr;
n = cur_cmd;
scan_optional_equals ();
if (n = assign_mu_glue) scan_glue(mu_val); else scan_glue(glue_val);
trap_zero_glue(); define (p, glue_ref , cur_val); } break;

1228. When a glue register or parameter becomes zero, it will always point to zero_glue because of the
following procedure. (Exception: The tabskip glue isn’t trapped while preambles are being scanned.)

(Declare subprocedures for prefized_command 1214) +=
static void trap_zero_glue(void)
{ if ((width(cur_val) = 0) A (stretch(cur_val) = 0) A (shrink (cur_val) = 0)) { add_glue_ref (zero_glue);
delete_glue_ref (cur_val);
cur_val = zero_glue;

}
}

§1229 TEXprof MODE-INDEPENDENT PROCESSING 531

1229. The various character code tables are changed by the def_code commands, and the font families are
declared by def_family.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("catcode", def_code, cat_code_base);

primitive ("mathcode", def_code, math_code_base);

primitive ("lccode", def_code, lc_code_base);

primitive ("uccode", def_code, uc_code_base);

primitive ("sfcode", def_code, sf_code_base);

primitive ("delcode", def_code, del_code_base);

primitive ("textfont", def_family , math_font_base);

primitive ("scriptfont", def_family, math_font_base + script_size);

primitive ("scriptscriptfont", def_family, math_font_base + script_script_size);

1230. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case def_code:

if (chr_code = cat_code_base) print_esc("catcode");

else if (chr_code = math_code_base) print_esc("mathcode");

else if (chr_code = lc_code_base) print_esc("lccode");

else if (chr_code = uc_code_base) print_esc("uccode");

else if (chr_code = sf_code_base) print_esc("sfcode");

else print_esc("delcode"); break;
case def_family: print_size(chr_code — math_font_base); break;

1231. The different types of code values have different legal ranges; the following program is careful to
check each case properly.

(Assignments 1216) +=

case def_code: { (Let n be the largest legal code value, based on cur_chr 1232);

p = cur_chr;

scan_char_num();

p=Dp+ cur_val;

scan_optional_equals ();

scan_int();

if (((cur_val <0) A (p < del_code_base)) V (cur_val > n)) { print_err("Invalid code (");
print_int (cur_val);
if (p < del_code_base) print(") , should be in the range 0..");
else print("),,should be at most,");
print_int(n);
help1 ("I’m,going to use 0 instead of that_ illegal code value.");
error () ;
cur_val = 0;

¥

if (p < math_code_base) define (p, data, cur_val); else if (p < del_code_base) define

(p, data, hi(cur_val));
else word_define(p, cur_val);
} break;

532 MODE-INDEPENDENT PROCESSING TEXprof 81232

1232. (Let n be the largest legal code value, based on cur_chr 1232) =
if (cur_chr = cat_code_base) n = maz_char_code;
else if (cur_chr = math_code_base) n = °100000;
else if (cur_chr = sf_code_base) n =°77777;
else if (cur_chr = del_code_base) n = 77777777,
else n = 255

This code is used in section 1231.

1233. (Assignments 1216) +=
case def_family: { p = cur_chr;
scan_four_bit_int();
p=p+ cur_val;
scan_optional_equals ();
scan_font_ident(); define (p, data, cur_val); } break;

1234. Next we consider changes to TEX’s numeric registers.

(Assignments 1216) +=
case internal_register: case advance: case multiply: case divide: do_register_command (a); break;

1235. We use the fact that internal_register < advance < multiply < divide.

(Declare subprocedures for prefized_command 1214) +=
static void do_register_command (small_number a)

{ pointer [, q,r, s; /* for list manipulation */
int p; /*type of register involved */
bool ¢; /xdoes [refer to a sparse array element? */
int w; /*xinteger or dimen value of [x/

q = cur_cmd;
e = false; /xjust in case, will be set true for sparse array elements */
(Compute the register location ! and its type p; but return if invalid 1236);
if (¢ = internal_register) scan_optional_equals();
else if (scan_keyword("by")) do_nothing; /xoptional ‘by’ x/
arith_error = false;
if (¢ < multiply) (Compute result of register or advance, put it in cur_val 1237)
else (Compute result of multiply or divide, put it in cur_val 1239);
if (arith_error) { print_err("Arithmeticoverflow");

help2 ("I can’tcarry out that multiplication or division,",

"since the result is out of range.");

if (p > glue_val) delete_glue_ref (cur_val);

error () ;

return;

if (p < glue_val) sa_word_define(l, cur_val);
else { trap_zero_glue();
sa_define (1, cur_val, 1, glue_ref , cur_val);
}
}

81236 TEXprof MODE-INDEPENDENT PROCESSING 533

1236. Here we use the fact that the consecutive codes int_val .. mu_val and assign_int .. assign_mu_glue
correspond to each other nicely.

(Compute the register location ! and its type p; but return if invalid 1236) =
{ if (q # internal_register) { get_x_token();
if ((cur_emd > assign_int) A (cur_cmd < assign_mu_glue)) { | = cur_chr;
p = cur_cmd — assign_int;
goto found;
}

if (cur_emd # internal_register) { print_err("You,can’t use,");
print_cmd_chr (cur_cmd, cur_chr);
print("’ Lafter,");
print_cmd_chr(q,0);
help1 ("I’m forgetting, what_you,said and not,changing anything.");
error () ;
return;

}

if ((cur_chr < mem_bot) \V (cur_chr > lo_mem_stat_maz)) { | = cur_chr;
p = sa_type(l);
e = true;
}
else { p = cur_chr — mem_bot;
scan_register_num();
if (cur_val > 255) { find_sa_element (p, cur_val, true);
l = cur_ptr;
e = true;
}
else
switch (p) {
case int_val: | = cur_val + count_base; break;
case dimen_val: | = cur_val + scaled_base; break;
case glue_val: | = cur_val + skip_base; break;
case mu_val: | = cur_val + mu_skip_base;
} /xthere are no other cases %/

}

¥
found:

if (p < glue_val) if (e) w = sa_int(l); else w = eqtb[l].i;
else if (e) s = sa_ptr(l); else s = equiv(l)

This code is used in section 1235.

1237. (Compute result of register or advance, put it in cur_val 1237) =
if (p < glue_val) { if (p = int_val) scan_int(); else scan_normal_dimen;
if (¢ = advance) cur_val = cur_val + w;
}
else { scan_glue(p);
if (¢ = advance) {Compute the sum of two glue specs 1238);

}

This code is used in section 1235.

534 MODE-INDEPENDENT PROCESSING TEXprof

1238. (Compute the sum of two glue specs 1238) =
{ ¢ = new_spec(cur_val);
r=s;
delete_glue_ref (cur_val);
width (q) = width(q) + width(r);
if (stretch(q) =0) stretch_order(q) = normal;
if (stretch_order(q) = stretch_order(r)) stretch(q) = stretch(q) + stretch(r);
else if ((stretch_order(q) < stretch_order(r)) A (stretch(r) # 0)) { stretch(q) = stretch(r);
stretch_order (q) = stretch_order(r);

if (shrink(q) = 0) shrink_order(q) = normal;

if (shrink_order(q) = shrink_order(r)) shrink(q) = shrink(q) + shrink (r);

else if ((shrink_order(q) < shrink_order(r)) A (shrink(r) # 0)) { shrink(q) = shrink(r);
shrink_order(q) = shrink_order (r);

}

cur_val = q;

}

This code is used in section 1237.

1239. (Compute result of multiply or divide, put it in cur_val 1239) =
{ scan_int();
if (p < glue_val)
if (¢ = multiply)
if (p = int_val) cur_val = mult_integers(w, cur_val);
else cur_val = nz_plus_y(w, cur_val,0);
else cur_val = z_over_n(w, cur_val);
else { r = new_spec(s);
if (¢ = multiply) { width(r) = nz_plus_y (width(s), cur_val,0);
stretch (r) = na_plus_y (stretch(s), cur_val, 0);
shrink (r) = naz_plus_y (shrink (s), cur_val, 0);

else { width(r) = z_over_n(width(s), cur_val);
stretch(r) = z_over_n(stretch(s), cur_val);
shrink (r) = z_over_n(shrink(s), cur_val);
}
cur_val =r;
}
}

This code is used in section 1235.

§1238

61240 TEXprof MODE-INDEPENDENT PROCESSING 535

1240. The processing of boxes is somewhat different, because we may need to scan and create an entire
box before we actually change the value of the old one.

(Assignments 1216) +=
case set_box:
{ scan_register_num();
if (global) n = global_boz_flag + cur_val; else n = box_flag + cur_val;
scan_optional_equals ();
if (set_bozx_allowed) scan_boz(n);
else { print_err("Improper,");
print_esc("setbox");
help2 ("Sorry, \\setbox is not_ allowed after \\halign in a display,",
"or between,\\accent and an accented character.");
error () ;

}
} break;

1241. The space_factor or prev_depth settings are changed when a set_auz command is sensed. Similarly,
prev_graf is changed in the presence of set_prev_graf, and dead_cycles or insert_penalties in the presence
of set_page_int. These definitions are always global.

When some dimension of a box register is changed, the change isn’t exactly global; but TEX does not look
at the \global switch.

(Assignments 1216) +=

case set_aux: alter_auz(); break;

case set_prev_graf: alter_prev_graf (); break;
case set_page_dimen: alter_page_so_far(); break;
case sel_page_int: alter_integer(); break;

case set_box_dimen: alter_boz_dimen(); break;

1242. (Declare subprocedures for prefired_command 1214) +=
static void alter_auz (void)
{ halfword ¢; /*xhmode or vmode */

if (cur_chr # abs(mode)) report_illegal_case();
else { ¢ = cur_chr;
scan_optional_equals ();
if (¢ = vmode) { scan_normal_dimen;
prev_depth = cur_val;
}
else { scan_int();
if ((cur_val <0)V (cur_val > 32767)) { print_err("Bad space factor");
help! ("I allow only, values,in the range 1..32767 here.");
int_error (cur_val);
}
else space_factor = cur_val;
}
}

536 MODE-INDEPENDENT PROCESSING TEXprof §1243

1243. (Declare subprocedures for prefized_command 1214) +=
static void alter_prev_graf (void)

{int p; /xindex into nest x/
nest [nest_ptr| = cur_list;
p = nest_ptr;

while (abs(nest[p].mode_field) # vmode) decr(p);

scan_optional_equals ();

scan_int();

if (cur_val < 0) { print_err("Bad,");
print_esc("prevgraf");
help1 (" I allow only nonnegative wvalues here.");
int_error (cur_val);

else { nest[p].pg_field = cur_val;
cur_list = nest[nest_ptr];
}
}

1244. (Declare subprocedures for prefized_command 1214) +=
static void alter_page_so_far(void)
{int ¢; /+index into page_so_far x/
c = cur_chr;
scan_optional_equals ();
scan_normal_dimen;
page_so_far|c] = cur_val;

}

1245. (Declare subprocedures for prefized_command 1214) +=
static void alter_integer(void) { small_number c;
/%0 for \deadcycles, 1 for \insertpenalties, etc.*/
¢ = cur_chr;
scan_optional_equals ();
scan_int(); if (¢ =0) dead_cycles = cur_val
(Cases for alter_integer 1426)
else insert_penalties = cur_val;

}

1246. (Declare subprocedures for prefized_command 1214) +=

static void alter_boxz_dimen(void)

{ small_number c¢; /x width_offset or height_offset or depth_offset /
pointer b; /*box register */
c = cur_chr;
scan_register_num/();
fetch_box (b);
scan_optional_equals ();
scan_normal_dimen;
if (b # null) mem[b+ c].sc = cur_val;

81247 TEXprof MODE-INDEPENDENT PROCESSING 537

1247. Paragraph shapes are set up in the obvious way.

(Assignments 1216) +=
case set_shape: { q = cur_chr;
scan_optional_equals ();
scan_int();
n = cur_val;
if (n <0) p= null;
else if (¢ > par_shape_loc) { n = (cur_val /2) + 1;
p = get_node (2 xn + 1);

info(p) = n;

n = cur_val;

mem[p + 1].i = n; /+number of penalties */

for (j=p+2; j<p+n+1; j++) { scan_int();
mem|[j].i = cur_val; /* penalty values x/

} if (modd(n)) mem[p+n+2].i=0; /xunuseds/

else { p = get_node(2 xn + 1);

info(p) = n;
for (j =1; j <n; j++) { scan_normal_dimen;
mem[p+2xj —1].sc = cur_val; /+indentation x/

scan_normal_dimen;
mem[p+ 2 x jl.sc = cur_val; /+xwidthx/
}
}

define (q, shape_ref,p); } break;

1248. Here’s something that isn’t quite so obvious. It guarantees that info (par_shape_ptr) can hold any
positive n for which get_node(2 xn + 1) doesn’t overflow the memory capacity.

{ Check the “constant” values for consistency 14) +=
if (2 * maz_halfword < mem_top — mem_min) bad = 41;

1249. New hyphenation data is loaded by the hyph_data command.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("hyphenation", hyph_data,0);
primitive ("patterns", hyph_data, 1);

1250. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case hyph_data:

if (chr_code = 1) print_esc("patterns");

else print_esc("hyphenation"); break;

538 MODE-INDEPENDENT PROCESSING TEXprof 81251

1251. (Assignments 1216) +=
case hyph_data:
if (cur_chr =1) {
#ifdef INIT
new_patterns();
goto done;
#endif
print_err ("Patterns,can be loaded only by INITEX");
help0;
error () ;
do {
get_token();
} while (=(cur_emd = right_brace)); /*flush the patterns =/
return;
}
else { new_hyph_exceptions();
goto done;
} break;

1252. All of TEX’s parameters are kept in eqth except the font information, the interaction mode, and the
hyphenation tables; these are strictly global.

(Assignments 1216) +=
case assign_font_dimen:
{ find_font_dimen (true);
k = cur_val;
scan_optional_equals ();
scan_normal_dimen;
font_infolk].sc = cur_val;
} break;
case assign_font_int:
{ n = cur_chr;
scan_font_ident ();
f = cur_val;
scan_optional_equals ();
scan_int();
if (n =0) hyphen_char[f] = cur_val; else skew_char[f] = cur_val;
} break;

1253. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("hyphenchar", assign_font_int,0);
primitive ("skewchar", assign_font_int, 1);

1254. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case assign_font_int:

if (chr_code = 0) print_esc("hyphenchar");

else print_esc("skewchar"); break;

1255. Here is where the information for a new font gets loaded.

(Assignments 1216) +=
case def_font: new_font(a); break;

81256 TEXprof MODE-INDEPENDENT PROCESSING 539

1256. (Declare subprocedures for prefized_command 1214) +=

static void new_font(small_number a) { pointer u; /xuser’s font identifier x/
scaled s; /*xstated “at” size, or negative of scaled magnification */
int f; /+runs through existing fonts x/
str_number ¢; /*name for the frozen font identifier /
int old_setting; /*holds selector setting */
str_number flushable_string; /*string not yet referenced */
if (job_name = 0) open_log_file(); /+avoid confusing texput with the font name x/
get_r_token();
u = cur_cs;

if (u > hash_base) t = text(u);
else if (u > single_base)
if (u=null_cs) t = s_no("FONT"); else t = u — single_base;
else { old_setting = selector;
selector = new_string;
print ("FONT");
printn (u — active_base);
selector = old_setting;
str_room (1);
t = make_string();
¥
define (u, set_font, null_font);
scan_optional_equals ();
scan_file_name();
(Scan the font size specification 1257);
(If this font has already been loaded, set f to the internal font number and goto
common_ending 1259);
f = read_font_info (u, cur_name, cur_area, s); common_ending: define (u, set_font, f);
eqth[font_id_base + f] = eqtb[ul;
font_id_text(f) =t; }

1257. (Scan the font size specification 1257) =
name_in_progress = true; /x this keeps cur_name from being changed */
if (scan_keyword("at")) (Put the (positive) ‘at’ size into s 1258)
else if (scan_keyword("scaled")) { scan_int();
s = —cur_val;
if ((cur_val <0)V (cur_val > 32768)) {
print_err ("Illegal magnification has been ,changed to,1000");
help! ("The magnification ratio must_be_ between 1, and 32768.");
int_error (cur_val);
s = —1000:

}

else s = —1000;
name_in_progress = false

This code is used in section 1256.

