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About this tutorial 
About this Tutorial 
MATRIX.XLA 
Matrix.xla is an Excel addin that contains useful functions for matrices 
and linear Algebra:  

Norm. Matrix multiplication. Similarity transformation. Determinant. 
Inverse. Power. Trace. Scalar Product. Vector Product.  

Eigenvalues and Eigenvectors of symmetric matrix with Jacobi 
algorithm. Jacobi's rotation matrix.  Eigenvalues with QR and QL 
algorithm. Characteristic polynomial. Polynomial roots with QR 
algorithm. Eigenvectors for real and complex matrices 

Generation of random matrix with given eigenvalues and random matrix 
with given Rank or Determinant. Generation of useful matrix: Hilbert's, 
Houseolder's, Tartaglia's. Vandermonde's 

Linear System. Linear System with iterative methods: Gauss-Seidel 
and Jacobi algorithms. Gauss Jordan algorithm step by step. Singular 
Linear System.  

Linear Transformation. Gram-Schmidt's Orthogonalization. Matrix 
factorizations: LU, QR, SVD and Cholesky decomposition.   

 
The main purpose of this document is to show how to work with matrices and vectors in 
Excel and how to use matrices for solving linear systems. This tutorial is written with the 
aim to teach how to use the Matrix.xla functions. Of course it speaks about math and the 
linear algebra fundamental results, but this is not a math book.  You rarely find here 
theorems and demonstrations. You can find, on the contrary, many examples that explain, 
step by step, how to reach the result that you need. Just straight and easy. And, of course, 
we speak about Microsoft Excel but this is not a tutorial for Excel. Tips and tricks for this 
program can be found in many Internet sites.  

This tutorial is divided into two parts. The first part explains with practical examples how to 
solve basic topics about matrix theory and linear algebra. The second part is the reference 
manual of Matrix.xla 

 

 
 

Chapter 
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Linear Systems 
 

This chapter explains how to solve linear system 
problems, with the aid of many examples. They cover 
the most part of cases: systems with single, infinity and 
none solution. Several algorithms are shown: Gauss-
Jordan, Crout's LU factorization, SVD decomposition 

Linear System 
Example 1. Solve the following  4x4 linear system 

 

 

 

 

 

 

Square matrix. If the number of unknowns and the number of equations are the same, the 
system has surely one solution if the determinant of the matrix A is not zero. That is, A is 
non-singular. In that case we can solve the problem with the SYSLIN function. 

 

 
 

The determinant can be computed with M_DET  function or with the built-in function 
MDETERM (Excel USA version) as well.  

Chapter 

2 

1 9 -1 4 
2 0 1 1 
1 2 -4 0 
1 5 1 1 

18 
-2 
17 
7 

A x = b 
 
Where A and b are: 
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Gauss-Jordan algorithm 
Gauss-Jordan is probably the most popular algorithm for solving linear systems. Functions 
SYSLIN and SYSLINSING of Matrix.xla use this method with pivoting strategy. Ancient, 
solid, efficient and - last but not least - elegant. 

The main goal of this algorithm is to reduce the matrix A of the system A x = b to a 
triangular1 or diagonal2 matrix with all diagonal elements = 1 by few kind of row operations: 
linear combination; normalization, exchange. 

Let's see how it works 

Example: The following 3x3 system has solution (x1= −1 ; x2 = 2 ; x3 = 1). We can verify it by 
direct substitution. 

 

 

 

 

Let's begin to build the complete matrix (3x4) with the matrix coefficients and the constant 
vector (gray) as shown on the right. Our goal is to reduce the matrix coefficients to the 
identity matrix. 

Choose the first diagonal element  a11 ; it is called the "pivot" element 

1. Normalization step: if pivot ≠ 0 and pivot ≠1 then 
we divide all first row for pivot = 4.  

2. Linear combination: if a21 ≠ 0 then substitutes 
the second row with the difference between the 
second row itself and the first row multiplied by 
a21 

3.  Linear combination: if a31 ≠ 0 then substitutes 
the second row with the difference between the 
second row itself and the first row  

 

As we can see the first column has all zeros except for the diagonal element that is 1. 
Repeating the process for the second column - with pivot a22 - and for the third column - 
with pivot a33 - we will perform the matrix "diagonalization"; the last column will contain, at 
the end, the solution of the given system 

In Excel, we can do these tasks by using the power of array functions. Below there is an 
example of Excel resolution of a system by Gauss-Jordan algorithm 

Note that all the rows are obtained by array operations {...}. You must insert them by the 
CTRL+SHIFT+ENTER key sequence. 

                                                      
1 Properly called Gauss algorithm 
2 Properly called Gauss-Jordan algorithm 

4 1 0 -2 
-2 -2 1 -1 
1 -2 2 -3 

1 0.25 0 -0.5 
0 -1.5 1 -2 
1 -2 2 -3 

1 0.25 0 -0.5 
-2 -2 1 -1 
1 -2 2 -3 

1 0.25 0 -0.5 
0 -1.5 1 -2 
0 -2.25 2 -2.5 









−=+−
−=+−−

−=+

322
122

24

321

321

21

xxx
xxx

xx
⇔ 
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We see in the last column the solution (-1 ; 2 ; 1). Formulas for each row are shown on the 
right 

If one pivot is zero we cannot normalize the corresponding row. In that case 
we will swap the row with another row that has no zero in the same position. 
Also this operation does not affect the final solution at all; it is equivalent to 
reorder the algebraic equation of the given system 

Example: The following 3x3 system has solution (x1 = 5 ; x2 = −3 ; x3 = 7) 

 

Note that the first pivot  a11=0. . 
We cannot normalize this row and 
in this case the algorithm could not 
start 

In this case we swap the first row 
with the second one. Now the new 
pivot is -2 and the normalization 
can be done. 

Note that the second row has now 
the element  a21 = 0; so we simply 
leave the row unchanged. The 
linear combination doesn't need in 
this case 

 

The pivoting strategy 
Pivoting can be always performed. In the above example we have exchanged one zero 
pivot with any other non-zero pivot in order to continue the Gauss algorithm. But there is 
another reason for which the pivoting method is adopted: the round off error minimization. 

The Gaussian elimination algorithm can have a large number of operations. 
If we count the operations for one system resolution, we will discover that 
there are order n3/3 operations. So, if the number of unknowns doubles, the 
number of operations increases by a factor of 8. If n = 200, then there are 
approximately 8/3 million of operations! Certainly, one might begin to worry 

about the accumulation of round off error. One method to reduce the round off error is to 
avoid division by small numbers, and this is known as row pivoting or partial pivoting 
strategy of the Gaussian elimination algorithm.  

Swap rows 

Pivoting 
reduce round 
off error 
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Let's see the following remarkable example of a 2x2 system 

Solution is (x1 ; x2)= (1 ; 1) as we can easily verify by substitution  

 

 

 

If we apply the Gauss-Jordan algorithm, with 15 precision digits, we have: 

 

The pivot = 1 

 

 

 

The solution has an error of about 
1E-7 

 

While, on the contrary, if we simply exchange the order of algebraic equations, we have 

 

 

Pivot = 123456789 >> 1 

 

 

 

The solution is now much better, 
having an error of less than 1E-15 

 

As we can see, this little trick can improve the general accuracy.  

The standard Gauss-Jordan algorithm always search for the max absolute value into the 
element under the current pivot; if the max value is greater then the current pivot, then the 
row of the pivot and the row of the max value are exchanged. 

 

 

 

 

 

 

 

 

1 987654321 987654322 

123456789 -1 123456788 

1 a12 a13 a14 a15 a16 

0 1 a23 a24 a25 a26 

0 0 a33 a34 a35 a36 

0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 a63 a64 a65 a66 

Not all elements, thus, can be used as 
pivot exchange. In the matrix to the 
right we could use as pivot a33 only the 
element a33, a43, a53, a63 (yellow cells). 
 For example: 

if |a63| =max( |a33|, |a43|, |a53|, |a63| ) 

Then the row 6 and 3 are swapped and 
the old element a63 becomes the new 
pivot 33 
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Full Pivoting 
In order to extend the area where to search the max pivot we could exchange rows and 
columns. But when we swap two columns the corresponding unknown variables are also 
exchanged. So, to rebuild the final solution in the original given sequence, we have to 
perform all the permutations, in reverse order, that we have done. This makes the final 
algorithm a bit more complicate because we have to store all columns permutations 
performed. 

 

 

 

 

 

 

 

 

The functions SYSLIN and SYSLINSING of Matrix.xla use the Gauss-Jordan algorithm with 
full pivoting strategy 

 

Integer calculation 
In the above examples we have seen that the Gauss elimination steps introduce decimal 
numbers - with round off error -, even if the solutions and coefficients of the system are 
integer.  

There is a way to avoid such decimal round off error and preserve the global accuracy? 
The answer is yes, but in general, only for integer matrices. 

This method - a variant of the original Gauss-Jordan - is very similar to the one that is 
performed manually by students. It is based on the "minimum common multiple" MCM  
(also LCM Least Common Multiple) and it is conceptually very simple 

Assume to have the following two rows: the pivot row and the row that has to be reduced.  

Pivot is a11 = - 6;  

Element to set zero is a21 = 4;  

mcm = MCM(6 , 4) = 12 

Multiply the first one for mcm / a21 = 12/4 = 3   

And the second one for −mcm /a11 = −12/(−6) = 2 

 

 

-12 0 10 18         now, add the two rows 
12 9 0 30  

     
-6 0 5 9   <== the first row remain unchanged 
0 9 10 48   <== substitutes the result to the second row 

 

As we have seen, we can reduce a row without introducing decimal numbers 

1 a12 a13 a14 a15 a16 

0 1 a23 a24 a25 a26 

0 0 a33 a34 a35 a36 

0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 a63 a64 a65 a66 

-6 0 5 9  <== pivot row; multiply for 2 
4 3 0 10  <== for reducing; multiply for 3 

The full pivoting method extends the 
search area for max value 

For example, if the pivot is the element 
33, then the algorithm searches for the 
absolute max value into the yellow 
area. If max value is found at a56, then 
the row 5 and 3 are swapped and then, 
the column 5 and 3 are swapped. 

Unknown x5 and x3 are permuted 
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Let's see how it works step by step by the function gauss_jordan_setp of Matrix.xla. 

 
 

Note the 3rd parameter setting the integer algorithm. If "false", the operations will perform in 
the standard decimal way. 

Only the last step could introduce decimal numbers; the previous steps are always exact. 
Unfortunately, this method cannot be adopted in general because the values grow up at 
each step and they can became too large (overflow error) 

The above example can be quickly reproduced. After inserting the function in the 
range A9:D11, give the CTRL+C to copy the range still selected; select the cell 
A13 and give CTRL+V to paste the new matrix; repeat this simple step still you 

reach the final identity 3x3 matrix; the solution will be in the last column. 

This sequence shows how to do. 

 

 
Given a complete system matrix in range B2:E4, select 
the range A6:E8, just below the given matrix 

Insert the array function Gauss_Jordan_step with the 
CTRL+SHIFT+ENTER key sequence and the given parameter 
("VERO" means "TRUE" in English ) 

You should see the first step matrix. Leave the selected range and 
give the copy command (CTRL+C) 

 

Tip 



 

 12 

 
Select the cell B10, under the 1st step matrix. Make sure that 
the range below is empty. 

 

Now, simply give the paste command (CTRL+V) and the 2nd 
step matrix will appear 

 

Repeating the above steps you can get all the Gauss-Jordan step-matrices, either in 
decimal or in integer mode 
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Several ways for using the Gauss-Jordan algorithm 
The reduction matrix method can be used in several useful ways. Here same basic 
cases: 
 
Solving linear system (non singular) 
 




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x
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x
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bAx

 
 
The complete matrix (3 x 4) is  
 
















⇒




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
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



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3

2

1

3

2
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010
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x
x
x

b
b
b

aaa
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aaa

 
 
At the end, the last column is the solution of a given system; the original matrix A is 
transformed into the identity matrix. 
 
 
Solving simultaneously m linear systems 
 
 








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12
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21
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 ...   ...       

 
 
The complete matrix (3 x 3+m) is: 
 


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
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


⇒



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
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3
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31
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 ...     
100
010
001

 ...     

 
 
At the end, the solutions of the m system are the last m column of the complete matrix 
 
 
Inverse matrix computing  
 
This problem is similar to the above one, except that the matrix B is the identity matrix 
In fact, for definition: 
 

1

1

     −

−

=⇔=

=⋅

AXIAX

IAA
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The complete matrix (3 x 6) is: 
 


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
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At the end, the inverse matrix is into the 3 last columns of the complete matrix 
 
 
Determinant computing 
 
For this scope we need only reduce the given matrix to the triangular form. 
 
















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




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t
tt
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A

 
 

So the determinant can be easy computed by the following 
 

332211)( tttADet ⋅⋅=  
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Non Singular Linear system 
The function SYSLIN finds the solution of non-singular linear system using the Gauss-
Jordan algorithm with full pivot strategy. 

Example: solve the following matrix equation 

 A x = b               (1) 

The solution is  

 x = A-1 b             (2) 

You can get the numerical solution in two different ways. The first one is the direct 
application of the formula (2); the second one is the resolution of the simultaneous linear 
system (1) 

Example: Find the solution of the linear system having the following A (6 x 6) and b (6 x 1)  
 
 
 
 
 
 
 
 
We solve this linear system with both methods: by Excel MINVERSE  and SYSLIN  
function. We found the unitary solution (1, 1, 1, 1, 1, 1)  (Note that the sum of each row 
is equal to the constant terms) 
 

 
Note also that the methods give similar - but not equal - results, because theirs 
algorithms are different. In this case both the solutions are very accurate (≈1E-15) but 
this is not always true.  
 
 
Round-off errors 
Many times, the round-off errors can decrease the maximum accuracy obtained 
Look at the following system: 
 
 
 
 
 
 
 

-10 93 6.7 5 -47 0 
-0.5 -28 1 7 0 0 

0 0 1 8 35 -47 
45 0 -13 3 -23 -59 
65 0.1 3 32 0 0 
-7 4 -1.5 -1 0 4.9 

47.7 
-20.5 

-3 
-47 

100.1 
-0.6 

-151 386 -78 -4 234 

-76 194 -39 -2 117 

-299994 599988 3 -2 299994 

2 -4 0 2 0 

-100000 200000 0 0 100001 

387 

194 

599989 

0 

200001 
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The exact solution is the unitary solution (1, 1, 1, 1, 1, 1).  
In order to measure the error, we use the following formula  
=ABS(x-ROUND(x, 0))     where x is one approximate solution value 

The total error is calculate with 
=AVERAGE(H2:H6)  total error for SYSLIN function 
=AVERAGE(J2:J6)  total error for MINVERSE function 

 

 
 
As we can see the total errors of these solutions are thousand times greater that the 
one of the previous example. 
 
 
Sometimes, round-off errors are so strong that can give totally wrong results. Look at 
this example. 
 
 
 
    A = 
 
 
 
 
As we can easily see by inspection, the matrix is singular having the first and last 
column equal. So there is no solution for this system. But if you try to solve this system 
with MINVERSE  function you will get a wrong totally different result 
This error is particularly sneaky because if we try to compute the determinant we get a 
finite (wrong) result 

MDETERM(A) = -0.0082 

 
As we have told, the algorithm used by Excel and Matrix.xla are not equal. So we can 
try to compute the solution by SYSLIN  and the determinant by M_DET . In this case 
the full pivot strategy of Gauss-Jordan works fine and give us the right answer. 
 

3877457 -3 -347 -691789 3877457

-3773001 0 34 46 -3773001

-286314 1 0 -2 -286314

-377465 -12 6 4 -377465

-1 0 -6 0 -1 

387 

194 

599989 

0 

200001 
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Full pivoting or partial pivoting? 
The strategy of full-pivot reduces the round-off errors, so we could aspect that its 
accuracy is greater than partial-pivot strategy. But this is not always true. Sometime 
can happen that the full strategy gives an error similar or even greater then the one 
obtained by partial strategy.  
In Matrix.xla we can perform the partial gauss-Jordan algorithm using the didactic 
function Gauss_Jorda_step.  
Example: Solve the following linear system. The matrix is the inverse of the 6x6 
Tartaglia's matrix. The exact system solution is the vector [1, 2, 3, 4, 5, 6] 
 
 
 
 
   A =  
 
 
 
 
Let's see how both algorithms - full and partial pivoting  - work3. 
 

 
 
As we can see, in that problem, partial pivoting is even more accurate (but not too 
much) than full pivoting.  
Then, why we complicate the algorithm with the full pivoting? The reason is that the 
Gauss-Jordan with full pivoting is generally more reliable for a large type of matrices. 
The round-off error control is more efficient. Disastrous mistakes are greatly reduced 
with full-pivot strategy.  
Look at this example: Solve the following system  
                                                      
3 Note that in these problems we have not inserted the results given by the MINVERSE Excel function, because we 
ignore its algorithm in detail (from a long series of testes, we have found that it works similar to the partial-pivot 
algorithm). 

6 -15 20 -15 6 -1 

-15 55 -85 69 -29 5 

20 -85 146 -127 56 -10 

-15 69 -127 117 -54 10 

6 -29 56 -54 26 -5 

-1 5 -10 10 -5 1 

0 

1 

0 

0 

0 

0 
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A = 
 
 
 
Solving with Gauss-Jordan algorithm with both partial and full pivoting we note in this 
case a lack age of accuracy more than thousand times for the first solution. 
 

 
 
We can observe that in general, partial pivoting becomes inefficient for matrices 
having large values in the right side. In that case the round-off errors grow sharply; full 
pivoting avoids this rare - but heavy - accuracy loss. 
 
 
Solution stability 
 
Many times, coefficients of a linear system cannot be known exactly. Often, they 
derived from experimental results, measures, etc. So they can be affected by several 
errors. We are interested to investigate how the system solution changes with these 
errors. Many important studies has demonstrated that the solution behavior depends 
by the system coefficients matrix. Same matrices tend to amplify the errors of the 
coefficients or the constant terms, so the solution will be very different from the one of 
the "exact" system. When it happens we say "hill-conditioned" or "unstable" linear 
system. 
 
Example: show that the following linear system with the Wilson's matrix, is very 
unstable 
 
 
 
 
 
 
 
 
The solution of the exact system is x = (1,1,1,1); now give same perturbations to the 
constant terms. For simplicity we give  

b' = b + ∆b  with b = 0.1 

1 -3 -9 -1 38800000012 
7 -1 12300000045 1 0 
0 1 0 -2 2 

23 -12 6 4 1 
2 0 -6 0 -1 

38800000000 
12300000052 

1 
22 
-5 

10 7 8 7 

7 5 6 5 

8 6 10 9 

7 5 9 10 

32 

23 

33 
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The solution of the perturbed system is now 

A x' = b'  x' = x + ∆x 

Defining the system sensitivity coefficient as 

S =  (∆x %) / (∆b %) = (| ∆x| / | x |) / (| ∆b| / | b |) 

We have S ≅ 400.   
 

 
A high value of S 
means high 
instability. In fact 
in this system for 
a small 
perturbation of 
about 0.2% of the 
constant terms we 
have the solution 

-0.2, 3, 0.5, 1.3 

Completely 
different from the 
exact one 

1, 1, 1, 1 

Note that Det =1 
 

 
 
 
Even worst for the stability of the following linear system 
 
 
 
  A= 
 
 

 

For a very 
small 
perturbation of 
about 0.01% of 
the constant 
term, the 
system solution 
values are 
moved far away 
from the point  
(1, 1, 1, 1) 
 

 
Note the very high sensitivity coefficient S of this problem and the wide spread of the 
solution point even for very small perturbations. 
Note also that in both problems the determinant was unitary (Det = 1). So we cannot 
discover the instability simply detecting the determinant. 

117 85 127 118 

97 70 103 97 

74 53 71 64 

62 45 65 59 

447 

367 

262 

231 
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One popular factor for instability matrix uses its eigenvalues 

S λ = | λ |max / |λ |min  

But, unfortunately, eigenvalues are not very easy to compute 
So another practically index references the SVD decomposition (see SVD_D )  
function). Extracting the dmax and dmin singular values of the diagonal matrix D we 
define the instability factor as: 

SD =  d max / d min 

For the above matrix the eigenvalues are  

So the instabilty factor will be: 

S λ = 324.0 / 0.000429 ≅ 754861 

 
 
While the SVD decomposition gives 

SD =  340.9 / 0.000308 ≅ 1106504 

 

λ= 323.98 -5.72328 -1.256573 0.000429

340.9215 0 0 0 
0 7.879412 0 0 
0 0 1.208233 0 
0 0 0 0.000308 
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Complex systems 

Complex systems are very common in applied science. Matrix.xla has a dedicated 
function SYSLIN_C to solve them. 
We shell to learn how it works with a practically example from the Network theory. 
 
