The options package

Convenient key-value options for IATEX package writers

Daan Leijen
2015-12-05

Contents

1. Introduction
2. Overview
2.1, An example ... e
2.2. Paths and searches i
2.3. Handling unknown options il
3. Defining options
3.1. Basic data types ...
3.2, Command OPtIONSvtttt i
3.3. Using existing definitions
4. Option transformers
4.1. Operations on option paths
4.2. Operations on argumentscooiiiiiiiiiiiiniae.a..
4.3. Predefined options
5. Option commands
5.1. Processing optionsoouiiiiiiii e
5.2, USIng optionsoiiii i
5.3. Testing optionso
5.4, List OpbIONS . ..ot
5.5. Showing Optionsoiueiuiiin e
6. Advanced topics
6.1. Handlersooiinii e
6.2. Defining new data typesc.ooiiiiiiiiiiiiiiii i
6.3. Single option values i
6.4. Search algorithm
7. Advanced options and commands
7.1. Transforming an optioncooeiiiiiiiiiiiiiiinen..
7.2. Compatibilityoo i
7.3. Special paths
7.4. Miscellaneous commandsoiiiiiiiiiiiiiiiii.,
7.5. Setting options directly

7.6. Invoking an option directly i 24

7.7. Defining a new code value i, 25
7.8. Defining new handlers i 25
7.9. Defining options directly i 26
8. Performance 27

1. Introduction

The options package provides easy to use key-value options for WTEX package

writers. It has a similar interface as pgfkeys with path options but comes with

more built-in data types and more convenient support for families and searching.
The main features of options are:

e Declare your options only once: in most packages you usually need to
declare both a new command, and the option that sets it. In the options
package you declare the option just once. For example, \options{/my/len/.new length}
and then use it anywhere else as \option{/my/len}.

o Use paths for keys: just like pgfkeys, the options package uses paths
(instead of families) to declare options and prevent name clashes be-
tween different packages. Paths are convenient for complex options, like
border/left/width, and are also convenient to specify searches.

o Many built-in data types: the options library comes with many useful data
types like choice, list, toggle, num, dim, length, glue, commands, and
plain values, and it is easy to add your own (Section 3.1. Also you can
hook into existing definitions like an if or counter (Section 3.3).

o Value options: You can define value-only options that start with a special
character, like "Georgia" for a font option, or !8080FF for a color option
(Section 6.3).

o (Convenient searches: you can specify paths that should be searched from
other paths and redirect even from absolute paths. For complex packages
this is very useful to inherit common options (Section 2.2).

o FEasy filtering: it is easy to collect unknown options and process them
later. Combined with the search mechanism this makes it easy to do
custom processing (Section 2.2).

o [t is fast: for simple user options, the options package is a bit faster than
pgfkeys and if searches or filters are involved it is usually about twice as
fast as pgfkeys (and about six times faster as xkeyval) (Section 8).

e Handles class and package options: use the same option declarations to
handle the options passed to a class or package (Section 5.1).

2. Overview

Defining options is very easy. As an example, we will make an \mybox command
that takes named options. Our goal is that the user can invoke \mybox like:

\mybox{padding=1lex, border/width=0.4pt, font/style=italic}{text}

2.1. An example
We can define the options for our \mybox command as:

\options{
/mybox/.new family,
/mybox/padding/.new length = \fboxsep,
/mybox/border/width/.new length = \fboxrule x 2,
/mybox/border/color/.new color,
/mybox/font/style/.new choice = {normal,italic,small-caps},

}

The options are all specified as a path where names that start with a dot, like
.new length are called handlers. In this case, the handlers create the options
for our box command. To parse the options passed by the user, we use the same
\options command:

\newcommand\mybox[2]{%
{\options{/mybox,#1}%
\myboxdisplay{#2}%
}%
}

Here we start the option list with /mybox which makes that the default path
(because it was declared with .new family) so the user can give relative option
names instead of prefixing all options with /mybox/. Options are always set local
to the current group.

Finally, we can use \option{{option)} to get the value of an option. This
command expands directly to the command name (i.e. \optk@{option)) and is
very efficient. So, our implementation for displaying our box may look like:

\newcommand\myboxdisplay[1]{%
\setlength\fboxsep{\option{/mybox/padding}}%
\setlength\fboxrule{\option{/mybox/border/width}}%
\colorlet{currentcolor}{.}%
\color{\option{/mybox/border/color}}%

\fbox{%
\color{currentcolor}%
\ifcase\option{/mybox/font/style/@ord}\relax
\or\itshape
\or\scshape
\fi

Here, instead of using the font/style directly, we use the automatically gen-
erated font/style/@ord that gives the ordinal of the choice on which we can
match more efficiently. Here is our new command in action:

Here is a \mybox{padding=1lex, border/color=blue!70, font/style=italid}{boxed} text.