540 MODE-INDEPENDENT PROCESSING TEXprof §1258

1258. (Put the (positive) ‘at’ size into s 1258) =
{ scan_normal_dimen;
s = cur_val;
if ((s <0)V (s> °1000000000)) { print_err("Improper, ‘at’ size, (");
print_scaled (s);
print("pt) , replaced by, 10pt");
help2 (" I can,only handle fonts at_ positive sizes that are",

"lessthan,,2048pt, so I’ ve changed what you,said jto,10pt.");
error () ;

s = 10 * unity;
}
}

This code is used in section 1257.

1259. When the user gives a new identifier to a font that was previously loaded, the new name becomes
the font identifier of record. Font names ‘xyz’ and ‘XYZ’ are considered to be different.
(If this font has already been loaded, set f to the internal font number and goto common_ending 1259) =
flushable_string = str_ptr — 1;
for (f = font_base + 1; f < font_ptr; f++)
if (str_eq_str(font_name[f], cur_name) A str_eq_str(font_area[f], cur_area)) {
if (cur_name = flushable_string) { flush_string;
cur_name = font_name|f];
}
if (s> 0) { if (s = font_size[f]) goto common_ending;

}

else if (font_size[f] = zn_over_d(font_dsize[f], —s,1000)) goto common_ending;

}

This code is used in section 1256.

1260. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case set_font:
{ print("select font,");
slow_print (font_name[chr_code));
if (font_size[chr_code] # font_dsize[chr_code]) { print("Lat,");
print_scaled (font_size|chr_code]);
print ("pe")
}

} break;

1261. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("batchmode", set_interaction, batch_mode);
primitive ("nonstopmode", sel_interaction, nonstop_mode);
primitive ("scrollmode", set_interaction, scroll_mode);
primitive ("errorstopmode", set_interaction, error_stop_mode);

61262 TEXprof MODE-INDEPENDENT PROCESSING 541

1262. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case set_interaction:

switch (chr_code) {

case batch_mode: print_esc("batchmode"); break;

case nonstop_mode: print_esc("nonstopmode"); break;

case scroll_mode: print_esc("scrollmode"); break;

default: print_esc("errorstopmode");

} break;

1263. (Assignments 1216) +=
case set_interaction: new_interaction(); break;

1264. (Declare subprocedures for prefivred_command 1214) +=
static void new_interaction(void)
{ print_in();
interaction = cur_chr;
(Initialize the print selector based on interaction 74);
if (log_opened) selector = selector + 2;

1265. The \afterassignment command puts a token into the global variable after_token. This global
variable is examined just after every assignment has been performed.

(Global variables 13) +=
static halfword after_token; /xzero, or a saved token */

1266. (Set initial values of key variables 21) +=
after_token = 0;

1267. (Cases of main_control that don’t depend on mode 1209) +=
any_mode (after_assignment):
{ get_token();
after_token = cur_tok;
} break;

1268. (Insert a token saved by \afterassignment, if any 1268) =
if (after_token #0) { cur_tok = after_token;
back_input ();
after_token = 0;

}

This code is used in section 1210.

1269. Here is a procedure that might be called ‘Get the next non-blank non-relax non-call non-assignment
token’.

{ Declare action procedures for use by main_control 1042) +=
static void do_assignments(void)

{ loop { (Get the next non-blank non-relax non-call token 403);
if (cur_cmd < maz_non_prefized_command) return;
set_boz_allowed = false;
prefized_command ();
set_box_allowed = true;

}
}

542 MODE-INDEPENDENT PROCESSING TEXprof

1270. (Cases of main_control that don’t depend on mode 1209) +=
any_mode (after_group):
{ get_token();
save_for_after (cur_tok);

} break;

1271. Files for \read are opened and closed by the in_stream command.

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("openin", in_stream, 1);
primitive ("closein", in_stream, 0);

1272. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case in_stream:

if (chr_code =0) print_esc("closein");

else print_esc("openin"); break;

1273. (Cases of main_control that don’t depend on mode 1209) +=
any_mode (in_stream): open_or_close_in(); break;

1274. (Declare action procedures for use by main_control 1042) +=
static void open_or_close_in(void)
{int ¢; /1 for \openin, 0 for \closein %/
int n; /* stream number */

c = cur_chr;

scan_four_bit_int();

n = cur_val;

if (read_open|n] # closed) { a_close(&read_file[n]);
read_open[n] = closed;

if (¢ #0) { scan_optional_equals();
scan_file_name();
pack_cur_name (" .tex");
if (a_open_in(&read_file[n])) {
read_open[n] = just_open;
(Set new read_file_num[n] 1750)
}
}
}

1275. The user can issue messages to the terminal, regardless of the current mode.

(Cases of main_control that don’t depend on mode 1209) +=
any_mode (message): issue_message(); break;

1276. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("message", message, 0);
primitive ("errmessage", message, 1);

1277. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case message:

if (chr_code = 0) print_esc("message");

else print_esc("errmessage"); break;

§1270

81278 TEXprof

MODE-INDEPENDENT PROCESSING

1278. (Declare action procedures for use by main_control 1042) +=
static void issue_message (void)
{ int old_setting; /xholds selector setting*/
int ¢; /xidentifies \message and \errmessage */
str_number s; /*the message */

c = cur_chr;

link (garbage) = scan_toks (false, true);

old_setting = selector;
selector = new_string;
token_show (def_ref);
selector = old_setting;
flush_list (def_ref);
str_room (1);

s = make_string();

if (¢=0) (Print string s on the terminal 1279)
else (Print string s as an error message 1282);

flush_string;

}

1279. (Print string s on the terminal 1279) =
{ if (term_offset + length(s) > maz_print_line — 2) print_In();
else if ((term_offset > 0) V (file_offset > 0)) print_char(’y’);

slow_print(s);
update_terminal;

}

This code is used in section 1278.

543

1280. If \errmessage occurs often in scroll_mode, without user-defined \errhelp, we don’t want to give
a long help message each time. So we give a verbose explanation only once.

(Global variables 13) +=
static bool long_help_seen;

/*has the long \errmessage help been used? */

1281. (Set initial values of key variables 21) +=

long_help_seen = false;

1282. (Print string s as an error message 1282) =

{ print_err("");
slow_print(s);

if (err_help # null) use_err_help = true;
else if (long_help_seen) help! (" (That was another \\errmessage.)")
else { if (interaction < error_stop_mode) long_help_seen = true;
help/ ("Thisuerrorumessageuwasugeneratedubyuanu\\errmessage" ,
"command, so I ,can’t give ,any explicit help.",
"Pretend that you’re Hercule Poirot: Examine all clues,",
"and, deduce the truth by order and method.");

}

error () ;
use_err_help = false;

}

This code is used in section 1278.

544 MODE-INDEPENDENT PROCESSING TpXprof — §1283

1283. The error routine calls on give_err_help if help is requested from the err_help parameter.

static void give_err_help(void)
{ token_show (err_help);

}

1284. The \uppercase and \lowercase commands are implemented by building a token list and then
changing the cases of the letters in it.

(Cases of main_control that don’t depend on mode 1209) +=
any_mode (case_shift): shift_case(); break;

1285. (Put each of TEX’s primitives into the hash table 225) +=
primitive ("lowercase", case_shift, lc_code_base);
primitive ("uppercase", case_shift, uc_code_base);

1286. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case case_shift:

if (chr_code = lc_code_base) print_esc("lowercase");

else print_esc("uppercase"); break;

1287. (Declare action procedures for use by main_control 1042) +=
static void shift_case(void)
{ pointer b; /* le_code_base or uc_code_base */
pointer p; /*runs through the token list /
halfword ¢; /*tokenx/
eight_bits ¢; /+character code x/
b = cur_chr;
p = scan_toks(false, false);
p = link(def_ref);
while (p # null) { (Change the case of the token in p, if a change is appropriate 1288);
p = link(p);

}
back_list (Link (def_ref));

free_avail (def_ref); ~ /*omit reference count x/

}

1288. When the case of a chr_code changes, we don’t change the cmd. We also change active characters,
using the fact that cs_token_flag + active_base is a multiple of 256.
(Change the case of the token in p, if a change is appropriate 1288) =
t = info(p);
if (t < cs_token_flag + single_base) { ¢ =1t % 256;
if (equiv(b+ c) # 0) info(p) =t — ¢ + equiv(b+ ¢);

This code is used in section 1287.

1289. We come finally to the last pieces missing from main_control, namely the ‘\show’ commands that
are useful when debugging.

(Cases of main_control that don’t depend on mode 1209) +=
any_mode(zray): show_whatever(); break;

61290 TEXprof MODE-INDEPENDENT PROCESSING 545

1290. #define show_code 0 /% \show x/
#define show_box_code 1 /% \showbox =/
#define show_the_code 2 /* \showthe x/
#define show_lists_code 3 [+ \showlists x/

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("show" , zray, show_code);
primitive ("showbox", zray, show_box_code);
primitive ("showthe", zray, show_the_code);
primitive ("showlists", xray, show_lists_code);

1291. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case rray:

switch (chr_code) {

case show_box_code: print_esc("showbox"); break;

case show_the_code: print_esc("showthe"); break;

case show_lists_code: print_esc("showlists"); break;

(Cases of zray for print_cmd_chr 1406)
default: print_esc("show");
} break;

546 MODE-INDEPENDENT PROCESSING TEXprof §1292

1292. (Declare action procedures for use by main_control 1042) +=
static void show_whatever(void)
{ pointer p; /*tail of a token list to show */

small_number t; /*type of conditional being shown */
int m; /+upper bound on fi_or_else codes*/
int I; /*line where that conditional began */

int n; /*level of \if...\fi nestingx/

switch (cur_chr) {
case show_lists_code:
{ begin_diagnostic();
show_activities();
} break;
case show_boz_code: (Show the current contents of a box 1295) break;
case show_code: (Show the current meaning of a token, then goto common_ending 1293)
(Cases for show_whatever 1407)
default: (Show the current value of some parameter or register, then goto common_ending 1296)
}
(Complete a potentially long \show command 1297);
common_ending:
if (interaction < error_stop_mode) { help0;
decr (error_count);
}

else if (tracing_online > 0) {
help3 ("Thisuisn’ tuan error, message; I’ mjust\\showing something.",
"Typey ‘ I\\show. ..’ to,show more (e.g., \\show\\cs,",
"\\showthe\\count10,,\\showbox255, \\showlists).");

}

else {
help5 ("This_isn’tyan error message; I’m just, \\showing something.",
"Type,‘I\\show. ..’ to_show more,(e.g., \\show\\cs,",
"\\showthe\\count10, ,\\showbox255, \\showlists).",
"And, typey ‘I\\tracingonline=1\\show. ..’ to_ show boxes and",
"listsyon your terminal as well as_ in the transcript file.");

}

error () ;

}

1293. (Show the current meaning of a token, then goto common_ending 1293) =
{ get_token();
if (interaction = error_stop_mode) wake_up_terminal;
print_nl(">,");
if (cur_cs #0) { sprint_cs(cur_cs);
print_char(’=");
}
print_meaning ();
goto common_ending;

}

This code is used in section 1292.

61294 TEXprof MODE-INDEPENDENT PROCESSING

1294. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case undefined_cs: print("undefined"); break;
case call: case long_call: case outer_call: case long_outer_call:
{ n=-cmd — call;
if (info(link (chr_code)) = protected_token) n = n + 4;
if (odd(n/4)) print_esc("protected");
if (odd(n)) print_esc("long");
if (odd(n/2)) print_esc("outer");
if (n > 0) print_char(’y’);
print("macro");
} break;
case end_template: print_esc("outer endtemplate"); break;

1295. (Show the current contents of a box 1295) =
{ scan_register_num();
fetch_boz (p);
begin_diagnostic();
print_nl(">,\\box");
print_int (cur_val);
print_char(’=");
if (p = null) print("void"); else show_boz (p);

}

This code is used in section 1292.

1296. (Show the current value of some parameter or register, then goto common_ending 1296) =
{ the_toks();
if (interaction = error_stop_mode) wake_up_terminal;
print_nl(">,");
token_show (temp_head);
flush_list (link (temp_head));
goto common_ending;

}

This code is used in section 1292.

1297. (Complete a potentially long \show command 1297) =
end_diagnostic(true);
print_err("0K");
if (selector = term_and_log)
if (tracing_online < 0) { selector = term_only;
print (", (see the transcript file)");
selector = term_and_log;

}

This code is used in section 1292.

547

548 DUMPING AND UNDUMPING THE TABLES TEXprof §1298

1298. Dumping and undumping the tables. After INITEX has seen a collection of fonts and macros,
it can write all the necessary information on an auxiliary file so that production versions of TEX are able
to initialize their memory at high speed. The present section of the program takes care of such output and
input. We shall consider simultaneously the processes of storing and restoring, so that the inverse relation
between them is clear.

The global variable format_ident is a string that is printed right after the banner line when TEX is ready
to start. For INITEX this string says simply ¢ (INITEX)’; for other versions of TEX it says, for example,
‘ (preloaded format=plain 1982.11.19)’, showing the year, month, and day that the format file was
created. We have format_ident = 0 before TEX’s tables are loaded.