Example - Analysis of the Lattice network. Find voltages and phases at the nodes, for 
frequency f = 10, 50, 100, 400 Hz. 
 
 
 
 
 
 
 
As known, using the notation  

The Nodal Analysis provides the solution by the following complex matrix equation 

 
 
 
Where: 
 
The real matrix G and B are called respectively conductance and susceptance; they 
form the complex matrix admittance Y. These matrices depend on the ω = 2 π f 
frequency 
 
Using the worksheet, the problem can be solved, first of all, calculating the frequency 
ω ,  the two real matrices G and B and the currents input vector; then, we build the 
complex system (1). 
 

 
 
SYSLIN_C provides the vector solution in complex form; to convert it in magnitude and 
phase we have used the following well-known formulas 
 
 
 
 
Note that we have to add the imaginary column at the current vector, even if it is pure 
real; complex matrices and complex vectors must be always definite with real and 
imaginary parts. They must have always an even numbers of columns. 
 

C1 C2 C3
G

R2R1 R3 Components values 
R1 = 100 Ω C1 = 1.5 µF 
R2 = 120 Ω C1 = 2.2 µF 
R2 = 120 Ω C1 = 2.2 µF 
G = 2.5 sin(2π f t) 

imre
tj jVVVeVtVtv +==⇔+=
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        ) sin()( ωθω
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••
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= IV Y (1) 

( ) ( ) 







=∠+=
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imre V

Vatan  V    ,      VV |V| 22
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In the above example there are many Excel formulas that we couldn't shown for clarity. 
To reply the example, copy the following formulas (in blue) in your worksheet. 
 

 
 
See also the function Mat_Adm  for admittance matrix. 
 
 
Example - Solve the following complex system 
 
 
 
 
 
 
The system is equivalent to the following complex matrix equation 
 
 
 
 
 
 
With SYSLIN_C function is simple to find the solution of a complex matrix system. We 
have only to separate the real and imaginary parts. 
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About complex matrix format 
 
Matrix.xla  supports 3 different complex matrix formats: 1) split, 2) interlaced, 3) string 
 

1) Split format 2) Interlaced format 3) String format 

   
 
Each format has advantages and drawbacks. 
 
As we can see in the first format the complex matrix [Z] is split into two separate 
matrices: the first one contains the real values and the second one the imaginary 
values. It is the default format 
 
In the second format, the complex values are written as two adjacent cells, so a single 
matrix element is fitted in two cells. The columns numbers are the same of the first 
format but the values are interlaced: one real column is followed by an imaginary 
column and so on. 
This format is useful when elements are returned by complex functions (for example 
by Xnumbers.xla addin) 
 
The last format is the well known “complex rectangular format”. Each element is 
written as a string "a+ib"  so the matrix is still squared. Apparently is the most compact 
and intuitive format but this is true only for integer values. For long decimal values the 
matrix becomes illegible. We have also to point out that the elements, being strings, 
cannot be format as other Excel numbers. 
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Determinant 
Differently from the solution of linear system, the matrix determinant changes with the 
reduction operations of the Gauss-Jordan algorithm. In fact the final reduced matrix is the 
identity matrix that has always determinant = 1. But the determinant of the original given 
matrix can be computed with the following simple rules 

• When we multiply a matrix row for a number k, thus the determinant is 
multiply for the same number 

• When we swap two rows, thus the determinant change the sign 

 

Gaussian elimination 
With these simple rules it's easy to calculate the matrix determinant. It is sufficient to keep 
trace of all pivot multiplications and rows swapping performed during the Gauss-Jordan 
process 

There also another rule, useful to reduce the computing effort. 

• Triangular matrix and diagonal matrix with the same diagonal have the 
same determinant 

So, in order to compute the determinant, we can reduce the given matrix to a triangular 
matrix instead of a diagonal one, saving half of computation effort. This is called the Gauss 
algorithm or Gaussian elimination. 

The determinant of a diagonal matrix is the product of all elements 
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And also: 
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The example below shows how to compute, step by step, the determinant with the Gauss 
algorithm 

 
 4 1 0   

A= -2 -2 1  Det(A) = ? 
 1 -2 2   
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 4 1 0 1 R2 = R1 + 2*R2  (*) 

A1= 0 -3 2 2 Det(A1) = 2 Det(A) 
 1 -2 2   

 

 4 1 0 1 R3 = R1 + (– 4)*R3   
A2= 0 -3 2  Det(A2) = -8 Det(A) 

 0 9 -8 -4  
 

 4 1 0   
A3= 0 9 -8 < swap Det(A3) = 8 Det(A) 

 0 -3 2 < swap  
 

 4 1 0  R3 = R2 + 3*R3   
A4= 0 9 -8 1 Det(A4) = 24 Det(A) 

 0 0 -2 3  
 

 4 1 0  Det(A4) = 24 Det(A) 
A4= 0 9 -8  Det(A4) = 4*9*(-2) = -72 

 0 0 -2   
 

The final matrix A4  is triangular. So its determinant - easy to compute - is -72 

But it is also:  

 Det(A4) = 24 Det(A) 

Substituting, we have: 

 -72 = 24 Det(A) ⇒    Det(A) = -24 / 72 = -3 

 

 

Hill-conditioned matrix 
Of course there are functions such as M_DET  in Matrix.xla and MDETERM  in Excel to 
obtain quickly the determinant of any square matrix. Both are very fast and efficient, 
covering the most part of cases. But, sometime, they can fail because of the round-off error 
introduced by the finite precision of the computer. It may happen for large matrices, or even 
for small matrices (hill- conditioned matrices). Look at this example. 
 
Compute the determinant of this simple (3 x 3) matrix 
 

127 -507 245 
-507 2025 -987 
245 -987 553 

 

Both functions return a very small, but finite 
value, quite different each other. 

 

If you repeat the calculus with other numerical routine in 32 bit OS you will get similar 
results. Is there any reason for suspecting this result? Yes, there is, because this 
result is completely wrong! 
 

(*)  
The formula 
R2 = R1 + 2*R2 
is a compact way for describing the 
following operations: 

1) Multiply the 2nd  row for 2. 
2) Add the 2nd  row and the 1st row 
3) substitute the result to the 2nd row 
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In fact, the determinant is 0; the given matrix is singular. You can easily compute by 
hand with exact fractional numbers. If you are lazy use the Gauss_Jordan_step 
function with integer algorithm 
 

127 -507 245 < swap -507 2025 -987 -127 
-507 2025 -987 < swap 127 -507 245 -507 
245 -987 553  245 -987 553  

     
Det(A1) = -1 Det(A)  Det(A2) = 507 Det(A) 

     
     

-507 2025 -987 -245 -507 2025 -987  
0 -126 1134  0 -126 1134 < swap 

245 -987 553 -507 0 4284 -38556 < swap 
     

Det(A3) = -257049 Det(A) Det(A4) = 257049 Det(A) 
     
     

-507 2025 -987 -476 241332 0 -8205288  
0 4284 -38556 225 0 4284 -38556 1 
0 -126 1134  0 -126 1134 34 

     
Det(A5) = -122355324 Det(A) Det(A6) = -4160081016 Det(A) 

     
     

241332 0 -8205288 
0 4284 -38556 
0 0 0 

   

The last row is all zero. This means that 
the matrix is singular and its determinant 
is zero. 

Det(A6) = 0    ==> Det(A) = 0   

 

In this case it was easy to analyze the matrix, but for a larger matrix (50 x 50) do you 
know what would happen? Before to accept any results - specially for large matrices -
we have to do same extra tests, like for example the SVD decomposition. 
 

Laplace's expansion 
Expansion by minors is another technique for computing the determinant of a given square 
matrix. Although efficient for small matrices (practically for n = 2, 3), techniques such as 
Gaussian elimination are much more efficient when the matrix size becomes large.  
Laplace's expansion becomes competitive when there are rows or columns with many 
zeros.  

The expansion formula is applied to any line (row or column) of the matrix. The choice is 
arbitrary. For example, the expansion along the first row of a 3x3 matrix becomes. 

 

 

Where  |A ij|  are the minors, that is the determinant of the sub matrix extracted from the 
original matrix eliminating the row i and the column j. The minors are taken with sign + if the 
sum of (i+j) is even; on the contrary if odd.  

Many authors call cofactor the term: (-1)(i+j)|A ij|  . 
Let's see how it works with an example 

1313 1212 1111 
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We use the function MatExtract  to get the 2x2 minor sub matrix; we use also the INDEX 
function to get the aij element 

 

 
 

Completing the worksheet with the others minor and the cofactor terms we have 

 

 
 

Tip. We can use the arbitrary of the row (or column) expansion in order to minimize the 
computing. Usually we choose the row or column with the most zeros (if any). 

 

 

 

8 -4 -2 
1 -1 2 
2 3 -3 

Example - Calculate the determinant of the given 3x3 
matrix with the Laplace’s expansion. 
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Simultaneous Linear Systems 
 
The function SYSLIN can give solutions of many linear systems having the same 
incomplete coefficients matrix and different constant vectors. 

Example: solve the following matrix equation 

 A X = B          (1) 
Where: 

 

 

 

The solution is  

 X = A-1 B             (2) 

You can get the numerical solution in two different ways. The first one is the direct 
application of the formula (2); the second one is the resolution of the simultaneous linear 
system (1) 
 

 
 

From the point of view of the accuracy both methods are substantially the same; for the 
efficiency, the second one is better, especially for larger matrices 

 

Inverse matrix 
Computing of the inverse matrix is an especially application of the simultaneous systems 
resolution. 

In fact, if B is the identity matrix, we have: 

 A X = I           ⇒    X = A-1 I =  A-1          

You have the function MINVERSE   in Excel or the function M_INV  in Matrix.xla to invert a 
square matrix.  
 
Example: find the inverse of the 4 x 4 Hilbert matrix  
Hilbert matrices are a known class of hill-conditioned 
matrices,  
very easy to generate: 
      a(i, j) = 1/(i+j -1) 
 
Inverse of Hilbert matrices are always integer. So, if same decimals appear in the result, we 
can be sure that they are due to errors round off and we can valuate consequently the 

1 3 -4 9 
2 3 5 1 
2 -1 4 10 
0 -1 1 0 

59 -19 
3 20 

58 24 
-1 6 

1 1/2 1/3 1/4 

1/2 1/3 1/4 1/5 

1/3 1/4 1/5 1/6 

1/4 1/5 1/6 1/7 

B = A = 
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accuracy of the result. You can easily generate these matrices by hand or also by the 
function Mat_Hilbert  

 

 
 

Round-off error  
As you can see, Excel hides the round-off error and the result seems to be exact. But there 
is not the true. In order to show the error without format the cells with 10 or more decimal 
we can use this simple trick. Extract only the round-off error from each aij value by the 
following formula: 

 E = ROUND(aij , 0) - aij      

Applying this method to the above inverse matrix, we see that there are absolute round-off 
errors from  1E-13 till 1E-10. 

 

There is another method to estimate the accuracy of the inverse matrix: multiplying the 
given matrix by its approximate inverse we get a "near" identity matrix. The values out of 
the first diagonal measures the errors. If we compute the mean of the absolute values we 
have an estimation of the round-off error. The M_DIAG_ERR  automates this task. 

 
 

The "diagonalization" accuracy measure the global error due to the following three step: 

  Global error = Input matrix error + Inversion + multiplication 

The first step needs an explanation. Excel can show fractional number as exacts like for 
example 1/3 or 1/7. But really, these numbers are always affected by the truncation error of 
about 1E-15. 
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Other class of matrices, such as the Tartaglia's matrices, can eliminate the input truncation 
error because both the input matrix and its inverse are always integers. 

 

Tartaglia's matrices 
Tartaglia's matrices are very useful because they are easy to generate but - this is very 
important - the matrix and its inverse are always integer. This comes in handy for testing 
the algorithm round-off error. 

They are defined with:  

 a 1j = 1   for j =1 ...n (all 1 in the first row) 
 a i1 = 1 for i =1 ...n (all 1 in the first column) 
 
 aij =  Σ j a(i-1) j for j = 2 .. n 

 

Here is a 6x6 Tartaglia’s matrix  and its inverse 
1 1 1 1 1 1  6 -15 20 -15 6 -1 

1 2 3 4 5 6  -15 55 -85 69 -29 5 

1 3 6 10 15 21  20 -85 146 -127 56 -10 

1 4 10 20 35 56  -15 69 -127 117 -54 10 

1 5 15 35 70 126  6 -29 56 -54 26 -5 

1 6 21 56 126 252  -1 5 -10 10 -5 1 

 

As we can see taht both matrices are integer. Any round-off error of the inverse matrix must 
be regard as a round-off error and immediately detected.  

In the example below we evaluate the global accuracy of the inverse of 6 x 6 Tartaglia's 
matrix 

 

 
 

Sometimes however, Excel produces errors. Excel rounds numbers and will occasionally 
compute A-1 even if a matrix has a determinant equal to zero. If this happens, your solution 
will be wrong.  

Let's see this example: 

Example: find the inverse of the following matrix 

127 -507 245 
-507 2025 -987 
245 -987 553 
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As we have seen in a previous example, the given matrix is singular. So, its inverse doesn't 
exist. However, if we try to compute the inverse we have the following result 

 

Tip. You should always examine the determinant. If the determinant is close to zero, you 
should try to verify the solution with other methods. For instance, you can always try to 
solve the inverse by the function M_INV (with integere option), or by Gauss_Jordan_Step 
function, or with SVD decomposition (see later). 

 

How to avoid decimal numbers 
Not always the inverse matrix is integer; many times it has many decimal numbers. If the 
given matrix is integer, we can obtain the fractional expression of its inverse with this little 
trick 

Example 

 
 
Multiplying the inverse for the determinant we get the matrix B of integer values. Thus, the 
inverse can be put in the following fractional form 
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Homogeneous and Singular Linear Systems 
Given a linear system with b = 0 

A x = 0 
and A (n x m) matrix, we say a homogeneous linear system; this class of system always 
have the trivial solution x = 0. But we are interested to know if the system has also other 
solutions.  

Assume A is a square matrix 

 

 

 

 

We note that the last row can be obtained multiply the first one by -2. So, having two rows 
linear dependent, the given matrix has determinant = 0; that is singular. One of the two 
rows can be eliminate; we choose to eliminate the last row obtaining the following system 

 

 

 

 

 

 

 

The linear equation's system (1) expresses all the infinite solutions of the given system. 
Geometrically speaking it is a line in the space R3  

 

 

 

 

 

 

 

 

 

 

 

The Matrix transformation is useful to find the parametric form of the linear function 
(mapping function) 
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Parametric form 
The linear transformations of the above example give relations between points of the 
space. A common form for handling this relation is the parametric form. It easy to pass from 
the transformation matrix to its parametric form 

 

 

 

 

 

Geometrically specking the parametric function is a line with the direction vector: D
r

 

given by 

 

 

 

 

You can study the entire problem by the function SYSLINSING of Matrix.xla. Here the 
example: 

 

 

 

 

 

 

 

 

SYSLINSING solve a linear singular system, returning the transformation matrix, if exists, 
of the solution. The determinant is calculated only to show that the given matrix is singular. 
It is not used into calculation. SYSLINSING detects automatically if a matrix is singular or 
not. If the matrix is not singular (Det ≠ 0) the function returns all zeros. 

 From the transformation matrix we have extract the 
direction vector by normalization of the third column of 
matrix B; to get the norm of the vector we have used the 
function M_ABS.  Note that both expression must be 
insert as array functions { }  

 

In a RCO xyz, the function represents a line passing 
trough the origin, having for direction the vector D, as 
shown in the figure. 
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Rank and Subspace 
In the above example we have seen that if the matrix of a homogeneous system is 
singular, then there are infinite solutions of the system; those solutions, in a RCO represent 
a subspace. After that we have find the solution, and we have seen that the subspace was 
a line and its dimension was 1. 

Well, is there a way to know the dimension of the subspace without resolving the system? 
The answer is yes, knowing the rank of the matrices. But we have to say that it is easy for 
low  matrix dimension, very difficult for higher matrix dimensions.  

• Rank of a square matrix is the max number of independent rows (or 
columns) that we find in the matrix.  

 
For a 3 x 3 matrix the possible cases are reassume in the following table 

Independent 
rows 

Rank Linear System 
Solution 

Subspace 

3 3 0 Null 

2 2 ∞ 1 Line 

1 1 ∞ 2 Plane 

 

The function  M_RANK of Matrix.xla calculates the rank of a given matrix. In the following 
example we calculate the determinant and rank for three different matrices 

 

Note that the determinant is always 0 when the rank is less then the matrix dimension  
Solving homogeneous systems with the given matrices, we will generate in a 3D space 
respectively the following subspace: a null space, a line, and a plane. 

Let's test the last matrix solving its homogeneous system. 

 

Consequently, the transformation matrix has two columns indicating that the subspace has 
2 dimensions, thus is a plane. 
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In order to get the parametric form of the plane we observe the transform matrix: variable y 
and z have both the diagonal element 1 (a22 = 1 , a33 = 1) . The can be assumed as 
independent parameters.  

Let y = t and z = s, we have 

 

Eliminating both parameters we get the normal equations of the plane 

02        2 =−+⇒+−= zyxzyx  

The linear equation (2) express all the infinite solutions of the given system. Geometrically 
speaking it is a plane in the space R3  

 

 

Rank for rectangular matrix 
Differently form the determinant, the rank can be computed also for rectangular matrix. Its 
definition is:  

• Rank of a rectangular matrix is the max number of independent rows 
(or the max number of independent columns)  

Example: find the rank of the following 3 x 5 matrix 

 

1 2 9 10 -7 
1 2 -1 0 3 
2 4 -5 -3 9 

 

 

 

By inspection we see that there are 2 independent rows and 2 independent columns. In 
fact column c2 is obtained multiplying the first for 2;  
the  column c4 =  c1 + c3;  column c5 =  c2 − c3   
So the rank is always given by:  rank = 2 

One popular theorem - due to Kroneker - says that if the rank = r , then all the square sub-
matrices (p x p) extracted from the given matrix, having p > r , are all singulars 

In other way all matrices 3 x 3 extracted from the matrix of the above example have 
determinant = 0. You can enjoy finding yourself all the 10 matrices of 3 dimensions. Here 
are 5 of them. 

1 2 9  1 9 10  2 9 -7  1 2 10  1 9 -7 
1 2 -1  1 -1 0  2 -1 3  1 2 0  1 -1 3 
2 4 -5  2 -5 -3  4 -5 9  2 4 -3  2 -5 9 
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General Case - Rouché-Capelli Theorem 

Given a linear system of m equations and n unknowns 
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The matrix A is called coefficients' matrix  
or incomplete matrix 
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The matrix B is called complete matrix 

 

If the column b is zero, the system is called homogeneous 

In order to know if the system (1) has solutions is valid the following fundamental theorem 

ROUCHÈ-CAPELLI THEOREM. 
 

A linear system has solutions if, and only if, the ranks of 
matrices A and B are equals  

That is:     rank(A) = rank(B)   ⇔ ∃ x solution 
 
Note: This rule is always valid for homogeneous systems that are always the x = 0 solution 
(trivial solution) 

Among ranks of the matrices, number of equations and number of unknowns exist 
important relations. The following table reassumes 12 possible cases: 6 for homogeneous 
system and 6 for full system. This table, very clear and well organized, is due to Marcello 
Pedone. 
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Homogeneous System Cases 
 
 
Case 

Rank of 
incomplete 

matrix A 
Non homogeneous 

system solution Example 

1 rank(A)= m =n Trivial solution 
(0,0,..0) 
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2 rank(A)= m <n ∞n-m solutions + 
trivial solution 
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3 rank(A)< m <n ∞n-r solutions +  
trivial solution 
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4 rank(A)< m =n ∞n-r solutions +  
trivial solution 
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5 rank(A)= n <m Trivial solution 
(0,0,..0) 
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6 rank(A)<n <m ∞n-r solutions +  
trivial solution 
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Non Homogeneous System Cases 
 
 
Case 

Rank of 
incomplete 

matrix A 
Non homogeneous 

system solution Example 

1 rank(A)= m =n One solution 
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2 rank(A)= m <n ∞n-m solutions 
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3 rank(A)< m <n ∞n-r solutions 
If  r(B)=r(A) 
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4 rank(A)< m =n ∞n-r solutions 
se  r(B)=r(A) 
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5 rank(A)= n <m One solution 
If  r(B)=r(A) 
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6 rank(A)<n <m ∞n-r solutions 
If  r(B)=r(A) 
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Triangular Linear Systems  
Solving a triangular linear system is simple and very efficient algorithms exist for this task. 
Therefore, many methods try to decompose the full system into one or two triangular 
systems by factorization algorithms. 