Here is a text.

There are many ways to refine our implementation, for example, we can use
styles to make it easier to set multiple options at once:

\options{ /mybox/border/normal/.new stylex =
{/mybox/border/width=0.4pt, /mybox/border/color=black }}

The = after the style signifies that this option does not expect an argument,
and we can use it as:

A \mybox{border/normal}{normal} border.

A border.

Another improvement is in our choice definition for the font. Instead of using a
case over the choice ordinal, we can set the required font command directly as
the value of the choice options, we show this in Section 3.1.

2.2. Paths and searches

The option paths are mainly used to prevent name clashes between different
packages but they can also be used for searches. In particular, we can specify
for any path that if a sub-path cannot be found, we should look under another
path. Suppose we define a new \fancymybox command that takes some extra
options. In that case, we would like to re-use the /mybox options and look for
any undefined options under /mybox instead:

\options{
/fancymybox/.new family = {/mybox}, % search also /mybox
/fancymybox/border/radius/.new length,
/fancymybox/rounded/.new style = [5pt]{/fancymybox/border/radius = #1},
}

Note how the rounded style takes an argument which is defaulted to 5pt. In
the .new family declaration, we can provide a list of search paths: here we just
gave /mybox such that any options not found under /fancymybox will be looked
up under /mybox:

\options{/fancymybox, rounded=10pt, border/normal}

In the previous sample, /mybox/border/normal is invoked. In general, we can
add comma separated search paths either in a .new family declaration or using
the .search also handler. Search paths can be added to any path and will
apply recursively. For example, if we set:

\options{
/a/foo/x/.new cmdx = X,
/b/bar/y/.new cmdx = vy,
/c/a/.search also = {/a/foo},
/c/b/.search also = {/b},
/c/.new family = {/a,/b},
}

Then all of the following options are resolved:

\options{ /c/foo/x, /c/a/x, /c/b/bar/y, /c/bar/y}
XXYY

Note that the options package will even search if an absolute path is given, and
always searches with the relative sub-path.

This is important for modularity since it allows us for example to combine
options of different sub packages. For example, if I want to handle options under
/package A and /package B together, I can just define a new family:

\options{ /packageAB/.new family = {/package A,/package B}}

and start processing options using \options{/packageAB,..}. Even when the
user now uses absolute paths like /packageAB/(name) the option search will
route it automatically to the sub packages.

Also note that for efficiency, the basic \option command does not search and
always expands directly to the command name. Therefore, in implementation
code we still need to use \option{/a/foo/x} and cannot use \option{/c/foo/x}
for example.

2.3. Handling unknown options

It is possible to handle only options under some path and ignore any unknown
options. For example, give our previous options, we can only process the options
under /c/a as:

\options{/options/collectunknown, /c/a/.cd, x, bar/y }\\
\options{/options/remaining/.show}

X
/options/remaining=(bar/y)

Here we used the /options/collectunknown style to signify that we want to
collect unknown options into the /options/remaining list. We used the .cd
handler to change the default path to /c/a such that only x is found (as /a/foo/x)
but the bar/y option is put in the remaining list.

Any remaining options can be processed eventually using the \optionswithremaining
command:

\optionswithremaining{/c/b/.cd}

y

The command takes a list of options that are processed before the options in
the remaining list. It is allowed to pass in /options/collectunknown right away
again to collect any new remaining options.

The /options/remaining is list is only cleared when using the /options/collectunknown
style. This can be useful to collect unknown options using multiple passes of
\optionsalso.

Besides using the remaining list, you can also define general @unknown han-
dlers on any path. When an option not found, the library looks bottom-up for
@unknown handlers and invokes it with the path and its argument if found. The
general handler /@unknown will raise a package error.

You can customize this behavior by installing an @unknown handler yourself:

\options{
/mybox/@unknown/.new cmd 2 =
{I don’t know option “#1"” (=#2).},
/mybox/silly = hi
}

I don’t know option “/mybox/silly” (=hi).

As an aside, note that we needed to put braces around @unknown handler since
it uses the = character.

3. Defining options

3.1. Basic data types

(option)/.new value = [{default)](initial value)

Defines a new (option) that with an (initial value). A value option just contains
the value that was provided by the user. The (default) value is optional. If it is
given, it is used when the user does not provide an argument when using this
option.