(Global variables 13) +=
static str_number format_ident, frozen_format_ident;

1299. (Set initial values of key variables 21) +=
format_ident = frozen_format_ident = 0;

1300. We keep a copy of the initial value, be able to test for it later.

(Initialize table entries (done by INITEX only) 163) +=
format_ident = frozen_format_ident = s_no (", (INITEX)");

1301. (Declare action procedures for use by main_control 1042) +=
#ifdef INIT
static void store_fmi_file(void)
{int j,k,{; /*all-purpose indices */
int p, q; /= all-purpose pointers */
int z; /xsomething to dump /
four_quarters w; /* four ASCII codes */

(If dumping is not allowed, abort 1303);

(Create the format_ident, open the format file, and inform the user that dumping has begun 1327);
(Dump constants for consistency check 1306);

(Dump the string pool 1308);

(Dump the dynamic memory 1310);

(Dump the table of equivalents 1312);

(Dump the font information 1319);

(Dump the hyphenation tables 1323);

(Dump the full file names 1788);

(Dump the file and line information 1790);

{Dump a couple more things and the closing check word 1325);
(Close the format file 1328);

61302 TEXprof DUMPING AND UNDUMPING THE TABLES 549

1302. Corresponding to the procedure that dumps a format file, we have a function that reads one in.
The function returns false if the dumped format is incompatible with the present TEX table sizes, etc.
#define too_small(X)
{ wake_up_terminal;
wterm_ln("——— I Must_increase the %s", X);
goto bad_fmt;

}

{ Declare the function called open_fmt_file 523)

static bool load_fmt_file(void)

{ int j,k; /xall-purpose indices x/
int p, q; /xall-purpose pointers */
int x; /*something undumped */
four_quarters w; /*four ASCII codes */

(Undump constants for consistency check 1307);
(Undump the string pool 1309);
(Undump the dynamic memory 1311);
(Undump the table of equivalents 1313);
(Undump the font information 1320);
(Undump the hyphenation tables 1324);
(Undump the full file names 1789);
(Undump the file and line information 1792);
(Undump a couple more things and the closing check word 1326);
return true; /+it worked!x/
bad_fmt: wake_up_terminal;
wterm_In (" (Fatal format, file error;,I’m stymied)");
return false;

}

1303. The user is not allowed to dump a format file unless save_ptr = 0. This condition implies that
cur_level = level_one, hence the xeq_level array is constant and it need not be dumped.
(If dumping is not allowed, abort 1303) =
if (save_ptr #0) { print_err("You,can’t dump_inside a group");
help? (" “{...\\dump}’_is a no-no.");
succumb;

}

This code is used in section 1301.

550 DUMPING AND UNDUMPING THE TABLES TEXprof 81304

1304. Format files consist of memory_word items, and we use the following macros to dump words of
different types:

#define dump_wd(A)
{ fmt_file.d = A;
put (fmi_file); }
#define dump_int(A)
{ fmi_file.d.i = A
put (fmt_file); }
#define dump_hh(A)
{ fmt_file.d.hh = A;
put (fmt_file); }
#define dump_qqqq(A)
{ fmt_file.d.qqqq = A;
put (fmi_file); }
{ Global variables 13) +=
static word_file fmi_file; /#for input or output of format information */

1305. The inverse macros are slightly more complicated, since we need to check the range of the values
we are reading in. We say ‘undump (a)(b)(z)’ to read an integer value = that is supposed to be in the range
a < x < b. System error messages should be suppressed when undumping,.
#define undump_wd(A)
{ get(fmi_file);
A = fmt_file.d; }
#define undump_int(A)
{ get(fmi_file);
A = fmt_file.d.i; }
#define undump_hh(A)
{ get(fmi_file);
A = fmi_file.d.hh; }
#define undump_qqqq(A)
{ get (fmi_file):
A = fmt_file.d.qqqq; }
#define undump (A, B,C)
{ undump_int(x);
if ((x < A)V (z > B)) goto bad_fmt; else C = z; }
#define undump_size(A, B,C, D)
{ undump_int(zx);
if (zx < A) goto bad_fmit;
if (z > B) too_small(C) else D =zx; }

§1306 TEXprof DUMPING AND UNDUMPING THE TABLES 551

1306. The next few sections of the program should make it clear how we use the dump/undump macros.

(Dump constants for consistency check 1306) =
dump_int(0);
(Dump the e-TEX state 1384)
(Dump the PROTE state 1543)
(Dump the ROM array 1584)
dump_int (mem_bot);
dump_int (mem_top);
dump_int (eqtb_size);
dump_int (hash_prime);
dump_int (hyph_size)

This code is used in section 1301.

1307. Sections of a WEB program that are “commented out” still contribute strings to the string pool;
therefore INITEX and TEX will have the same strings. (And it is, of course, a good thing that they do.)

(Undump constants for consistency check 1307) =
x = fmt_file.d.i;
if (z #0) goto bad_fmt; /xcheck that strings are the same %/
(Undump the e-TEX state 1385)
(Undump the PRIT'E state 1544)
(Undump the ROM array 1585)
undump_int (x);
if (z # mem_bot) goto bad_fmt;
undump_int (x);
if (x # mem_top) goto bad_fmit;
undump_int(x);
if (z # eqtb_size) goto bad_fmt;
undump_int(x);
if (z # hash_prime) goto bad_fmt;
undump_int(x); if (x # hyph_size) goto bad_fmi

This code is used in section 1302.

1308. #define dump_four_ASCII w.b0 = gi(so(str_pool[k]));
w.bl = qi(so(str_poollk + 1]));
w.b2 = qi(so(str_poollk + 2]));
w.b3 = qi(so(str_poollk + 3])); dump_qqqq(w)
(Dump the string pool 1308) =
dump_int (pool_ptr);
dump_int (str_ptr);
for (k= 0; k < str_ptr; k++) dump_int (str_start[k]);
k=0;
while (k + 4 < pool_ptr) { dump_four_ASCII;
k=Fk+4
}
k = pool_ptr — 4;
dump_four_ASCII;
print_In();
print_int (str_ptr);
print("ustringsof jtotal length,"); print_int(pool_ptr)

This code is used in section 1301.

552 DUMPING AND UNDUMPING THE TABLES TEXprof §1309

1309. +#define undump_four_ASCII undump_qqqq(w);
str_pool[k] = si(qo(w.b0));
str_pool[k 4+ 1] = si(qo(w.b1));
str_pool[k 4 2] = si(qo(w.b2)); str_pool[k + 3] = si(qo(w.b3))
(Undump the string pool 1309) =
undump_size (0, pool_size, "string pool size", pool_ptr);
undump_size (0, maz_strings, "max strings", str_ptr);
for (k= 0; k < str_ptr; k++) undump (0, pool_ptr, str_start [k]);
k=0;
while (k + 4 < pool_ptr) { undump_four_ASCII;
k=Fk+4
¥

k = pool_ptr — 4;
undump_four_ASCII;
nit_str_ptr = str_ptr; init_pool_ptr = pool_ptr

This code is used in section 1302.

61310 TEXprof DUMPING AND UNDUMPING THE TABLES

553

1310. By sorting the list of available spaces in the variable-size portion of mem, we are usually able to get

by without having to dump very much of the dynamic memory.

We recompute var_used and dyn_used, so that INITEX dumps valid information even when it has not

been gathering statistics.

{Dump the dynamic memory 1310)
sort_avail ();
var_used = 0;
dump_int (lo_mem_maz);
dump_int (rover);
if (eTeX_ex)

for (k = int_val; k < tok_val; k++) dump_int(sa_root[k]);

p = mem_bot;

q = rover;
xz=0;
do {

for (k=p; k<q+1; k+) dump_wd(memlk]);
r=x+q+2-p;
var_used = var_used + q — p;
p = q + node_size(q);
a = rlink(q);
} while (—(q = rover));
var_used = var_used + lo_mem_maz — p;
dyn_used = mem_end + 1 — hi_mem_min;
for (k =p; k <lo_mem_maz; k++) dump_wd(mem/[k]);
xr=2x+ lo_mem_mazx + 1 — p;
dump_int (hi_mem_min);
dump_int (avail);

for (k = hi_mem_min; k < mem_end; k++) dump_wd (memlk]);

p = avail;

while (p # null) { fiimem[p] =0; /xclear unallocated fi_mem x/

decr (dyn_used);
p = link (p);
¥
dump_int (var_used);
dump_int (dyn_used);
print_In()
print_int(x);
print_char(’&’);
print_int(mem_end + 1 — hi_mem_min);

b

print (" memory_locations dumped; current usage_ is.");

print_int (var_used);
print_char(’&’); print_int (dyn_used)

This code is used in section 1301.

554 DUMPING AND UNDUMPING THE TABLES TEXprof §1311

1311. (Undump the dynamic memory 1311) =
undump (lo_mem_stat_maz + 1000, hi_mem_stat_min — 1, lo_mem_maz);
undump (lo_mem_stat_maz + 1, lo_mem_maz, rover);
if (eTeX_ex)
for (k = int_val; k < tok_val; k++) undump (null, lo_mem_maz, sa_root[k]);
p = mem_bot;
q = rover;
do {
for (k=p; k <q+1; k+) undump_wd (memlk]);
p = q + node_size(q);
if ((p > lo_mem_maz) V ((q > rlink(q)) A (rlink(q) # rover))) goto bad_fmt;
g = rlink(g);
} while (—(q = rover));
for (k =p; k <lo_mem_maz; k++) undump_wd(mem/[k]);
if (mem_min < mem_bot —2) /+make more low memory available */
{ p = llink (rover);
q = mem_min + 1;
link (mem_min) = null;
info(mem_min) = null; /*we don’t use the bottom word %/
rlink (p) = ¢;
llink (rover) = g;
rlink (q) = rover;
llink (q) = p;
link(q) = empty_flag;
node_size(q) = mem_bot — g;
}
undump (lo_mem_maz + 1, hi_mem_stat_min, hi_mem_min);
undump (null, mem_top, avail);
mem_end = mem_top;
for (k = hi_mem_min; k < mem_end; k++) undump_wd (mem|[k]);
undump_int (var_used); undump_int (dyn_used)

This code is used in section 1302.

1312. (Dump the table of equivalents 1312) =
(Dump regions 1 to 4 of eqtb 1314);
{Dump regions 5 and 6 of eqtb 1315);
dump_int (par_loc);
dump_int (write_loc);
dump_int (input_loc);
(Dump the hash table 1317)

This code is used in section 1301.

1313. (Undump the table of equivalents 1313) =
(Undump regions 1 to 6 of eqth 1316);
undump (hash_base, frozen_control_sequence, par_loc);
par_token = cs_token_flag + par_loc;
undump (hash_base, frozen_control_sequence, write_loc);
undump (hash_base, frozen_control_sequence, input_loc);
input_token = cs_token_flag + input_loc;
(Undump the hash table 1318)

This code is used in section 1302.

61314 TEXprof DUMPING AND UNDUMPING THE TABLES 555

1314. The table of equivalents usually contains repeated information, so we dump it in compressed form:
The sequence of n+ 2 values (n, z1,...,x,, m) in the format file represents n + m consecutive entries of eqtb,
with m extra copies of x,, namely (x1,...,Zn, Tn, ..., Ty).

(Dump regions 1 to 4 of eqtb 1314) =
k = active_base;
do {
J=k
while (j < int_base — 1) { if ((equiv(j) = equiv(j + 1)) A (eq_type(j) = eq_type(j + 1)) A
(eq_level (j) = eq_level (j +1))) goto foundl;
incr(j);
}
[= int_base;
goto donel; /xj = int_base — 1%/
found1: incr(j);
=17
while (j < int_base — 1) { if ((equiv(j) # equiv(j + 1)) V (eq_type(j) # eq_type(j + 1)) V
(eq_level (j) # eq_level(j + 1))) goto donel;
incr(j);
}
donel: dump_int(l — k);
while (k <) { dump_wd(eqtb[k]);
incr (k);
}
k=741,
dump_int(k —1);
} while (—(k = int_base))

This code is used in section 1312.

1315. (Dump regions 5 and 6 of eqth 1315) =
do {
J=Fk;
while (j < eqtb_size) { if (eqtb[j].i = eqtb[j + 1].7) goto found2;
incr(4);
}
l = eqtb_size + 1;
goto done2; /*j = eqtb_size x/
found2: incr(j);
l=7;
while (j < eqtb_size) { if (eqtb[j].i # eqtb[j + 1].i) goto done2;
incr (5);
¥
done2: dump_int(l — k);
while (k <) { dump_wd (eqtb[k]);
incr(k);
}
k=j+1;
dump_int(k —1);
} while (=(k > eqtb_size))

This code is used in section 1312.

556 DUMPING AND UNDUMPING THE TABLES TEXprof 81316

1316. (Undump regions 1 to 6 of eqtb 1316) =

k = active_base;

do {
undump_int (x);
if ((x <1)V (k+ x> eqtb_size + 1)) goto bad_fmt;
for (j=k; j<k+z—1; j++) undump_wd(eqth[j]);
k=k+
undump_int (x);
if ((x <0)V (k+ x> eqtb_size + 1)) goto bad_fmt;
for (j=k; j <k+x—1; j++) eqth[j] = eqtb[k — 1];
k=k+x;

} while (—(k > eqtb_size))

This code is used in section 1313.

1317. A different scheme is used to compress the hash table, since its lower region is usually sparse. When
text(p) # 0 for p < hash_used, we output two words, p and hash[p]. The hash table is, of course, densely
packed for p > hash_used, so the remaining entries are output in a block.

(Dump the hash table 1317) =
dump_int (hash_used);
cs_count = frozen_control_sequence — 1 — hash_used;
for (p = hash_base; p < hash_used; p++)
if (text(p) # 0) { dump_int(p);
dump_hh (hash[p));
incr (cs_count);
}
for (p = hash_used + 1; p < undefined_control_sequence — 1; p++) dump_hh(hash[p]);
dump_int (cs_count);
print_In();
print_int(cs_count); print("_multiletter control sequences")

This code is used in section 1312.

1318. (Undump the hash table 1318) =
undump (hash_base, frozen_control_sequence, hash_used);
p = hash_base — 1;
do {
undump (p + 1, hash_used, p);
undump_hh (hash[p]);
} while (=(p = hash_used));
for (p = hash_used + 1; p < undefined_control_sequence — 1; p++) undump_hh(hash[p]);
undump_int (cs_count)

This code is used in section 1313.

61319 TEXprof DUMPING AND UNDUMPING THE TABLES 557

1319. (Dump the font information 1319) =
dump_int (fmem_ptr);
for (k=0; k < fmem_ptr — 1; k++) dump_wd (font_info[k]);
dump_int (font_ptr);
for (k = null_font; k < font_ptr; k++) (Dump the array info for internal font number k 1321);
print_In();
print_int (fmem_ptr — 7);
print (" words,of font info_ for");
print_int (font_ptr — font_base);
print("upreloaded font"); if (font_ptr # font_base + 1) print_char(’s’)

This code is used in section 1301.

1320. (Undump the font information 1320) =
undump_size (7, font_mem_size, "font, mem size", frmem_ptr);
for (k=0; k < fmem_ptr — 1; k++) undump_wd (font_infolk]);
undump_size (font_base, font_maz, "font max", font_ptr);
for (k = null_font; k < font_ptr; k++) (Undump the array info for internal font number k 1322)

This code is used in section 1302.

558 DUMPING AND UNDUMPING THE TABLES TEXprof 81321

1321. (Dump the array info for internal font number k 1321) =
{ dump_qqqq(font_check[k]);
dump_int (font_size[k]);
dump_int (font_dsize[k]);
dump_int (font_params|[k]);
dump_int (hyphen_char[k]);
dump_int (skew_char [k]);
dump_int (font_namelk]);
dump_int (font_area[k]);
dump_int (font_bc[k]);
dump_int (font_ec[k]);
dump_int (char_base[k]);
dump_int (width_base[k]);
dump_int (height_base[k]);
dump_int (depth_base[k]);
dump_int (italic_base[k]);
dump_int (lig_kern_basek]);
dump_int (kern_base[k]);
dump_int (exten_baselk]);
dump_int (param_basek]);
dump_int (font_glue[k]);
dump_int (bchar_label [k]);
dump_int (font_bchar[k]);
dump_int (font_false_bchar[k]);
print_nl("\\font");
printn_esc(font_id_text (k));
print_char(’=");
print_file_name (font_name[k], font_area[k], empty_string);
if (font_sizelk] # font_dsizelk]) { print("Laty");
print_scaled (font_size[k]);
print("pt");
}
}

This code is used in section 1319.