 

Triangular factorization 

Having the linear system 

 A x = b (1) 
Suppose you have got the following factorization   

 A = LU (2) 

Where L is lower-triangular and U upper-triangular. That is: 
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In that case, we can split the linear system (1) into two systems: 

 A x = b   ⇒    (LU) x = b     ⇒    L (U x ) = b 
Setting:   y = U x   we can write: 

 L y = b       (3) U x = y           (4) 

 

Forward and Back substitutions  
The method proceeds in two steps: at the first, it solves the lower-triangular system (3) with 
the forward-substitution algorithm; then, with the vector y used as constant terms, it solves 
the upper-triangular system (4) with the back-substitutions algorithm. Both algorithms are 
very fast. 

Let' see how it works 

Having the following factorization LU = A, solve the linear system A x = b 
 A   b 

6 5 1  19 
12 8 6  46 
-6 -6 5  -3 

 

In Matrix.xla we can use the function SYSLIN_T  that applies the efficient back/forward 
algorithm to solve triangular systems. 

This function has an optional parameter to switch the algorithm for upper (Typ = "U") or 
lower  (Typ = "L") triangular matrix. If omitted, the function tries to detect by itself the matrix 
type  

 

 

 L   R  
1 0 0 6 5 1 
2 2 0 0 -1 2 
-1 1 1 0 0 4 
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We can prove that the vector x = (1, 2, 3) is the solution of the original system A x = b 

 

LU factorization 
This method, based on the Crout's factorization algorithm, splits a square matrix into two 
triangular matrices.  This is a very efficient and popular method to solve linear systems and 
to invert matrices. In Matrix.xla this algorithm is performed by the Mat_LU function. This 
function returns both factors in a (n x 2n) array. 

But there are same things that it is better to point out. Many authors emphasizes the fact 
that the LU Crout's factorization is independent from the constant vector b of a system, 
getting to understand that once we have the LU decomposition of A we can solve as many 
linear system as we want, simple changing the vector b. This is not completely true and it 
may induce in wrong results. 

Look at this example.. 

 

 A x = b      where: 

 

If we compute the LU factorization we have: 

 

 
 
The Crout's algorithm has returned the following triangular 

 L   U  

1 0 0 -8 0 -9 

-0 1 0 0 5 4 

-0.25 0.8 1 0 0 -3.45
 

Now solve the system (3) and (4) in order to have the final solution  

 L y = b       (3) U x = y           (4) 

We have 

 A   b 
0 5 4  22 
2 4 2  16 
-8 0 -9  -35 

The original 
system is broken 
into two triangular 
systems 
 
A x = b 
L y = b 
U x = y 

Note that you must 
select (3x6) cells if 
you want to get the 
factorization of a (3x3) 
matrix 
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b  y = L-1 b  x = U-1 y 
22  22 -16.54348
16  16 -6.608696
-35  -42.3 12.26087

 

The exact solution of the original system (1) is x = (1, 2, 3), but the LU method has given a 
wrong result. Why?  What's happened? 

The fact is - and too many authors omit this, this algorithm do not give the exact original 
matrix A but a new matrix A'  that is a rows permutation of the given one. This is due to the 
partial pivoting strategy of the Crout's algorithm. You simple prove it by multiplying L and U. 

So the right factorization formula would be: 

A = PLU 
Where P is a permutation matrix 

The process to solve the system is therefore: 

 b' = PTb       (5) L y = b'           (6) U x = y           (7) 

We have shown that only the information of the two factors L and U are no sufficient to 
solve the general system. We must complete it with the P matrix. 

But how can we get the permutation matrix? This matrix is provided by the algorithm itself 
at the end of the elaboration process. Usually the most part of the LU routines do not give 
us the permutation matrix because the formula (5) is applied directly to the vector b passed 
to the routines. But the concept is substantially the same: for solving a system with the LU 
factorization we need, in generally, three matrices P L U. 

 

 
 

The permutation matrix can be obtained comparing the original A matrix and the matrix 
obtained from the product  A' = LU. Let' see how. 

The base vectors u1 , u3 , u3  are:         
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We examine now the matrix rows of the two matrices A' and A.  

The original system is 
broken into two 
triangular systems  
 
A x = b 
b' = PT b 
L y = b'   

U x = y 



 

 42 

The row 1 of A' comes from row 3 of A, ⇒  p1 = u3 
The row 2 of A' comes from row 1 of A, ⇒  p2 = u1 
The row 3 of A' comes from row 2 of A, ⇒  p3 = u2 
  
 

So the permutation matrix will be: 
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Clearly this process can be very tedious for larger matrices. Fortunately the permutation 
matrix is supply by the function Mat_LU  as the third side of its output. For a 3x3 matrix you 
have to select a range of 9 columns to see the permutation matrix. 

Mat_LU(A)  returns   ( L  , U  , P) arrays 

That gives the decomposition     A = P L U     .  

 

Example - Perform the exact LU decomposition for a 5x5 Tartaglia's' matrix 

 

 
 

If we perform the matrix product   P L U   (it is useful the M_PROD function ) we obtain 
finally the given original matrix. (Note that P must be the first matrix of the product) 
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Block-Triangular Form 
Square sparse matrices, thus matrices with several zero elements, can be, under certain 
conditions, put in the useful form called “block-triangular” (also called “Jordan’s form”) by 
simple permutations of rows and columns 
 
                
 1 2 1 0 0 0             
 2 1 5 0 0 0     A 1    0   
 1 -1 3 0 0 0             
 -6 5 3 1 1 2                
 1 -3 2 1 -1 -2     A 21     A 2    
 -9 7 1 1 2 1                
                
 
The block-triangular form saves a lot of computation effort for many important problems of 
linear algebra: linear system, determinant, eigenvalues, etc. 
We have to point out that each of these tasks has a computing cost that grows approximately 
with N3. Thus, reducing for example the dimension to N/2, the effort will decrease 8 times. 
Clearly it’s a great advantage. 
 
Linear system solving 
For example, the following (6 x 6) linear system 
 
A x  = b 
 

1 2 1 0 0 0  x 1  b 1 
2 1 5 0 0 0  x 2  b 2 
1 -1 3 0 0 0  x 3  b 3 
-6 5 3 1 1 2  x 4 = b 4 
1 -3 2 1 -1 -2  x 5  b 5 
-9 7 1 1 2 1  x 6  b 6 

 
It could be written as 

 A1 x1  = b1 

 A2 x2  = b2 − c2      

where the vector  c2  is given by:   c2 = A21 x1 
 
Practically, the original system (6 x 6) is split into two (3 x 3) sub-systems  
 
 1 2 1  x 1  b 1       
 2 1 5  x 2 = b 2       
 1 -1 3  x 3  b 3       
              
 1 1 2  x 4  b 4  -6 5 3 x 1 
 1 -1 -2  x 5 = b 5 − 1 -3 2 x 2 
 1 2 1  x 6  b 6  -9 7 1 x 3 
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Determinant computing 
Determinant computing also takes advantage from the block-triangular form 
For example, the determinant of the following (6 x 6) is given by the determinants product of 
the two matrices (3 x 3) A1 and A2 . 
 
                   
 1 2 1 0 0 0     1 2 1      
 2 1 5 0 0 0     2 1 5 = 3    
 1 -1 3 0 0 0 = 18   1 -1 3      
 -6 5 3 1 1 2        1 1 2   
 1 -3 2 1 -1 -2        1 -1 -2 = 6 
 -9 7 1 1 2 1        1 2 1   
                   
 
Permutations 
Differently form the other factorization algorithms (Gauss, LR, etc.) the block-triangular 
reduction use only permutations of rows and columns. From the point of view of the linear 
algebra a permutation can be treated as a similarity transformation. 
For example, given a (6 x 6) matrix, exchanging the rows 2 and 5, followed by exchanging the 
columns 2 and 5, can be formally (but only formally!) written as. 
 
             B = PT A P      ,      where the permutation matrix is  P = (e1, e5, e3, e4, e2, e6) 
 
 

  A        P        PTA P    
1 0 0 1 2 0   1 0 0 0 0 0   1 2 0 1 0 0  
1 -1 1 2 -3 -2   0 0 0 0 1 0   2 1 0 5 0 0  
-6 1 1 3 5 2   0 0 1 0 0 0   -6 5 1 3 1 2  
1 0 0 3 -1 0   0 0 0 1 0 0   1 -1 0 3 0 0  
2 0 0 5 1 0   0 1 0 0 0 0   1 -3 1 2 -1 -2  
-9 2 1 1 7 1   0 0 0 0 0 1   -9 7 1 1 2 1  

                       
 
Remark. From the point of view of the numeric calculus the matrix multiplication is a very 
expensive task that we should be avoided when possible; we use instead the direct exchange 
of the rows and columns or, even better, the exchange of the indices. 
 
Note that the similarity transform keeps the original eigenvalues. Consequently the eigenvalues 
of the matrix A are the same of the matrix B 
 
Eigenvalues Problem 
The eigenvalue problem takes advantage from the block-triangular form. 
For example, the following matrix (6 x 6) A has the eigenvalues: 

   λ = [-7 , -1 , 1 , 2 , 3 , 5 ] 
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   A     λ   A1      λ1   
 -15 0 -16 0 0 0  -7  -15 0 -16     1   
 10 2 11 0 0 0  -1  10 2 11     2   
 8 0 9 0 0 0  1  8 0 9  A2   -7 λ2  
 1 3 5 3 0 -4  2     3 0 -4   -1  
 2 6 1 2 5 4  3     2 5 4   3  
 -4 9 -3 -6 -6 -1  5     -6 -6 -1   5  
                    

 
The eigenvalues set of the (6 x 6)  matrix A is the sum of the eigenvalues set of A1 [ 1 , 2 , -7 ]   
and the eigenvalues set  of A2   [-1 , 3 , 5 ]. 
 
Several kinds of block-triangular form 
Up to now the matrices that we have seen are only one kind of block-triangular form; but there 
are many other schemas having blocks with different dimension each others. At last, all the 
blocks can have unitary dimension as in a triangular matrix. 
Just below there are same example of block-triangular matrices (blocks are yellow) 
 
                      
 x x 0 0 0 0  x x x 0 0 0  x 0 0 0 0 0  
 x x 0 0 0 0  x x x 0 0 0  x x 0 0 0 0  
 x x x 0 0 0  x x x 0 0 0  x x x 0 0 0  
 x x x x 0 0  x x x x 0 0  x x x x 0 0  
 x x x x x x  x x x x x 0  x x x x x 0  
 x x x x x x  x x x x x x  x x x x x x  
                      
 x x x 0 0 0  x x 0 0 0 0  x 0 0 0 0 0  
 x x x 0 0 0  x x 0 0 0 0  x x x x x x  
 x x x 0 0 0  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
 x x x x x x  x x x x x x  x x x x x x  
                      

 
Remark. The effort reduction is high when the dimension of the maximum block is low. In the 
first matrix the dimension of the maximum block is 2; in the second matrix is 3; in the third 
matrix the dimension is 1, showing the best effort reduction that it would be possible. 
On the contrary, the last two matrices give an effort reduction quite poor. 
 
Permutation matrices 
Is it always possible to transform a square matrix into a block-triangular form? Unfortunately 
not. 
The chance for block-triangular reduction depends of course by the zero elements. So only  
sparse matrices could be block-partitioned. But this is not sufficient. It depends also by the 
zeros configuration of the matrix.  
Two important problems arise: 

1. To detect if a matrix can be reduced to a block-triangular form 
2. To obtain  the permutation matrix P 

 
Several methods are developed in the past for solving these problems. One very popular is the 
Flow-Graph method. 



 

 46 

 
Matrix Flow-Graph 
Following this method, we draw the graph of the given matrix following these simple rules: 
 

• the graph consists of nodes and branches 
• the number of the nodes is equal to the dimension of the matrix 
• the nodes, numbered from 1 to N,  represent  the elements of the first diagonal aii 
• for each elements aij  ≠ 0  we draw an oriented branch (arrow) from node-i  to node-j 

 
Complicated? Not really. Let’s have a look at this example.  
Given the matrix A (4 x 4): 
 

4 2 3 1 
0 -1 0 1 
3 1 -1 2 
0 1 0 1 

 
The flow-graph G(A)  associated,  looks like the following (see the macro Graph Draw for 
automatic drawing)  
 

 

Where 

The node 1 is linked to the nodes  2, 3, 4. 
The node 2 is linked to the node  4 
The node 3 is linked to the nodes  1, 2, 4 
The node 4 is linked to the node  2 
 
We observe that from the node 2 there is 
not any path linking the node 1 or the node 
3 
Similarly happens if we start from the node 
4 
This is sufficient to say that the graph is not 
strong connected 

 
Flow-Graph rule. If is always possible for each node to find a path going through all other 
nodes, then we say that the graph is strong connected 
 
An important theorem of the Graph Theory states that if the flow-graph G(A) is strong 
connected then the associate matrix is not reducible to the block-triangular form and vice versa. 
On the contrary, if the flow-graph G(A) is not strong connected then it always exists a 
permutation matrix P that reduces the associate matrix to the block-triangular form. 
Synthetically: 
 

G(A) strong connected ⇔ matrix A irreducible 

G(A) not strong connected ⇔ matrix A block reducible 

 
This method is quite elegant and very important in the Graph theory. But from the point of view 
of the practical calculus it has several drawbacks: 

• it becomes  laborious for larger matrices   
• the software coding is quite complicated 
• it does not provide the permutation matrix P  

 
In the above example, we observe that for P = [ e2, e4, e1, e3 ]  , the similarity transform gives a 
block-triangular form 

             B = PT A P       

1 

2 

3 

4
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  A     P     PT A P   
 4 2 3 1  0 0 1 0  -1 1 0 0  
 0 -1 0 1  1 0 0 0  1 1 0 0  
 3 1 -1 2  0 0 0 1  2 1 4 3  
 0 1 0 1  0 1 0 0  1 2 3 -1  

 
For matrices larger than (4 x 4) the effort for searching and testing all possible permutations 
grows sharply. For example, it requires a heavy work for matrices like the following one. For 
this reasons the flow-graph method becomes practically useless for matrices of (7 x 7 ) or more 
 
 
 
 
 
 
 
 
 
 
 
The score-algorithm 
In this chapter we shall introduce a heuristic technique for efficiently reducing a sparse matrix 
to a block-triangular form. The method is both simple and very efficient, and it can be applied 
also to medium-large matrices. It consists of an iterative process having the main goal to group 
zeros near the upper-right corner of the matrix using only rows and columns exchanges. 
This algorithm was first ideated as automatic program, but thanks to its simplicity it can be also 
performed by hand, at least, for low-moderate matrices. 
Let’s see how it works 
 
Giving for example the (6 x 6) matrix just shown above, 
we begin to initialize the permutation vector 
 
 

 
1 2 3 4 5 6 
e1 e2 e3 e4 e5 e6 

 

The main goal is to take to the upper triangular area 
(grey area) the most possible zeros. 
Let’s begin to search all elements not zero over the first 
diagonal. The searching must start from the first row and 
from right to left: thus from the element a16 ; if zero, we 
jump to the near element a15 and so on till to a12.  
Then we repeat along the second row, from  a26 to a23.  
And so on till the last row 

 
 2   5    
1 0 0 1 2 0   
1 -1 1 2 -3 -2   
-6 1 1 3 5 2   
1 0 0 3 -1 0   
2 0 0 5 1 0   
-9 2 1 1 7 1   

In this example, the first element not zero is a15 ;  
Let’s search, if exists, the firs zero on the same row, beginning 
from left to right.  
The first 0 is the element  a12.  We shell exchange the columns 2 
e 5 and after, the rows  2 e 5 
 

 
After the permutation  (2, 5),  the matrix will be the following: 
 

1 0 0 1 2 0 
1 -1 1 2 -3 -2
-6 1 1 3 5 2 
1 0 0 3 -1 0 
2 0 0 5 1 0 
-9 2 1 1 7 1 
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        1 5 3 4 2 6         
  A        P        PTA P   

1 0 0 1 2 0   1 0 0 0 0 0   1 2 0 1 0 0 
1 -1 1 2 -3 -2   0 0 0 0 1 0   2 1 0 5 0 0 
-6 1 1 3 5 2   0 0 1 0 0 0   -6 5 1 3 1 2 
1 0 0 3 -1 0   0 0 0 1 0 0   1 -1 0 3 0 0 
2 0 0 5 1 0   0 1 0 0 0 0   1 -3 1 2 -1 -2
-9 2 1 1 7 1   0 0 0 0 0 1   -9 7 1 1 2 1 

 
We observe the zero grouping close to the upper-right corner. 
 
  3 4     
1 2 0 1 0 0   
2 1 0 5 0 0   
-6 5 1 3 1 2   
1 -1 0 3 0 0   
1 -3 1 2 -1 -2   
-9 7 1 1 2 1   

Now the first non-zero element starting from right is  
a14. The first 0 , starting from left, is a13.  
Thus we permute  3 e 4 
 

 
After permutation  3, 4  we have: 
 

        1 2 4 3 5 6         
  A        P        PTA P   
1 2 0 1 0 0   1 0 0 0 0 0   1 2 1 0 0 0 
2 1 0 5 0 0   0 1 0 0 0 0   2 1 5 0 0 0 
-6 5 1 3 1 2   0 0 0 1 0 0   1 -1 3 0 0 0 
1 -1 0 3 0 0   0 0 1 0 0 0   -6 5 3 1 1 2 
1 -3 1 2 -1 -2   0 0 0 0 1 0   1 -3 2 1 -1 -2
-9 7 1 1 2 1   0 0 0 0 0 1   -9 7 1 1 2 1 

 
All zeros are now positioned in the upper-triangular area. The matrix is partitioned in two (3 x 3) 
blocks. The process ends. 
 
The finally permutation matrix is 
 
 
 
As shown, with only 2 permutations we were able to reduce in block-triangular form a (6 x 6) 
matrix. We have to put in evidence that we are worked only by hand. This method keeps a 
good efficiency also with larger matrices. 
 
Let’s have a look to another example. 
Reduce, if possible, the following (6 x 6) matrix 
 

⇓   ⇓    
3 1 -1 1 -5 2  
0 -1 0 1 0 0  
5 1 1 2 -3 4  
0 0 0 1 0 0  
1 1 7 -9 13 1  
0 1 0 -6 0 1  

 
The first element ≠ 0, from right, is:  a16  
The first element = 0, from left, is:  a21.  
So the pivot columns are 1 and 6 
 

 

1 2 3 4 5 6 
e1 e5 e4 e3 e2 e6
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  ⇓ ⇓    
1 1 0 -6 0 0  
0 -1 0 1 0 0  
4 1 1 2 -3 5  
0 0 0 1 0 0  
1 1 7 -9 13 1  
2 1 -1 1 -5 3  

 
The first element ≠ 0, from right, is:  a14  
The first element = 0, from left, is: a13.  
So the pivot columns are 3 and 4 
 

 
⇓  ⇓     
1 1 -6 0 0 0  
0 -1 1 0 0 0  
0 0 1 0 0 0  
4 1 2 1 -3 5  
1 1 -9 7 13 1  
2 1 1 -1 -5 3  

 
The first element ≠ 0, from right, is: a13  
The first element = 0, from left, is: a21.  
So the pivot columns are 1 e 3. 
 

 
Finally we get the block-triangular matrix. 
 

1 0 0 0 0 0  
1 -1 0 0 0 0  
-6 1 1 0 0 0  
2 1 4 1 -3 5  
-9 1 1 7 13 1  
1 1 2 -1 -5 3  

The matrix has been block-partitioned: 
There are 3 blocks (1 x 1) and one block (3 x 3) 
 

 
We observe that this algorithm does not provide any information about the success of the 
process. 
It simply stops itself when there are no more elements to permute. At the end of the process, if 
the result matrix is in block-triangular form, then the original matrix is reducible. Otherwise, it 
means that the original matrix is irreducible and its flow-graph is strong connected. 
 
 
The Score-Function 
The matrices used up to now had all zero elements completely filled into the upper-triangle 
area 
Now let’s see what happens if the matrix has more zeros than those tightly necessary for block 
partitioning (spurious zeros). In that case not all permutations will be useful for grouping zeros. 
Same of them will be useless and same others even will go zeros away from the upper-right 
corner.  
Thus, it is necessary to measure the goodness of each permutation. 
By a simple inspection it is easy to select the “good” permutations from “bad” permutations. But 
in automatic process it is necessary to choose a function for evaluating the permutation 
goodness: the score-function is the measure adopted in this algorithm. 
 