(option)/.new toggle [= (bool)]

Define a new toggle. These are boolean values and have the advantage over the
standard \newif (see Section 3.3) that they only require one macro instead of
three. The initial value (if not given) is false and the default value is always
true. A toggle can be tested using \iftoggle{(toggle)}.

\options{/test/condition/.new toggle}
\options{/test/condition}% default sets to true
Toggle is \iftoggle{/test/condition}{true}{false}

Toggle is true

Besides assigning a new value of true or false, you can also flip a condition as:

\options{/test/condition/.flip}

(option)/.new choice = [{default)1{{choice)[={valuer)], ..., {choicey)[=(value,)]}

Defines a new choice option where the user can provide (choice;) to {choice,) as
arguments. The initial value is always (choice;). We always need to enclose the
choice list with braces to distinguish the comma used to separate the choices
from the comma used to separate the options. For convenience, the new choice
handler also defines (option)/@ord that contain the ordinal of the current choice
(starting at 0), and the (option)/@name that contains the current choice name.
The ordinal is a number and can be tested efficiently using ifcase and ifnum.
For example:

\options{/test/program/.new choice={latex,xelatex, luatex,pdftex}}
\options{/test/program = xelatex}
\noindent\options{/test/program/.show}

% case on ordinal
\ifcase\option{/test/program/@ord}%
latex
\or
xelatex
\else
other
\fi

% ifnum on ordinal
\ifnum\option{/test/program/@ord}<2\relax
latex or xelatex
\else
luatex or pdftex
\fi

/test/program=(xelatex) (Qord=1), choices=(latex,xelatex,luatex,pdftex)
xelatex
latex or xelatex

Another powerful feature is to define the values that each choice implies. By
default this is the name of the choice but we can assign anything else. For
example, for our \mybox command, we could have specified the font style as:

\options{/test/font/style/.new choice=
{normal={}, italic=\itshape, small-caps=\scshape}}

The value of \option{/test/font/style} is not the choice name now, but the
command that we assigned to it. We can now use the option directly instead of
doing a case on the @ord value:

\options{/test/font/style=italic}
This is {\option{/test/font/style}in italics}.

This is in italics.

(option)/.new list [=[{default)1{{elemy), ..., {elemy)}]

Define a new comma separated list. The initial value if not given is the empty
list. There are various operations to work with lists:

e \letoptionlist{{option)}\(macro): stores the list in \{macro).

o \optionlistdo{{option)}{{cmd)}: invokes {(c¢md) on each element. The
iteration can be stopped by ending (c¢md) with \listbreak.

e \ifoptioncontains{{option)}{{elem)}{(true)}{(false)}: test if {elem) oc-
curs in the list and invokes either the (true) or (false) branch.

\options{/test/list/.new list = {banana,milk,eggs}}
\optionlistdo{/test/list}{%
Element “\textsf{#1}".
\ifstrequal{#1}{milk}{\listbreak}{}%
)

Element “banana”. Element “milk”.

There are also two special handlers for manipulating lists in the options,

o (list option)/.push = (elem): pushes <elem on the end of the list.
o (list option)/.concat = {(list)}: concatenates (list) to the end of the list.

For example,

\options{/test/list 2/.new list = {banana}}
\options{/test/list 2/.push = milk, /test/list 2/.show}

/test/list 2=(banana,milk)

(option)/.new length [= [(default)]{dimezpr)]

Defines a new length option (option). This option stores its value in a new
length register, and its value be used directly where a length is expected, e.g.,
\hspace{\option{{option)}}. If no initial value is given, the initial length is 0pt.
The user can assign any length expressions (dimezpr), e.g., \options{(option) = 1pt + \fboxsep}.

(option)/.new dim [= [{default)]{dimexpr)]

Defines a new dimension option (option). This option stores its value as an un-
evaluated dimexpr, and its value be used directly where a dimension is expected,
e.g., \hspace{\option{{option)}}. The main difference with a length option is
that a dimension option is not evaluated at the time the key is assigned, but
rather when it is used. This may be important when relying on the contents of
other registers. For example, if we declare:

\setlength\fboxrule{1lpt}
\options{/test/width/.new dim=\fboxrule,/test/length/.new length=\fboxrule}
\setlength\fboxrule{10pt}

This will show 10pt for the width, but 1pt for the length:

\options{/test/width/.show}\\\options{/test/length/.show}

/test/width=(10.0pt) (=(\fboxrule))
/test/length=(1.0pt)

(option)/.new num [= [{default)](numezpr)]

Defines a new number option (option). The assigned value is evaluated as a

numezpr. Can be used directly in any context that expects a numexpr. For
example:

Is it 6?7 \ifnum\option{/test/num}=6\relax Yes.\else No!\fi
Is it 67 Yes.