81322 TEXprof DUMPING AND UNDUMPING THE TABLES

1322.

{ undump_qqqq(font_check[k]);

}

undump_int (font_size[k]);
undump_int (font_dsize[k]);
undump (min_halfword, maz_halfword, font_params[k]);
undump_int (hyphen_char|k]);

undump_int (skew_char[k]);

undump (0, str_ptr, font_name[k]);

undump (0, str_ptr, font_area[k]);

undump (0,255, font_bc[k]);

undump (0, 255, font_ec[k]);

undump_int (char_base[k]);
undump_int (width_base[k])
undump_int (height_base k]
undump_int (depth_base[k])
undump_int (italic_base[k
(
(
(

)
);
Y

D;
undump_int (lig_kern_base[k]);
undump_int (kern_base[k]);
undump_int (exten_base[k]);
undump_int (param_base[k]);

undump (min_halfword, lo_mem_max , font_gluek]);
undump (0, fmem_ptr — 1, bchar_label [k]);

undump (min_quarterword , non_char, font_bchar [k]);
undump (min_quarterword , non_char, font_false_bchar[k]);

This code is used in section 1320.

(Undump the array info for internal font number k 1322) =

559

560 DUMPING AND UNDUMPING THE TABLES TEXprof 81323

1323. (Dump the hyphenation tables 1323) =
dump_int (hyph_count);
for (k = 0; k < hyph_size; k++)
if (hyph_word[k] # 0) { dump_int (k);
dump_int (hyph_word[k]);
dump_int (hyph_list [k]);

print_In();
print_int (hyph_count);
print (" hyphenation exception");
if (hyph_count # 1) print_char(’s’);
if (trie_not_ready) init_trie();
dump_int (trie_mazx);
dump_int (hyph_start);
for (k= 0; k < trie_max; k++) dump_hh(trie[k]);
dump_int (trie_op_ptr);
for (k =1; k < trie_op_ptr; k++) { dump_int(hyf_distance[k]);
dump_int (hyf_num/[k]);
dump_int (hyf_next [k]);
}
print_nl("Hyphenation trie of length ");
print_int (trie_maz);
print("Uhas,");
print_int (trie_op_ptr);
print("uop");
if (trie_op_ptr # 1) print_char(’s’);
print ("youtof ");
print_int (trie_op_size);
for (k=255; k> 0; k—)
if (trie_used[k] > min_quarterword) { print_nl("Lu");
print_int (qo (trie_used [k]));
print ("Lfor language ,");
print_int (k);
dump_int (k);
dump_int (qo (trie_used[k]));

}

This code is used in section 1301.

61324 TEXprof DUMPING AND UNDUMPING THE TABLES 561

1324. Only “nonempty” parts of op_start need to be restored.

(Undump the hyphenation tables 1324) =
undump (0, hyph_size, hyph_count);
for (k =1; k < hyph_count; k++) { undump (0, hyph_size, j);
undump (0, str_ptr, hyph_word[j]);
undump (min_halfword , max_halfword , hyph_list[j]);
¥
undump_size (0, trie_size, "trie size", j);
#ifdef INIT
trie_max = j;
#endif
undump (0, j, hyph_start);
for (k=0; k <j; k++) undump_hh(trielk]);
undump_size (0, trie_op_size, "trie opusize",j);
#ifdef INIT
trie_op_ptr = j;
#endif
for (k=1; k <j; k++) { undump(0,63, hyf_distance[k]); = /+*a small_number x/
undump (0, 63, hyf_num[k]);
undump (min_quarterword , maz_quarterword , hyf_next[k]);
¥
4ifdef INIT
for (k =0; k < 255; k++) trie_used[k] = min_quarterword;
#endif
k = 256
while (j > 0) { undump(0,k — 1,k);
undump (1, j, x);
4ifdef INIT
trie_used[k] = qi(x);
#endif
J=7J-
op_start[k] = qo(j);
¥

#ifdef INIT
trie_not_ready = false
#endif

This code is used in section 1302.

1325. We have already printed a lot of statistics, so we set tracing_stats = 0 to prevent them from
appearing again.
{(Dump a couple more things and the closing check word 1325) =

dump_int (interaction);

dump_int (format_ident);

dump_int (69069); tracing_stats =0

This code is used in section 1301.

562 DUMPING AND UNDUMPING THE TABLES TEXprof

1326. (Undump a couple more things and the closing check word 1326) =
undump (batch_mode, error_stop_mode, interaction);
if (interaction_option > 0) interaction = interaction_option; /* TEX Live */
undump (0, str_ptr, format_ident);
undump_int(z); if ((z # 69069) V eof (fmi_file)) goto bad_fmt

This code is used in section 1302.

1327. (Create the format_ident, open the format file, and inform the user that dumping has
begun 1327) =
selector = new_string;
print (", (preloaded format=");
printn (job_name);
print_char(’’);
print_int (year);
print_char(’.’);
print_int(month);
print_char(’.”);
print_int (day);
print_char(?)’);
if (interaction = batch_mode) selector = log_only;
else selector = term_and_log;
str_room/(1);
format_ident = make_string();
pack_job_name (format_extension);
while (—w_open_out(&fmt_file)) prompt_file_name("format, file name", format_extension);
print_nl("Beginning to ,dump on file ");
slow_print (w_make_name_string (&fmi_file));
flush_string;
print_nl(""); slow_print(format_ident)

This code is used in section 1301.

1328. (Close the format file 1328) =
w_close (& fmit_file)

This code is used in section 1301.

§1326

81329 TEXprof THE MAIN PROGRAM 563

1329. The main program. This is it: the part of TEX that executes all those procedures we have
written.
Well—almost. Let’s leave space for a few more routines that we may have forgotten.

(Last-minute procedures 1332)

1330. We have noted that there are two versions of TEX82. One, called INITEX, has to be run first; it
initializes everything from scratch, without reading a format file, and it has the capability of dumping a
format file. The other one is called ‘VIRTEX’; it is a “virgin” program that needs to input a format file in
order to get started. VIRTEX typically has more memory capacity than INITEX, because it does not need the
space consumed by the auxiliary hyphenation tables and the numerous calls on primitive, etc.

The VIRTEX program cannot read a format file instantaneously, of course; the best implementations
therefore allow for production versions of TEX that not only avoid the loading routine for Pascal object
code, they also have a format file pre-loaded. This is impossible to do if we stick to standard Pascal; but
there is a simple way to fool many systems into avoiding the initialization, as follows: (1) We declare a global
integer variable called ready_already. The probability is negligible that this variable holds any particular
value like 314159 when VIRTEX is first loaded. (2) After we have read in a format file and initialized
everything, we set ready_already = 314159. (3) Soon VIRTEX will print ‘*’, waiting for more input; and at
this point we interrupt the program and save its core image in some form that the operating system can
reload speedily. (4) When that core image is activated, the program starts again at the beginning; but now
ready_already = 314159 and all the other global variables have their initial values too. The former chastity
has vanished!

In other words, if we allow ourselves to test the condition ready_already = 314159, before ready_already
has been assigned a value, we can avoid the lengthy initialization. Dirty tricks rarely pay off so handsomely.

On systems that allow such preloading, the standard program called TeX should be the one that has plain
format preloaded, since that agrees with The TEXbook. Other versions, e.g., AmSTeX, should also be provided
for commonly used formats.

(Global variables 13) +=
static int ready_already; /xa sacrifice of purity for economy =/

564 THE MAIN PROGRAM TpXprof §1331

1331. Now this is really it: TEX starts and ends here.
The initial test involving ready_already should be deleted if the Pascal runtime system is smart enough to

detect such a “mistake.”

int main(int argc, char xargv|])
{ /xstart_here x/
main_init (argc, argu); /* TEX Live */
history = fatal_error_stop; /*1in case we quit during initialization %/
t_open_out; /*open the terminal for output */
if (ready_already = 314159) goto start_of TEX;
(Check the “constant” values for consistency 14)
if (bad > 0) {
wterm_In("Ouch---my_internal constants have been clobbered!""---case %d", bad);
exit (0);
}
get_strings_started ();
initialize(); /*xset global variables to their starting values x/
#ifdef INIT
if (iniversion) /+ TEX Live */
{
init_prim(); /*call primitive for each primitive /
mnit_str_ptr = str_ptr;
init_pool_ptr = pool_ptr;
fiz_date_and_time();
}
#endif
ready_already = 314159;
start_of_TEX : (Initialize the output routines 54);
(Get the first line of input and prepare to start 1336);
history = spotless; /xready to golx/
main_control(); /*come to lifex/
final_cleanup(); /* prepare for death x/
close_files_and_terminate ();
ready_already = 0;
return 0;

81332 TEXprof THE MAIN PROGRAM 565

1332. Here we do whatever is needed to complete TEX’s job gracefully on the local operating system. The
code here might come into play after a fatal error; it must therefore consist entirely of “safe” operations
that cannot produce error messages. For example, it would be a mistake to call str_room or make_string at
this time, because a call on overflow might lead to an infinite loop. (Actually there’s one way to get error
messages, via prepare_mag; but that can’t cause infinite recursion.)

If final_cleanup is bypassed, this program doesn’t bother to close the input files that may still be open.

(Last-minute procedures 1332) =
static void close_files_and_terminate(void)
{int k; /xall-purpose index */
(Finish the extensions 1377);
new_line_char = —1;
#ifdef STAT
if (tracing_stats > 0) (Output statistics about this job 1333);
#endif
wake_up_terminal;
(Finish the DVI file 641);
if (log_opened) { wlog_cr;
a_close (&log_file);
selector = selector — 2;
if (selector = term_only) { print_nl("Transcript written on");
slow_print (log_name);
print_char(?.”);
print_nl("");

}
}

See also sections 1334, 1335, 1337, and 1545.

This code is used in section 1329.

566

THE MAIN PROGRAM TpXprof §1333

1333. The present section goes directly to the log file instead of using print commands, because there’s
no need for these strings to take up str_pool memory when a non-stat version of TEX is being used.
(Output statistics about this job 1333) =

if (log_opened) { wlog_In(",");

}

wlog_In("Here is how much of TeX’s memory you used:");
wlog (" hdustring", str_ptr — init_str_ptr);
if (str_ptr # init_str_ptr + 1) wlog("s");
wlog_In("Lout,of ,%d", maz_strings — init_str_ptr);
wlog_In("u%dustring characters outof %d", pool_ptr — init_pool_ptr, pool_size — init_pool_ptr);
wlog_In (" u%kd words of jmemory out of %d", lo_mem_max — mem_min + mem_end — hi_mem_min + 2,
mem_end + 1 — mem_min);
wlog_In("u%dumultiletter, control sequences out of %d", cs_count, hash_size);
wlog ("Lhduwordsof ifontinfo for %d font", fmem_plr, font_ptr — font_base);
if (font_ptr # font_base + 1) wlog("s");
wlog_In (", uout of %hd for %d", font_mem_size, font_mazx — font_base);
wlog (" %d hyphenation exception", hyph_count);
if (hyph_count # 1) wlog("s");
wlog_In("Loutof,%d", hyph_size);
wlog_In (" %di,%dn, %dp,%db, ids stack positions out of%di,%dn,%dp,%db,%ds", maz_in_stack,
max_nest_stack,
maz_param_stack,
mazx_buf_stack + 1,
max_save_stack + 6,
stack_size, nest_size, param_size, buf_size, save_size);

This code is used in section 1332.

81334 TEXprof THE MAIN PROGRAM 567

1334. We get to the final_cleanup routine when \end or \dump has been scanned and its_all_over.

(Last-minute procedures 1332) +=
static void final_cleanup (void)
{int ¢; /%0 for \end, 1 for \dump */

c = cur_chr;
if (¢ # 1) new_line_char = —1;
if (job_name = 0) open_log_file();
while (input_ptr > 0)
if (state = token_list) end_token_list(); else end_file_reading();
while (open_parens > 0) { print(")");
decr (open_parens);

if (cur_level > level_one) { print_nl("(");
print_esc("end joccurred ");
print("inside a group at level ");
print_int (cur_level — level_one);
print_char(’)’);
if (eTeX_ex) show_save_groups();

}

while (cond_ptr # null) { print_nl("(");
print_esc("end occurred, ");
print ("when,,");
print_cmd_chr (if_test, cur_if);
if (if_line #0) { print("Lon, line ");

print_int (if_line);

¥
print (" was_incomplete)");
if_line = if_line_field (cond_ptr);
cur_if = subtype (cond_ptr);
temp_ptr = cond_ptr;
cond_ptr = link (cond_ptr);
free_node (temp_ptr, if_node_size);

if (history # spotless)
if (((history = warning_issued) V (interaction < error_stop_mode)))
if (selector = term_and_log) { selector = term_only;
print_nl(" (see_ the transcript, file for additional information)");
selector = term_and_log;
}
if (c=1) {
4ifdef INIT
for (¢ = top_mark_code; ¢ < split_bot_mark_code; c++)
if (cur_mark|c] # null) delete_token_ref (cur_mark|c]);
if (sa_mark # null)
if (do_marks(destroy_marks,0, sa_mark)) sa_mark = null;
for (¢ = last_box_code; ¢ < wvsplit_code; c++) flush_node_list(disc_ptr|c]);
if (last_glue # maz_halfword) delete_glue_ref (last_glue);
store_fmit_file();
return;
#endif
print_nl (" (\\dump,_is_ performed only by INITEX)");
return;

568 THE MAIN PROGRAM TpXprof §1334

}
}

1335. (Last-minute procedures 1332) +=
4ifdef INIT

static void init_prim(void) /+initialize all the primitives x/
{ no_new_control_sequence = false;
first = 0;

(Put each of TEX’s primitives into the hash table 225);
no_new_control_sequence = true;

}
#endif

1336. When we begin the following code, TEX’s tables may still contain garbage; the strings might not
even be present. Thus we must proceed cautiously to get bootstrapped in.

But when we finish this part of the program, TEX is ready to call on the main_control routine to do its
work.

(Get the first line of input and prepare to start 1336) =
{ (Initialize the input routines 330);
(Enable e-TEX and furthermore Prote, if requested 1378)
if ((format_ident = 0) V (buffer[loc] = *&?)) { if (format_ident # 0) initialize();
/xerase preloaded format /
if (—open_fmi_file()) exit(0);
if (—load_fmt_file()) { w_close(&fmi_file);
ezxit (0);

w_close(&fmit_file);

while ((loc < limit) A (buffer[loc] = *’)) incr(loc);
}
if (eTeX_ex) wterm_In("entering extended mode");
if (Prote_ex) { Prote_initialize();

if (end_line_char_inactive) decr(limit);

else buffer|limit] = end_line_char;

fiz_date_and_time();

(Initialize the print selector based on interaction 74);

if ((loc < limit) A (cat_code(buffer|[loc]) # escape)) start_input(); /+\input assumed x/

}

This code is used in section 1331.