The score function counts the zeros in the upper triangle area 
(grey) before (A) and after the permutation (B)  returning the 
difference.  

∑∑ −=
AB

jiwjiwscore ),(),(
 

The score will be positive if the permutation will be 
advantageous otherwise will be negative or null.  

 
The zeros have not the same weight: the zeros nearest to the upper-right corner have a higher 
weight, because the matrix filled with zeros close to the upper-right corner is better than the 
one with zeros close to the first diagonal. 
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 x x 0 x 0 0  x x x x x x 
 x x x x 0 0  x x 0 x x x 
 x x x x x x  x x x 0 x x 
 x x x x x x  x x x x 0 x 
 x x x x x x  x x x x x 0 
 x x x x x x  x x x x x x 
 better   worse  
 
Apart this concept, the weigh function   w(i,j)   is arbitrary. One function that we have tested 
with good result is the following 
 




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Weight function for a matrix (n x n) 
. 

 
For each permutation recognized, the algorithm measures the score; if positive the permutation 
is performed, otherwise the permutation is rejected and the algorithm continue to find a new 
permutation. After same loops the zeros disposition will reach the maximum score possible; 
every other attempt of permutation will produce a negative or null score. So the algorithm will 
stop the process. 
 
Same examples  
Now let’s see the algorithm in practical cases 
 
   A        PTA P    
 1 2 0 2 0 0   1 3 0 0 0 0  
 0 1 2 0 -3 0   1 3 0 0 0 0  
 0 0 1 0 5 3   5 3 1 0 0 0  
 0 3 1 1 0 0   -3 0 2 1 0 0  
 0 0 0 0 1 3   0 0 1 3 1 0  
 0 0 0 0 1 3   0 0 0 2 2 1  
                
 
P = [e5, e6, e3, e2, e4, e1] 
Accepted permutations = 6 
Rejected permutations = 4 
 
     A            PTA P      
 3 0 0 0 0 0 2 3 0 4   1 2 0 0 0 0 0 0 0 0  
 6 1 6 3 0 2 5 1 0 2   1 1 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 1 0 0 0   0 5 1 5 0 0 0 0 0 0  
 8 1 8 1 0 0 7 1 0 0   2 0 4 3 3 0 0 0 0 0  
 10 1 10 5 0 0 9 1 5 0   3 0 6 4 1 0 0 0 0 0  
 0 1 7 4 0 1 6 1 0 3   5 6 2 6 1 1 3 2 0 0  
 0 0 2 0 0 0 1 0 0 0   7 8 0 8 1 1 1 0 0 0  
 4 0 0 0 0 0 3 1 0 6   6 7 3 0 1 1 4 1 0 0  
 9 1 9 4 -1 3 0 1 1 5   0 9 5 9 1 1 4 3 1 -1  
 5 0 5 0 0 0 0 0 0 1   9 10 0 10 1 1 5 0 5 0  
                        
 
P = [ e7, e3, e10, e1, e8, e2, e4, e6, e9, e5 ] 
Accepted permutations = 9 
Rejected permutations = 10 
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     A            PTA P      
 1 0 1 0 1 0 1 6 0 1   1 0 0 0 0 0 0 0 0 0  
 1 1 0 1 1 1 1 1 1 0   1 1 0 0 0 0 0 0 0 0  
 0 0 1 0 0 0 0 0 0 0   1 5 1 0 0 0 0 0 0 0  
 1 0 0 1 1 4 1 1 0 1   1 1 4 3 0 0 0 0 0 0  
 0 0 1 0 1 0 5 0 0 0   0 1 0 4 1 0 0 0 0 0  
 1 0 1 0 0 1 1 1 0 0   1 1 1 6 1 1 0 0 0 0  
 0 0 1 0 0 0 1 0 0 0   1 1 0 1 0 1 1 0 0 0  
 0 0 1 0 4 0 1 3 0 0   0 1 1 1 1 1 4 1 0 0  
 1 0 1 3 0 4 1 1 1 1   1 1 0 1 1 1 4 3 1 0  
 0 0 0 0 0 0 1 4 0 1   0 1 1 1 0 1 1 1 1 1  
 
P = [ e3, e7, e5, e8, e10, e1, e6, e4, e9, e2 ] 
Accepted permutations = 7 
Rejected permutations = 1 
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         A           

3 0 8 0 0 3 0 3 0 0 0 6 0 0 0 14 8 0 7 0 
4 4 0 0 0 6 0 6 0 0 3 9 0 0 0 20 0 0 10 4 
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 
0 0 17 10 10 0 10 0 10 0 0 15 0 10 10 0 17 10 16 0 
4 9 16 9 9 11 9 11 9 9 8 14 9 9 9 30 0 9 15 9 
0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 10 0 0 20 0 
0 0 20 20 0 0 13 20 0 20 12 0 0 13 13 38 20 13 0 13
0 0 0 0 0 2 0 2 0 0 0 20 0 0 0 0 7 0 6 0 
4 11 18 0 20 13 11 13 11 11 10 16 11 11 11 34 18 0 17 11

20 5 0 0 0 7 0 0 0 5 0 0 0 0 0 0 1 0 11 5 
4 0 9 0 0 0 0 4 0 0 1 0 0 0 0 20 0 0 8 0 
0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 4 0 3 0 
4 6 13 0 0 8 0 8 0 6 5 11 6 0 0 0 0 0 12 6 
0 7 14 0 0 9 0 9 0 7 20 12 7 7 0 0 0 0 13 0 
4 0 19 12 12 14 12 14 12 0 0 17 0 12 12 36 19 12 18 0 
0 0 5 0 0 0 0 0 0 0 0 3 0 0 0 8 5 0 4 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
4 8 15 0 0 10 0 10 0 8 7 13 8 8 0 0 0 8 14 8 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 
4 0 10 0 0 5 0 5 0 0 2 8 0 0 0 18 0 0 0 3 

 
        PTA P           

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 4 5 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 20 0 4 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 6 0 20 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 8 6 14 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 
0 8 9 0 20 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 10 8 18 5 5 4 2 3 0 0 0 0 0 0 0 0 0 0 
0 10 0 9 20 6 6 4 3 4 4 0 0 0 0 0 0 0 0 0 
1 11 0 0 0 7 0 20 0 5 5 5 0 0 0 0 0 0 0 0 
0 12 13 11 0 8 8 4 5 6 6 6 6 0 0 0 0 0 0 0 
0 13 14 12 0 9 9 0 20 0 7 7 7 7 0 0 0 0 0 0 
0 14 15 13 0 10 10 4 7 8 8 8 8 8 8 0 0 0 0 0 

19 18 19 17 36 14 14 4 0 0 0 0 0 12 12 12 12 12 12 12
17 16 17 15 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10
20 0 20 0 38 0 20 0 12 13 0 20 0 13 13 13 20 13 0 0 
18 17 18 16 34 13 13 4 10 11 11 11 11 11 0 11 0 11 11 20
0 15 16 14 30 11 11 4 8 9 9 9 9 9 9 9 9 9 9 9 

 
P = [ e17, e19, e3, e12, e16, e6, e8, e1, e11, e20, e2, e10, e13, e14, e18, e15, e4, e7, e9, e5 ] 
Accepted permutations = 18 
Rejected permutations = 237 
 
_________________________________________________________________________ 
 
As we can see, also for larger matrices the number of permutations remains quite limited. 
Regarding this and that the permutation is much faster then any other arithmetic operation in 
floating point, we can guess the high speed of this algorithm 
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In Excel, with Matrix.xla,  is very easy to study the matrix permutations. 
A simple arrangement for (6 x 6) matrices is shown in the following example. We have used the 
function MatPerm . When you change the permutation numbers, also the permutation matrix 
changes an, consequently the final transformed matrix 
 

 
 
 
 
The Shortest-Path-algorithm 
The above algorithm does not say if the matrix is irreducible. For that comes in handy the 
shortest-path matrix, built by the Floyd's algorithm. In Matrix.xla you can perform this by the 
function Path_Floyd or by the macro "Macros>Shortest Path" 
 
Example. Say if the given matrix is reducible 
 

 
 
The shortest-path matrix show the presence of empty elements. For example, the element a12 
is null, meaning that there is no path reaching the node 2 from the node 1. This is sufficient for 
saying that the given matrix is not strong connected and thus, reducible. 
 
Example. Prove that, on the contrary, the following matrix is irreducible 
 

 
 
The shortest-path matrix is dense, meaning that every node can be reached from any other. 
For definition, the given matrix is strong connected and thus, irreducible  
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Limits in matrix computation 
 
One recurrent question about matrices computation is: - what is the max dimension for 
a matrix operation, for example the determinant, or inversion? - 
Well, the right answer should be: it depends. Many factors, such as hardware 
configuration, algorithm, software code, operating system and - of course - the matrix 
itself, contribute to limit the max dimension. One sure thing is that the limit is not fixed 
at all. 
In the past, the main limitation was memory and elaboration speed, but nowadays 
these factors are not more a limit. We can say that, for the standard PC, the main 
limitation is due to the 32-bit arithmetic and to the matrix itself. 
 
Suppose you have a dense matrix (n x n) with its elements aij randomly distributed 
from -k  to k. With this hypothesis the determinant grows roughly as:  

     Log(|D|)  ≅ n Log(k) + 0.0027⋅n2  ≅ n Log(k)  

where Log is decimal logarithm, n is the dimension of the matrix, k its max value 
 
In 32 bit double precision the max value allowed is about  1E+300, 1E-300. So if we 
want to avoid the overflow/underflow error, we must constrain: 

      300 ≥ n Log(k)          (1) 

If we plot this relation for all points (k, n) we have the area for computing (blue area in 
the graph below).  On the contrary, the dangerous error area is the remain (white) area 
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How does it work? 
Simple. If you have to compute the determinant of a matrix (80 x 80)  having values no 
more than 1000, the point (1000, 80)  falls into the blue area; so you will be able to 
performs this operation. 
On the contrary, If you have  a matrix (80 x 80)  having values up to 1E+7, the point  
(1E+7, 80)  falls into white area; so you will probably get an overflow error  
 
From this graph we see that matrices (25 x 25) or less, can be elaborated for all 
values, while matrices (100 x 100) or more can be computed only if their values are 
less that 1000 
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Of course this result is valid only for generic dense matrices not ill-conditioned. If the 
matrix is ill-conditioned you could get an overflow/underflow error even for 
low/moderate dimension. Fortunately, there are also special kind of matrices that can 
be elaborated even if the constrain (1) is false. We speak about  diagonal, tridiagonal, 
sparse, block matrices etc. 
 
We have to say that, avoiding the overflow error is not sufficient to get a good result. 
We have to take care, specially for large matrices, to the round-off errors. They are 
quite lay and very difficult to detect.  Very often the result of large matrix inversion is 
take good even if it is completely wrong. 
If you think that this errors regard only large matrices, have a look to the following 
example: 
 
Compute the numeric inverse of this simple (3 x 3) matrix 
 

127 -507 245 
-507 2025 -987 

245 -987 553 
 
If you use a in 32-bit standard precision program on your PC, the answer probably 
looks like the following: 
 

-2.121E+14 -5.614E+13 -6.238E+12 
-5.614E+13 -1.486E+13 -1.651E+12 
-6.238E+12 -1.651E+12 -1.835E+11 

 
And the determinant? You probably get a results near to  DET = -6.867E-10  
If you repeat the calculus with other  programs you get similar results. Is there any 
reasons for suspecting this results? Yes, because this result is completely wrong !. 
 
In fact, the exact determinant is 0, the given matrix is singular and its inverse, simply 
does not exist (you can easily compute by hand with exact fractional numbers.  
(If you are lazy see Step-by-step matrix inversion with Gauss-Jordan algorithm ) 
 
In this case it was easy to analyze the matrix, but for a larger matrix (50 x 50) do you 
know what would happen? Before to accept any results - specially for large matrices -
we have to do same extra test. In the example above we have to  examine the SVD 
decomposition, that gives the following diagonal matrix: 
 

2646.049 0 0
0 58.9513 0
0 0 4.87038E-14

 
The last element is very near to the machine accuracy 1E-15, if we get the ratio 
between the lowest and the highest value we have: 

m = 4.87038E-14 / 2646.049  = 1.8406E-17  <<  1E-15 

The ratio is more less than machine accuracy , so we have to conclude that the matrix 
D, "numerically specking"  has one zero on the diagonal meaning that the given matrix 
is singular 
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Eigen-problems 
 

This chapter explains how to solve common problems 
involving eigenvalues and eigenvectors, with the aid of 
many examples and different methods.  

Eigen-problems 
Eigenvalues and Eigenvectors 
These problems are very common in math, physics, engineering, etc. Usually they consist 
in  solving the following matrix equation 

 

 

Where A is n x n matrix and the unknowns are  λ  and x, respectively called eigenvalue 
and eigenvector 4. Rearranging the equation (1) we have: 

 

 

This homogeneous system can have no-trivial solutions if its determinant is zero. That is: 

 

 

 

Characteristic Polynomial 
The left side of (3) is an n degree polynomial in λ  , − called characteristic polynomial - 
whose roots are the eigenvalues of the matrix A.  

For a (2x2)  matrix, the system (2) becomes: 

 

 

 

 
                                                      

4  In lingua italiana, λ e x  sono conosciuti come autovalore e autovettore 
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Computing the determinant we have the equation (3) in expanded form 

 

 

For a (3x3)  matrix, the system (2) becomes: 

 

 

 

 

And its characteristic equation (3) becomes 

 

 

With larger matrix the difficulty for computing the characteristic polynomial grows sharply; 
fortunately there is a very efficient way to compute the polynomial coefficients using the 
Newton-Girard recursive formulas. In Matrix.xla we can get these coefficients by the 
function MatCharPoly. 

 

Roots of characteristic polynomial 
Apart the 2nd degree case only, finding roots of a polynomial need numerical approximated 
methods. Matrix.xla has the function Poly_Roots that finds all roots - real or complex - of a 
given real polynomial, using the Lin-Bairstow method. This function is suitable for general 
polynomials up to 6-7 degree.  When possible, the function uses the Ruffini's method for 
finding small integer roots. 

There is also the function Poly_Roots_QR  for finding all polynomial roots. It uses the 
efficient QR algorithm and it is adapt for polynomial up to 10-12 degree. 

For complex polynomials there is the similar function Poly_Roots_QRC 

 

Case of symmetric matrix 
Symmetric matrix plays a fundamental role in numeric analysis. It has a great important 
feature.  Its eigenvalues are all-real. Or, in other words, its characteristic polynomial has 
only real roots. Another important reason for using symmetric matrices is that there are 
many straight, efficient and also accurate algorithms for the eigen-system solution; much 
more complicated, instead, for asymmetric matrices. 

 

Tip. There is a nice close formula for generating a (n x n) symmetric matrix having the first 
n natural numbers as eigenvalues 
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2 0 

0 1 
 

7/3 2/3 0 

2/3 6/3 -2/3 

0 -2/3 5/3 
 

2.5 1 0.5 0 

1 2.5 0 -0.5 

0.5 0 2.5 -1 

0 -0.5 -1 2.5 
 

2.6 1.2 0.8 0.4 0 

1.2 2.8 0.4 0 -0.4 

0.8 0.4 3 -0.4 -0.8 

0.4 0 -0.4 3.2 -1.2 

0 -0.4 -0.8 -1.2 3.4 
 

8/3 4/3 3/3 2/3 1/3 0 

4/3 9/3 2/3 1/3 0 -1/3 

3/3 2/3 10/3 0 -1/3 -2/3 

2/3 1/3 0 11/3 -2/3 -3/3 

1/3 0 -1/3 -2/3 12/3 -4/3 

0 -1/3 -2/3 -3/3 -4/3 13/3 
 

2.75 1.5 1.25 1 0.75 0.5 0.25 0 

1.5 3.25 1 0.75 0.5 0.25 0 -0.25 

1.25 1 3.75 0.5 0.25 0 -0.25 -0.5 

1 0.75 0.5 4.25 0 -0.25 -0.5 -0.75 

0.75 0.5 0.25 0 4.75 -0.5 -0.75 -1 

0.5 0.25 0 -0.25 -0.5 5.25 -1 -1.25 

0.25 0 -0.25 -0.5 -0.75 -1 5.75 -1.5 

0 -0.25 -0.5 -0.75 -1 -1.25 -1.5 6.25 
 

eigenvalues: 1, 2, 3, 4 

eigenvalues: 1, 2, 3 

eigenvalues: 1, 2 

eigenvalues: 1, 2, 3, 4, 5 

eigenvalues: 1, 2, 3, 4, 5, 6 

eigenvalues: 1, 2, 3, 4, 5, 6, 7, 8 
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Example – How to check the Cayley-Hamilton theorem 
 
Regarding the characteristic polynomial  P(λ)  an important theorem, known as Cayley-
Hamilton‘s theorem - stats that the any square matrix A verifies its characteristic 
polynomial. That is, in formula: 
 P(A)  = O                      (where O is the null matrix) 

The above matrix equation can be formally obtained substituting the variable λ  with the 
matrix A. Let’s see how to test this statement with a practical example in Excel. 
Given the following (3 x 3) matrix 
 
  11 9 -2  
 A = -8 -6 2  
  4 4 1  

Its characteristic polynomial  is: 
326116)( λλλλ −+−=P  

 
After substituting λ with A, we have 

 
326116)( AAAIAP −⋅+⋅−⋅=  

Evaluating this formula by hand is quite tedious, but it is very easy in Excel. Let’s see the 
following spreadsheet arrangement using the function M_POW  
 

 
Note that we have inserted the P(A) formula as an array function  {=….} 
 
Of course it is also possible to perform the matrix powers with the matrix product. 
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Eigenvectors 
Logically speaking, once we have found an eigenvalue we can solve the homogeneous 
system (2) in order to find the associate eigenvector.  

 

 

Normally for each real eigenvalues having one multiplicity, there is only one eigenvector. 
For multiplicity 2, we will find two eigenvectors or even only one. 

 

Step-by-step method 
The method explained above is general and is valid for all kind of matrices. It is known by 
every math student and it is very popular. For this reasons is explained in this chapter, 
despite his intrinsically inefficiency. As we can see in the following paragraphs, there are 
other methods that can compute both eigenvectors and eigenvalues at the same time in a 
very efficient and fast way. They are suitable for larger matrices, while the step-by-step 
method can be applied to matrices of low dimension (usually from 2x2 , up to 5x5).  

But didactically speaking this method is still valid and it can help when other methods fail or 
raise doubts. 

Let's see how it works with same examples 

 

 

Example - Simple eigenvalues 
Find all eigenvalues and associated eigenvectors of the following matrix  

 

    A = 

 

 

Reassuming the step-by-step method, we have to: 

1. Compute the characteristic polynomial's coefficients 

2. Find its roots, that is the matrix eigenvalues λ i 

3. For each root  λ i  build the matrix  A − λ i I 
4. Find the associate eigenvector x i  solving the homogeneous system 

 

For task 1) we use the function MathCharPoly; for task 2) we use the function Poly_Roots; 
task 3) are performed with M_ID function that return the identity matrix; finally task 4) use 
the function SYSLINSING to find a solution of the singular system. 

 

-4 14 -6 
-8 19 -8 
-5 10 -3 

iii xxIA        0)  ( ⇒=−λ
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For the given matrix, we have found the following eigenvalues and eigenvectors 

 

 

 

 

 

 

Example - How to check an eigenvector 
Once we have found the eigenvectors, we can easily verify them by simple matrix 
multiplication.  

 

 

If x is an eigenvector, the vector u must be exactly a  λ  multiple of the vector x , as we can 
see in the worksheet bellow 

 

 
 

Eigenvalues 
λ1 2 
λ2 3 
λ3 7 

Eigenvector 
x1 x2 x3 
-1 2 2 
0 1 2 
1 0 1 

xuxAu iiii        λ=⇒=



 

 63 

Eigenvectors are not unique. It can be easy prove that any multiple of an eigenvector is an 
eigenvector too. It means that if (-1, 0, -1) is an eigenvector, other possible eigenvectors 
are:  

Matrix   Eigenvalue  Eigenvectors … 
-4 14 -6    -0.04 -0.5 -1 -2 -3 -4 -5 
-8 19 -8  λ =2  0 0 0 0 0 0 0 
-5 10 -3    0.04 0.5 1 2 3 4 5 

 

For convention, mathematicians use to take the eigenvector with norm 1, that is: | x | =1. 
In that case it is called eigenversor.   