\options{/test/num/.new num = 2+4}

(option)/.new glue [=[{default)]{glueezpr)]

Defines a new glue option. Can be assigned any valid glue expression and used

in any context that expects a glue expression. If no initial value is given, 0Opt is
used.

3.2. Command options

The options in this section are not values by themselves but are only invoked
for their side effect.

(option)/.new family [= (search list)]

Defines a new family, this is a shorthand for

(option)/ .search also = (search list),
(option)/.new stylex = {(option)/.cd},
(option)/ .type = family

(option)/.new style = {(options)}

(option)/.new stylex = {{options)}

Defines a new style; when invoked it will also set the specified (options) using

\optionsalso. The .new stylex variant does not take an argument itself. The
plain .new style can use #1 for the argument value, e.g.

10

/border/width/.new style = {/border/top/width=#1,/border/bottom/width=#1}

(option)/.new cmd = [{default)]{code)

(option)/.new cmdx = (code)

Define a new command that is invoked when the options is given. .new cmdx
takes no argument while .new cmd takes a single argument.

Use of these options is generally discouraged and if you can you should try
to use a data type directly together with \option{({option)} commands.

\options{ /test/cmd/.new cmd = You said “#1”,
/test/cmd = hi,

;ou said “hi”
(option)/.new cmd 0 = (code)
(option)/.new cmd 1 = [{default)]{code)
(option)/.new cmd 2 = [{default)]{code)
(option)/.new cmd 3 = [(default)]{code)
(option)/.new cmd 4 = [(default)]{code)

Define commands with multiple arguments, where .new cmd 0 is equal to .new cmdx
and .new cmd 1to .new cmd. Each argument needs to be enclosed in braces and
if not all arguments are given, they will be empty.

11

(option)/.new cmd tuple

(option)/.new cmd triple

(option)/.new cmdx

\options{

/test/cmd2/.new cmd 2 = [{x}{y}]{I got (#1,#2)\\},
/test/.cd,

cmd2,
cmd2
cmd?2
cmd?2
cmd2

hi,

{hi},
{{hi}},
{hi}{there},

Note how {hi} and hi had the same effect since the options processing peels of
a single layer of braces. If we want to preserve braces we need to double up.

= (code)

= (code)

These are variants of .new cmd 2 and .new cmd 3 that take exactly 2 or 3 argu-
ments separated by commas.

= {(pattern)H{{postfiz)}{{code)}

This defines a plain TEX command with the specified (pattern). Also, when
invoking the command, it will append (postfiz) to the argument which is often
necessary to ensure the command pattern will always match. For example, here
is how we defined .new cmd tuple which matches with exactly 2 arguments:

/handlers/new cmd tuple/.new handler/.defaults = \optionsalso{
#1/.new cmdx = {##1,##2,##3}{,,}% match comma separated
{\ifstrequal{##3}{,}%
{#2}%
{\optionerror{#1}{expecting a 2 argument tuple}}%
}
#1/.type=cmd tuple,
}

12

3.3. Using existing definitions

Use these declarations if you need to work with existing definitions and are not
able to declare your own using the data types in Section 3.1.

(option)/.is if = (if name)

Declare a new option that directly sets a defined KWTEX if declared with \newif.
The name should not start with the if part, e.g.

\options{ /twocolumn/.newif = @twocolumn }

(option)/.is counter = (counter name)

Declare an option that directly sets or gets a IATEX counter declared with
\newcounter. You can use .inc, .step, and .refstep operations on counters.
(option)/.is def = [(default)]{macro name)

Declare an option that directly sets or gets a defined definition. This is basically
equivalent to the \define@key operation of the keyval package.

\def\mytest{}

\options{
/mytest/.is def = \mytest,
/mytest = “hi”,

}

\mytest{} there.

“hi” there.

(option)/.is edef = [(default)]({macro name)

Same as the .is def but will use \edef to redefine the macro definition.

4. Option transformers

4.1. Operations on option paths

(path)/ . cd

Change the directory to make (path) the default option prefix.

13

(option)/.show

Show the current option (in the document)

(option)/ . typeout

Show the current option in the console.

4.2. Operations on arguments

(option)/.expand once = (value)

Expand the argument once (using \expandafter)

(option)/.expand twice = (value)

Expand the argument twice.

(option)/.expanded = (value)

Fully expand the argument. Defined as:

/handlers/expanded/.new transformer =
\protected@edef\optionvalue{\optionvalue}

(list option)/.push = (element)

Push an element on the end a list option.