81337 TEXprof DEBUGGING 569

1337. Debugging. Once TEX is working, you should be able to diagnose most errors with the \show
commands and other diagnostic features. But for the initial stages of debugging, and for the revelation of
really deep mysteries, you can compile TEX with a few more aids, including the Pascal runtime checks and
its debugger. An additional routine called debug_help will also come into play when you type ‘D’ after an
error message; debug_help also occurs just before a fatal error causes TEX to succumb.

The interface to debug_help is primitive, but it is good enough when used with a Pascal debugger that
allows you to set breakpoints and to read variables and change their values. After getting the prompt
‘debug #’, you type either a negative number (this exits debug_help), or zero (this goes to a location where
you can set a breakpoint, thereby entering into dialog with the Pascal debugger), or a positive number m
followed by an argument n. The meaning of m and n will be clear from the program below. (If m = 13,
there is an additional argument, [.)

(Last-minute procedures 1332) +=
#ifdef DEBUG
static void debug_help(void) /*routine to display various things %/
{int k,I,m,n;
clear_terminal;
loop { wake_up_terminal;
print_nl("debug #,(-1 to exit) :");
update_terminal;
if (fscanf (term_in.f, " %d",&m) < 1V m < 0) return;
else if (m =0) { goto breakpoint; /xgo to every declared label at least once %/
breakpoint: m = 0; /* ' BREAKPOINT’ x/

else { fscanf (term_in.f," %d", &n);
switch (m) {
(Numbered cases for debug_help 1338)
default: print("?");

570 DEBUGGING TpXprof — §1338

1338. (Numbered cases for debug_help 1338) =
case 1: print_word(mem|n]); break; /xdisplay mem[n] in all forms*/
case 2: print_int(info(n)); break;
case 3: print_int(link(n)); break;
case 4: print_word (eqth[n]); break;
case 5: print_word (font_info[n]); break;
case 6: print_word (save_stack[n]); break;
case 7: show_box(n); break; /xshow a box, abbreviated by show_box_depth and show_boz_breadth /
case 8:
{ breadth_maz = 10000;
depth_threshold = pool_size — pool_ptr — 10;
show_node_list(n); /*show a box in its entirety */
} break;
case 9: show_token_list(n, null,1000); break;
case 10: slow_print(n); break;

case 11: check_mem(n > 0); break; /* check wellformedness; print new busy locations if n > 0%/
case 12: search_mem(n); break; /xlook for pointers to n */
case 13:

{ fscanf (term_in.f, " %hd", &l);
print_cmd_chr(n,1);
} break;
case 14:
for (k =0; k <n; k++) printn(buffer[k]); break;
case 15:
{ font_in_short_display = null_font;
short_display (n);
} break;
case 16: panicking = —panicking; break;

This code is used in section 1337.

81339 TEXprof EXTENSIONS 571

1339. Extensions. The program above includes a bunch of “hooks” that allow further capabilities to
be added without upsetting TEX’s basic structure. Most of these hooks are concerned with “whatsit” nodes,
which are intended to be used for special purposes; whenever a new extension to TEX involves a new kind
of whatsit node, a corresponding change needs to be made to the routines below that deal with such nodes,
but it will usually be unnecessary to make many changes to the other parts of this program.

In order to demonstrate how extensions can be made, we shall treat ‘\write’, ‘\openout’, ‘\closeout’,
‘\immediate’, ‘\special’, and ‘\setlanguage’ as if they were extensions. These commands are actually
primitives of TEX, and they should appear in all implementations of the system; but let’s try to imagine
that they aren’t. Then the program below illustrates how a person could add them.

Sometimes, of course, an extension will require changes to TEX itself; no system of hooks could be complete
enough for all conceivable extensions. The features associated with ‘\write’ are almost all confined to
the following paragraphs, but there are small parts of the print_In and print_char procedures that were
introduced specifically to \write characters. Furthermore one of the token lists recognized by the scanner
is a write_text; and there are a few other miscellaneous places where we have already provided for some
aspect of \write. The goal of a TEX extender should be to minimize alterations to the standard parts of the
program, and to avoid them completely if possible. He or she should also be quite sure that there’s no easy
way to accomplish the desired goals with the standard features that TEX already has. “Think thrice before
extending,” because that may save a lot of work, and it will also keep incompatible extensions of TEX from
proliferating.

1340. First let’s consider the format of whatsit nodes that are used to represent the data associated with
\write and its relatives. Recall that a whatsit has type = whatsit_node, and the subtype is supposed
to distinguish different kinds of whatsits. Each node occupies two or more words; the exact number is
immaterial, as long as it is readily determined from the subtype or other data.

We shall introduce five subtype values here, corresponding to the control sequences \openout, \write,
\closeout, \special, and \setlanguage. The second word of I/O whatsits has a write_stream field that
identifies the write-stream number (0 to 15, or 16 for out-of-range and positive, or 17 for out-of-range and
negative). In the case of \write and \special, there is also a field that points to the reference count of a
token list that should be sent. In the case of \openout, we need three words and three auxiliary subfields
to hold the string numbers for name, area, and extension.

#define write_node_size 2 /*number of words in a write/whatsit node x/

#define open_node_size 3~ /«xnumber of words in an open/whatsit node */

#define open_node 0 /* subtype in whatsits that represent files to \openout */
#define write_node 1 /* subtype in whatsits that represent things to \write */
#define close_node 2 /* subtype in whatsits that represent streams to \closeout x/
#define special_node 3 /* subtype in whatsits that represent \special thingsx/
#define language_node 4 /* subtype in whatsits that change the current language */
#define what_lang(A) link(A+1) /xlanguage number, in the range 0 .. 255 %/
#define what_lhm(A) type(A+1) /+*minimum left fragment, in the range 1 .. 63 %/
#define what_rhm(A) subtype(A+1) /*minimum right fragment, in the range 1 .. 63 %/
#define write_tokens(A) link(A+1) /xreference count of token list to write /
#define write_stream(A) info(A+1) /xstream number (0 to 17)x/

#define open_name(A) link(A+1) /xstring number of file name to open x/
#define open_area(A) info(A+2) /xstring number of file area for open_name x/
#define open_ext(A) link(A+2) /xstring number of file extension for open_name */

572 EXTENSIONS TpXprof — §1341

1341. The sixteen possible \write streams are represented by the write_file array. The jth file is open
if and only if write_open[j] = true. The last two streams are special; write_open[16] represents a stream
number greater than 15, while write_open[17] represents a negative stream number, and both of these
variables are always false.

(Global variables 13) +=
static alpha_file write_file[16];
static bool write_open[18];

1342. (Set initial values of key variables 21) +=
for (k=0; k <17; k++) write_openlk] = false;

1343. Extensions might introduce new command codes; but it’s best to use eztension with a modifier,
whenever possible, so that main_control stays the same.

#define immediate_code 4 /xcommand modifier for \immediate x/
#define latezr_first_extension_code 5
#define latespecial_node (latex_first_extension_code + 0)
/* subtype in whatsits that represent \special things expanded during output */
#define set_language_code (latex_first_extension_code + 1) /* command modifier for \setlanguage */
#define TeX_last_extension_cmd_mod set_language_code

(Put each of TEX’s primitives into the hash table 225) +=
primitive ("openout", extension, open_node);
primitive ("write", extension, write_node);
write_loc = cur_val;
primitive ("closeout", extension, close_node);
primitive ("special", extension, special_node);
primitive (" immediate", extension, immediate_code);

"setlanguage", extension, set_language_code);

primitive
1344. The variable write_loc just introduced is used to provide an appropriate error message in case of
“runaway”’ write texts.

(Global variables 13) +=
static pointer write_loc; /* eqth address of \write */

1345. (Cases of print_cmd_chr for symbolic printing of primitives 226) +=
case extension: switch (chr_code) {

case open_node: print_esc("openout"); break;

case write_node: print_esc("write"); break;

case close_node: print_esc("closeout"); break;

case special_node: print_esc("special"); break;

case immediate_code: print_esc("immediate"); break;

case set_language_code: print_esc("setlanguage"); break;
(Cases of extension for print_cmd_chr 1605)

default: print(" [unknown extension!]"); } break;

1346. When an extension command occurs in main_control, in any mode, the do_extension routine is
called.

(Cases of main_control that are for extensions to TEX 1346) =

any_mode (extension): do_extension();

This code is used in section 1044.

81347 TEXprof EXTENSIONS 573

1347. (Declare action procedures for use by main_control 1042) +=
(Declare procedures needed in do_extension 1348)
static void do_extension(void) { int k; /«xall-purpose integer x/
pointer p; /all-purpose pointer */
switch (cur_chr) {
case open_node: {Implement \openout 1350) break;
case write_node: (Implement \write 1351) break;
case close_node: (Implement \closeout 1352) break;
case special_node: (Implement \special 1353) break;
case immediate_code: (Implement \immediate 1374) break;
case sel_language_code: (Implement \setlanguage 1376) break;
(Cases for do_extension 1608)
default: confusion("ext1"); } }

1348. Here is a subroutine that creates a whatsit node having a given subtype and a given number of
words. It initializes only the first word of the whatsit, and appends it to the current list.

(Declare procedures needed in do_extension 1348) =
static void new_whatsit (small_number s,small_number w)
{ pointer p; /*the new node */
p = get_node(w);
type (p) = whatsit_node;
subtype (p) = s;
link (tail) = p;
tail = p;
}
See also sections 1349, 1811, 1819, 1821, 1823, 1824, 1830, and 1831.

This code is used in section 1347.

1349. The next subroutine uses cur_chr to decide what sort of whatsit is involved, and also inserts a
write_stream number.

(Declare procedures needed in do_estension 1348) +=
static void new_write_whatsit(small_number w)
{ new_whatsit (cur_chr,w);
if (w # write_node_size) scan_four_bit_int();
else { scan_int();
if (cur_val <0) cur_val = 17;
else if (cur_val > 15) cur_val = 16;

}

write_stream (tail) = cur_val;

}

1350. (Implement \openout 1350) =
{ new_write_whatsit (open_node_size);
scan_optional_equals ();
scan_file_name ();
open_name (tail) = cur_name;
open_area(tail) = cur_area;
open_ext (tail) = cur_ext;

}

This code is used in section 1347.

574 EXTENSIONS TpXprof §1351

1351. When ‘\write 12{...} appears, we scan the token list ‘{. ..}’ without expanding its macros; the
macros will be expanded later when this token list is rescanned.

(Implement \write 1351) =
{ k= cur_cs;
new_write_whatsit (write_node_size);
cur_cs = k;
p = scan_toks (false, false);
write_tokens (tail) = def_ref;

}

This code is used in section 1347.

1352. (Implement \closeout 1352) =
{ new_write_whatsit (write_node_size);
write_tokens (tail) = null;
}

This code is used in section 1347.

1353. When ‘\special{...}’ appears, we expand the macros in the token list as in \xdef and \mark.
When marked with shipout, we keep tokens unexpanded for now.
(Implement \special 1353) =
{ if (scan_keyword("shipout")) { new_whatsit (latespecial_node, write_node_size);
write_stream (tail) = null;
p = scan_toks(false, false);
write_tokens (tail) = def_ref;

else { new_whatsit (special_node, write_node_size);
write_stream (tail) = null;
p = scan_toks (false, true);
write_tokens (tail) = def_ref;
}
}

This code is used in section 1347.

1354. Each new type of node that appears in our data structure must be capable of being displayed,
copied, destroyed, and so on. The routines that we need for write-oriented whatsits are somewhat like those
for mark nodes; other extensions might, of course, involve more subtlety here.
(Basic printing procedures 55) +=
static void print_write_whatsit(char *s, pointer p)
{ print_esc(s);
if (write_stream(p) < 16) print_int (write_stream (p));
else if (write_stream (p) = 16) print_char(’*’);
else print_char(’-?);

81355 TpXprof EXTENSIONS 575

1355. (Display the whatsit node p 1355) =
switch (subtype(p)) {
case open_node:
{ print_write_whatsit("openout", p);
print_char(’=");
print_file_name (open_name(p), open_area(p), open_ext(p));
} break;
case write_node:
{ print_write_whatsit("write", p);
print_mark (write_tokens(p));
} break;
case close_node: print_write_whatsit("closeout",p); break;
case latespecial_node:
{ print_esc("special");
print(",shipout");
print_mark (write_tokens(p));
} break;
case special_node:
{ print_esc("special");
print_mark (write_tokens (p));
} break;
case language_node:
{ print_esc("setlanguage");
print_int (what_lang (p));
print (", (hyphenmin, ");
print_int (what_lhm (p));
print_char(’,’);
print_int (what_rhm (p));
print_char(?)’);
} break;
(Cases for displaying the whatsit node 1680)
default: print("whatsit?"); }

This code is used in section 182.

576 EXTENSIONS

TEXprof

§1356

1356. (Make a partial copy of the whatsit node p and make r point to it; set words to the number of

initial words not yet copied 1356) =
switch (subtype(p)) {
case open_node:
{ r = get_node(open_node_size);
words = open_node_size;
} break;
case write_node: case special_node: case latespecial_node:
{ r = get_node(write_node_size);
add_token_ref (write_tokens (p));
words = write_node_size;
} break;
case close_node: case language_node:
{ r = get_node(small_node_size);
words = small_node_size;
} break;
(Cases for making a partial copy of the whatsit node 1681)
default: confusion("ext2"); }

This code is used in section 205.

1357. (Wipe out the whatsit node p and goto done 1357) =
{ switch (subtype(p)) {
case open_node: free_node(p, open_node_size); break;
case write_node: case special_node: case latespecial_node:
{ delete_token_ref (write_tokens(p));
free_node (p, write_node_size);
goto done;

}

case close_node: case language_node: free_node(p, small_node_size); break;

(Cases for wiping out the whatsit node 1682)
default: confusion("ext3"); }
goto done; }

This code is used in section 201.

1358. (Incorporate a whatsit node into a vbox 1358) =
do_nothing

This code is used in section 668.

1359. (Incorporate a whatsit node into an hbox 1359) =
do_nothing

This code is used in section 650.

1360. (Let d be the width of the whatsit p 1360) =
d=0

This code is used in section 1146.

81361 TEXprof EXTENSIONS 577

1361. +#define adv_past(A) if (subtype(A) = language_node) { cur_lang = what_lang(A);
I_hyf = what_lhm(A);
r_hyf = what_rhm (A);
set_hyph_indezx;
}
(Advance past a whatsit node in the line_break loop 1361) = adv_past(cur_p)

This code is used in section 865.

1362. (Advance past a whatsit node in the pre-hyphenation loop 1362) = adv_past(s)

This code is used in section 895.

1363. (Prepare to move whatsit p to the current page, then goto contribute 1363) =
goto contribute

This code is used in section 999.

1364. (Process whatsit p in vert_break loop, goto not_found 1364) =
goto not_found

This code is used in section 972.

1365. (Output the whatsit node p in a vlist 1365) =
out_what (p)

This code is used in section 630.

1366. (Output the whatsit node p in an hlist 1366) =
out_what(p)

This code is used in section 621.

1367. After all this preliminary shuffling, we come finally to the routines that actually send out the
requested data. Let’s do \special first (it’s easier).

(Declare procedures needed in hlist_out, vlist_out 1367) =
static void special_out (pointer p)
{ pointer ¢,r; /* temporary variables for list manipulation %/
int old_mode; /xsaved mode */

if (subtype(p) = latespecial_node) {
(Expand macros in the token list and make link(def_ref) point to the result 1370);
write_tokens(p) = def_ref;
}
}
See also sections 1369 and 1372.