Following this rule the 
eigenvectors matrix becomes as 
we can see at the right 

 

Sometime, in order to avoid 
decimals numbers, we normalize 
only the smallest value of the 
vector; for that, we divides all 
values for the GCD  

 

The SYSLINSING function adopts this solution. If you want to get the eigenversors you 
have to do it manually. 

 

Example - Eigenvalues with multiplicity  
Find all eigenvalues and associated eigenvectors of the following matrix  

 

   A = 

 

 

For the given matrix we have found two 
roots:  

 λ = 1 ,  m = 1 

 λ = 2 ,  m. = 2 

 

With the eigenvalue with multiplicity = 1, 
we get one eigenvector; while with the 
second eigenvalue with multiplicity = 2, 
we get two eigenvector 

 
Tip: accuracy of multiple roots is in general lower than the one of the singular roots. For this reason, sometimes, 
the SYSLINSING function cannot return any solution. In those cases, try to set the SYSLINSING parameter 
MaxError less then 1E-15, depending from the eigenvalue accuracy (usually for a root with m. = 2, we set 
MaxError = 1E-10) 

 

-7 -9 9 
6 8 -6 
-2 -2 4 
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We note that the matrix obtained with eigenvalue 2 has tree row multiple each other's. So 
its rank is 1 and its solution generate a subspace of 3 -1 = 2 dimension.  

(See for better details the Rouché-Capelli Theorem in the previous chapter) 

 

But this is always valid? The multiplicity gives the dimension of the eigenvector 
subspace? Unfortunately no. There are cases in which the multiplicity doesn't' t 
correspond to the associate eigenvectors.  
Lets' see the following example. 

 

 

Example - Eigenvalues with multiplicity not corresponding to 
eigenvectors 
Find all eigenvalues and associated eigenvectors of the following matrix  

 

   A = 

 

 

For the given matrix the characteristic 
polynomial is: 

 

 

That has two roots:  

 λ = 0 ,  m = 1 

 λ = 2 ,  m. = 2 

 

With the eigenvalue with multiplicity = 1, 
we get one eigenvector; with the second 
one with multiplicity = 2, we get only one eigenvector, not twice. 

 

 

Example - Complex Eigenvalues  
Sometime happens that not all roots of the characteristic polynomial are real. In that case 
the eigenvectors associate at complex eigenvalues are complex too. 

Find all eigenvalues and associated eigenvectors of the following matrix  

 

    A = 

 

The characteristic polynomial is:   

1 2 1 
2 0 -2 
-1 2 3 

9 -6 7 
1 4 1 
-3 4 -1 

λλλ 44 23 −+−

504612 23 +−+− λλλ
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The eigenvalues are  λ 1 = 2 , λ 2 = 5+ j  , λ 3 = 5 − j 

In Matrix.xla there is not a SYSLINSING for solve singular complex system, but we can 
derive a real system from the original complex one: 

Separating both eigenvalue and eigenvector in their real and imaginary parts: 

 

The homogeneous linear system, becomes 

 

Rearranging: 

 

The above complex equation is equivalent to the following homogeneous system 

0
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Let's see how to arrange a solution in Excel 

The 6 x 6 homogeneous system matrix is built in four 3x3 sub-matrices. 

 
The solution of the homogeneous system returned by SYSLINSING is conceptual divided 
in two parts: the upper contains the real part of the eigenvectors; the lower there is the 
imaginary parts of the same eigenvectors. 

imre jλλλ += imre jxxx +=

( )( ) 0)(       0)( =++−⇒=− imreimre jxxIjAxIA λλλ

( ) ( ) 0)(  )( =−+−++− imrereimimimrere xIAxIjxIxIA λλλλ
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Substituting the conjugate eigenvalues we find conjugate eigenvectors. 

The case of real eigenvalue 2 is the same of the above example, so we do not repeat the 
process. Rather we want to show here how to arrange a check for complex eigenvectors. 

 

Example - Complex Matrix 
Matrix.xla has several functions developed for solving the eigen-problem for complex 
matrices of moderate dimension. 
Following the step-by-step method previous seen, we need the following functions: 

• MatCharPoly_C - computes the complex coefficient of the characteristic polynomial 
• Poly_Roots_QRC - computes the roots of a complex polynomial 
• MatEigenvectorInv_C - computes the eigenvectors of a complex matrix 

 
4+3j 2-4j 4+5j 5-4j 
1+2j 2 1+2j 2-j 
-2+4j 4+2j -2+2j 2+6j 
3-3j -3-3j 3-3j 1-3j 

 
 
A possible arrangement is shown in the following worksheet. 
 

 
 
Note that the given matrix has distinct eigenvalues: 2 real and 2 complex 
This means that its eigenvector are distinct and we can use the inverse iteration algorithm 
for finding them. Note also that, in general, at a real eigenvalue does not correspond to a 
real eigenvector. Curiously the only real eigenvector corresponds to the imaginary 
eigenvalues λ = −2j 
 
 
Example - How to check a complex eigenvector 
Given the matrix A and one of theirs eigenvalue λ, prove that the vector x is an eigenvector 

 

  A = 

 

 

The test can be arrange as in the following worksheet 

 

9 -6 7 
1 4 1 
-3 4 -1 

xre xim 
-1 -2 
-1 0 
0 1 

λ = 5+j 
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We have used the function for complex matrix multiplication M_MAT_C of Matrix.xla. Note 
that we have to insert the imaginary part of the matrix because those complex functions 
always request both parts: real and imaginary. 
 
There is also another way to compute directly the eigenvector of a given eigenvalue: the 
functions MatEigenvector  and MatEigenvector_C of Matrix.xla return the eigenvector 
associate to their eigenvalues; the first function works for real eigenvalues and the second 
one for complex. See the chapter "Functions References" of the Vol. 2 for details  
 
In the following arrangement we have used the MatEigenvector_C for calculating the 
eigenvectors associated and the M_PRODS_C for obtaining the complex scalar product 
 

 
 
Of course the final result is equivalent 
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Similarity Transformation 
This linear transformation is very important because it leave eigenvalues unchanged. Let's 
see how it works. Giving a square matrix A and e second square matrix B we generate a 
third matrix C by the formula: 

C = B-1 A B 
We say:  C is similarity transformed of A by matrix B 

Similarity transformations play a crucial role in the computation of eigenvalues because 
they leave the eigenvalues of a matrix unchanged. Thus, eigenvalues of A are the same of 
those of C, for any matrix B  

It can be easily demonstrate that det(C - λ I) = det(A - λ I) 
In fact, remembering that   I = B-1 B,  we can write:  

det(C - λ I) = det(B-1 A B - λ I) = det(B-1 A B - λ B-1 B) 

But, rearranging, we have 

  det(B-1 A B - λ B-1 B) = det(B-1 (A B - λ B))  = det(B-1 (A - λ I) B)) = 

 = det(B-1 ) det (A - λ I) det (B) = det (A - λ I) det(B-1 ) det (B) = det (A - λ I) 
 

 

Example - verify that the similarity-transformed matrix of A by the matrix B has the same 
eigenvalues. 

To prove that eigenvalues are the same it is sufficient that the characteristic polynomials of 
A and B are equals. For computing the transformed matrix it is useful the function M_BAB 
of Matrix.xla. But, of course we can use, as well, the standard formula  
=MMULT(MMULT(MINVERSE(E3:G5),A3:C5),E3:G5) 

 

 
 

For computing the characteristic polynomial coefficients we have used the function 
MatCharPoly 

 

 



 

 69 

Factorization methods 
The heart of many eigensystem routines is to perform a sequence of similarity 
transformation until the result matrix is nearly diagonal with small error. 

 

A1 = (P1)-1 A (P1) 

A2 = (P2)-1 A1 (P2) 

A3 = (P3)-1 A2 (P3) 

................. 

 An = (Pn)-1 An-1 (Pn) 

 

Eigenvalues of a diagonal matrix are simply the diagonal elements; but, because they are 
equal to the matrix A for the similarity property, we have found also the eigenvalues of the 
matrix A. We found this strategy in algorithms such as Jacobi' iterative rotations, QR 
factorization, etc. 

Note: This iterative method does not converge for all matrices. There are several 
convergence criterions. One of the most popular says that convergence is guaranteed for 
the class of symmetric matrices. 

 

 

Eigen-problems versus resolution methods 
In the above paragraph we have spoke about the general method to resolve eigen-
problems. It starts form the characteristic polynomial and builds the solutions step-by-step. 
It is valid for any kind of matrix, with real or complex eigenvalues. That fact is that this 
method can be used only for low dimension matrices. When the matrix size is higher than 
3, this method becomes quite tedious, long and inefficient.  

To overcome this, many algorithms have been developed. Generally, they calculate all 
eigenvalues and eigenvector by efficient iterative methods. The price is that those methods 
are no more general but they are specialized for matrix class type. Very efficient algorithms 
exist for the symmetric matrix class, but the same algorithm cannot work, for example, with 
complex eigenvalues matrices. So, for a specific eigen-problem, we have to analyze which 
method can be applied. 

Matrix.xla offers several different methods; the range of application is synthesized in the 
following table  

  Real eigensystem  Complex eigensystem 

Method 
Symmetric 
real matrix 

Real 
matrix 

Real 
matrix 

Complex 
matrix 

Jacoby yes no no no 
QR factorization yes  yes  yes yes  
Power yes yes no no 
Characteristic polynomial yes yes yes yes 
Inverse iteration yes yes yes yes 
Singular system yes yes yes yes 

 
 

There are also special efficient algorithm for tridiagonal and Toeplitz, matrices. 

DA n
n  → ∞→

−1
Where D is diagonal 
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Jacobi's transformation of symmetric matrix 
For real symmetric matrices, Jacobi method is convergent and gives both eigenvalues and 
eigenvectors. It consists of a sequence of orthogonal similarity transformation, each of 
them – called Jacobi's rotation - is just a plane rotation that annihilate one of the elements 
out of the first diagonal.  

Referring to the paragraph "Factorization methods", this method gives us two matrices: D 
(eigenvalues) and U (eigenvectors), being: 

 

 

 

 

Example - Solve the eigenproblem for the following 5x5 symmetric matrix 

 

 

        A = 

 

 

 

 
 

We can note the high clean of this method. Just plain and straight! By default, both 
functions use 100 iterations to reach this high accurate result. Sometime, for larger 
matrices, may be need to increase this limit or you have to accept less precision. 

 

Tip. Jacobi's algorithm returns eigenvalues 
in the first diagonal. If you like to extract 
them in a vector, comes in handy the 
function MatDiagExtr 

 

 
 

 

9 -26 -14 36 24 

-26 14 -4 46 14 

-14 -4 -6 -6 -54 

36 46 -6 19 -4 

24 14 -54 -4 -11 
















=−∞→

n

nn
A

λ

λ

...0
.........
0...

lim
1

1
UPPPP nnn

=−∞→ 121 ... lim



 

 71 

 

 

 

 

Example - Compute the first steps A1, A2, ... A6 of the Jacobi's algorithm and study the 
convergence of the previous example 

Each step of the Jacobi's rotation method makes zero the two highest values out of the first 
diagonal. At next steps the zeros cannot be preserved but they are getting lower and lower 
step by step. The diagonalization error indicates this convergence, slow but inexorable, to 
zero 

 
 

For symmetric matrix the convergence is 
always guaranteed. In our example, after 
15 steps we have an average 
diagonalization error of about 0.01 

 

 

 

Orthogonal matrices 
The eigenvectors matrix returned by the Jordan algorithm is "orthogonal" with each vector 
having norm 1; that is, an "orthonormal" matrix 

Indicating the scalar product with the symbol  •  , the normal and orthogonal conditions are: 

 

 

 

 

 

Orthogonal matrices have also other interesting features.  

If U is orthogonal, we have   ⇔ U-1 = UT    

If U is also orthonormal; we have  ⇒ |det(U)|= 1  





≠⇒
=⇒

==•
ji
ji

xx ijji     0
     1

δ
In other words, the scalar product of a vector for 
itself must be 1; for any other different vector 
must be 0. ( δij is called Kroneker's symbol) 

x11 • x11 = | x11|2 = 1 

x11 • x12 = x11 • x13 = x11 • x14 = 0 
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Pay attention that the second statement is not invertible. There are matrices with det = 1 
that are not orthogonal at all. 

 

 

     
1

21
11

det =








 

The matrix at the left, for example, has det =1 (unitary) but is not 
orthogonal. Also all the Tartaglia's matrices, seen in the previous 
chapters, have always |det|=1 but they are never orthogonal. 
 

 

 

Example - verify the orthogonality of the eigenvectors matrix of the above example 

ProdScal   

0.6 0.4 -0.4 0.4 -0.4 
-0.4 0.4 0.6 0.4 -0.4 
0.4 0.6 0.4 -0.4 0.4 
0.4 -0.4 0.4 0.6 0.4 
-0.4 0.4 -0.4 0.4 0.6 

 

 
 

Many times the matrix product generates the round-off error as in this case. We can sweep 
them with the function MatMopUp  

 

To verify, we can calculate the cross scalar product 
of each pair of columns with the help of the function 
ProdScal. But it will tedious for large matrix. It is 
faster using the identity  U UT = I, as shown in the 
above worksheet. 
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Eigenvalues with QR factorization method 
Another popular algorithm to find all eigenvalues of a matrix is the QR factorization method. 
The heart is the following factorization of a matrix A: 

 A = Q R  where Q is orthonormal and R is triangular upper 

This factorization is always possible; you can easy make such factorization in Matrix.xla 
with the function Mat_QR . 

This method applies the following steps: 

1. Factorize the given matrix   A = Q R    
2. Multiply the two factors  R  and  Q  obtaining a new matrix   A1 = R Q    
3. Factorize the new matrix   A1 = Q R      and repeat the step 2 an 3 

 

We have the iterative process, starting with A: 

A = Q R ⇒ A1 = R Q 

A1 = Q1 R1 ⇒ A2 = R1 Q1 

A2 = Q2 R2 ⇒ A3 = R2 Q2 

...................  ............... 

Ap = Qp Rp ⇒ Ap+1 = Rp Qp 

 

With the function Mat_QR_iter it is very easy to test how this process works. 

 

Example - calculate the first 10 and 100 steps of the QR algorithm for the following  
symmetric matrix having the eigenvalues 1, 2, 3, 4, 5 

 

2.6 1.2 0.8 0.4 0 
1.2 2.8 0.4 0 -0.4 
0.8 0.4 3 -0.4 -0.8 
0.4 0 -0.4 3.2 -1.2 
0 -0.4 -0.8 -1.2 3.4 

 

 

If the eigenvalues are all distinct in 

modulo:   |λ 1| > |λ 2| > |λ 3| >...> |λ n| 

and A is symmetric; then the matrix A p 

converges to diagonal form, where the 

elements are the eigenvalues of A 

We use the function Mat_QR_iter for performing the 
first 10 step of the QR algorithm. The convergence to 
the diagonal form is evident and becomes more close 
after 100 iterations. 
Note the eigenvalues 1, 2, 3, 4, 5 appearing in the 
diagonal 
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When the given matrix is not symmetric the method works the same; only the final matrix is 
triangular instead of diagonal. See the following example. 

 

Example - calculate the first 10 and 100 steps of the QR algorithm for the following  
asymmetric matrix having the eigenvalues 1, 2, 3, 4, 5 
 

5 -3 -1 3 -7 
7 -5 -1 9 -13 
-4 4 3 -4 8 
-1 1 0 3 2 
-4 4 0 -4 9 

 

 
 

Does the QR method always converge? There are cases - very rare indeed - where the 
algorithm fails. This happens for example when the eigenvalues are equal and opposite. 
Let's see this example 

 

Example - The following (3x3) matrix has the eigenvalues  λ1 = 9 , λ2 = −9 , λ3 = 18. Apply 
the QR method we get. 

 

5 -8 -10 
-8 11 -2 

-10 -2 2 
 

 

 

In this simple case QR fails (we note the two -9 out of the diagonal). It was not able to find 
the two opposite eigenvalues = ± 9 , but it has found only the 18 one. Note that in the same 
condition the Jacobi's algorithm finds exactly all the eigenvalues. 

 

Real and complex eigenvalues with QR method 
Starting from the simple QR method shown above, a more general QR algorithm was 
developed with important improvement - shifting for rapid convergence, Hessember 

We use the function Mat_QR_iter for performing the 
first 10 step of the QR algorithm. The convergence at 
the triangular form is evident and becomes more close 
after 100 iterations. 
Note the eigenvalues 1, 2, 3, 4, 5 appearing in the 
diagonal 
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reduction, etc. The result is a very robust and efficient QR general algorithm5 being able to 
find complex an real eigenvalues of any real matrix. 

This task is performed by the function MatEigenvalue_QR of matrix.xla  

Example: find all eigenvalues of the given symmetric matrix 
2.75 1.5 1.25 1 0.75 0.5 0.25 0

1.5 3.25 1 0.75 0.5 0.25 0 -0.25
1.25 1 3.75 0.5 0.25 0 -0.25 -0.5

1 0.75 0.5 4.25 0 -0.25 -0.5 -0.75
0.75 0.5 0.25 0 4.75 -0.5 -0.75 -1

0.5 0.25 0 -0.25 -0.5 5.25 -1 -1.25
0.25 0 -0.25 -0.5 -0.75 -1 5.75 -1.5

0 -0.25 -0.5 -0.75 -1 -1.25 -1.5 6.25
 

 
 

The function can also return complex 
eigenvalues. Let’s see this example 

This matrix has 2 real and 4 complex 
conjugate eigenvalues  

3 , 4 ,  2 ± 2j  , 1 ± 0.5j   

 
1 -0.5 0 0.5 0 0 

0.5 5 2 1 0 -2 
3.5 8.5 12 4.5 1 -7 
0 4 2 2 0 -2 
-7 -17 -16 -9 2 14 

4.5 14.5 14 8.5 1 -9 

 

 

Note how clean, easy 
and fast is the 
eigenvalues computation 
also in this case 

 

 

                                                      
5 Matrix.xla use the routine HQR and ELMHES derived from Fortran 77 EISPACK library 

As previous shown, this matrix has the 
first 8 natural eigenvalues 
1, 2, 3, 4, … 8 
 
We use the MatEigenvalue_QR to find 
all eigenvalues in a very straight way 
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Complex eigenvalues of complex matrix with QR method 
The function MatEigenvalue_QRC performs the complex implementation of the QR 
algorithm for a general complex matrix 
 
Example. Find the eigenvalues of the following matrix 
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This function accept also the compact rectangular format "a+bj" 
 

 
 
Note that the roots are always returned in split format 
 
 
How to test complex eigenvalues 
This test is conceptually very easy. We have only to compute the determinant of the 
characteristic matrix 

I A λ−  
 
For  this task, comes useful the functions MatChar_C and M_DET_C 
 

 
 
 
When the matrix size becomes higher, the round-off errors may mask the final result and 
the eigenvalue check may be not so easy and straight.  
Just to give you an idea of the problem, let's see the following example 
 
Example. Given the following (10 x 10) real matrix, prove that  1 is an eigenvalue  
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4569 -9128 -9136 -4556 -4484 9008 -9024 -4348 -9464 -9840 
2004 -4003 -4016 -1996 -1960 3952 -3976 -1936 -4200 -4356 

68 -136 -127 -76 -76 148 -128 -40 -124 -104 
-556 1112 1112 569 552 -1112 1104 512 1144 1172 
316 -632 -632 -316 -299 632 -624 -304 -648 -684 

-284 568 568 284 284 -547 576 268 580 648 
84 -168 -168 -84 -84 168 -143 -84 -176 -164 

144 -288 -288 -144 -144 288 -288 -115 -296 -304 
-72 144 144 72 72 -144 144 72 177 152 
-36 72 72 36 36 -72 72 36 72 109 

 
We can arrange a worksheet test like that 
 

 

If we compute the 
determinant of the matrix A − 
λ I , we see, surprisingly, that 
it is much more than zero. 
What is wrong? 
The fact is that we have 
computed the determinant 
with 15 digits floating point 
arithmetic and the round-off 
errors have masked the final 
true result 
If  we repeat the computation 
in integer mode, for example, 
by the function M_DET with 
the parameter IMODE = true, 
we get the correct result 

 
Note that, in general, we can have decimal matrices or we can have decimal eigenvalues, 
so we can use the trick of the exact integer computing. 
Perturbed eigenvalue method. In that case we should study the behavior of the 
determinant around the given eigenvalue. We can add random little increment ε to the 
eigenvalue, registering the correspondent absolute determinant. With the aid of the above 
functions, this process becomes quite handy. For example, giving incremental steps from 
1E-14 to 0.1, we can easily get the following table and plot 
 

λ ε | DET| 
1 1E-14 1.322093 
1 1E-13 1.1254013 
1 1E-12 2.4366796 
1 1E-11 0.316329 
1 1E-10 11.011358 
1 1E-09 84.180014 
1 1E-08 956.28487 
1 1E-07 9512.5687 
1 1E-06 95119.334 
1 0.00001 951267.55 
1 0.0001 9512010.6 
1 0.001 95059557 
1 0.01 944559562 
1 0.1 8.859E+09  

| DET|

0.1

10

1000

100000

1E+07

1E+09

1E+11

1E-14 1E-12 1E-10 1E-08 1E-06 0.0001 0.01 1
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How to find polynomial root with eigenvalues 

In a previous example we have shown how to compute eigenvalues by polynomial roots. 
Sometime it happens the contrary: we have to find polynomial roots by eigenvalues 
methods. 