(list option)/.concat = (list)

Concatenate a list to the end of a list option.

(option)/.inc [= (numezpr)]

Increment a counter or number (.new num) with the given amount (or 1 if no
argument is given)

(counter option)/.step

Step a counter option by 1.

(counter option)/.refstep

14

‘Ref step’ a counter option by 1.

4.3. Predefined options

/options/exec = {code)

Directly execute the provided (code)

\options{ /options/exec=hi there}

hi there

/options/ignoreunknown [= (bool)]
If set to true, this will ignore any subsequent unknown options. Such ignored
options will be added to the /options/remaining list.
/options/allowsearch [= (bool)]

If set to false, it will no longer search along search paths provided by .search also
or .new family.

/options/unknownwarnonly [= (bool)]
If set to true, this only issues a warning when finding an unknown option (instead
of raising an error).
/options/remaining [= (options)]

A list of remaining options to be processed. This list should not be used directly
but mostly in conjunction with /options/collectunknown and \optionswithremaining.

/options/collectunknown

A style. If given, it will clear the /options/remaining list and set /options/ignoreunknown
to true.

5. Option commands

This section defines the command macros available on option values.

15

5.1. Processing options

\options{{options)}

Process the (options) list. This is a comma separated list of {option) [=(value)]
elements. Both the (option) and (value) are trimmed of whitespace (at the
end and start). The list may have empty elements and also end or start with
commas. When extracting the (value) a single layer of braces is removed — this
is done such that the user can specify values that contain commas or equal signs
themselves. Any option defines are always local to the current group.

When invoking \options the initial path is always the root (/) and the flag
/option/ignoreunknown is false, and /option/allowsearch is true.

\optionsalso{{options)}

Just like \options except it will use the current default path and option flags.

\optionswithremaining{(options)}

Like \options but also processes any options in the list /options/remaining after
processing (options). Will start by making a copy of the /options/remaining
list so you can call /options/collectunknown in (options) to immediately start
collecting further remaining options.

\options@ProcessOptions{{family)}

Call this in a package (.sty) or class (.cls) file to handle the options passed to
it. In a package file it will also consider the known options that are passed to
the class besides the options passed to it directly. The (family) should be the
root path for your options. For example,

\NeedsTeXFormat{LaTeX2e}[1995/12/01]

\ProvidesPackage{mypkg}[2015/01/01,By Me]
\RequirePackage{options}

\options{
/mypkg/.new family,
/mypkg/columns/.new num = [1]{2},
/mypkg/10pt/.new cmd* = \typeout{use 10pt font size},

}
\options@ProcessOptions{/mypkg}

Others can now pass options to your package as:

\usepackage[10pt, columns=2]{mypkg}

16

5.2. Using options

\option{{option)}

This uses the current value of (option). It directly expands to the command
\optk@(option) and is very efficient. Usually that command contains the value
of the option, but sometimes it expands to something different depending on
the type of the options. For example, it may be a length register.

\letoption{{option)\(macro)

If you need to use an option in loop or need careful expansion control, it is
sometimes more efficient to \let bind the option value into a macro, e.g.

\letoption{/my/option}\myoptionvalue

\edefoption{(option)\(macro)

Same as \letoption but fully expands the current value.

5.3. Testing options

All these test take true and false branch as final arguments.

\ifoptiondefined{{option)}{{true)}{(false)}

Is the option defined?

\ifoptionvoid{(option)}{(true)}{{false)}

Is the option undefined or is its value blank (empty or spaces)?

\ifoptionblank{{option)}{(true)}{(false)}

Is the option value blank (empty or spaces)?

\ifoptionequal{{option)}{{value)}{{true)}{(false)}

Is the option value equal to the provided value?

\ifoptionanyof{({option)}{{list)}{{true)}{(false)}

Does the option value occur in the comma separated value list (list)?

17

\ifoptiontype{{option)}{{type){{true)}{(false)}

Does the option have type (type)?

\ifoptionnil{(list option)}{({true)}{{false)}

Is list option value empty?

\ifoptioniscode{{option)}{(true)}{{false)}

Is this option just an action? i.e. it has no associated value.

5.4. List options

These are utility functions for list options.

\optionlistdo{(list option)}{{action)}

Perform (action) on every element of the current value of (list option). The
element is available as #1 in (action) and the iteration can be stopped by ending
with \listbreak.

\letoptionlist{{list option)}\(macro)

\let bind the current list value as a list of comma separated values in \(macro).
This is sometimes needed since the internal representation of lists uses another
representation internally (in order to contain commas itself).