This code is used in section 618.

1368. To write a token list, we must run it through TEX’s scanner, expanding macros and \the and
\number, etc. This might cause runaways, if a delimited macro parameter isn’t matched, and runaways
would be extremely confusing since we are calling on TEX’s scanner in the middle of a \shipout command.
Therefore we will put a dummy control sequence as a “stopper,” right after the token list. This control
sequence is artificially defined to be \outer.

(Initialize table entries (done by INITEX only) 163) +=
text (end_write) = s_no("endwrite");
eq_level (end_write) = level_one;
eq_type (end_write) = outer_call;
equiv (end_write) = null;

578 EXTENSIONS TpXprof §1369

1369. (Declare procedures needed in hlist_out, vlist_out 1367) +=
static void write_out (pointer p)
{ int old_setting; /xholds print selector /

int old_mode; /xsaved mode */
small_number j; /xwrite stream number %/
pointer ¢, r; /* temporary variables for list manipulation */

(Expand macros in the token list and make link (def_ref) point to the result 1370);
old_setting = selector;

j = write_stream (p);

if (write_openlj]) selector = j;

else { /*write to the terminal if file isn’t open x/
if ((j =17) A (selector = term_and_log)) selector = log_only;
print_nl("");

}
token_show (def_ref);

print_In();
flush_list (def_ref);
selector = old_setting;

}

1370. The final line of this routine is slightly subtle; at least, the author didn’t think about it until getting
burnt! There is a used-up token list on the stack, namely the one that contained end_write_token. (We
insert this artificial ‘\endwrite’ to prevent runaways, as explained above.) If it were not removed, and if
there were numerous writes on a single page, the stack would overflow.

#define end_write_token cs_token_flag + end_write

(Expand macros in the token list and make link (def_ref) point to the result 1370) =
q = get_avail ();
info(q) = right_brace_token + °}7;
fl_mem|[q] = FILE_LINE(system_file, system_insert);
r = get_avail ();
link(q) = r;
info(r) = end_write_token;
ins_list(q);
fl_mem|[r] = FILE_LINE(system_file, system_insert);
begin_token_list (write_tokens (p), write_text);
q = get_avail ();
info(q) = left_brace_token + > {’;
ins_list(q);
fl_mem|[q] = FILE_LINE(system_file, system_insert);
/xnow we’re ready to scan ‘{{token list)} \endwrite’x/
old_mode = mode;
mode = 0; /* disable \prevdepth, \spacefactor, \lastskip, \prevgraf x/
cur_cs = write_loc;
q = scan_toks(false, true); /xexpand macros, etc. x/
get_token(); if (cur_tok # end_write_token) (Recover from an unbalanced write command 1371);
mode = old_mode; end_token_list() /* conserve stack space */
This code is used in sections 1367 and 1369.

81371 TEXprof EXTENSIONS 579

1371. (Recover from an unbalanced write command 1371) =

{ print_err("Unbalanced write command");
help2("0On this_page there’s a \\write_ with fewer real {’s than }’s.",
"I,can’t handle that very well; good luck.");
error () ;
do {

get_token();

} while (—(cur_tok = end_write_token));

}

This code is used in section 1370.

1372. The out_what procedure takes care of outputting whatsit nodes for wvlist_out and hlist_out.

(Declare procedures needed in hlist_out, vlist_out 1367) +=
(Declare procedures needed in out_what 1683)
static void out_what(pointer p) { small_number j; /+write stream number */
switch (subtype(p)) {
case open_node: case write_node: case close_node:
(Do some work that has been queued up for \write 1373) break;
case special_node: special_out(p); break;
case language_node: do_nothing; break;
(Cases for out_what 1684)
default: confusion("ext4"); } }

1373. We don’t implement \write inside of leaders. (The reason is that the number of times a leader
box appears might be different in different implementations, due to machine-dependent rounding in the glue
calculations.)

(Do some work that has been queued up for \write 1373) =
if (—doing_leaders) { j = write_stream (p);
if (subtype(p) = write_node) write_out(p);
else { if (write_open|j]) a_close(&write_file[j]);
if (subtype(p) = close_node) write_open[j] = false;
else if (j < 16) { cur_name = open_name (p);
cur_area = open_area(p);
cur_ext = open_ext(p);
pack_cur_name (" .tex");
while (—a_open_out (&write_file[j])) prompt_file_name("output, file name",".tex");
write_open|[j| = true;
}
}
}

This code is used in section 1372.

580 EXTENSIONS TpXprof — §1374

1374. The presence of ‘\immediate’ causes the do_extension procedure to descend to one level of recursion.
Nothing happens unless \immediate is followed by ‘\openout’, ‘\write’, or ‘\closeout’.
(Implement \immediate 1374) =
{ get_x_token();
if ((cur_cmd = extension) A (cur_chr < close_node)) { p = tail;
do_extension(); /xappend a whatsit node */
out_what (tail); /*do the action immediately */
flush_node_list (tail);
tail = p;
link (p) = null;
}

else back_input();

}

This code is used in section 1347.

1375. The \language extension is somewhat different. We need a subroutine that comes into play when
a character of a non-clang language is being appended to the current paragraph.

(Declare action procedures for use by main_control 1042) +=
static void fiz_language (void)
{ ASCII_code I; /xthe new current language %/
if (language <0) 1 = 0;
else if (language > 255) | = 0;
else | = language;
if (I # clang) { new_whatsit(language_node, small_node_size);
what_lang (tail) = ;
clang = 1;
what_lhm (tail) = norm_min (left_hyphen_min);
what_rhm (tail) = norm_min (right_hyphen_min);
}
}
1376. (Implement \setlanguage 1376) =
if (abs(mode) # hmode) report_illegal_case();
else { new_whatsit (language_node, small_node_size);
scan_int();
if (cur_val <0) clang = 0;
else if (cur_val > 255) clang = 0;
else clang = cur_val;
what_lang (tail) = clang;
what_lhm (tail) = norm_min (left_hyphen_min);
what_rhm (tail) = norm_min (right_hyphen_min);

}

This code is used in section 1347.

1377. (Finish the extensions 1377) =
for (k=0; k <15; k++)
if (write_open(k]) a_close(&write_file[k]);
See also section 1781.

This code is used in section 1332.

61378 TEXprof THE EXTENDED FEATURES OF e-TgX 581

1378. The extended features of e-TEX. The program has three modes of operation: (1) In TEX
compatibility mode it fully deserves the name TEX and there are neither extended features nor additional
primitive commands. There are, however, a few modifications that would be legitimate in any implementation
of TgX such as, e.g., preventing inadequate results of the glue to DVI unit conversion during ship_out. (2) In
extended mode there are additional primitive commands and the extended features of e-TEX are available.
(3) In PRITE mode there are supplementary primitive commands that will be discussed in the section below.

The distinction between these three modes of operation initially takes place when a ‘virgin’ eINITEX starts
without reading a format file. Later on the values of all e-TEX state variables are inherited when eVIRTEX
(or eINITEX) reads a format file.

The code below is designed to work for cases where ‘#ifdef INIT...#endif’ is a run-time switch.

(Enable e-TEX and furthermore Prote, if requested 1378) =
4ifdef INIT
if (indversion A (buffer[loc] = **’ V etexp)) /+ TEX Live x/
{ no_new_control_sequence = false;
(Generate all e-TEX primitives 1379)
if (buffer[loc] = %) incr(loc); /x TEX Live x/
eTeX_mode =1; /xenter extended mode */
(Initialize variables for e-TEX extended mode 1495)
if (buffer[loc] = >+’ V ltzp) { (Check PRSTE “constant” values for consistency 1566)
(Generate all PRITE primitives 1553)
if (buffer[loc] = ’>*?) incr(loc);
Prote_mode = 1; /+enter PRETE mode x/
}

}
#endif

if (—no_new_control_sequence) /*just entered extended mode 7 x/
no_new_control_sequence = true; else

This code is used in section 1336.

1379. The e-TEX features available in extended mode are grouped into two categories: (1) Some of them are
permanently enabled and have no semantic effect as long as none of the additional primitives are executed.
(2) The remaining e-TEX features are optional and can be individually enabled and disabled. For each
optional feature there is an e-TEX state variable named \. . .state; the feature is enabled, resp. disabled by
assigning a positive, resp. non-positive value to that integer.

#define eTeX_state_base (int_base + eTeX_state_code)
#define eTeX_state(A) eqtb[eTeX_state_base + Al.i /xan e-TEX state variable */
#define eTeX_version_code eTeX_int /+code for \eTeXversion */
(Generate all e-TEX primitives 1379) =
primitive ("lastnodetype", last_item, last_node_type_code);
primitive ("eTeXversion", last_item, eTeX_version_code);
primitive ("eTeXrevision", convert, eTeX_revision_code);

See also sections 1387, 1393, 1396, 1399, 1402, 1405, 1414, 1416, 1419, 1422, 1427, 1429, 1441, 1444, 1452, 1460, 1483, 1487,
1491, 1531, 1534, and 1538.

This code is used in section 1378.

1380. (Cases of last_item for print_cmd_chr 1380) =

case last_node_type_code: print_esc("lastnodetype"); break;

case eTeX_version_code: print_esc("eTeXversion"); break;

See also sections 1394, 1397, 1400, 1403, 1461, 1484, 1488, 1554, 1569, 1604, 1645, 1672, and 1800.

This code is used in section 416.

582 THE EXTENDED FEATURES OF &-TEX TEXprof

1381. (Cases for fetching an integer value 1381) =
case eTeX_version_code: cur_val = eTeX_version; break;
See also sections 1395, 1398, 1485, and 1802.

This code is used in section 423.

1382. #define eTeX_ex (eTeX_mode =1) /*1s this extended mode? %/

(Global variables 13) +=
static int eTeX_mode; /+identifies compatibility and extended mode */

1383. (Initialize table entries (done by INITEX only) 163) +=
eTeX_mode = 0; /*initially we are in compatibility mode */
(Initialize variables for e-TEX compatibility mode 1494)

1384. (Dump the e-TEX state 1384) =

dump_int (eTeX_mode);

for (j =0; j < eTeX_states — 1; j++) eTeX_state(j) =0; /«xdisable all enhancements %/
See also section 1440.

This code is used in section 1306.

1385. (Undump the e-TEX state 1385) =
undump (0, 1, eTeX_mode);
if (eTeX_ex) { (Initialize variables for e-TEX extended mode 1495);

else { (Initialize variables for e-TEX compatibility mode 1494);

}

This code is used in section 1307.

§1381

1386. The eTeX_enabled function simply returns its first argument as result. This argument is true if an
optional e-TEX feature is currently enabled; otherwise, if the argument is false, the function gives an error

message.

(Declare e-TEX procedures for use by main_control 1386) =
static bool eTeX_enabled (bool b, quarterword j, halfword k)
{ if (=b) { print_err("Improper,");
print_cmd_chr(j, k);
help1 ("Sorry,uthisuoptionalue—TeXufeature._,has_,beenudisabled. ");
error () ;

}

return b;

}

See also sections 1409 and 1425.

This code is used in section 814.

61387 TEXprof THE EXTENDED FEATURES OF &-TEX

1387. First we implement the additional e-TEX parameters in the table of equivalents.

(Generate all e-TEX primitives 1379) +=

primitive ("everyeof", assign_toks, every_eof_loc);

primitive ("tracingassigns", assign_int, int_base + tracing_assigns_code);

primitive ("tracinggroups", assign_int, int_base + tracing_groups_code);
primitive ("tracingifs", assign_int, int_base + tracing_ifs_code);
primitive ("tracingscantokens", assign_int, int_base + tracing_scan_tokens_code);
primitive ("tracingnesting", assign_int, int_base + tracing_nesting_code);
primitive ("savingvdiscards", assign_int, int_base + saving_vdiscards_code);
primitive ("savinghyphcodes", assign_int, int_base + saving_hyph_codes_code);

1388. #define every_eof equiv(every_eof_loc)

(Cases of assign_toks for print_cmd_chr 1388) =
case every_eof_loc: print_esc("everyeof"); break;
See also section 1804.

This code is used in section 230.

1389. (Cases for print_param 1389) =

case tracing_assigns_code: print_esc("tracingassigns"); break;

case tracing_groups_code: print_esc("tracinggroups"); break;

case tracing_ifs_code: print_esc("tracingifs"); break;

case tracing_scan_tokens_code: print_esc("tracingscantokens"); break;
case tracing_nesting_code: print_esc("tracingnesting"); break;

case saving_vdiscards_code: print_esc("savingvdiscards"); break;

case saving_hyph_codes_code: print_esc("savinghyphcodes"); break;
See also sections 1539 and 1805.

This code is used in section 236.

1390. In order to handle \everyeof we need an array eof_seen of boolean variables.
(Global variables 13) +=

static bool eof_seen0[maz_in_open], xconst eof_seen = eof_seen0 — 1; /+has eof been seen? */

583

584 THE EXTENDED FEATURES OF &-TEX TEXprof §1391

1391. The print_group procedure prints the current level of grouping and the name corresponding to
cur_group.

{Declare e-TEX procedures for tracing and input 283) +=
static void print_group (bool e)
{ switch (cur_group) {
case bottom_level:
{ print("bottom level");
return;
¥
case simple_group: case semi_simple_group:
{ if (cur_group = semi_simple_group) print("semi,");
print("simple");
} break;
case hbox_group: case adjusted_hbox_group:
{ if (cur_group = adjusted_hboxr_group) print("adjusted, ");
print("hbox");
} break;
case vbox_group: print("vbox"); break;
case vtop_group: print("vtop"); break;
case align_group: case no_align_group:
{ if (cur_group = no_align_group) print("no,");
print("align");
} break;
case outpul_group: print("output"); break;
case disc_group: print("disc"); break;
case insert_group: print("insert"); break;
case vcenter_group: print("vcenter"); break;
case math_group: case math_choice_group: case math_shift_group: case math_left_group:
{ print("math");
if (cur_group = math_choice_group) print("_ choice");
else if (cur_group = math_shift_group) print(",shift");
else if (cur_group = math_left_group) print(",left");
¥
} /xthere are no other cases %/
print ("Lgroup, (level,");
print_int (qo (cur_level));
print_char(?)’);
if (saved(—1) #0) { if (e) print("_ entered at line ");
else print("Latyline ");
print_int (saved (—1));

61392 TEXprof THE EXTENDED FEATURES OF e-TgX 585

1392. The group_trace procedure is called when a new level of grouping begins (e = false) or ends
(e = true) with saved(—1) containing the line number.

{Declare e-TEX procedures for tracing and input 283) +=
4ifdef STAT
static void group_trace(bool e)
{ begin_diagnostic();
print_char(’{’);
if (e) print("leaving ");
else print("entering ");
print_group (e);
print_char(’}’);
end_diagnostic(false);

}
#endif

1393. The \currentgrouplevel and \currentgrouptype commands return the current level of grouping
and the type of the current group respectively.