Example - Find all the roots of the given 4th degree polynomial 

540147417 234 +−−+ xxxx  

We need to get a matrix having its 
characteristic polynomial the given 
polynomial. The companion matrix is 
what we need. It can be easily built by 
hand or - even better - by the function 
MatCmp 

 

 

 

 

When we have the matrix, we can apply a method to find the eigenvalues. Being the matrix 
asymmetric, we choose the QR method. 

 

 
 

Eigenvalues are also the roots of the given polynomial.  

 

Rootfinder with QR algorithm for real and complex polynomial 
The QR method is so robust and efficient that it is implemented in the rootfinder function 
Poly_Roots_QR  and Poly_Roots_QRC of Matrix.xla  

Thanks to its efficiency, it is especially adapt for higher degree polynomial. Let’ see this 
example 
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In the left 11th  degree polynomial all roots are real.  The right 10th  degree polynomial has 
both complex and real roots with double multiplicity. In the first case the general accuracy is 
about 1E-9; in the second one is about 1E-6. Even in this difficult case the QR algorithm 
returns a sufficient approximation of all the roots 

It is the main advantage of this method: to have a good stability for all roots configurations 
avoiding the disastrous accuracy lack, characteristic of other rootfinder algorithms. 

The function Poly_Roots_QRC works similar but for complex polynomials. 
Example. find the roots of the following polynomial 

·x)·x+·x+·x·x + i·(·x+·x+·x·x+·x·xx 84862202413622 2346234567 −−−−−−  
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Powers' method 
Powers' method can found the dominant6 real eigenvalue and its associate eigenvector of a 
real matrix. An ancient method, but still very popular, having same advantages: 

• It is conceptually simple in its first proposition; 
• It is robust; 
• It works with both real symmetric an asymmetric matrices 
• It has an important didactic meaning 

With the matrix reduction method it can find iteratively all real eigenvalues and eigenvectors 

But shell we begin to understand the heart of the algorithm: 

We suppose a 3x3 matrix (for simplicity) with 3 independent eigenvectors x1, x2, x3 and a 
dominant eigenvalue  λ1,  being: | λ 1 | > | λ 2 | > | λ 3 | 

Taken an arbitrary vector  v0 - called starting vector calculate the Rayleigh quotient (ratio) 
with the formulas: 

 

Iterating, we have: 
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Under certain conditions, the ratio converges to the dominant eigenvalue for n >> 1  and 
the associate eigenvector can be obtained by the formulas: 

 

 

We shell see how it works in a practical case 

 

Example - Analyze the convergence of the power's method for the following matrix  

 

-1 2 -2 

-2 -6 3 

-2 -4 1 
 

Let's see how to arrange the worksheet. First of all, insert the formulas as indicate to the 
left; than, select the appropriate range and drug to the right to iterate the formulas.  

Assume the starting vector to be   v0 = (1, 0, 0) 

 

                                                      
6 The eigenvalue that has the highest absolute value is the "dominant eigenvalue" 

00
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The matrix has three separate eigenvalues: 
λ1 = −3 , λ2 = −2  , λ3 = −1 
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Insert the formulas in the column E Select the range E1:E13  and drug to right  

 

 
 

As we can observe, the convergence to the dominant eigenvalue  λ1 = −3 and its associate 
eigenvector x = (0, 1, 1) is slow but evident.  

Rescaling. We note also a first drawback of this method; the values of vector v become 
larger step after step.  This could cause an overflow error for higher steps. To avoid this, 
the algorithm is modified inserting a vector rescaling routine after a fixed amount of steps. 

 

v9 v10  v9 v10 

-1 1             ⇒ -1E-04 1E-04 

-19682 59048 rescaling -1.968 5.905 

-19682 59048 dividing for 10000 -1.968 5.905 
 

 

Finding non-dominant eigenvalues.  Once the dominant eigenvalue λ1 and its associate 
eigenvector x1 are found, we may want to continue to compute the eigenvalues remaining. 

The value of the rescaling factor is 
not very important; only the 
magnitude is the main thing. 

Note also that the Rayleigh's ratio is 
not affected by rescaling 
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Compute the normalized of x and the new matrix A1 : 

 u1 = x1 / | x1 |   ⇒ A1 = A - λ1 u uT  

The matrix A1 has eigenvalues:  0,  λ2,  λ3 . Now, the dominant eigenvalues of A1 is λ2  
Therefore we can apply the power's method once more. 

 

Example - reduce the matrix A of the previous example with the eigenvalue λ1 = −3 and 
eigenvector x1 = (0, 1, 1).  Repeat the power's method to find the dominant eigenvector λ2    

 

 
 

The matrix A1 is the new reduced matrix. It should have all the eigenvalues of the original 
matrix A, except λ1. Let's see. Repeating the power method we will find its dominant 
eigenvalues. Choosing (0, 1, 0) for starting vector, we have something like this: 

 

 
 

As we can observe, the convergence to dominant eigenvalue  λ2 = −2 and its associate 
eigenvector x = (-2, 0.25, -0.75) is slow but evident. After 25 steps the error is less than 
about 1E-6 

 

The process Power's method + matrix reduction can be iterated for all eigenvalues. We 
have to pay attention that since the eigenvalues computing is approximated, round-off 
errors will be introduced in the next iterate steps; the last eigenvalue could be affected by a 
considerable round-off error. In general, the matrix reduction (or matrix deflation) method 
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becomes more inaccurate as we calculate more eigenvalues, because round-off error is 
introduced in each result and it accumulates itself as the process continues.  

 

Does the power's method always converge?  Although it has worked well in the above 
examples, we must say that there are cases in which the method may fail. There are 
basically three cases: 

• The matrix A is not diagonalizable; that means that has n linearly independent 
eigenvectors. Simple, but, of course, it is not easy to tell by just looking at A how 
many eigenvectors there are. 

• The matrix A has complex eigenvalues 

• The matrix A does not have a very dominant eigenvalue. In that case the 
convergence is so slow that often the max iteration limit has exceeded 

 

 

Eigensystems with the power method 

In Matrix.xla the power method is implemented by two main functions: 

• MatEigenvector_pow returns all eigenvectors 
• MatEigenvalues_pow returns all eigenvalues 

 

Just simple and straight. Let's see 

Example - solve the eigenproblem for the following symmetric matrix 

2.6 1.2 0.8 0.4 0 
1.2 2.8 0.4 0 -0.4 
0.8 0.4 3 -0.4 -0.8 
0.4 0 -0.4 3.2 -1.2 
0 -0.4 -0.8 -1.2 3.4 

 

 
The function MatEigenvector_pow has a second parameter: Norm. If TRUE, the 
function returns normalized eigenvectors (default FALSE). 
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Because of the symmetry, the eigenvector matrix U is also orthogonal. To prove it, simple 

check the relation I = U UT as shown it the above worksheet. 

Convergence. Why is there any starting vector in these functions? Well, this algorithm is 
started with a random generic vector. Many times it converges, but some times not. So if 
one of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-
try it or try to increase the parameter ITERMAX (default 1000). 

 

Example: solve the eigenproblem for the following asymmetric 6x6 matrix.  

 

-62 -65 -121 -41 95 26 
-43 -40 -77 -13 40 -98 
17 17 28 -13 -23 88 
16 16 32 25 -22 -64 
-26 -26 -52 -26 38 26 
-28 -28 -56 -28 28 13 

 

 
 

 

This matrix has eigenvalues −1, 3, −6, 9, 12, −15 
The Power's method can works also for asymmetric 
matrix. In this case we have left the round-off errors to 
give an idea of the general accuracy. 
Eigenvalues errors are shown in the last column. 
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Complex Eigensystems 

In Matrix.xla the eigen-problem of a general complex matrix is solved with the aid of the 
following main functions: 

• MatEigenvalues_QRC returns all the eigenvalues by the complex QR algorithm 
• MatEigenvectorInv_C returns all distinct eigenvectors by the inverse iteration 
• MatEigenvector_C returns the eigenvectors of associated eigenvalue 

 
Example 1. Find eigenvalues and eigenvectors of the following complex matrix 

2+4j -1+3j 3+j 
14-2j 11-3j -7+j 
-6-2j -3-j 11+7j 

 

 
 
In this case the eigenvalues are all distinct, therefore we can quickly obtain the 
associated eigenvectors by the inverse iteration algorithm 
 
Note that the eigenvectors returned by the function MatEigenvectorInv_C have always 
unitary module  (norm = 2). For changing the normalization type we can use the 
function  MatNormalize_C.  
 
When the eigenvalues are not all distinct we cannot use the inverse iteration but the 
singular system method performed by the MatEigenvector_C 
 
Example. The following matrix has only 2 distinct eigenvalues: 2, j 
 

 
 
Note that the eigenvalue λ = j with multiplicity = 2 has associated 2 eigenvectors 
returned in a (3 x 4) array. The eigenvalue λ = 2 has associated one eigenvector 
returned in the last (3 x 2) array 
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How to validate an eigen-system 

Example - Check the real eigen-system of the previous example 

In order to test an eigenvector matrix U of a given matrix A, we can use the definition 

 A U = (λ1 u1, λ2 u2,...  λ6 u6 )  

But before testing, we show how to arrange the eigenvector matrix for avoiding decimals. 
This is not essential, but it helps the visual inspection. 

First of all, we shell begin with eliminating round off error by the function MatMopUp  

 
Now, for each column, we choose the pivot, that is, the absolute minimum value, except 
the zero. 

 
 

 
 

 

Multiply each pivot for 
the corresponding 
eigenvector we obtain 
a new integer vector 
that it is still an 
eigenvector 

The matrix on the left is 
obtained by multiplying 
the original matrix for 
its eigenvectors matrix:  
A U. 
The matrix on the right 
is obtained by 
multiplying each 
eigenvectors ui for its 
corresponding 
eigenvalues. 
 
Because the two 
matrices are identical, 
the eigensystem  
(eigenvectors + 
eigenvalues) 
is correct. 
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How to generate a random symmetric matrix with given eigenvalues 
Many time, for testing algorithms, we need a symmetric matrix with known eigenvalues 
For building this test matrix, the following simple method can be useful 
 

• First, we generate a random (n x 1) vectors, v 
• Then we generate the Householder matrix H with the vector v 
• We create a diagonal ( n x n) matrix D with the eigenvalues that we want to obtain. 
• Finally we make a Similarity Transformation of matrix D by the matrix W. 

 
The result is a symmetric matrix with the given eigenvalues. 
 
Example: Suppose we want a (3 x 3) random symmetric matrix with eigenvalues = (1, 2, 4) 
We chose a random vector  v, like for example: 
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We create the associate Householder matrix H 
 
















−

−−
=

⋅
−=

3/23/13/2
3/13/23/2
3/23/23/1

2 2v
vvIH

T

 
 
We create the diagonal matrix D 
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We make the Similarity Transform of D by H 
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Note that, in this case, the inverse of H is the same of H. 
The result matrix A has the wanted eigenvalues = (1,  2,  4) 
 
If we want to avoid fractional numbers we can multiply the matrix A for 9 and we get a new 
symmetric matrix B 
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22810
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10225
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The eigenvalues of B are now multiply for 9; thus 9, 18, 36 
 
As we can see this method is general and can be very useful in many cases: for testing 
algorithm, formulas, subroutine, etc. 
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In the addin Matrix.xla, there are functions for generating Householder matrices and performing 
Similarity Transform. 
 

 
 
All this process is performed by the function  MatRndEigSym  
 
 
 
Eigenvalues of tridiagonal matrix 
Tridiagonal matrices are very common in practical numerical computation. These matrices can 
be worked with all methods show before, but there are specialized dedicated algorithms more 
efficient and faster to solve eigenvalues problem. We have to consider that many times 
problem involving tridiagonal matrices have a quite larger dimension. Also the storage of a 
tridiagonal matrix should be made with suitable cure. A general full matrix 30 x 30 requires 900 
cells, but for a tridiagonal one with the same dimension we need to store only 90 cells, saving 
more than 90%. Clearly a particularly attention is quite suitable.  
In matrix.xla there are the following specialized functions: 
 

• MatEigenvalue_QL finds all real eigenvalues with the QL algorithm 
• MatEigenvector3 computes the eigenvector of a real eigenvalue  
• MatEigenvalue_3U finds all eigenvalues for a uniform tridiagonal matrix 

 
All these function accept the matrix in standard form (n x n) or in compact form (n x 3) 
 

 
 
In the compact form we store only the diagonal and sub-diagonals values 
For tridiagonal matrices there are several useful lemmas that help us to discover the kind of 
eigenvalues 
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One rule says that: 
If each “perpendicular couple” of elements have the 
same sign, than the matrix has are all real eigenvalues 
(The condition is sufficient.) 
 
So we can apply the fast QL algorithm to calculate all 15 
eigenvalues of the given matrix 
 

 
 
In the following example we have computed all eigenvalues and the first 4 eigenvectors with a 
very good approximation (about 1E-14) 
 

 
 
Note that the eigenvectors returned by MatEigenvector3 are not normalized. Use for this task 
the MatNormalize function. 
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Eigenvalues of tridiagonal Toeplitz matrix (tridiagonal uniform) 
In numeric calculus is common to encounter symmetric, tridiagonal, uniform matrices like the 
following. For this kind, there is a nice close formula giving all eigenvalues for any size of the 
matrix dimension. 
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If the symmetric matrix has n x n dimension, eigenvalues are: 
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where k = 1, 2… n   
 

 
We can do the following observations: 

• All eigenvalues are real and distinct being the matrix symmetric 
• All eigenvalues are symmetric around the point “a” 
• For n odd exists the trivial eigenvalues  λ = a  
• All roots lie into the interval   a−2b < λκ < a+2b    

 
Also the eigenvectors matrix can be written in a closed compact form. 
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If the symmetric matrix has n x n dimension, the elements of 
the eigenvectors matrix are: 
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Where   i = 1, 2… n  , k = 1, 2… n   
 

 
 
The unsymmetrical tridiagonal uniform case can be led back to the above one. 
We distingue two cases: 
 1) The sub-diagonals have the same sign. In that case we can demonstrate that all roots are 
real and distinct. 
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If the matrix has n x n dimension, and bc > 0 , the 
eigenvalues are: 


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1
cos2

n
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where k = 1, 2… n   
 

 
All roots lie on the interval:  

bcabca k 22 +<<− λ  

 
2) The sub-diagonals have different sign. In that case we can demonstrate that all root are 
complex conjugate for n even; for n odd exists only one real root λ = a . 
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If the matrix has n x n dimension, and bc < 0 , the 
eigenvalues are complex: 

kk ia
n
kbcia δπλ +=
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where k = 1, 2… n   
 

 
All roots lie on the segment:  

are k =)(λ        ( ) bcimbc k −<<−− 22 λ  
 
Eigenvectors can be computed by the following iterative algorithm 
 

ax kk −= λ  
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Where : k = 1, 2… n  , i = 1, 2… n   
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b
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Example 
Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix 
 

10 1 0 0 0 0 0 0 
4 10 1 0 0 0 0 0 
0 4 10 1 0 0 0 0 
0 0 4 10 1 0 0 0 
0 0 0 4 10 1 0 0 
0 0 0 0 4 10 1 0 
0 0 0 0 0 4 10 1 
0 0 0 0 0 0 4 10 

 
We observe that the values of the sub-diagonals lower and upper have the same sign so all 
eigenvalues are real and distinct. 
They can be obtained by the following close formula: 









+
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1
cos2

n
kbcak
πλ

 
for k = 1, 2, …8     and where a = 10, b = 1, c = 4, n= 8 
 
Giving the following 8 eigenvalues 
 
λ1 13.7587704831436 
λ2 13.0641777724759 
λ3 12 
λ4 10.6945927106677 
λ5 9.30540728933228 
λ6 8 
λ7 6.93582222752409 
λ8 6.24122951685637 

 
All eigenvalues are contained into the interval (a – 4, a + 4) = (6, 14) 
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Example 
Find all eigenvalues of the following tridiagonal uniform 7 x 7 matrix 
 

10 2 0 0 0 0 0 
-1 10 2 0 0 0 0 
0 -1 10 2 0 0 0 
0 0 -1 10 2 0 0 
0 0 0 -1 10 2 0 
0 0 0 0 -1 10 2 
0 0 0 0 0 -1 10 

 
We observe that the sub-diagonal values have different sign and the dimension n is odd, then 
all eigenvalues are complex conjugate except only one real trivial root  λ = 10. 
They can be obtained by the following close formula: 
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cos2

 
 
for k = 1, 2, …7     and where a = 10, b = 2, c = −1, n= 7 
 
Giving the following 7 eigenvalues. 
 
 real im 

λ1 10 2.6131259297528
λ2 10 2
λ3 10 1.0823922002924
λ4 10 0
λ5 10 -1.0823922002924
λ6 10 -2
λ7 10 -2.6131259297528

 
 
 
Example 
Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix 
 

1 1 0 0 0 0 0 0 
-1 1 1 0 0 0 0 0 
0 -1 1 1 0 0 0 0 
0 0 -1 1 1 0 0 0 
0 0 0 -1 1 1 0 0 
0 0 0 0 -1 1 1 0 
0 0 0 0 0 -1 1 1 
0 0 0 0 0 0 -1 1 

 
We observe that the sub-diagonal values have different sign and the dimension n is even, then 
no real eigenvalues exist and all eigenvalues are complex conjugate. 
They can be obtained by the following close formula: 
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for k = 1, 2, … 8    and where a = 1, b = 1, c = −1, n= 8 
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Giving the following 8 eigenvalues.  
 

 real im 
λ1 1 1.8793852415718 
λ2 1 1.5320888862380 
λ3 1 1 
λ4 1 0.3472963553339 
λ5 1 -0.3472963553339 
λ6 1 -1 
λ7 1 -1.5320888862380 
λ8 1 -1.8793852415718 

 
 
Example 
Find all eigenvalues of the following tridiagonal uniform 8 x 8 matrix 
 

-2 1 0 0 0 0 0 0 
1 -2 1 0 0 0 0 0 
0 1 -2 1 0 0 0 0 
0 0 1 -2 1 0 0 0 
0 0 0 1 -2 1 0 0 
0 0 0 0 1 -2 1 0 
0 0 0 0 0 1 -2 1 
0 0 0 0 0 0 1 -2 

 
We observe that the matrix is symmetric so all eigenvalues are real and distinct. 
They can be obtained by the following close formula: 
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for k = 1, 2, …8     and where a = −2, b = 1, c = 1, n= 8 
 
Giving the following 8 eigenvalues 
 
λ1 -0.1206147584282 
λ2 -0.4679111137620 
λ3 -1 
λ4 -1.6527036446661 
λ5 -2.34729635533386 
λ6 -3 
λ7 -3.53208888623796 
λ8 -3.87938524157182 

 
All eigenvalues are contained into the interval (a – 2, a + 2) = (–4, 0) 
We observe that they are all negative 
The eigenvectors matrix can be obtained in a very fast way using the formula 
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That gives the following approximate eigenvectors’ matrix 
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0.34202 0.64279 0.86603 0.98481 0.98481 0.86603 0.64279 0.34202

0.64279 0.98481 0.86603 0.34202 -0.34202 -0.86603 -0.98481 -0.64279

0.86603 0.86603 0 -0.86603 -0.86603 0 0.86603 0.86603

0.98481 0.34202 -0.86603 -0.64279 0.64279 0.86603 -0.34202 -0.98481

0.98481 -0.34202 -0.86603 0.64279 0.64279 -0.86603 -0.34202 0.98481

0.86603 -0.86603 0 0.86603 -0.86603 0 0.86603 -0.86603

0.64279 -0.98481 0.86603 -0.34202 -0.34202 0.86603 -0.98481 0.64279

0.34202 -0.64279 0.86603 -0.98481 0.98481 -0.86603 0.64279 -0.34202
 
Note that the column-vectors are orthogonal. 
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Why so many different methods? 