\ifoptioncontains{(list option)}{({true)}{(false)}

Check if a list option contains a certain element.

5.5. Showing options

\optionshow{{option)}

Show the value of (option).

Ignore unknown = \optionshow{/options/ignoreunknown}

Ignore unknown = (opt@ignoreunknown) (=(false))

18

\optionshowall[{bool)]

Show all the options that are defined. If you pass true in the optional argument
it also shows all the internal values under the /handlers/ which can be a big
list.

\optionshowpath{{option)}

Show all the options defined under a certain path. Useful for debugging:

\optionshowpath{/mybox}

/mybox/

padding=(3.0pt), initial=(\fboxsep)

border/
width=(0.4pt), initial=(\fboxrule * 2)
color=(black), initial=(black)
normal=style

font/
style=(normal) (@ord=0), choices=(normal,italic,small-caps), initial=(normal)

6. Advanced topics

This section gives an overview of more advanced mechanisms, like defining han-
dlers and new data types.

6.1. Handlers

Names that start with a dot are handlers. These are commands that are called
with the current option path and argument, and are used for example to declare
new options (e.g. .new choice), to change the environment (e.g. .cd), or to
transform the argument (e.g. .expanded).

You can define your own handler .(name) by adding a command option
under /handlers/(name). For example, let’s make a handler that transforms a
color argument from a HTML format #XXXXXX to a named color:

\options{%
/handlers/htmlcolor/.new transformer = {%
% we need to change the \optionvalue
% #1 = current path, #2 = current \optionvalue
\definecolor{#1/@color}{HTML}{#2}%
\def\optionvalue{#1/@color}%

19

We can use our new handler directly with our previous box command:

A \mybox{border/color/.htmlcolor = 800080}{purple} box.

There are various kinds of handlers:

e .new handler: a general handler that does not chain nor invoke the original
option.

e .new operation: chains with other handlers but does not invoke the orig-
inal option.

e .new transformer: transforms the \optionvalue and chains with other
handlers.

6.2. Defining new data types

Handlers are also used to define the standard data types and can be used to
define new data types yourself. Here is for example how the value data type is
defined:

\option{
/handlers/new value/.new handler = []\optionsalso{%
#1/.new cmd = \option@set{#1}{##1},
#1/.type = value,
#1/.initial = {#2},
I
}

The .new handler receives the current path (#1) and the initial value (#2). The
default value provided at definition time is empty ([1). When a user defines a
new value, we simply set more options based on the path. When the defined
option is set, the .new cmd is called with the argument (##1) and we use that set
the actual option value directly: \option@set{#1}{##1}. Usually, we do some
additional processing here, for example, for choice values we would check if the
choice is valid.

6.3. Single option values

Finally, we can also specify handlers that are invoked when the option name
starts with special character. This allows you to handle, say, a quoted value
like "Georgia" as a shorthand for /font/family=Georgia. As an example, we
will handle options that start with a bang (!) as an HTML color. Handling
a special character (char) can be done simply by installing a handler under
/handlers/special/(char):

20

\options{%
/handlers/special/!/.new handler = {%
\optionsalso{ /mybox/border/color/.expanded/.htmlcolor = \@gobbl¢g
}
}
A \mybox{!008080}{teal} box.

A box.

Here we used chaining to first expand the argument (.expanded) and then in-
voking the .htmlcolor handler. We needed to use \@gobble to remove the ex-
clamation mark from the provided argument (i.e. #2 will be equal !008080).

6.4. Search algorithm

When \options parses the options and finds an option and argument, it will
assign argument to \optionvalue and search for the option:

1. If the option name is not absolute (i.e. does not start with /) then prepend
the default path (\optedefaultpath).

2. If the option exist we are done; invoke (option)/@code.

3. Otherwise, if the option has handlers .(name) look for the first handler
and invoke /handlers/{name)/@code if it exists with \option@handlerpath
set to the option path.

4. If there is no handler, perform a search bottom-up through the sub-
paths of the option path. If (path)/@searchalso exists where (option)
= (path)/{subpath), then invoke the search also handler with (subpath) as
its argument, and keep searching recursively.

5. If we still don’t find the option, search bottom-up through the sub-paths
of the option path for /@unknown handlers and invoke it the first one that
is found. If none are defined, this will invoke /@unknown with {option) as
its path which will raise a package error.

This may seem like quite a bit of work but there has been much attention to
efficiency. For example, we can match in a single TEX definition for handlers
since we evaluate chained handlers from left to right. Also, we never search for
handlers but just match directly etc.

7. Advanced options and commands

This section introduces option handlers and commands that are useful when
extending the options package itself.