#define current_group_level_code (eTeX_int + 1) /* code for \currentgrouplevel x/
#define current_group_type_code (eTeX_int + 2) /* code for \currentgrouptype */

(Generate all e-TEX primitives 1379) +=
primitive ("currentgrouplevel", last_item, current_group_level_code);
primitive ("currentgrouptype", last_item, current_group_type_code);

1394. (Cases of last_item for print_cmd_chr 1380) +=
case current_group_level_code: print_esc("currentgrouplevel"); break;
case current_group_type_code: print_esc("currentgrouptype"); break;

1395. (Cases for fetching an integer value 1381) +=
case current_group_level_code: cur_val = cur_level — level_one; break;
case current_group_type_code: cur_val = cur_group; break;

1396. The \currentiflevel, \currentiftype, and \currentifbranch commands return the current
level of conditionals and the type and branch of the current conditional.

#define current_if_level_code (eTeX_int +3) /*xcode for \currentiflevel x/
#define current_if_type_code (eTeX_int +4) /xcode for \currentiftype */
#define current_if_branch_code (eTeX_int + 5) /xcode for \currentifbranch */

(Generate all e-TEX primitives 1379) +=
primitive ("currentiflevel", last_item, current_if_level_code);
primitive ("currentiftype", last_item, current_if_type_code);
primitive ("currentifbranch", last_item, current_if_branch_code);

1397. (Cases of last_item for print_cmd_chr 1380) +=

case current_if_level_code: print_esc("currentiflevel"); break;
case current_if_type_code: print_esc("currentiftype"); break;
case current_if_branch_code: print_esc("currentifbranch"); break;

586 THE EXTENDED FEATURES OF &-TEX TeXprof §1398

1398. (Cases for fetching an integer value 1381) +=
case current_if_level_code:
{ ¢ = cond_ptr;
cur_val = 0;
while (q # null) { incr(cur_val);
q = link(q);
}
} break;
case current_if_type_code:
if (cond_ptr = null) cur_val = 0;
else if (cur_if < unless_code) cur_val = cur_if + 1;
else cur_val = —(cur_if — unless_code + 1); break;
case current_if_branch_code:
if ((if_limit = or_code) V (if_limit = else_code)) cur_val = 1;
else if (if_limit = fi_code) cur_val = —1;
else cur_val = 0; break;

1399. The \fontcharwd, \fontcharht, \fontchardp, and \fontcharic commands return information
about a character in a font.

#define font_char_wd_code eTeX_dim /*code for \fontcharwd */

#define font_char_ht_code (eTeX_dim + 1) /*code for \fontcharht */
#define font_char_dp_code (eTeX_dim + 2) /* code for \fontchardp */
#define font_char_ic_code (eTeX_dim +3) /xcode for \fontcharic */

{ Generate all e-TEX primitives 1379) +=
primitive ("fontcharwd", last_item, font_char_wd_code);
primitive ("fontcharht", last_item, font_char_ht_code);
primitive ("fontchardp", last_item, font_char_dp_code);
primitive ("fontcharic", last_item, font_char_ic_code);

1400. (Cases of last_item for print_cmd_chr 1380) +=
case font_char_wd_code: print_esc("fontcharwd"); break;
case font_char_ht_code: print_esc("fontcharht"); break;
case font_char_dp_code: prini_esc("fontchardp"); break;
case font_char_ic_code: print_esc("fontcharic"); break;

1401. (Cases for fetching a dimension value 1401) =
case font_char_wd_code: case font_char_ht_code: case font_char_dp_code: case font_char_ic_code:
{ scan_font_ident();
q = cur_val;
scan_char_num();
if ((font_bcq]) < cur_val) A (font_ec[q] > cur_val)) { i = char_info(q, qi(cur_val));
switch (m) {
case font_char_wd_code: cur_val = char_width(q,1); break;
case font_char_ht_code: cur_val = char_height(q, height_depth(i)); break;
case font_char_dp_code: cur_val = char_depth(q, height_depth(i)); break;
case font_char_ic_code: cur_val = char_italic(q,1);
} /xthere are no other cases %/

else cur_val = 0;
} break;
See also sections 1404 and 1486.

This code is used in section 423.

61402 TEXprof THE EXTENDED FEATURES OF ¢-TgX 587

1402. The \parshapedimen, \parshapeindent, and \parshapelength commands return the indent and
length parameters of the current \parshape specification.

#define par_shape_length_code (eTeX_dim + 4) /* code for \parshapelength */
#define par_shape_indent_code (eTeX_dim +5) /xcode for \parshapeindent /
#define par_shape_dimen_code (eTeX_dim +6) /+code for \parshapedimen */
(Generate all e-TEX primitives 1379) +=

primitive ("parshapelength", last_item, par_shape_length_code);

primitive ("parshapeindent", last_item, par_shape_indent_code);

primitive ("parshapedimen", last_item, par_shape_dimen_code);

1403. (Cases of last_item for print_cmd_chr 1380) +=

case par_shape_length_code: print_esc("parshapelength"); break;
case par_shape_indent_code: print_esc("parshapeindent"); break;
case par_shape_dimen_code: print_esc("parshapedimen"); break;

1404. (Cases for fetching a dimension value 1401) +=
case par_shape_length_code: case par_shape_indent_code: case par_shape_dimen_code:
{ q = cur_chr — par_shape_length_code;
scan_int();
if ((par_shape_ptr = null) V (cur_val < 0)) cur_val = 0;
else { if (¢ =2) { ¢ = cur_val % 2;
cur_val = (cur_val + q)/2;

if (cur_val > info(par_shape_ptr)) cur_val = info(par_shape_ptr);
cur_val = mem[par_shape_ptr + 2 x cur_val — q|.sc;

}

cur_val_level = dimen_val;
} break;

1405. The \showgroups command displays all currently active grouping levels.
#define show_groups 4 /* \showgroups */

{ Generate all e-TEX primitives 1379) +=
primitive ("showgroups", zray, show_groups);

1406. (Cases of zray for print_cmd_chr 1406) =
case show_groups: print_esc("showgroups"); break;
See also sections 1415 and 1420.

This code is used in section 1291.

1407. (Cases for show_whatever 1407) =
case show_groups:
{ begin_diagnostic();
show_save_groups();
} break;
See also section 1421.

This code is used in section 1292.

1408. (Types in the outer block 18) +=
typedef int32_t save_pointer; /+index into save_stack */

588

1409.

THE EXTENDED FEATURES OF &-TgX

TEXprof

§1409

The modifications of TEX required for the display produced by the show_save_groups procedure
were first discussed by Donald E. Knuth in TUGboat 11, 165-170 and 499-511, 1990.

In order to understand a group type we also have to know its mode. Since unrestricted horizontal modes

are not associated with grouping, they are skipped when traversing the semantic nest.

{ Declare e-TEX procedures for use by main_control 1386) +=

static void show_save_groups(void)

{

int p; /xindex into nest x/

int m; /+«modex*/

save_pointer v; /xsaved value of save_ptr x/
quarterword /[; /*xsaved value of cur_level x/
group_code c; /xsaved value of cur_group =/
int q; /xto keep track of alignments */

int 4;

quarterword j;

char xs;

p = nest_pir;

nest[p] = cur_list; /*put the top level into the array x/

v = save_plir;
l = cur_level;
¢ = cur_group;
save_ptr = cur_boundary;
decr (cur_level);
a=1;
print_nl("");
print_In();
loop { print_nl("###,");
print_group (true);
if (cur_group = bottom_level) goto done;
do {
m = nest [p].mode_field;
if (p > 0) decr(p);
else m = vmode;
} while (=(m # hmode));
print ("L (");
switch (cur_group) {
case simple_group:
{ iner(p);
goto found2;
}

case hbox_group: case adjusted_hbox_group: s = "hbox"; break;

case vbor_group: s = "vbox"; break;
case vtop_group: s = "vtop"; break;
case align_group:
if (a=0) { if (m = —vmode) s = "halign";
else s = "valign";
a=1;
goto foundl;

else { if (a =1) print("align entry");
else print_esc("cr");
if (pza)p=p—a
a=0;

61409 TEXprof THE EXTENDED FEATURES OF e-TgX 589

goto found;
} break;
case no_align_group:
{ iner(p);
a=—1;
print_esc("noalign");
goto found2;
}
case output_group:
{ print_esc("output");
goto found;
}
case math_group: goto found2;
case disc_group: case math_choice_group:
{ if (cur_group = disc_group) print_esc("discretionary");
else print_esc("mathchoice");
for (i=1; i <3; i++)
if (i < saved(—2)) print("{}");
goto found2;
}
case insert_group:
{ if (saved(—2) = 255) print_esc("vadjust");
else { print_esc("insert");
print_int (saved (—2));
}
goto found?2;
}
case vcenter_group:
{ s = "vcenter";
goto foundl;
}

case semi_simple_group:
{ incr(p);
print_esc("begingroup");
goto found;
}
case math_shift_group:
{ if (m = mmode) print_char(’$’);
else if (nest[p].mode_field = mmode) { print_cmd_chr(eq_no, saved (—2));
goto found;
¥
print_char(’$?);
goto found;

case math_left_group:
{ if (type(nest[p + 1].eTeX_auz_field) = left_noad) print_esc("left");
else print_esc("middle");
goto found;
}
} /*there are no other cases x/
(Show the box context 1411);
found1: print_esc(s);

590 THE EXTENDED FEATURES OF &-TgX

(Show the box packaging info 1410);
found2: print_char(>{’);
found: print_char(’)’);
decr (cur_level);
cur_group = save_level (save_ptr);
save_ptr = save_indez (save_ptr);
}
done: save_ptr = v;
cur_level =1;
cur_group = c;

}

1410. (Show the box packaging info 1410) =
if (saved(—2) # 0) { print_char(’y’);
if (saved(—3) = exactly) print("to");
else print("spread");
print_scaled (saved (—2));
print("pt");
}

This code is used in section 1409.

1411. (Show the box context 1411) =
i = saved(—4); if (i #0)

if (i < boz_flag) { if (abs(nest[p].mode_field) = vmode) j = hmove;

else j = vmove;

if (i > 0) print_ecmd_chr(j,0);
else print_cmd_chr(j,1);
print_scaled (abs (3));
print("pt");

}

else if (i < ship_out_flag) { if (i > global_box_flag) { prini_esc("global");

i =1 — (global_box_flag — box_flag);
}
print_esc("setbox");
print_int (i — box_flag);
print_char(’=");

}

else print_cmd_chr(leader_ship,i — (leader_flag — a_leaders))

This code is used in section 1409.

TEXprof

§1409

1412. The scan_general_text procedure is much like scan_toks (false, false), but will be invoked via expand,

i.e., recursively.

{Declare e-TEX procedures for scanning 1412) =
static void scan_general_text(void);

See also sections 1454, 1463, and 1468.

This code is used in section 408.

61413 TEXprof THE EXTENDED FEATURES OF &-TEX

991

1413. The token list (balanced text) created by scan_general_text begins at link (temp_head) and ends at

cur_val. (If cur_val = temp_head, the list is empty.)

(Declare e-TEX procedures for token lists 1413) =
static void scan_general_text(void)
{int s; /xto save scanner_status */
pointer w; /xto save warning_indez */
pointer d; /xto save def_ref x/
pointer p; /= tail of the token list being built */

pointer g; /*new node being added to the token list via store_new_token */
halfword unbalance; /*number of unmatched left braces */

s = scanner_status;
w = warning_index;
d = def_ref;
scanner_status = absorbing;
warning_indexr = cur_cs;
def_ref = get_avail();
token_ref_count (def_ref) = null;
p = def_ref;
scan_left_brace(); /xremove the compulsory left brace */
unbalance = 1;
loop { get_token();
if (cur_tok < right_brace_limit)
if (cur_emd < right_brace) incr(unbalance);
else { decr(unbalance);
if (unbalance = 0) goto found;

}

store_new_token (cur_tok);

}

found: q = link(def_ref);
free_avail(def_ref); /*discard reference count %/
if (¢ = null) cur_val = temp_head; else cur_val = p;
link (temp_head) = g;
scanner_status = s;
warning_index = w;
def_ref = d;

¥

See also section 1435.

This code is used in section 463.

1414. The \showtokens command displays a token list.
#define show_tokens 5 /% \showtokens , must be odd! =/

(Generate all e-TEX primitives 1379) +=
primitive ("showtokens", zray, show_tokens);

1415. (Cases of zray for print_cmd_chr 1406) +=
case show_tokens: print_esc("showtokens"); break;

592 THE EXTENDED FEATURES OF &-TEX TEXprof §1416

1416. The \unexpanded primitive prevents expansion of tokens much as the result from \the applied to
a token variable. The \detokenize primitive converts a token list into a list of character tokens much as
if the token list were written to a file. We use the fact that the command modifiers for \unexpanded and
\detokenize are odd whereas those for \the and \showthe are even.

(Generate all e-TEX primitives 1379) +=
primitive ("unexpanded", the, 1);
primitive ("detokenize", the, show_tokens);

1417. (Cases of the for print_cmd_chr 1417) =
; else
if (chr_code = 1) print_esc("unexpanded");
else print_esc("detokenize")

This code is used in section 265.

1418. (Handle \unexpanded or \detokenize and return 1418) =
if (odd(cur_chr)) { ¢ = cur_chr;
scan_general_text ();
if (¢=1) return cur_val;
else { old_setting = selector;
selector = new_string;
b = pool_ptr;
p = get_avail ();
link (p) = link (temp_head);
token_show (p);
flush_list (p);
selector = old_setting;
return str_toks(b);
}
}

This code is used in section 464.

1419. The \showifs command displays all currently active conditionals.
#define show_ifs 6 /+ \showifs =/

(Generate all e-TEX primitives 1379) +=
primitive ("showifs", zray, show_ifs);

1420. (Cases of zray for print_cmd_chr 1406) +=
case show_ifs: print_esc("showifs"); break;

81421 TEXprof
1421. +#define print_if_line(A)

if (A #0) { print("Lentered on line ");

print_int (A);
}
(Cases for show_whatever 1407) +=
case show_ifs:
{ begin_diagnostic();
print_nl("");
print_In();
if (cond_ptr = null) { print_nl ("###,");
print("no active conditionals");
}
else { p = cond_ptr;
n =0;
do {
incr(n);
p = link(p); } while (—(p = null));
p = cond_ptr;
t = cur_if;
I = if_line;
m = if_limit;
do {
print_nl ("###_level ");
print_int(n);
print (":y");
print_cmd_chr (if_test, t);
if (m = fi_code) print_esc("else");
print_if_line(1);
decr(n);
t = subtype(p);
I = if_line_field (p);
m = type(p);
p = link(p);
} while (—=(p = null));
}
} break;

THE EXTENDED FEATURES OF &-TgX

1422. The \interactionmode primitive allows to query and set the interaction mode.

(Generate all e-TEX primitives 1379) +=
primitive ("interactionmode", set_page_int,2);

1423. (Cases of set_page_int for print_cmd_chr 1423) =
; else if (chr_code = 2) print_esc("interactionmode")

This code is used in section 416.

1424. (Cases for ‘Fetch the dead_cycles or the insert_penalties’ 1424) =

; else if (m = 2) cur_val = interaction

This code is used in section 418.

1425. (Declare e-TEX procedures for use by main_control 1386) +=

static void new_interaction (void);

593

594 THE EXTENDED FEATURES OF &-TgX TpXprof §1426

1426. (Cases for alter_integer 1426) =

)

else
if (c=2) { if ((cur_val < batch_mode) V (cur_val > error_stop_mode)) {
print_err("Bad interaction, mode");
help2 ("Modes are 0=batch, 1=nonstop, 2=scroll, and",
"3=errorstop. Proceed, and I’1]l ignore this case.");
int_error(cur_val);

else { cur_chr = cur_val;
new_interaction();

}
}

This code is used in section 1245.