Well, many times we have heard this question. The fact is that numerical methods can be 
regarded as tools for solving specific problems. Eigen-problems can lead to very large 
different solutions and, we must say that, they represent one of the most difficult aspects of 
the numerical calculus. So we need several tools to succeed in solving them. "How many 
screwdriver do you have?" More than one, surely. So we have not to be surprised for 
several different eigen-system methods. Sometime we will use one and sometime another. 

Look at this example 

 

Example - Find the eigenvalues of the following symmetric 3x3 matrix 

 

 

 

 

 

 
 

As we can see, two methods - Jacobi's method and characteristic polynomial - give us the 
correct solution, but the two others fail. In that case, the reason is the two eigenvalues sub 
dominant having the same modulo  (2 and -2). 

General speaking we put in evidence that same methods work fine for a certain problems 
class, but could fail for others. There is not a general method good for all. This is the 
Numeric Calculus! 

 

5 -8 -10 
-8 11 -2 

-10 -2 2 

We shell use same methods that we have studied:
• Characteristic polynomial 
• Jacobi's method 
• QR factorization (simple method) 
• Power method 
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Generalized Eigen-problem 
Given the following matrix equation 

A x = λ B x       (1) 

Where A and B are both matrices symmetric and B is positive definite, is said a 
generalized eigen-problem. 

 

Equivalent non symmetric problem 
This problem is equivalent to: 

(B-1A) x = λ x     ⇒   C x = λ  x      (2) 

In generally C is not symmetric even A and B they are. 

 

Example: transform a generalized eigen-problem into a standard eigen-problem, where the 
matrices  A and B are  

 A    B  
7 0 2  4 2 4 
0 5 2  2 17 10 
2 2 6  4 10 33 

 

In the following worksheet we have calculate the matrix   C = B-1 A 

 

 

 

 

 

 

 

 

 

 

 

As we can see, the matrix C is not symmetric even if A and B are both symmetric. In order 
to calculate the eigenvalues we have before extracted the characteristic polynomial with the 
function MathCharPoly; then we have approximated its roots with the function Poly_Roots. 
The approximate eigenvalues are: 

λ1 = 0.1717 λ2 = 0.3033 λ3 = 1.9444 

To solve the eigenvectors we can now follow the step-by-step method shown in the 
previous examples. But, we can also transform the given generalized problem into a 
symmetric one. Let's see how. 
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Equivalent symmetric problem 
Given the following matrix equation 

A x = λ B x       (1) 

Where A and B are both symmetric matrices and B is positive definite. It is called 
"generalized eigen-problem". 

In the previous paragraph we have learnt how to transform this problem into a standard 
eigen-problem setting  C = B-1A.  But C is not symmetric. Many algorithms works fine only 
for symmetric matrices. By contrast there is not equally satisfactory algorithms for not 
symmetric case. 

So, it is better to recover the given problem to a symmetrical matrix, by the Cholesky's 
decomposition 

B = L LT        (2) 

Where L is a triangular matrix.  

Substituting (2) into (1) and multiplying the equation by L-1 , we get:  

L-1 A x = λ (L-1L) LT x          ⇒     L-1 A x = λ LT x    

And, because   I = (LT)-1 LT   = (L-1)T LT  , we can write: 

L-1 A (L-1)T LT x = λ LT x          ⇒        L-1 A x = λ LT x    

Set the auxiliary matrix: W = L-1     and the auxiliary vector d = LT x    we have 

W A WT d = λ d          ⇒     D d = λ d     (3) 

The equation (3) is the new eigen-problem where  D = W A WT  is symmetric 

Eigenvalues of the problem (3) are equivalent to (1) while the original eigenvectors x can 
be obtained from eigenvectors d by the following formula: 

d = LT x     ⇒   x = ( LT)-1 d  ⇒ x = ( L-1)T d  
x = WT d 

That is, eigenvectors of (1) can be obtained by multiplying eigenvectors of (3) for the 
auxiliary matrix W. 

 

In Matrix.xla there is everything you need to solve generalized eigen-problem: Cholesky's 
decomposition can be done by the function Mat_Cholesky; eigenvectors and eigenvalues 
of symmetric matrix can be calculate with the Jacoby iterative rotations performed by the 
two functions MatEigenvalue_Jacobi and MatEigenvector_Jacobi.  
Thus, let's see how arrange a worksheet for solving a generalized eigen-problem, 
assuming the matrices A and B of the previous example 
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In this worksheet there are all formulas shown before. Formulas used for each matrix are 
written in blue, under the matrix itself 

 

 
 

 

Diagonal matrix 
The case in which the matrix B is diagonal is particularly simple because L is diagonal too 
and can be computed by a simple square root. Also the L-1 is quite simple: just take the 
inverse of each diagonal element. 

 

 

 

 

 

 

Let's see a practical example. 
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Example - How to get mode shapes and frequencies for a multi-degree of 
freedom structure 7 
 

Example 1 - Our problem is an example of the "generalized" eigenproblem: 
 

k φ = ω2 m φ       (1) 
 
Where k and m are both symmetric positive definite matrices. In the specific case they 
were: 
 

Stiffness matrix k:  Mass matrix m: 
600 -600 0  1 0 0 
-600 1800 -1200  0 1.5 0 

0 -1200 3000  0 0 2 
 

This problem is equivalent to a "standard" eigenproblem: 

(m-1 ⋅k) φ = ω2 φ      ⇒     C φ = ω2 φ       

The problem is that C is not symmetric. Many algorithms work fine only for symmetric 
matrices, but not very well for no symmetric matrices. One can work around the 
problem by converting the problem to a symmetric one using the Cholesky's 
decomposition 

m = L LT    

Where L is a triangular matrix. In a case like ours where m is diagonal the L matrix is 
also diagonal with each term of L being the square root of the corresponding term in 
m. Define new matrix W as: 

W = L-1   

Multiplying equation (1) by W, one gets: 
 

W k WT (LT φ) = ω2 (LT φ) 
 
Or, more concisely 
 
 D v = ω2 v      (2) 
 
Where  
 
 D = W k WT       (3) 
 
The eigenvalues for equation (2) are identical to those of equation (1), and the 
eigenvalues of equation (1) can be obtained easily from the eigenvalues of equation 
(2): 
 
                                                      
7 This example comes from a true problem proposed to me by Douglas C. Stahl of the Architectural 
Engineering and Building Construction of Milwaukee School of Engineering. Because it seems to me very 
interesting also for other people, I decide to publish it in this tutorial, in the version arranged by Doug and 
me. 
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 φ = ( LT)-1 v = W v   (4) 
 
So here's what you do:  
Starting with k and m, make L ; then W ; and then D.  
 

 
 
Calculate the eigenvalues and eigenvectors for D, with functions 
matEigenvalue_jacobi and  matEigenvector_jacobi contained in the Add-in 
MATRIX.  Use a number of iteration more than 40. These eigenvalues are the ones 
you want. These are the correct squared frequencies for our problem. 
 

 
 
The eigenvectors must be converted using equation 4. They are the correct mode 
shapes for our problem. The eigenvectors are already orthonormalized. 
 

 
 
 
 

Example 2 - Seven inertia torsion system 

This example8 shows how to solve a more larger torsion system with a good accuracy. 
Assume to have the following torsion system equation 
 

 K φ = ω2 M φ       (1) 
 
Where the matrices [K] and [M] are  
 
 
 
 

                                                      
8 Thanks to Anthony Garcia 
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 115.2 0 0 0 0 0 0 
 0 15.8 0 0 0 0 0 
 0 0 1.35 0 0 0 0 

[M]= 0 0 0 1.35 0 0 0 
 0 0 0 0 1.35 0 0 
 0 0 0 0 0 1.35 0 
 0 0 0 0 0 0 9.21 

        
        
 9400000 -9400000 0 0 0 0 0 
 -9400000 24400000 -15000000 0 0 0 0 
 0 -15000000 49000000 -34000000 0 0 0 

[K]= 0 0 -34000000 68000000 -34000000 0 0 
 0 0 0 -34000000 68000000 -34000000 0 
 0 0 0 0 -34000000 106000000 -72000000 
 0 0 0 0 0 -72000000 72000000 

 
Tip. Scaling the given matrix for a suitable factor may increase the computing accuracy of 
several orders. In this case we divide the [K[ matrix for a factor 106. The eigenvalues are 
proportionally scaled by the same factor. In fact, multiplying both terms of the equation (1) 
for the same scaling factor, we have: 
 

 10-6 K φ = 10-6 ω2 M φ        
 
  K' φ = λ M φ        
 
where    K' = 10-6 K   and    ω2 =  106 λ                              
 

 9.4 -9.4 0 0 0 0 0 
 -9.4 24.4 -15 0 0 0 0 
 0 -15 49 -34 0 0 0 
[K'] = 0 0 -34 68 -34 0 0 

 0 0 0 -34 68 -34 0 
 0 0 0 0 -34 106 -72 
 0 0 0 0 0 -72 72 

 
the Cholesky factorization of M; it can be easily computed because it is a diagonal 
matrix  

L  = [ (m11)1/2 , (m22)1/2 , .... (m77)1/2 ] 
 

 
 
The auxiliary matrix is the inverse of L matrix; but also in this case, it is very easy to 
compute the inverse, being 

W = L-1  = [ 1/L11 , 1/L22 , .... 1/L22
 ] 
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Now we compute the matrix [D]=[W][K'][W]T   by the function M_PROD  
Note that, being [W] diagonal, is [W]T = [W]   
 

 
 
Applying the Jacoby algorithm or, even better, the QL algorithm, to the symmetric 
tridiagonal matrix [D], we get all its real eigenvalues. Multiplying them for the factor 
106, we have finally the eigenvalues of the given torsion system 
 

 
 

 

The eigenvectors of [D] may be 
computed by the Jacoby algorithm 
or by the inverse iteration 
Here we have used the function 
MatEigenvector_Jacobi 
 

 

 

Multiply the [Vd] matrix for the 
auxiliary [W] matrix we have the 
eigenvectors of the given system 

 

 

That can be normalized as we like 
by the function MatNormalize 
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Linear regression 
 

Recalls 
Generally, the multivariate linear regression function is: 

mmxaxaxaay ...22110 +++=  

Where: 
[ ]maaaa  ... , , 210  

 
Is the coefficients vector of regression, which can be found by the following procedure 
Make the following variables substitution: 
 

1..mifor       =−= xxX ii  
 

yyY −=  
 
Where the right values are the average of samples y and x: 

∑= k ky
n

y 1  

 

∑= k kii x
n

x ,
1  

 
After that, the system can be writing as: 
 
















=
















⋅

















mmmnmn

m

Y

Y

a

a

XX

XX
......

...
.........

... 11

  

 111

 
 
That is, in compact form: 
 

[ ] YaX =⋅  
 
We solve this singular system with SVD method, obtaining the following 3 matrices 
 

[ ] [ ] [ ] [ ] [ ] [ ]T

mm

T V
d

d
UVDUX ⋅
















⋅=⋅⋅=

 

11

00
.........
00

 
 

Chapter 

4 



 

 104

 
Taking the inverse of the diagonal matrix D, that is trivial because: 
 

[ ]




≠⇒

=⇒
=−

ji

jid
D ji

            0

     /1  1

 
 
The system solution is: 
 

[ ] [ ] [ ] bUDVa T1−⋅=  
 
The final constant terms can be obtained by the following formulas 
 

∑
=

−=
m

i
ii XaYa

1
0

 

 
Let's see how to use the regression formulas 
 
 
 
Linear Regression models 
 

Linear model: a0+a1 x1+a2 x2 

Example - assume to have to find the bivariate linear function f (x1, x2) that better 
approximate the following table 
 

y x1 x2 
548.8 0.1 10

558.85 0.2 10.25

580.15 0.3 10.75
601.45 0.4 11.25
622.75 0.5 11.75
644.05 0.6 12.25
665.35 0.7 12.75
686.65 0.8 13.25

674.2 0.9 13
673 1 13

671.8 1.1 13
445.6 1.2 8
421.9 1.3 7.5
398.2 1.4 7
374.5 1.5 6.5

 

The function (model) is  

2211021   ),( xaxaaxxf ++=

We use the linear regression to find the 
coefficients   a0, a1, a2 
 
Arrange the table data as in the following 
worksheet 
 
Select the range where you want to paste the 
coefficients, For example the range F7:F9 
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Now open the function wizard with    and insert the REGRL function  
 

 
Remember: give the CTRL+SHIFT+ENTER sequence to 
enter this function 

 
 
The solution is a0= 100, a1 = -12 , a2= 45,  giving the regression function: 
 
 
 
 
Polynomial model: a0+a1 x+a2 x2 +a3 x3 

Example: assume to have to find the 3 degree polynomial that better approximate the 
following table 
 

y x 
19.531 0.1
18.375 0.5

19 1
22.625 1.5

30 2
41.875 2.5

59 3
82.125 3.5

112 4
149.375 4.5

195 5
 
Copy the above table in a worksheet and add two other column x2 and x3  

2121  45 12100),( xxxxf +−=

The function (model) is  

3
3

2
210   )( xaxaxaaxf +++=
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The new values are compute by the x column; now select the range G5:G8 and insert 
the REGRL  function, giving the correct parameter: y = range A4:A14  and  x = B4:D14 
 

 
 
 
Polynomial regression for one variable can be made in a more compact way with the 
function REGRP. This function computes by itself the power of x and you do not need 
this job by hand. 
Let's see how to solve the previous example with REGRP    
 

 
 
 

Saving time and space is 
clear. It will be even more 
evident for higher degree 
polynomial 
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Two variables polynomial model: a0+a1 x+a2 y + a3 xy + a4 x2+ a5 y2 

Example: assume to have to find the 2nd degree bivariate (x, y) polynomial that better 
approximate the following table 
 

f(x, y) x y 
1338.09 13.5 0.2
1342.41 10.5 1.4
1351.14 7.5 2.3
1407.91 12 4.9
1503.51 12.4 8.5
1442.41 -1.5 3.4
1507.54 -4.5 3.3

 

 
 
 
 
Linear model with fixed intercept: k x 

Sometime we have to fix or even eliminate (fix to 0) the intercept value of a regression 
model 
Example: A test of a gas-barometer has given the following experimental result. Find 
the barometer constant  k = P / T   (mbar / °K) 
 

T (°K) P (mbar) 
273 1101.2
278 1112.3
283 1141.2
288 1159
293 1178.1
298 1197.2
303 1221.3

 
 

The function (model) that we find is  
2

5
2

43210),( yaxaxyayaxaayxf +++++=

Having five parameters: a0, a1, a2, a3, a4, a5 

First of all, we easily 
calculate the variables: 

xy , x2 , y2  

putting them in the 
adjacent columns D, E, F 
 
Then we can calculate the 
unknown parameters with 
linear regression. 
 
Note that, in this case we have put 
the results in a horizontal vector. 
REGRL can have both outputs: 
horizontal or vertical vector 

The function model that we find is  

kTP =

This model implies that for T=0 ⇒ P=0  
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Using the linear regression with free intercept we find a coefficient k = 4.13 but we 
note also a spurious constant terms not negligible (a0 ≅ -30 ) 
Using the linear regression with fixed intercept to zero, we have a coefficient k = 4.02 
that it is more close to the original, not perturbed, model (k = 4) 
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Non linear regression - Transformable linear models 
When investigating the relationship between two variables, we usually make 
experimental observations to take paired values of the variables (xi, yi). We might then 
ask ourselves what mathematically formula best describes the relationships (if any).  
As seen in the previous section, the technique used is the least square linear 
regression. 
But many times the model that we must chose is intrinsically not linear. Exponential, 
logarithmic and rational model are the most common (exponential decay, pollution, 
etc.).  
 
Quasi linear model 
Same simple nonlinear model can be converted into linear model by variables 
transformation.  
 

• Exponential  y = y0e kx 

• Logarithmic  y = b0+b1 ln(x) 

• Rational  y = (b0+ b1 x)-1       

• Power y = a x α     . 

 
Transformable linear models have the advantages that they can be treated with the 
known linear regression formulas. This technique, however, is only possible for the 
simplest of nonlinear model. 
There is another important drawback that we must point out. The models obtained by 
transformation are only an approximation of the non-linear least squares model. We 
explain better this concept, not much explained by many authors. After that we have 
transformed a nonlinear model into a linear one, we apply the linear regression 
formulas to get the unknown parameters, for example (a1 ,a2 ). We calculate the sum 
of squared residual. 

( )2
21 ),,(∑ −= aaxfyssr ii  

 
Even if we have calculated (a1 ,a2 ) with the linear Least Square regression method is 
the ssr true the least? The answer is in generally negative. In other words, it could be 
other different couple of parameter (a1 ,a2 ) that minimized ssr. It is not guaranteed that 
the parameters given by linear regression are the best. In the following examples we 
show this trap. 
 
 
 
Exponential curve fit:  y0e kx 

The model, having two parameter y0 and k, is  

Taking the logarithm of both sides, we have 
 
 
 
Setting the new variable z = ln(y), the equation became linear in x and z, with the 
parameters z0 and k. 
 
 
 

xkeyy  
0  =

( ) kxyyeyy xk +=⇒= )ln()(ln          ln)ln( 0
 

0

kxzzyz +=⇒= 0         )ln(

)exp( 00 zy =
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The original parameter y0 can be found by the simple formula  
 
Reassuming, to calculate an exponential regression of data set (xi, yi), we have to 
made: 
 

1. Convert the data set (xi, yi) into a new data set (xi, zi) , where zi = Ln(yi) 

2. Apply the linear regression to find z0 and k 

3. Convert the z0 into y0 by the formula y0 = exp(z0) 

 
Let's see with an example. The data set is in the following table 
 

t y 
0.1 7.9 
0.2 7.1 
0.3 5.5 
0.5 4.1 
1 1.3 

1.5 0.6 
3 0.3 

 
The worksheet below show the results and the formulas used. The arrangement 
should be clear: we have computed the "z" column; then, we have performed the 
linear regression of (x, z) with LINEST built-in function, finding "k" and "z0". With the 
EXP function we have computed the "y0" parameter   
Then we have calculated the estimated values of the column "f1", and the value of 
residues "error f1". At the bottom, we have computed the standard deviation of the 
residues for estimating the standard error. 
 

 
 
As we see the exponential parameters found by linear regression are:  
 

k y0 Standard error
-1.194 6.953 0.91 

 
Adjacent to the previous one we have repeat the computing of the error standard for 
another regression "f2" obtained with another parameters couple: k = -2, y0 = 10 
Note that this couple is not given by linear regression; we say that we have known 
these value by another nonlinear method, a topic out of the subject of this document. 

An experimental test has given the table at the left. 
We search the exponential decay model  

f(t)  = y0 exp (kt) 

Parameters to determine are: y0 and k 
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k y0 Standard error
-2 10 0.24 

 
As we can see, the standard error is quite lower than the one given by the linear 
regression. So we see that there is another couple of parameter - differently from the 
ones given by linear regression, that are better from the point of view of the least 
squares criterion.  
 
This can also be seen, at the first sight, by the following graph 
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The curve obtained by the linearized regression f1 is not sure the best fit for the original 
data set  
 
From the above example a question raises: when can we use this linearized method? 
The answer is: it depends by the data set. If we have a data set with many equispaced 
samples and with a low level of noise, the linearized method gives result sufficiently 
close to the best regression. 
 
Let's repeat the exponential regression with this data set 
 

t y 
0.1 8 
0.3 5.4 
0.6 3 
1 1.3 

1.5 0.5 
2 0.2 
3 0.02 

 
 
The better approximation it is evident in the following graph 
 
 

k z0 y0 

-2.041 2.323 10.204 

For this data set, we can obtain the 
following parameter more close to the 
best model
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As we can see the curve obtained by linear regression fits much better the given data 
set. 
 