21

#2 1%

7.1. Transforming an option

These operations transform an option itself. Usually only used when defining
new handlers but should not be necessary in general.

(option)/ .expands
When applied to an option it ensures the option argument is always fully ex-
panded (as if using .expanded at every invocation).

(option)/.default = (default value)
Set the default argument if the user does not provide one. The default argument
is stored in (option)/@edef.

(option)/.initial = [(default)](initial)
Set the default argument (if provided) and the initial value of an option. The
initial value is stored in (option)/@ini and used when invoking .reset.

(option)/ . reset

Sets the option back to its original value.

(option)/ .undef
Undefine an option. This can be used to redefine existing options of other
packages.
(option)/.search also = (search paths)

Specify additional search paths for the given (option) as explained in Section 2.2.

(option)/ . type = (type)

Specify the type of an option. This is used for example by the default . show func-
tion to display values correctly. The type can be queried using \letoptiontype,
\ifoptiontype, and \ifoptioniscode.

7.2. Compatibility

Some compatibility functions for pgfkeys users.
(option)/.is family

22

Equivalent to .new family (but without a search argument)

(option)/.code = (code)

Equivalent to .new cmd.

(option)/.style = (style)

Equivalent to .new style.

7.3. Special paths

/handlers/(name) = {code)

Define such path to install a new handler (name). The (code) takes two argu-
ments (the current path and argument) and should be defined using .new handler,
.new operation, or .new transformer.

/handlers/show/(type) = (code)

Provide custom show functions for options of type (type). The (code) takes a
single argument, namely the option name. For example:

/handlers/show/length/.new cmd = \option@showvalue{\the\option{#1}}

Using \option@showvalue ensures option values are shown consistently.

/handlers/special/{char) = {code)

Provide handlers for options that start with a special character, see Section 6.3.

7.4. Miscellaneous commands

\optionerror{{option)}{(message)}

Raise a package error for (option) with a certain message.

\optionwarning{{option)}{(message)}

Output a package warning for (option) with a certain message.

\optionerror@expect{{option)}{{expecting)}

23

Raise a package error for (option) with an (expecting) message.

\letoptiontype{{option)\(type)

Bind the type of an option to \{(type). Properly takes care of command options.

7.5. Setting options directly

\optionname{{option)}

Expand to the internal name of an options, i.e. optk@{option).

\option@set{(option)}{(value)}

Set the \optk@({option) macro to (value).

\option@eset{{option)}{{value)}

Set the \optke(option) macro to a single expansion of (value) (using \expandafter).

\option@def{(option)}(pattern){{code)}

Define the \optke{option) as a macro that takes parameters defined in (pattern).

\option@let{(option)}\(macro)

\let the \optk@(option) macro to \(macro). This can be more efficient than
\options@set if the value happens to be a macro itself.

7.6. Invoking an option directly

Internally, every option (option) comes with (option)/@code that is invoked when
an option is set with the \optionvalue containing the current argument. The
\optionvalue will equal \optionnovalue when no argument is given. A single
expansion of \optionvalue will yield the exact value provided by the user (minus
one layer of outer braces).

The (option)@code usually starts with an argument check. If no argument is
expected (the * options on commands) and error is raised if there was an argu-
ment. If an argument is expected, and there is no argument, the \optionvalue
is set to the default argument (in (option)/@def). If there is no default, an error
is raised.

\option@invoke{(option)}{(value)}

24

\option@xinvoke{{option)}{({value)}

\option@einvoke{{option)}{(value)}

\option@invokedefault{(option)}

Various ways to invoke a option handler directly. The \option@invoke macros
directly call (option)/@code. The einvoke does a single expansion of its argu-
ment, and xinvoke does a full expansion. The \option@invokedefault call the
(option)/@code with \optionvalue set to \optionnovalue.

7.7. Defining a new code value

(option)/.new code = [(default)](code)

Define a new (option)/@code handler. This is invoked when the option {(option) is

set with the macro \optionvalue set to the argument. This will equal \optionnovalue
if no argument was provided. This is the most primitive command handler and

it is recommended to use .new cmd instead.

(option)/.new codex = (code)

Just like .new code but checks that (option) did not get an argument, i.e. that
\optionvalue equals \optionnovalue.

7.8. Defining new handlers

To define handlers, we cannot use .new code since the handler needs access to
the option path it is handling. The .new handler gets also passed this path as
an argument.