1427. The middle feature of e-TEX allows one ore several \middle delimiters to appear between \left
and \right.

(Generate all e-TEX primitives 1379) +=
primitive ("middle", left_right, middle_noad);

1428. (Cases of left_right for print_cmd_chr 1428) =
; else if (chr_code = middle_noad) print_esc("middle")

This code is used in section 1188.

1429. The scan_tokens feature of e-TEX defines the \scantokens primitive.

(Generate all e-TEX primitives 1379) +=
primitive ("scantokens", input, 2);

1430. (Cases of input for print_cmd_chr 1430) =
; else if (chr_code = 2) print_esc("scantokens")

This code is used in section 376.

1431. (Cases for input 1431) =
; else if (cur_chr =2) pseudo_start()

This code is used in section 377.

1432. The global variable pseudo_files is used to maintain a stack of pseudo files. The info field of each
pseudo file points to a linked list of variable size nodes representing lines not yet processed: the info field of
the first word contains the size of this node, all the following words contain ASCII codes.
(Global variables 13) +=

static pointer pseudo_files; /xstack of pseudo files x/

1433. (Set initial values of key variables 21) +=
pseudo_files = null;

1434. The pseudo_start procedure initiates reading from a pseudo file.
(Declare e-TEX procedures for expanding 1434) =

static void pseudo_start(void);
See also sections 1492, 1497, and 1501.

This code is used in section 365.

61435 TEXprof THE EXTENDED FEATURES OF e-TgX 595

1435. (Declare e-TEX procedures for token lists 1413) +=
static void pseudo_start(void)

{ int old_setting; /xholds selector setting*/
str_number s; /#string to be converted into a pseudo file x/
pool_pointer [, m; /*indices into str_pool */
pointer p, q,7; /* for list construction /
four_quarters w; /xfour ASCII codes */
int nl, sz;
scan_general_text ();
old_setting = selector;
selector = new_string;
token_show (temp_head);
selector = old_setting;
flush_list (link (temp_head));
str_room(1);

s = make_string();

(Convert string s into a new pseudo file 1436);
flush_string;

(Initiate input from new pseudo file 1437);

596 THE EXTENDED FEATURES OF &-TEX TEXprof §1436

1436. (Convert string s into a new pseudo file 1436) =
str_pool [pool_ptr] = si(*’);
1 = str_start[s];
nl = si(new_line_char);
p = get_avail ();
q=Dp;
while (I < pool_ptr) { m =1;
while ((I < pool_ptr) A (str_pool[l] # nl)) incr(l);
sz2=(1—-m+7)/4
if (sz2=1) sz =2;
r = get_node(sz);
link(q) = r;
q=r;
info(q) = hi(sz);
while (sz > 2) { decr(sz);

incr(r);

w.b0 = qi(so(str_pool|m]));
w.bl = qi(so(str_pool[m + 1]));
w.b2 = qi(so(str_pool[m + 2]));
w.b3 = qi(so(str_pool[m + 3]));

mem|r].qqqq = w;

m=m + 4;
}
w.b0 = qi(’°);
w.bl = qi(°u’);
w.b2 = qi(’L’);
w.b8 = qi(’’);

if (I>m) { w.b0 = qi(so(str_pool[m)));
if (I>m+1){ wbl = qi(so(str_pool[m + 1]));
if (I>m+2){ w.b2 = qi(so(str_pool[m + 2]));
if (I>m+3) w.b3 = qi(so(str_pool[m + 3]));
}
}
}
mem/[r + 1].qqqq = w;
if (str_pool[l] = nl) incr(l);

info(p) = link (p);
link (p) = pseudo_files; pseudo_files = p

This code is used in section 1435.

61437 TEXprof THE EXTENDED FEATURES OF &-TEX

1437. (Initiate input from new pseudo file 1437) =
begin_file_reading (); /*set up cur_file and new level of input */

line = 0;
limit = start;
loc = limit +1; /xforce line read */

if (tracing_scan_tokens > 0) { if (term_offset > max_print_line — 3) print_in();
else if ((term_offset > 0) V (file_offset > 0)) print_char(’y’);
name = 19;
print (" (")
incr(open_parens);
update_terminal;
}
else name =18

This code is used in section 1435.

1438. Here we read a line from the current pseudo file into buffer.

(Declare e-TEX procedures for tracing and input 283) +=
static bool pseudo_input(void) /+inputs the next line or returns false x/
{ pointer p; /* current line from pseudo file x/
int sz; /+size of node px/
four_quarters w; /xfour ASCII codes */
int r; /«loop index*/
last = first; /*cf. Matthew 19:30 %/
p = info(pseudo_files);
if (p = null) return false;
else { info(pseudo_files) = link (p);
sz = ho(info(p));
if (4% sz —3 > buf_size — last) (Report overflow of the input buffer, and abort 35);
last = first;
for (r=p+1;, r<p+sz—1; r++) { w= mem|r].qqqq;
buffer|last] = w.b0;
buffer|[last + 1] = w.b1;
buffer[last + 2] = w.b2;
buffer[last + 3] = w.b3;
last = last + 4;
}
if (last > maz_buf_stack) maz_buf_stack = last + 1;
while ((last > first) A (buffer[last — 1] = °?)) decr(last);
free_node(p, sz);
return true;

597

598 THE EXTENDED FEATURES OF &-TEX TEXprof

1439. When we are done with a pseudo file we ‘close’ it.

(Declare e-TEX procedures for tracing and input 283) +=
static void pseudo_close(void) /xclose the top level pseudo file */
{ pointer p, g;

p = link (pseudo_files);
q = info(pseudo_files);
free_avail (pseudo_files);
pseudo_files = p;
while (q # null) { p=g¢;

q = link(p);

free_node (p, ho(info(p)));
}

}

1440. (Dump the e-TEX state 1384) +=
while (pseudo_files # null) pseudo_close(); /*flush pseudo files /

1441. (Generate all e-TEX primitives 1379) +=
primitive ("readline", read_to_cs,1);

1442. (Cases of read for print_cmd_chr 1442) =
; else print_esc("readline")

This code is used in section 265.

1443. (Handle \readline and goto done 1443) =
if (j=1) { while (loc < limit) /+current line not yet finished %/
{ cur_chr = buffer[loc];
incr (loc);
if (cur_chr =) cur_tok = space_token; else cur_tok = cur_chr + other_token;
store_new_token (cur_tok);

}

goto done;

}

This code is used in section 482.

1444. Here we define the additional conditionals of e-TEX as well as the \unless prefix.
#define if_def_code 17 [+ ‘\ifdefined’ x/

#define if_cs_code 18 /+ ‘\ifcsname’ x/

#define if_font_char_code 19 /% ‘\iffontchar’ x/

#define eTeX_last_if_test_cmd_mod if_font_char_code

#define eTeX_last_expand_after_cmd_mod 1

(Generate all e-TEX primitives 1379) +=
primitive ("unless", expand_after, 1);

primitive ("ifdefined", if_test, if_def_code);
primitive ("ifcsname", if_test, if_cs_code);
primitive ("iffontchar" if_test, if_font_char_code);

1445. (Cases of expandafter for print_cmd_chr 1445) =
case 1: print_esc("unless"); break;
See also sections 1579 and 1589.

This code is used in section 265.

§1439

61446 TEXprof THE EXTENDED FEATURES OF e-TgX 599

1446. (Cases of if_test for print_cmd_chr 1446) =

case if_def_code: print_esc("ifdefined"); break;

case if_cs_code: print_esc("ifcsname"); break;

case if_font_char_code: print_esc("iffontchar"); break;
See also section 1572.

This code is used in section 487.

1447. The result of a boolean condition is reversed when the conditional is preceded by \unless.

(Negate a boolean conditional and goto reswitch 1447) =
{ get_token();
if ((cur_emd = if_test) A (cur_chr # if_case_code)) { cur_chr = cur_chr + unless_code;
goto reswitch;
}
print_err("You can’t use,‘");
print_esc("unless");
print("’ before,");
print_cmd_chr(cur_cmd, cur_chr);
print_char(>\’?);
help1 ("Continue, and 1’11 forget that_ it ever happened.");
back_error();

}

This code is used in section 366.

1448. The conditional \ifdefined tests if a control sequence is defined.
We need to reset scanner_status, since \outer control sequences are allowed, but we might be scanning a
macro definition or preamble.

(Cases for conditional 1448) =
case if_def_code:
{ save_scanner_status = scanner_status;
scanner_status = normal;
get_next();
b = (cur_cmd # undefined_cs);
scanner_status = save_scanner_status;
} break;
See also sections 1449, 1451, 1574, and 1576.

This code is used in section 500.

600 THE EXTENDED FEATURES OF &-TgX TpXprof — §1449

1449. The conditional \ifcsname is equivalent to {\expandafter }\expandafter \ifdefined \csname,
except that no new control sequence will be entered into the hash table (once all tokens preceding the
mandatory \endcsname have been expanded).

(Cases for conditional 1448) 4+=
case if_cs_code:
{ n = get_avail();
D =n; /xhead of the list of characters */
do {
get_z_token();
if (cur_cs =0) store_new_token (cur_tok);
} while (—(cur_cs # 0));
if (cur_cmd # end_cs_name) (Complain about missing \endcsname 372);
(Look up the characters of list n in the hash table, and set cur_cs 1450);
flush_list (n);
b = (eq_type(cur_cs) # undefined_cs);
} break;

1450. (Look up the characters of list n in the hash table, and set cur_cs 1450) =
m = first;
p = link(n);
while (p # null) { if (m > maz_buf_stack) { maz_buf_stack = m + 1;
if (maz_buf_stack = buf_size) overflow ("buffer size", buf_size);
}
buffer[m] = info(p) % °400;
iner(m);
p = link(p);

if (m = first) cur_cs = null_cs; /*the list is empty */
else if (m > first + 1) cur_cs = id_lookup (first, m — first); /* no_new_control_sequence is true */
else cur_cs = single_base + buffer[first] /*the list has length one x/

This code is used in section 1449.

1451. The conditional \iffontchar tests the existence of a character in a font.

(Cases for conditional 1448) +=
case if_font_char_code:
{ scan_font_ident();
n = cur_val;
scan_char_num();
if ((font_bc[n] < cur_val) A (font_ec[n] > cur_val)) b = char_exists(char_info(n, ¢i(cur_val)));
else b = false;
} break;

1452. The protected feature of e-TEX defines the \protected prefix command for macro definitions.
Such macros are protected against expansions when lists of expanded tokens are built, e.g., for \edef or
during \write.
(Generate all e-TEX primitives 1379) +=

primitive ("protected", prefix, 8);

1453. (Cases of prefix for print_cmd_chr 1453) =
; else if (chr_code = 8) print_esc("protected")

This code is used in section 1208.

61454 TEXprof THE EXTENDED FEATURES OF e-TgX 601

1454. The get_xz_or_protected procedure is like get_x_token except that protected macros are not ex-
panded.

(Declare e-TEX procedures for scanning 1412) +=
static void get_z_or_protected (void)
/xsets cur_cmd, cur_chr, cur_tok, and expands non-protected macros x/
{ loop { get_token();
if (cur_emd < maz_command) return;
if ((cur_emd > call) A (cur_emd < end_template))
if (info (link (cur_chr)) = protected_token) return;
expand ();
}
}

1455. A group entered (or a conditional started) in one file may end in a different file. Such slight
anomalies, although perfectly legitimate, may cause errors that are difficult to locate. In order to be able to
give a warning message when such anomalies occur, e-TEX uses the grp_stack and if_stack arrays to record
the initial cur_boundary and cond_ptr values for each input file.

(Global variables 13) +=
static save_pointer grp_stack|[maz_in_open + 1]; /xinitial cur_boundary =/
static pointer if_stack|[maz_in_open + 1]; /x1nitial cond_ptr =/

1456. When a group ends that was apparently entered in a different input file, the group_warning
procedure is invoked in order to update the grp_stack. If moreover \tracingnesting is positive we want to
give a warning message. The situation is, however, somewhat complicated by two facts: (1) There may be
grp_stack elements without a corresponding \input file or \scantokens pseudo file (e.g., error insertions
from the terminal); and (2) the relevant information is recorded in the name_field of the input_stack only
loosely synchronized with the in_open variable indexing grp_stack.

(Declare e-TEX procedures for tracing and input 283) +=
static void group_warning(void)
{ int i; /*index into grp_stack */

bool w; /xdo we need a warning? %/

base_ptr = input_ptr;

input_stack [base_ptr] = cur_input; /*store current state x/
1 = in_open;

w = false;

while ((grp_stack[i] = cur_boundary) A (i > 0)) {
(Set variable w to indicate if this case should be reported 1457);
grp_stack[i] = save_index (save_ptr);
decr (i);

if (w) { print_nl("Warning: end of,");
print_group (true);
print("._lofua._ldifferent._lfile");
print_in();
if (tracing_nesting > 1) show_context();
if (history = spotless) history = warning_issued;

602 THE EXTENDED FEATURES OF &-TgX TpXprof — §1457

1457. This code scans the input stack in order to determine the type of the current input file.

(Set variable w to indicate if this case should be reported 1457) =
if (tracing_nesting > 0) { while ((input_stack[base_ptr].state_field = token_list) V
(input_stack [base_ptr].index_field > 1)) decr(base_ptr);
if (input_stack[base_ptr].name_field > 17) w = true;

This code is used in sections 1456 and 1458.

1458. When a conditional ends that was apparently started in a different input file, the if_warning
procedure is invoked in order to update the if_stack. If moreover \tracingnesting is positive we want
to give a warning message (with the same complications as above).
{Declare e-TEX procedures for tracing and input 283) +=

static void if_warning(void)

{int i; /+index into if_stack %/

bool w; /xdo we need a warning? x/

base_ptr = input_ptr;

input_stack [base_ptr] = cur_input; /xstore current state x/
i = 1N_open;

w = false;

while (if_stack[i] = cond_ptr) { (Set variable w to indicate if this case should be reported 1457);
if_stack[i] = link (cond_ptr);
decr (i);

if (w) { print_nl("Warning: end of,");
print_cmd_chr (if_test, cur_if);
print_if_line (if_line);
print ("yofua different file");
print_In();
if (tracing_nesting > 1) show_context();
if (history = spotless) history = warning_issued;

61459 TEXprof THE EXTENDED FEATURES OF &-TEX

1459.

conditionals started while reading from that file are still incomplete.

{Declare e-TEX procedures for tracing and input 283) +=
static void file_warning(void)
{ pointer p; /*xsaved value of save_ptr or cond_ptr */

}

quarterword /; /xsaved value of cur_level or if_limit x/
quarterword c; /xsaved value of cur_group or cur_if */
int i; /xsaved value of if_line */
p = save_ptr;
I = cur_level,
¢ = cur_group;
save_ptr = cur_boundary;
while (grp_stack[in_open] # save_ptr) { decr(cur_level);
print_nl("Warning: end of file when,");
print_group (true);
print ("Luisyincomplete");
cur_group = save_level (save_ptr);
save_ptr = save_indez (save_ptr);