 
 
Logarithmic curve fit:  b0+b1 ln(x) 

The model, having two parameter b0 and b1, is  

Substituting:   t = Ln(x)   we have 
 
Thus the original parameters b0 and b1 remain unchanged.  
Reassuming, to calculate the logarithmic regression of data set (xi, yi), we have to 
made: 

1. Convert the data set (xi, yi) into a new data set (ti, yi) , where ti = Ln(xi)    

2. Apply the linear regression to find b0 , b1 

 
Let's see with an example. The data set is in the following table 
 

t y 
1.3 2.83 
1.6 5.98 
2 8.81 

2.5 10.33 
3 12.35 
4 15.19 
5 16.68 

 
The worksheet below show the results and the formulas used. We have computed the 
"t" column; then, we have performed the linear regression of (t, y) with the LINEST 
built-in function, finding "b0" and "b1". Then we have calculated the estimated values in 
the column "f1", and the value of residues "error f1". At the bottom, we have computed 
the standard deviation of the residues for estimating the standard error. 
We have made the same for two other parameter b0 = 1 and b1 = 10.  
We can observe that, in this case, the linear regression has produced a true best-fit 
solution 

)ln(10 xbby +=

tbbyxt        )ln( 10 +=⇒=

An experimental test has given the table at the left. 
We search the logarithmic curve for best fitting  

f(x)  = b0 + b1 Ln(x) 

Parameters to determine are: b0 and b1 
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The graph below confirms the best fit 
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Rational curve fit:  (b0+b1 x)-1 

 The model, having two parameter b0 and b1, is 

Substituting:   z = 1/y   we have 
 
 
 
Thus the original parameters b0 and b1 remain unchanged. 
Reassuming, to calculate the rational regression of data set (xi, yi), we have to made: 

3. Convert the data set (xi, yi) into a new data set (xi, zi) , where zi = 1/yi 

4. Apply the linear regression to find b0 , b1 

 
Let's see with an example. Two data sets are in the following tables. Find the best fit 
for linear rational models 
 

xbb
y

 
1

10 +
=

xbbzxbb
y

       1
1010 +=⇒+=
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x y 

1.3 0.66 
1.6 0.58 
2 0.49 

2.5 0.32 
3 0.33 
4 0.24 
5 0.18 

 
 

 
 
Repeating the rational regression for the two tables we have found the parameters 
 

 b1 b0 
1st table 1.08 0.018 
2nd table 1.878 -1.465 
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As we can see, the first example approximates much better then the second one. Note 
also that in the second left plot, data set has a larger random noise  
 
 
Power curve fit:  a xα  

The model, having two parameter b0 and b1, is  

Taking the logarithm of both sides, we have 

x y 
1.3 0.57 
1.6 0.49 
2 0.51 

2.5 0.34 
3 0.32 
4 0.19 
5 0.11 

An experimental test has given 
the table at the left. 
We search the rational curve for 
best fitting  

f(x)  = (b0 + b1 x)-1   

Parameters to determine are: b0 
and b1

The worksheet 
arrangement is 
similar to the 
previous one. 
Only the column 
"z", where we have 
compute the 
inverse  
z = 1/ y  
, is changed 

αxay  =
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Setting the new variables z = Ln(y) ,  t = Ln (x)  and setting z0 = Ln (a) the equation 
became linear in t and z, with the parameters z0 and α . 
 
 
The original parameters a can be computed by:    a = exp(z0) 
 
Reassuming, to calculate the logarithmic regression of data set (xi, yi), we have to 
made: 

1. Convert the data set (xi, yi) into a new data set (ti, zi), where ti = Ln (xi) , zi = Ln 

(yi) 

2. Apply the linear regression to find  α, z0  

3. Calculate the original parameter  a = exp(z0) 

 
Let's see with an example. Two data sets are in the following tables. Find the best fit 
for the power models 
 

x y 
1.3 1.79 
1.6 1.30 
2 1.16 

2.5 1.06 
3 1.04 
4 0.80 
5 0.60 

 
 

 
 
 
Repeating the power regression for the two tables we have found the parameters 
 

 α a 
1st table -0.697 1.997 
2nd table 1.878 -1.465 

 

x y 
1.3 1.73 
1.6 1.62 
2 1.12 

2.5 0.84 
3 0.97 
4 0.75 
5 0.75 

( ) )ln()ln()(ln          ln)ln( xayxay αα +=⇒=

tzz  0 α+=

An experimental test has given 
the tables at the left. 
We search the power curve for 
best fitting  

f(x)  = a xα    

Parameters to determine are: 
a and α
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We can note the relative high insensibility to the random perturbation of this kind of 
regression. In fact the power regression is one of the robust and reliable methods. 
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Interpolation 
 

Recalls 
Given a set of values of an unknown function yi = f(xi) calculates at N points x1, x2, … 
xN, we want to estimate the value f(x) at an arbitrary point x , being   x1 < x < xN   
This process of estimating the outcomes between the sampled data points is called 
interpolation. 
The idea is that the points lie on an underlying 
but unknown curve. The problem is to be able 
to estimate the values of the curve at any 
position between the known points.  
Of course, we cannot calculate directly the 
f(x). For example the points f(xi) might result 
from physical experimental measurements or 
from long, heavy calculation. 
In many engineering applications, data 
sampled are usually discrete and the analytic 
expression for f(x) is not always well known. 
Usually we can only decide the time and the 
method of the sampling: so the xi points are often equispaced. Sometime the points 
may be random. 
 
Many interpolation methods exist to solve this diffuse and basic problem: linear, 
polynomial, trigonometric, rational, Hermite, spline, continue fraction, Padè, 
Chebychef, Bezier, Spline, regression, piecewise, etc. Many of them are suitable for a 
special kind of data. The scope of this section is limited to some common interpolation 
methods: the linear and polynomial interpolation. 
 
We have to point out an important concept. Interpolation is related to, but distinct from, 
the function modeling (or function approximation, or fitting) that consist of finding an 
easy, approximate model to have a better understanding of the physical phenomenon, 
and a more analytically controllable function fitting the field data. This task was 
explained and developed in the previous chapter about “linear regression” 
In interpolation problems, on the contrary, we do not cure of the model. We are only 
focused to obtain the most accurate function value using only the given points data 
set. 
Many people confuse these concepts, - interpolation and approximation – because 
they use the same algorithms. 
 
 
Why to interpolate? 
Many different problems can take advantage from the power of interpolation methods. 
The most common is the so called sub tabulation problem. It happens when we want 

Chapter 

5 

0

0.5

1

1.5

2

2.5

0 1 2 3 4

?



 

 118

to generate a larger table of function values (xi, yi) starting from an accurate but more 
limited table. The interpolation line should pass between the original points (knots). 
This is a typical problem of function plotting when values are calculated by computer 
simulation programs. 
An important task is the inverse of sub tabulation: the data smoothing or data mop-up. 
It comes when we have many sample points affected by a considerable error noise 
and we want to obtain a table with less, but more accurate values. The interpolation 
line does not cross the given points. This situation is very common in many 
engineering applications where data came from experimental measurements  
Other problem is the data regularization; sometime is not possible to obtain a regular 
equispaced grid of points. This happens for example in random algorithms like the 
Monte Carlo method. In this case we can use the interpolation method to extract from 
the random table another table with equispaced points. 
Usually these task, the data smoothing and regularization, may happen at the same 
time. 
 

Task Source Data points Scope 

Sub tabulation Few accurate points (knots) To obtain more extra points 
between the knots (finer table) 

Smoothing Many approximate points To obtain more “clean” points 
following a more smooth curve 

Regularization Random xi points Equispaced xi points 

 
 
Piecewise polynomial interpolation schema 
Explained the scope of the interpolation, it remains to decide how to interpolate. Well, 
we have to say that there are lots of different interpolation schemes. Many of them, 
very ingenious, are dedicated to particular class of given points. It is out of the scope 
of this document to illustrate all of them. 
We shell discuss here a popular interpolation method called piecewise polynomial 
interpolation, a method sufficiently general to approximate large classes of function 
that we may find in practice. It is also conceptually simple and didactically important. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subset selection 
From the given set of points we choose a subset of 

points nearest the one that we want to evaluate. 

Polynomial fitting 
We compute the polynomial regression over the chosen 

subset of points 

Evaluation 
We evaluate the polynomial at the target point. 

This is the interpolation value 

Subset 

Subset 

Polynomial curve 

x 

y = p(x) 
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The second step is common with the modeling problem, but we still emphasized the 
fact that here the polynomial is used only to evaluate the y value at point x. Changing 
the point x, also the subset and, consequently, the polynomial may change. So there 
would be many polynomial formulas covering the entire range of points. This is the 
main difference from the modeling problem where the goal is to find the simplest 
unique formula that approximate all range of points. 
 
Linear Interpolation 
This is the simplest interpolation. It assumes a straight line between 2 knots to 
calculate the value y for x between  

ba xxx   ≤<  
It is always possible to find two knots satisfying the 
above constrain. 
The interpolation value is obtained by the linear formula 
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Or, as well, by the normalized formula 
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In spite of its moderate accuracy this method has several advantages that make it still 
very popular 
 
Parabolic Interpolation 
We want to find the value y at given x = 2.2 
between a set of given points (xi , yi ). If we 
want to interpolate the value y with a parabolic 
polynomial (2nd degree) we need at least 3 
points. Let’s begin to choose the 3 points 
nearest to the point x, (xa, xb, xc), having the 
corresponding function values (ya, yb, yc). The 
points a, b, c are called knots of the 
interpolation 
 
   
Knots x y 

a 1.5 1.37791 
b 2 1.69285 
c 2.5 1.83318 

 
Note that the point  x = 2.2  must be nearest to the central knots xb. It assures the 
highest accuracy of interpolation. This condition is expressed by the following formula 

22
cbba xxxxx +

≤<
+

   (1a) 

If the above condition is not true, we simply shift the points selection to right or left till 
the conditions is satisfied. Apart for the first and the last segment, we can always 
choose a subset that satisfies this relation 

xa xb xcx

xa xbx
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Now we have to compute the parabolic polynomial crossing the 3 knots. There are 
many formulas and methods to build such polynomial. We choose here the method of 
the linear system because it is simple and has more didactic diffusion. 
The equations of the linear system can be built by the generic parabolic polynomial 
formula 

2
210   xaxaay ++=    (2a) 

Substituting the values of the knots, we have 3 linear equations in the unknown (a0, a1, 
a2) coefficients, which can be rearranged in matrix form 
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The system matrix is the Wandermonde’s matrix that can be easily obtained by the 
function Mat_Vandermonde  and the solution can be find with the SYSLIN function 
 
After we have found the polynomial coefficients, we can compute the interpolate value 
y at the point x = 2.2, by the formula (2a) 
A possible solution arrangement is shown in the following worksheet 
 

 
 
Of course we have shown in detail all the process to explain better the interpolation 
method but, in Matrix.xla it exists the function Interpolate(x, knots, [degree]) that just 
performs this calculus giving the same result. 
This function came in handy overall when we have to interpolate many values over a 
larger set of knots.. 
 
Example. Sub tabulate the following table for with step ∆x = 0.1 between 0.5 and 3.5  
 
Knots  

x y 
0.5 0.73008 

1 1 
1.5 1.37791 

2 1.69285 
2.5 1.83318 

3 1.74207 
3.5 1.41966 
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Note from the graph how good is the interpolation fitting 
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subtabulation

Knots

 
 
How many polynomials have been necessary to sub tabulate the above function? Well 
we can say that the function Interpolate build one polynomial for any consecutive set 
of 3 knots; in the case we need 5 parabolic polynomials to cover the interpolation 
range.  
 
The coefficients of the interpolation polynomials can be computed by the REGRP 
function 
 
In the following example we compute and plot the parabolic polynomials with the first 
and the last 3-set of knots 
 

 
 

The 1st  parabolic 
polynomial A(x) cross the 
knots at x = [0.5, 1, 1.5] 
 
The 2nd  parabolic 
polynomial B(x) cross the 
knots at x = [2.5, 3, 31.5] 
 

The interpolate(x, knots, degree) function 
accepts also a vector of value x. In this 
case it returns a vector of values y(x) and 
must be insert with the 
CTRL+SHIFT+ENTER sequence. 
This is the fast way to perform the sub-
tabulation. 
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Cubic interpolation 
We may choose a cubic interpolation polynomial providing the necessary 4 knots 
subset. 
 
The abscissa x should lie between the 2nd and 
the 3rd knots. We have to choose the 4 knots 
subset that satisfies to the relation 

bb xxx   ≤<  
Apart for the first and the last segment, we can 
always choose a subset that satisfies this 
relation 
 
Cubic interpolation is often chosen for its high accuracy.  
The function interpolate(x, knots, [degree]) has a third optional parameter for setting 
the degree of the interpolation polynomial: if omitted, the function assumes the default 
degree = 2 (parabolic interpolation). 
 
Example. Repeat the interpolation at the point x = 2.2 with linear, parabolic and cubic 
polynomial for the above set of knots. Compare the error with the exact expect value 
given by the formula 

)5/4sin()ln(1)( xxxf ⋅+=  
 
Comparing the error with the exact value for x = 2.2, we note that the cubic error is 
lower about 3 times than the parabolic and about 20 times than the linear interpolation 
one 
 

 

From the graph we understand why we need 
many parabolas in order to obtain a good 
interpolation accuracy for all points of the 
range. 
The first parabola A(x) is used to interpolate 
the points nearest the 1st  and 2nd knots. At 
the end, we use the parabola B(x) to better 
interpolate points nearest the 6th an 7th knots. 
Incidentally we note that B(x) works good also 
for points near the 5th and 4th knots, but it is all 
unable to approximate the points near the first 
knots. On the other hand, the first parabola 
works badly at the end of the range. 

xa xb xcx xd
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It is evident from this example the superiority of the highest degree polynomial. But is 
this always true? Unfortunately not. Often, high degree does not means high 
interpolation accuracy. Let’s read the following subject. 
 
Instability of higher interpolation degree 
For the piecewise interpolation method there is any conceptual limit in the degree of 
the interpolation polynomial. We can choose any degree we like providing the 
necessary knots subset; for 2 degree we need 3 knots; for 3 degree,  4 knots; and so 
on.  
Generally:     Degree = Knots − 1 
On the other hand, we’ll see that there are also many other things suggesting not to 
exceed with the degree interpolation.  
One first reason concerns the Wandermonde’s matrix, which, increasing the 
dimension, is getting sharply hill-conditioned. Its solution becomes error affected that 
vanish the accuracy of the final result. But there is a deeper, hidden aspect: 
interpolation with high degree polynomials is getting unstable, especially for knots 
perturbed by noise, error measurements, etc.  
 
Example. Perform the sub tabulation from 0 to 2.5 with step ∆x = 0.1 of the following 
table with polynomial of 3rd degree and 5th degree 
  
Knots  

x y 
0 0.0887048 

0.5 0.11539 
1.2 0.0659381 
1.5 0.121927 
1.8 0.0513094 
2.5 0.1306148 

This problem can be easily solved by the interpolate  function. The plots of 
the interpolation curves are shown in the following graph. 
As we can see, the highest polynomial have larger oscillations between 
the knots, especially at the boundaries of the range. 
On the contrary, the cubic polynomial seems to follow better the trend of 
the given samples, avoiding the instability over the critical segments [0, 
0.5] and [2, 2.5]. Cleary, there are good reasons to keep low the 
interpolation polynomial degree . 
Generally, cubic polynomial is the best compromise 
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-0.2
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0

0.1

0.2

0.3
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Knots

interp (5)

interp (3)

Both polynomials 
seem to agree at 
the middle of the 
range 
 
This suggest that 
the best accuracy 
should be at the 
middle of the 
interpolation range. 
On the contrary, the 
interpolate values 
near the range 
limits [0 , 2.5] may 
be largely 
inaccurate 

 
Note that in the above example the knots are not equispaced. This condition takes to 
increase the oscillating phenomena for high interpolation degree. On the contrary, a 
uniform equispaced grid reduces the instability.  
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There is another case where it is convenient to keep low the interpolation degree: 
when the knots show abrupt changes of direction, due to same non-linearity of the 
system under observation. In this case, high degree interpolations may shown 
unwanted overshooting, or dumped peaks. 
 
Example. Assume to have sampled in the range [1, 2.7] with the step ∆t = 0.1  the 
following function. 
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Where: 

t0 = 1.4    ,    k = 5 

 
Let’s perform the sub-tabulation with ∆t = 0.2 and with linear and parabolic 
interpolation  

x knots 
1 1 

1.1 1 
1.2 1 
1.3 1 
1.4 1 
1.5 0.606531 
1.6 0.367879 
1.7 0.223130 
1.8 0.135335 
1.9 0.082085 

2 0.049787 
2.1 0.030197 
2.2 0.018316 
2.3 0.011109 
2.4 0.006738 
2.5 0.004087 
2.6 0.002479 
2.7 0.001503 

 

 

Linear 
interpolation. 
 
The fit appears 
very good. 
The interpolate 
curve seems to 
follow the 
original trend of 
the points  
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Parabolic 
interpolation 
 
In this case we 
note a peak 
near the corner 
at x = 1.4 
 

 
The parabolic interpolation shows a behavior that is not correlated to the original 
points. It is only due to the degree of the interpolate polynomial. As we can see, 
surprisingly, the best fitting, in that case, is obtained with the simplest linear 
interpolation. We can repeat, if we like, the interpolation with several different degree. 
The peak appears more dumped, but the result is substantially the same: the linear 
interpolation is better. 
 
 
Example. Sample the following function in the range [0, 1.7] with ∆x = 0.1 and plot the 
parabolic interpolation. 

2)8.0(101 −⋅+
=

x
xy
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The graph shows 
the interpolation 
fitting for every 
knot. 
 
We have add also 
the global 
regression with 6th 
degree 
polynomial 
(light blu line) 
 
As we can see 
the piecewise 
parabolic 
intepolation is 
much more 
accurate. 
 

 
 
Piecewise polynomial regression schema 
Many times the knots of the interpolation are affected by errors due to different 
sources: noise, measurement, errors calculus, etc. Often the samples occurs in 
random, not equispaced, grid. In this situation the exact interpolation shown in the 
above paragraphs may give bad results. The solution could be the polynomial 
regression with low-moderate degree, over many points. We hope to extract few 
accurate points (not worse, at least!) from a set of many approximate points. 
This method follows the same schema of the piecewise exact interpolation except that 
the subset of points chosen are more then the exact Degree+1. This leads to an over 
determined linear system that can be solved with the Least Squares method. 
 
For example, for a parabolic interpolation (that require at least 3 points) we can 
choose the nearest 6, or 10 points. The number varies from case to case, and it is 
correlated to the error of to the points: great errors involve large subset of points and 
vice versa.  
 
One important consequence is that the interpolation curve does not cross for any 
points anymore. But this is no more a problem because in this case we have assumed 
that every point is affected by error.  Conceptually speaking there is no difference from 
the interpolate points and original points; they are all error prone. 
 
The function Interpolate(x, knots, [degree], [points])  has a 4th optional parameter 
setting the number of the points to choose for the regression. If omitted, the function 
assumes the number equal to the polynomial degree plus one (exact interpolation) 
 
Example. Assume to have obtained 100 samples from a measurement instrument 
affected by an evident noise. We plot the parabolic interpolate function obtained with 3 
points (exact interpolation), 8 points and 40 points. 
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Row data points Degree = 2 , Points = 3 (exact interpolation) 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4
 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4
 

Degree = 2 , Points = 8 Degree = 2 , Points = 40 
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As we can see the “smoothing” effect is quite evident. We put in evidence that a larger 
number of points give a more smoothing curve but, on the other hand, shows the 
tendency to lose the original trend. We have to choose a right compromise. 
 
Let’s see the following example  
 
Example. Assume to have obtained 100 samples from a measurement instrument 
affected by an evident noise. We plot the parabolic interpolate function obtained with 3 
points (exact interpolation), 8 points and 40 points. 
 
Row data points Degree = 2 , Points = 8  
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Degree = 2 , Points = 20 Degree = 2 , Points = 50 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
 

 
As we can see the 2nd piecewise regression with 20 points seems the best 
compromise. The 1st curve is not smoothing enough, while the 3rd curve is very smooth 
but near the origin it shows a different trend respect to the original points The 2nd  
curve follow better the  local “knee” effect near the origin of the original data. 
 
Piecewise regression versus global regression 
We call “global regression” when we perform a polynomial regression using all points 
of the dataset, to distinguish from the “piecewise regression” that occurs when we use 
only a subset of the given points. As discussed in the previous sections, the two 
processes have different scopes even if they use the same method. 
The scope of the first one is to understand which mathematical law (model) has 
generated the points of the dataset. We want to find a function that best approximates 
globally the given points. 
The scope of the second regression is to find the best approximate curve that locally 
follow the given points, with the highest accuracy possible, no matter which formula is 
used. 
 
The difference from global and local fitting is shown in the following example 
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This scattering plot was 
extracted from an experimental 
dataset. The points are heavy 
perturbed by random noise. 
 
We are interested in two 
problems: 
 
1) find a smooth curve that best 
follow the trend of the points. 
 
2) find a closed simplest 
formula (if it exists) that best fit 
the points 
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y = -0.2898x2 + 1.5048x - 0.1757
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The read light continue curve 
is the parabola, obtained from 
the global regression, which 
equation is shown at the top 
of the graph. This is our math 
“model” of the experimental 
points 
 
The tick dark curve is 
obtained by the parabolic 
regression taking the points 
falling in the strip between 1.5 
and 2.5. In this range, this 
curve follows better the hazy 
trend of the points 
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