/handlers/(name)/.new handler = [(default)]{code)

Define a new handler (name). If (default) is provided, this will be the default
argument for the newly defined handler. The (code) takes two arguments, the
option path (#1) when . (name) is invoked, and the provided argument (#2). For
example:

/handlers/new stylex/.new handler = \optionsalso{
#1/.new cmdx = \optionsalso{#2},
#1/.type = style,

}I

25

/handlers/(name)/.new handlerx = {code)

Similar to .new handler but for handlers that take on argument.

(option)/.new transformer = [{default)]{code)

A form of handler that transforms a provided argument. Should redefine \optionvalue
which will be passed to the next handler. Takes the option path and current
option argument as arguments. For example:

/handlers/expanded/.new transformer=\protected@edef\optionvalue{\optionvalue}

(option)/.new operation = [{default)]{code)

A form of handler that is invoked for its side effect. Takes the option path and
current option argument as arguments. In contrast with a transformer after
this handler, the original option will not be set and it only chains with other
handlers. For example:

/handlers/concat/.new operation = \option@concat{#1}{#2}

(option)/.new operation* = (code)

Same as .new operation but for operations that take no argument.

(option)/.new cmd transformer = [(default)]{code)

A transformer that changes the option value of a command. For example:

/handlers/expands/.new cmd transformer={\protected@edef\optionvalue{\optionvalue}}
7.9. Defining options directly

\optionprependcode{{option)}{{code)}

Add some code to (option)/@code right after the argument check. This is used
for example by the .expands handler to always expand the \optionvalue.

\optionnewcode{{option)}{{code)}

Define a new (option)/@code handler that expects an argument.

\optionnewcodex{{option)}{(code)}

Define a new (option)/@code handler that expects no argument.

26

\optionnewhandler{{option)}{{code)}

Define a new (option)/@code handler for defining a handler that will take an
argument. This will insert some code that calls (code) with the option path
that is handled in #1 and the argument in #2.

\optionnewhandlerx{{option)}{{code)}

Define a new (option)/@code handler for defining a handler that takes no argu-
ment. This will insert some code that calls (code) with the option path that is
handled in #1 and the argument in #2.

8. Performance

There are some performance numbers of the options, pgfkeys and xkeyval pack-
ages. To test the performance, we performed 100.000 invocations of \options,
pgfkeys, and setkeys respectively. For each library, we defined two options in
the family bar and foo, as:

\options{
/bar/bar-test/.new value hi,
/foo/foo-test/.new value = world,
/foo/.new family={/bar},

}

We then tested two queries. The first one is simple and set an option that can
be directly found:

\options{/foo,foo-test=a test}
and a complezr one that needs a one-level search:
\options{/foo,bar-test=a test}

We measured the time of a run without any testing (the baseline) and then
ran each benchmark 100.000 times and picked the best time out of three runs,
subtracting the baseline time. The benchmarks were run on an Intel Core2
Quad CPU @ 3ghz with 4Gb memory running XeLaTeX 3.1415926 from TeX
Live 2013/W32TeX. The results were:

simple
package relative total 100.000 reps.
options 1.0x 3.41s 25ms per 1000

pgfkeys 1.3x slower 4.34s 34ms per 1000
xkeyval 8.1x slower 27.77s 268ms per 1000

27

complex (one level search)
package relative total 100.000 reps.
options 1.0x 5.32s 44ms per 1000
pgfkeys 2.1x slower 11.10s 101ms per 1000
xkeyval 5.7x slower 30.34s 294ms per 1000

So both options and pgfkeys are quite a bit faster than xkeyval, and options
performs quite well when searches are involved. We also tested against the basic
keyval package but this is a bit tricky since keyval does not support features
like searching in the first place. It was about 1.5 times faster on simple queries
though.

Created with Madoko.net.

28

https://www.madoko.net

	1. Introduction
	2. Overview
	2.1. An example
	2.2. Paths and searches
	2.3. Handling unknown options

	3. Defining options
	3.1. Basic data types
	3.2. Command options
	3.3. Using existing definitions

	4. Option transformers
	4.1. Operations on option paths
	4.2. Operations on arguments
	4.3. Predefined options

	5. Option commands
	5.1. Processing options
	5.2. Using options
	5.3. Testing options
	5.4. List options
	5.5. Showing options

	6. Advanced topics
	6.1. Handlers
	6.2. Defining new data types
	6.3. Single option values
	6.4. Search algorithm

	7. Advanced options and commands
	7.1. Transforming an option
	7.2. Compatibility
	7.3. Special paths
	7.4. Miscellaneous commands
	7.5. Setting options directly
	7.6. Invoking an option directly
	7.7. Defining a new code value
	7.8. Defining new handlers
	7.9. Defining options directly

	8. Performance

